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Construction of local fields in the bulk of AdS; and other spaces
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In the Poincarepatch of Minkovski Adg we explicitly construct local bulk fields from the boundary
operators, to leading order inNY/ following the ideas of Bankst al. and Balasubramaniaet al. We also
construct the Green’s function implicitly defined by this procedure. We generalize the construction of local
fields for near horizon geometries opEbranes. We try to expand the procedure to the interacting case, with
partial success.

PACS numbgs): 11.25.Mj, 04.65+e, 11.25.Hf

[. INTRODUCTION perturbatively. We present a way to construct interacting
fields and to check for their locality, at first order inNL/

In the context of the Maldacena conject(iBe-5], applied  Nevertheless, checking for locality is easier said than done.
to the near horizon geometries opEbranes, we consider the We encounter computation difficulties too big for us. How-
possibility of constructing bulk fields from the boundary op- ever, we will present the work done with the hope that some
erators. It is not obvious that local physics in areader with more audacity and more technical inclinations
(d+1)-dimensional theory can be obtained from amight bring it to completion.
d-dimensional theory because of the different causal struc-
tures. More precisely, local fields in the higher dimensional ||. CONSTRUCTION OF FIELDS AND OF THE GREEN'S
theory should commute outside of the light cone, which con-  FUNCTION ON THE POINCARE PATCH OF AdSs
tains one extra coordinate. Commutation of fields at space- ) ) )
like separations along that direction is a nontrivial property. We briefly —review the Banks-Douglas-Horowitz-

In[1,2], a method was presented for constructing fields inMartinec{BDHM-) Balasubramanian-Kraus-Lawrence-
the bulk of AdS from the operators of the boundary confor- Trivedi (BKLT) [1,2] procedure. In a larg\ conformal -
mal field theory(CFT) at leading order in N. In [1], the theory,_we can obtain a set _of chlral_ primary operators, with
issue of locality was explored thoroughly, but the argumentdormalized orthogonal 2 point functions:
used made heavy use of the conformal structure of the
boundary theory. Nevertheless, intuition tells us that it (0i0)~ 6y, 2.7
should be possible to construct local bulk fields in all the

cases where the Maldacena conjecture applies—i.e. even iﬁ leading order in M. This looks like a free theory in which

e O;’s are the independent free fields. It is possible there-
ore to use their Fourier components, which behave as cre-
. : ation and annihilation operators to construct bulk free fields.
their near horizon geometry. ‘A bulk field is constructed by multiplying the creation and

Rather than using arguments having to do with Cor]formaannihilation operators by the appropriate normalized solu-
symmetry, we take the hard approach—explicit construction,. P y pprop

This approach is less elegant, but easier to see through, aH8nS of the bulk equation of mogon.l o -
has the advantage of easily extending to the nonconformal In“our case, tr,],e boundary B°XR", so the “creation
cases. We first do the construction for the AdSFT cas€in and “annihilation operators are
Sec. ll) and then for one nonconformal ca@e Sec. IV). 1 oo

We also construct the Green’s function relating bulk fields Oy w:_fj e 1@t Q(x,t)d3xdt, (2.2
with boundary operators, and explore its properiasSec. v (2m)T) e
II). The Green’s function is not very useful for checking ] )
locality for the bulk fieldsunless you are a fan of hypergeo- and its conjugat®y , . Here,w>0.
metric function$, but is helpful at understanding the con-  The Poincareatch of AdS has the metric
struction. One interesting thing which we explore is the fact 1
that the Green'’s function is not manifestly causal. T 0 2

Finally, in Sec. V we present a way to generalize this dSZ_Eg( dt* +dz+dz%). 23
procedure to the interacting case. Following the line of
thought from[1] and our intuition, we believe that the theory The equation of motion for a field of masa is easy to
in the bulk remains local in perturbation theory. Locality obtain, and has 2 independent solutions:

should be broken because of holography, but probably not -
fi,k:ZCZ)‘]v(ZO w2_k2)elwt+lkz (24)

cases where the boundary theories are not conformal. Su
cases are obtained by looking apfranes withp+# 3 and at
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f2 k=z(2,NV(zo~/wz—kz)e“"””‘z (2.5  Substitutingk=A sinhy,o=Acoshy we obtain after a few
steps

wherev=\/4+m?, andJ andN are Bessel functions of the
first kind. The boundary operator whose Fourier components ovt2, dy sinhy
are the creations and annihilation operators of a bulk field G= —4f dA A27"J (Azy)Re f Ax
with massm has dimensiom =2+ \4+m?. The exact pre- (2m) —e 18X
scription[1,6] relating bulk fields and boundary operators is  @lA(At coshy+Axsinhy) 211

lim ®;(t,x,20) = 250;(t,X). (2.6 , _

20 The second integral can be evaluated differently when

Ax>At and whenAt>Ax. We will present the first case
Because of general properties of field theories, the operasnly. The second one can be obtained through analytic con-
tors Ok » andOy ,, only exist for o> |k|. This is consistent tinuation. ~ Substituting Ax=Ax?—At’coshs, At

with the fact that one can only obtain a solution of the equa—= \/Ax?— AtZsinhs, and |=y+s the second integral be-
tion of motion with the behavior in Ed2.6) for this range of  comes after a few steps:
w. We can actually see thét properly normalized should be

used as the mode function. Thus,
f dysmhy |A(At coshy+Ax sinhy)

2 o w’—K?\ "7 TAX
dl(t,2,29) = —2 d3kdwe'wt+'k2(—>
(2m) w>|K| 2 2 %
. =————1 dlsinhl sifAyAx?>— At?sinhl
XJ,(zg\w’—k?*)O} ,+H.c. 2.7 \/sz—Atzfo " )
This equation implicitly defines a Green'’s function, which 2 5 5
due to the abundance of this type of things in the literature - \/WK (AVAX"—ATY) (212
we will call “transfer function.” Thus,
. . Thus
f G(z,b)0'(b)=d'(2), (2.8
boundary
G 2"z, dA A27 "] (AZy)
wherez andb are the generic coordinates in the bulk, respec- = 2 fﬁf "J,(AZ
tively the boundary. Hence (2m)"VAX"—At*Jo
5 XK (AVAX?—At?). (2.13

2z
G(z,29,t,%X,7)= 2—(;4Ref d*kdw
(27 0>[K In the caseAt>Ax, K, simply becomedd;. Here,J,N,H
Jo?— K2\ " andK denote the appropriate Bessel functions. The integral
x glot=n+ik(z X)(—> is not hard to perform. Usinf9] (6.576 3 we obtain

2
X J,(ZgVw?—K?). (2.9 z2t ~ 72
G=—F—— Fl21v+ 1)
We can see that because we eliminated the modes awith (AX* =A%) T(v+1)
<|k|, the transfer function will not be proportional to & (2.14
function whenzy— 0. Thus, it is different from the analytical
continuation of the Green'’s function obtained 4. Also, as As it is well known, the hypergeometric function has
we will see, this is the reason for its lack of manifest causalpoles at 0, 1 aneg, and can be analytically continued inside
ity. the light cone.

Finding G explicitly is not hard, just a bit messy. We can  We have obtained a transfer function which does not look
first perform the angular part of the integral, by choosing causal. This is because its limit as the bulk coordinate goes
—X=AXx as our main axis. Thu&(z—x)=kAx cosd, where to the boundary is not proportional tosafunction. Thus, we
0< 6< m/2,—0<k<o. The choice of range fof andkisa need to know the boundary field all over the Poingaagch

bit unusual, but makes the computation easier. Thus, in order to obtain the bulk field at a point. This contradicts

our intuition that an excitation of the boundary should propa-

2”*27723 < dkk gate causally in the bulk. We can see that we can only obtain

= f f Ax a causal looking transfer function by working in the univer-

(2m) 0>[K| ’°° sal cover of AdS. In that case, we can regard the Poincare
o> patch where the boundary operators are as one in the back

XeiwAHikAx‘]”(zo—w_k). (2.10 light cone of the bulk point, and thus have manifest causal-

(JoZ—k2)" ity.
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Il. LOCALITY IN THE BULK—THE CONFORMAL CASE Since we definech’w to correspond to positive fre-
In order to check the locality of the bulk fields defined in guency, we can easily see tfﬁﬁ?k,w O] =0, since their
commutator contains &(w+ w'). The same is true for the

Eq. (2._7),_We_ need tp fmd the commutator df Wlth itself, . OPs. By looking at the Poincaravariance of the boundary
and with its time derivative. One attempt at checking locality L .
theory, it is quite easy to see that the commutator

would be to use Eg2.14), but the computation is hard, and " _ , ) N e

obscures the physics going on. More intuitive is to go inl Ok.w:Ok .1 Will contain §(w—w’)5(k—k’). Since the

small steps. Thus, we would like to find the commutatorstheory is conformal, the product @ffunctions must be mul-

[0 of ] and[Oy .0 /] in the boundary theory tiplied by an appropriate power af*— k<. We can also com-
rpol D T : " pute[Oy,,,0}, ] by using brute force. Combining E

and combine them with E2.7) in order to obtain the com- PYt€[Ok... Oy ] by using brute force. Combining Egs.

mutator of the field with itself and with its time derivative. (2.2 and (3.2 is straightforward, and after a few steps in

To do this, we first have to finfO(x,t),0(0,0)]. This can which we use techniques similar to the ones in Sec. I, we

be done in two ways: by analytically continuing from the obtain

Euclidean case, or by using Ken-Lehmann representation.

We know that for properly normalize@'’s, in the Euclid- [Okw ,Ol,’w,]=(w2—kZ)A‘25(w—w’)5(k—k’)C,
ean case, (3.5
where C is a numerical constant— 73/224 5T (A)T'(A
(O(x,r),O(0,0))zm, (31))  —1) for the curious read¢r We understands(v) of a
d-dimensional vectoyv to be the appropriaté-dimensionald
function.

whereA is the dimension of the operat@. We can obtain
the time ordered and the anti time ordered correlation func-. |
tions by analytically continuing under or above the poles alf'e

Using Egs.(3.5 and (2.7) we can show that the bulk
ds are local. There are three things to check:

r—x and 7—-x. For t>0, [O(x1),0(00)]  D[P("22).®(t"2'2)]=0, , ,
=(TO(x,t)0(0,0)) — (AO(x,t)O(0,0)). Thus () [P(t',2,20), (a1 ) D(t',2',20) ]~ 6(20— 20) 8(2—Z'),
(3 [P(t,2,20),(dlt)D(t',2',24)]=0 outside of the light
—2i sin(7rA) 6(t>—x?)sgr(t) cone. »
[O(x,1),0(0,0)]= . In fact, condition(3) should follow from(2), because of

(tP=x?)* the symmetry of the bulk, but it is nice to show how it works
3.2 out. We can fix without loss of generality and z’ to O.

The formula above may look a bit puzzling for integer di- Using Egs.(2.7) and (3.5 we have

mension operators, nevertheless, it only tells us that the con?-cp(0 2.20),(00,2)]
mutator is nonzero only on the light cone. 150/ 40
We can also note that, for a free field of mass

~737(? f | |d3kdeV(zox/w2—k2)
>k

K (myx®+ 72)
<¢(X,T),¢(O,O)>E21X2ﬁ, (333 XJV(Zém)(eikz_e_ikz)’“O, (36)
i3 (MVE2—x2) [®(t,2,29),9(0,0,2)]
[¢(th)i¢(oao)]M:Tﬁ(tz_xz)sgf{t),
VEE =X (339 ~Z(2)Z(’)2f >|kld3kdwa,,(Zo\/wz—kZ)J,,(Z(')\/wz—ki)
where the label€ and M stand for Euclidean and Mink- X cog wt+Kkz). (3.7

ovskian. We can use the Ken-Lehmann representation ) . )
Using the same change of variable as at the evaluation of Eq.

o (2.9), we obtain
(O(x,7),0(0,0))g= fo dn?F(m?)(A(x,7),¢(0,0))e,

. 2z (e
(3.4a [@,0]~— f dA A3, (Azy)d,(AZ)
0
[O(x,1),0(0,0) ]y = Jo dm?F(m?)[ p(x,t),$(0,0) ]y, lefw dy sinhy coshy @Az sinhy +t coshy).
(3.4b o

3.8
and extracF(m?) from Egs.(3.48 and(3.1), plug it back in =9
Eq. (3.4b and reobtain Eq(3.2). The integral in the Kiéén-  For t=0, it is easier to use Ed3.7), and replacasdw by
Lehmann representation runs from 0, because there is nddA. The integrals oved®k anddA separate, and thek
mass scale in a conformal theory. integral gives usj(z). We are left with
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U(7—p)/2d 2+ gYMNl/Z
129% (7-p)/2
gymN u

[®,D]~2525°5(2) f:dAAJxAzo)JV(Aza). (3.93 ds=a’

(dU2+U%d0Z )|,

The integral is proportional té(zy— z;), by the orthogonal-

ity relation of Bessel functions. Thus, we have checked the o2 y-p2
second relation. We did not keep all the constants along the - OYM gy N2
way for the sake of clarity. The exact answer is

(p—3)/2
(4.1

2: Here gyu is the coupling constant for the theory on the
. (3.9p brane. Supergravity is a valid description for the bulk theory
r)ra-1) in the range where both the dilaton and the scalar curvature

| q heck the third relati h look at th are small. In the case of D2 branes, which we will explore
n order to check the third relation we have to look at t ®ater, this isg%MN1’5<U<g$MN. A more general analysis

range we are in. Far>t, we can make the same substitution L

; : of other cases can be found [i]]. We look at the limit of

as in Eq. (2.10: z= \/.Z —t COShS,. and t=.z"—t SlnhS. Oy andN where this is all the bulk.

From Eq.(3.7) we obtain after making a change of variables: ™" A o<sless scalar fielg minimally coupled to the Ein-
stein metric, withSg_, angular momentum quantum number

|mfw dy sinhy coshy g/A(sinhyz+ coshyt) I, frequencyw and momentunk satisfies the classical equa-
- tion of motion:

[®,d]=236(29—2) 8(2)

m? g2 uN(w?—k?)

8_
() + =G b (V)| — Gz e 6U)

=cosh &f J dy sinhy coshy sin(A\z°—t?sinhy)

cosh &
T2t

5" (A). (3.10 =0, 4.2

Clearly the commutator vanishes for this range, because ofhere m?>=1(1+7—p) is the mass of the Kaluza-Klein
the high power ofA in Eq. (3.8). mode corresponding tb

For z=t, we will have an extra term of the form Changing the coordinate t;y=1/U, the mode function
(LIA2)[ &' (VZ2—1?)/JZ2=1?] in the last line of Eq(3.10.  Vanishing at the boundary is obtained to be
The original term will vanish again because of the high

power ofA in Eqg. (3.8), and the extra term will also vanish _ 29y uNY2 _ S

for zy# 2, because of the orthogonality relation of Bessel fw,k(ZO)ZZg P2y, “5_p V¥ —k 265 Pz |glottite,
functions. 4.3

For t>z, we substitute t=t?>—Zz%coshs, and z
=\t?=Z’sinhs, and get wherev=\4m?+ (7—p)?/(5—p) = (2l + 7—p)/(5—p).
We expect the construction to work in all the nonconfor-
* . iA(z sinhy-+t cosh mal cases, since by the conject(i8d the Hilbert spaces are
ImJiwdysmhy coshy ™ ’ ) the same. Nevertheless, we will only illustrate the case of the

D2 brane. The machinery is very similar to the one we had to
crank in the conformal case. Thus, for a bulk scalar with
angular momentunh, the Euclidean correlator of the corre-
sponding boundary operators[B]

=sinh %J dy cosh % sin(At?— z%sinhy)

~J,(At2—72). (3.1
B
Thus <O(X, T),O(O,O))Z m&, (44)
. Z%z(? (=
[P, D]~ °Z° fo dA A3, (Azy)J,(AZ)) I (ANEE—Z). where B=N©®+208/(g2 y(1+1)/8 and A=(19+4l)/6. Quite
(3.12 clearly,

Using [9] (6.578-9, and remembering thal,(x)=J_(X), [Ok,w.Ol/,wr]ZB'(wz—kZ)Afalzﬁ(w—w’)ts(k—k'),
we can see that the integral vanishes |foy— z)|> \t?— 22, (4.9

e.g. outside of the light cone, which is what was expected.
with B’ ~B up to a factor of order unity, which the curious

IV. THE NONCONFORMAL CASE reader can compute in the same way as in the previous chap-

ter.
We can look at the near horizon metric and dilaton for a The bulk field satisfying the correspondent of Ef.6),
collection of N Dp branes, for a generat with z understood &1a 2 dimensional vector is
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5129/ N2~ we can ask the question: Can we repeat the BDHM-BKLT
i 29°(2/3gvm 2 iot+ikz i i i
D'(t,2,29)= 0 d*kdwe'” construction for interacting cases ?
(2m) w>k At next to leading order in N, the boundary theory no

B . longer looks like a free theory. Rather, fot | Eq. (3.1) is
XA, (30vuNYAZA O} ,+H.c., (46 eplaced by

where A= \w?— k2. For simplifying the formulas, we will
call g=2gy N2 We have the same three things to check as 1
in the conformal case. The first one follows exactly like in Oi(x)Oj(xj)= N Ek f ddeijk(xlxl,xz)Ok(x),

the conformal case. The second one involves calculating (5.1)

[D(t,2,20),9(0,0,25) ]~ (2025) ¥~ B Ref
0>k where Q;jx(X|X1,X,) can be obtained from the boundary
X d?kdwwd (AR (gAZ 32 3-point function.
w0, (9AZ)1,(9AZ5) Also, the bulk theory will have extra terms in the La-
x elottikz, (4.7  grangian, of the form

We can easily do the angular integral, usiitk=k dk dé,
with 0<k<w,0< < 7. After that, we make the substitution Lint=dijx @i ®;Dy. (5.2
k= A sinhy,w=Acoshy and obtain

We expect Eq(2.6) to be valid in the interacting case as
well. The practical way to check locality to next to leading
order in 1N is to use the interacting bulk equations of mo-
tion for the boundary “free” operators, and compare the
result with the one obtained using the free bulk equation of
motion for the boundary “interacting” theory. If the N/
(4.8 contributions cancel outside of the light cone, the bulk fields

. . . local.
We will call the second integrdl Using[9] (6.738 2, we are L .
can see that vanishes forz>t, as expected. In the equal Nevertheless, the computation is very hard. We tried to

. : , compute the commutator of bulk fields using the boundary
time case,tzq, I~5(AZ)/AZ sO[®,P]~5(2)5(Z0~20),  “interacting” theory and the free equations of motion, but
where 5(zo—2z;) came from the orthogonality relation of the technical difficulties were too big for us. As we said in
Bessel functions applied to E¢#.8). the Introduction, we cannot but hope that some reader with
Forz<t, I ~|t|/(t*=2*) A2, ,(AVt?~2%). Thus  more audacity and more technical inclinations might bring it
to completion.

(.01~ (22)%% 7B [ dA A3, (9AZ723,(0AR")
0

XJ’ dy sinhy coshy Jy(A sinhyz)cog A coshyt).
0

L (zozo)™ [ 3/2+1
[@,‘D]“’mQ Bfo dA A

VI. CONCLUSIONS

X J,(gAZ%?)J,(gAZ?) I3 AVEE=Z2).
A(9A%*%)1,(9AZ") Janl ) There are two new results in this paper. The first one is

(4.9  the computation of the transfer function relating boundary

operators with bulk fields, in the context of the AdS-CFT
This integral vanishes whegz,*2—gz/?> \t?— 2% [9](6- cgrrespondence.
578, 5 and 8 To see if this indeed means outside of the  The second one is the expansion of the BDHM-BKLT
“light cone” of the bulk theory, we can look at the metric rqcedure to nonconformal cases. We presented a method of
(4.1) and see that in differential form, a null trajectodt  constructing bulk fields in the near-horizon geometry of a

=dzyz;"?gyuN"?, is exactly the differential ofgz®?  cojllection of Dp branes, and verified locality explicitly for

—gZ/?=t. Therefore, we constructed local fields in the the D2 brane case.
bulk. It is possible to turn the argument around, and argue
that in order to have a bulk local theory, the boundary op-

erators had to satisfy a relation similar to E4.7). ACKNOWLEDGMENTS
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