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Construction of local fields in the bulk of AdS5 and other spaces

Iosif Bena*
Department of Physics, University of California, Santa Barbara, California 93117

~Received 21 June 1999; published 28 August 2000!

In the Poincare´ patch of Minkovski AdS5 we explicitly construct local bulk fields from the boundary
operators, to leading order in 1/N, following the ideas of Bankset al. and Balasubramanianet al. We also
construct the Green’s function implicitly defined by this procedure. We generalize the construction of local
fields for near horizon geometries of Dp-branes. We try to expand the procedure to the interacting case, with
partial success.

PACS number~s!: 11.25.Mj, 04.65.1e, 11.25.Hf
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I. INTRODUCTION

In the context of the Maldacena conjecture@3–5#, applied
to the near horizon geometries of Dp-branes, we consider th
possibility of constructing bulk fields from the boundary o
erators. It is not obvious that local physics in
(d11)-dimensional theory can be obtained from
d-dimensional theory because of the different causal st
tures. More precisely, local fields in the higher dimensio
theory should commute outside of the light cone, which c
tains one extra coordinate. Commutation of fields at spa
like separations along that direction is a nontrivial proper

In @1,2#, a method was presented for constructing fields
the bulk of AdS5 from the operators of the boundary confo
mal field theory~CFT! at leading order in 1/N. In @1#, the
issue of locality was explored thoroughly, but the argume
used made heavy use of the conformal structure of
boundary theory. Nevertheless, intuition tells us that
should be possible to construct local bulk fields in all t
cases where the Maldacena conjecture applies—i.e. eve
cases where the boundary theories are not conformal. S
cases are obtained by looking at Dp-branes withpÞ3 and at
their near horizon geometry.

Rather than using arguments having to do with conform
symmetry, we take the hard approach—explicit construct
This approach is less elegant, but easier to see through
has the advantage of easily extending to the nonconfor
cases. We first do the construction for the AdS5-CFT case~in
Sec. III! and then for one nonconformal case~in Sec. IV!.

We also construct the Green’s function relating bulk fie
with boundary operators, and explore its properties~in Sec.
II !. The Green’s function is not very useful for checkin
locality for the bulk fields~unless you are a fan of hyperge
metric functions!, but is helpful at understanding the co
struction. One interesting thing which we explore is the f
that the Green’s function is not manifestly causal.

Finally, in Sec. V we present a way to generalize t
procedure to the interacting case. Following the line
thought from@1# and our intuition, we believe that the theo
in the bulk remains local in perturbation theory. Locali
should be broken because of holography, but probably
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perturbatively. We present a way to construct interact
fields and to check for their locality, at first order in 1/N.
Nevertheless, checking for locality is easier said than do
We encounter computation difficulties too big for us. How
ever, we will present the work done with the hope that so
reader with more audacity and more technical inclinatio
might bring it to completion.

II. CONSTRUCTION OF FIELDS AND OF THE GREEN’S
FUNCTION ON THE POINCARÉ PATCH OF AdS5

We briefly review the Banks-Douglas-Horowitz
Martinec-~BDHM-! Balasubramanian-Kraus-Lawrenc
Trivedi ~BKLT ! @1,2# procedure. In a largeN conformal
theory, we can obtain a set of chiral primary operators, w
normalized orthogonal 2 point functions:

^OiOj&;d i j , ~2.1!

to leading order in 1/N. This looks like a free theory in which
the Oi ’s are the independent free fields. It is possible the
fore to use their Fourier components, which behave as
ation and annihilation operators to construct bulk free fiel
A bulk field is constructed by multiplying the creation an
annihilation operators by the appropriate normalized so
tions of the bulk equation of motion.

In our case, the boundary isR33R1, so the ‘‘creation’’
and ‘‘annihilation’’ operators are

Ok,v5
1

~2p!2E
2`

1`

e2 ivt2 ikxO~x,t !d3xdt, ~2.2!

and its conjugateOk,v
† . Here,v.0.

The Poincare´ patch of AdS has the metric

ds25
1

z0
2 ~2dt21dz0

21dz2!. ~2.3!

The equation of motion for a field of massm is easy to
obtain, and has 2 independent solutions:

f v,k
1 5z0

2Jn~z0Av22k2!eivt1 ikz ~2.4!

and
©2000 The American Physical Society07-1
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f v,k
2 5z0

2Nn~z0Av22k2!eivt1 ikz ~2.5!

wheren[A41m2, andJ andN are Bessel functions of th
first kind. The boundary operator whose Fourier compone
are the creations and annihilation operators of a bulk fi
with massm has dimensionD521A41m2. The exact pre-
scription@1,6# relating bulk fields and boundary operators

lim
z0→0

F i~ t,x,z0!5z0
DOi~ t,x!. ~2.6!

Because of general properties of field theories, the op
tors Ok,v

† andOk,v only exist forv.uku. This is consistent
with the fact that one can only obtain a solution of the eq
tion of motion with the behavior in Eq.~2.6! for this range of
v. We can actually see thatf 1 properly normalized should b
used as the mode function. Thus,

F i~ t,z,z0!5
z0

2

~2p!2E
v.uku

d3kdveivt1 ikzSAv22k2

2 D 2n

3Jn~z0Av22k2!Ok,v
i 1H.c. ~2.7!

This equation implicitly defines a Green’s function, whic
due to the abundance of this type of things in the literat
we will call ‘‘transfer function.’’ Thus,

E
boundary

G~z,b!Oi~b!5F i~z!, ~2.8!

wherez andb are the generic coordinates in the bulk, resp
tively the boundary. Hence

G~z,z0 ,t,x,t!5
2z0

2

~2p!4ReE
v.uku

d3kdv

3eiv(t2t)1 ik(z2x)SAv22k2

2 D 2n

3Jn~z0Av22k2!. ~2.9!

We can see that because we eliminated the modes witv
,uku, the transfer function will not be proportional to ad
function whenz0→0. Thus, it is different from the analytica
continuation of the Green’s function obtained in@4#. Also, as
we will see, this is the reason for its lack of manifest caus
ity.

FindingG explicitly is not hard, just a bit messy. We ca
first perform the angular part of the integral, by choosingz
2x[Dx as our main axis. Thus,k(z2x)5kDx cosu, where
0,u,p/2,2`,k,`. The choice of range foru andk is a
bit unusual, but makes the computation easier. Thus,

G5
2n12pz0

2

~2p!4
ReE

v.uku
dvE

2`

` dkk

iDx

3eivDt1 ikDx
Jn~z0Av22k2!

~Av22k2!n
. ~2.10!
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Substitutingk5A sinhy,v5Acoshy we obtain after a few
steps

G5
2n12pz0

2

~2p!4 E
0

`

dA A22nJn~Az0!ReE
2`

` dy sinhy

iDx

3eiA(Dt coshy1Dx sinhy). ~2.11!

The second integral can be evaluated differently wh
Dx.Dt and whenDt.Dx. We will present the first case
only. The second one can be obtained through analytic c
tinuation. Substituting Dx5ADx22Dt2coshs, Dt
5ADx22Dt2sinhs, and l 5y1s the second integral be
comes after a few steps:

ReE
2`

` dy sinhy

iDx
eiA(Dt coshy1Dx sinhy)

5
2

ADx22Dt2E0

`

dl sinhl sin~AADx22Dt2sinhl !

5
2

ADx22Dt2
K1~AADx22Dt2!. ~2.12!

Thus

G5
2n13pz0

2

~2p!4ADx22Dt2E0

`

dA A22nJn~Az0!

3K1~AADx22Dt2!. ~2.13!

In the caseDt.Dx, K1 simply becomesH1. Here,J,N,H
andK denote the appropriate Bessel functions. The integ
is not hard to perform. Using@9# ~6.576 3! we obtain

G5
z0

21n

~Dx22Dt2!2p3G~n11!
FS 2,1;n11,

2z0
2

Dx22Dt2D .

~2.14!

As it is well known, the hypergeometric function ha
poles at 0, 1 and̀ , and can be analytically continued insid
the light cone.

We have obtained a transfer function which does not lo
causal. This is because its limit as the bulk coordinate g
to the boundary is not proportional to ad function. Thus, we
need to know the boundary field all over the Poincare´ patch
in order to obtain the bulk field at a point. This contradic
our intuition that an excitation of the boundary should prop
gate causally in the bulk. We can see that we can only ob
a causal looking transfer function by working in the unive
sal cover of AdS. In that case, we can regard the Poinc´
patch where the boundary operators are as one in the
light cone of the bulk point, and thus have manifest caus
ity.
7-2
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CONSTRUCTION OF LOCAL FIELDS IN THE BULK OF . . . PHYSICAL REVIEW D 62 066007
III. LOCALITY IN THE BULK—THE CONFORMAL CASE

In order to check the locality of the bulk fields defined
Eq. ~2.7!, we need to find the commutator ofF with itself,
and with its time derivative. One attempt at checking loca
would be to use Eq.~2.14!, but the computation is hard, an
obscures the physics going on. More intuitive is to go
small steps. Thus, we would like to find the commutat
@Ok,v ,Ok8,v8

†
# and @Ok,v ,Ok8,v8# in the boundary theory

and combine them with Eq.~2.7! in order to obtain the com
mutator of the field with itself and with its time derivative
To do this, we first have to find@O(x,t),O(0,0)#. This can
be done in two ways: by analytically continuing from th
Euclidean case, or by using Ka¨llén-Lehmann representation

We know that for properly normalizedO’s, in the Euclid-
ean case,

^O~x,t!,O~0,0!&5
1

~x21t2!D , ~3.1!

whereD is the dimension of the operatorO. We can obtain
the time ordered and the anti time ordered correlation fu
tions by analytically continuing under or above the poles
t5x and t52x. For t.0, @O(x,t),O(0,0)#
5^TO(x,t)O(0,0)&2^AO(x,t)O(0,0)&. Thus

@O~x,t !,O~0,0!#5
22i sin~pD!u~ t22x2!sgn~ t !

~ t22x2!D
.

~3.2!

The formula above may look a bit puzzling for integer d
mension operators, nevertheless, it only tells us that the c
mutator is nonzero only on the light cone.

We can also note that, for a free field of massm,

^f~x,t!,f~0,0!&E5
K1~mAx21t2!

Ax21t2
, ~3.3a!

@f~x,t !,f~0,0!#M5
ipJ1~mAt22x2!

At22x2
u~ t22x2!sgn~ t !,

~3.3b!

where the labelsE and M stand for Euclidean and Mink
ovskian. We can use the Ka¨llén-Lehmann representation

^O~x,t!,O~0,0!&E5E
0

`

dm2F~m2!^f~x,t!,f~0,0!&E ,

~3.4a!

@O~x,t !,O~0,0!#M5E
0

`

dm2F~m2!@f~x,t !,f~0,0!#M ,

~3.4b!

and extractF(m2) from Eqs.~3.4a! and~3.1!, plug it back in
Eq. ~3.4b! and reobtain Eq.~3.2!. The integral in the Ka¨llén-
Lehmann representation runs from 0, because there is
mass scale in a conformal theory.
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Since we definedOk,v to correspond to positive fre
quency, we can easily see that@Ok,v ,Ok8,v8#50, since their
commutator contains ad(v1v8). The same is true for the
O†’s. By looking at the Poincare´ invariance of the boundary
theory, it is quite easy to see that the commuta
@Ok,v ,Ok8,v8

†
# will contain d(v2v8)d(k2k8). Since the

theory is conformal, the product ofd functions must be mul-
tiplied by an appropriate power ofv22k2. We can also com-
pute @Ok,v ,Ok8,v8

†
# by using brute force. Combining Eqs

~2.2! and ~3.2! is straightforward, and after a few steps
which we use techniques similar to the ones in Sec. II,
obtain

@Ok,v ,Ok8,v8
†

#5~v22k2!D22d~v2v8!d~k2k8!C,
~3.5!

where C is a numerical constant@2p3/22D25G(D)G(D
21) for the curious reader#. We understandd(v) of a
d-dimensional vectorv to be the appropriated-dimensionald
function.

Using Eqs.~3.5! and ~2.7! we can show that the bulk
fields are local. There are three things to check:

~1! @F(t8,z,z0),F(t8,z8,z08)#50,
~2! @F(t8,z,z0),(]/]t)F(t8,z8,z08)#;d(z02z08)d(z2z8),
~3! @F(t,z,z0),(]/]t)F(t8,z8,z08)#50 outside of the light

cone.
In fact, condition~3! should follow from~2!, because of

the symmetry of the bulk, but it is nice to show how it work
out. We can fix without loss of generalityt8 and z8 to 0.
Using Eqs.~2.7! and ~3.5! we have

@F~0,z,z0!,F~0,0,z08!#

;z0
2z08

2E
v.uku

d3kdvJn~z0Av22k2!

3Jn~z08Av22k2!~eikz2e2 ikz!;0, ~3.6!

@F~ t,z,z0!,Ḟ~0,0,z08!#

;z0
2z08

2E
v.uku

d3kdvvJn~z0Av22k2!Jn~z08Av22k2!

3cos~vt1kz!. ~3.7!

Using the same change of variable as at the evaluation of
~2.9!, we obtain

@F,Ḟ#;
z0

2z08
2

z E
0

`

dA A3Jn~Az0!Jn~Az08!

3ImE
2`

`

dy sinhy coshyeiA(z sinhy1t coshy).

~3.8!

For t50, it is easier to use Eq.~3.7!, and replacevdv by
AdA. The integrals overd3k anddA separate, and thed3k
integral gives usd(z). We are left with
7-3
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@F,Ḟ#;z0
2z08

2d~z!E
0

`

dAAJn~Az0!Jn~Az08!. ~3.9a!

The integral is proportional tod(z02z08), by the orthogonal-
ity relation of Bessel functions. Thus, we have checked
second relation. We did not keep all the constants along
way for the sake of clarity. The exact answer is

@F,Ḟ#5z0
3d~z02z08!d~z!

2p2i

G~D!G~D21!
. ~3.9b!

In order to check the third relation we have to look at t
range we are in. Forz.t, we can make the same substitutio
as in Eq. ~2.10!: z5Az22t2coshs, and t5Az22t2sinhs.
From Eq.~3.7! we obtain after making a change of variable

ImE
2`

`

dy sinhy coshyeiA(sinhyz1coshyt)

5cosh 2sE
2`

`

dy sinhy coshy sin~AAz22t2sinhy!

5
cosh 2s

z22t2 d8~A!. ~3.10!

Clearly the commutator vanishes for this range, becaus
the high power ofA in Eq. ~3.8!.

For z5t, we will have an extra term of the form
(1/A2)@d8(Az22t2)/Az22t2# in the last line of Eq.~3.10!.
The original term will vanish again because of the hi
power ofA in Eq. ~3.8!, and the extra term will also vanis
for z0Þz08 , because of the orthogonality relation of Bess
functions.

For t.z, we substitute t5At22z2coshs, and z
5At22z2sinhs, and get

ImE
2`

`

dy sinhy coshyeiA(z sinhy1t coshy)

5sinh 2sE
2`

`

dy cosh 2y sin~AAt22z2sinhy!

;J2~AAt22z2!. ~3.11!

Thus

@F,Ḟ#;
z0

2z08
2

z E
0

`

dA A3Jn~Az0!Jn~Az08!J2~AAt22z2!.

~3.12!

Using @9# ~6.578-8!, and remembering thatJ2(x)5J22(x),
we can see that the integral vanishes foruz02z08u.At22z2,
e.g. outside of the light cone, which is what was expecte

IV. THE NONCONFORMAL CASE

We can look at the near horizon metric and dilaton fo
collection ofN Dp branes, for a generalp:
06600
e
e

:

of

l

.

dsp
25a8FU (72p)/2

gY MN1/2
dxi

21
gY MN1/2

U (72p)/2
~dU21U2dV82p

2 !G ,

eF5gY M
2 S U (72p)/2

gY MN1/2D (p23)/2

. ~4.1!

Here gY M is the coupling constant for the theory on th
brane. Supergravity is a valid description for the bulk theo
in the range where both the dilaton and the scalar curva
are small. In the case of D2 branes, which we will explo
later, this isgY M

2 N1/5,U,gY M
2 N. A more general analysis

of other cases can be found in@7#. We look at the limit of
gY M andN where this is all the bulk.

A massless scalar fieldf minimally coupled to the Ein-
stein metric, withS82p angular momentum quantum numb
l, frequencyv and momentumk satisfies the classical equa
tion of motion:

f9~U !1
82p

U
f8~U !1S 2

m2

U2 1
gY M

2 N~v22k2!

U (72p) D f~U !

50, ~4.2!

where m25 l ( l 172p) is the mass of the Kaluza-Klein
mode corresponding tol.

Changing the coordinate toz0[1/U, the mode function
vanishing at the boundary is obtained to be

f v,k~z0!5z0
(72p)/2JnS 2gY MN1/2

52p
Av22k2z0

(52p)/2Deivt1 ikz,

~4.3!

wheren[A4m21(72p)2/(52p)5(2l 172p)/(52p).
We expect the construction to work in all the nonconfo

mal cases, since by the conjecture@3# the Hilbert spaces are
the same. Nevertheless, we will only illustrate the case of
D2 brane. The machinery is very similar to the one we had
crank in the conformal case. Thus, for a bulk scalar w
angular momentuml, the Euclidean correlator of the corre
sponding boundary operators is@8#

^O~x,t!,O~0,0!&5
B

~x21t2!D , ~4.4!

whereB[N(512l )/3/(gY M
2 )( l 11)/3 and D[(1914l )/6. Quite

clearly,

@Ok,v ,Ok8,v8
†

#5B8~v22k2!D23/2d~v2v8!d~k2k8!,
~4.5!

with B8;B up to a factor of order unity, which the curiou
reader can compute in the same way as in the previous c
ter.

The bulk field satisfying the correspondent of Eq.~2.6!,
with z understood as a 2 dimensional vector is
7-4
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F i~ t,z,z0!5
z0

5/2~2/3gY MN1/2!2n

~2p!3/2 E
v.k

d2kdveivt1 ikz

3A2nJn~ 2
3 gY MN1/2Az0

3/2!Ok,v
i 1H.c., ~4.6!

whereA[Av22k2. For simplifying the formulas, we will
call g[ 2

3 gY MN1/2. We have the same three things to check
in the conformal case. The first one follows exactly like
the conformal case. The second one involves calculating

@F~ t,z,z0!,Ḟ~0,0,z08!#;~z0z08!5/2g22nB ReE
v.uku

3d2kdvvJn~gAz0
3/2!Jn~gAz80

3/2!

3eivt1 ikz. ~4.7!

We can easily do the angular integral, usingd2k5k dk du,
with 0,k,`,0,u,p. After that, we make the substitutio
k5A sinhy,v5Acoshy and obtain

@F,Ḟ#;~z0z08!5/2g22nBE
0

`

dA A3Jn~gAz08
3/2!Jn~gAz0

3/2!

3E
0

`

dy sinhy coshyJ0~A sinhyz!cos~A coshyt!.

~4.8!

We will call the second integralI. Using @9# ~6.738 2!, we
can see thatI vanishes forz.t, as expected. In the equa
time case,t50, I;d(Az)/Az, so @F,Ḟ#;d(z)d(z02z08),
where d(z02z08) came from the orthogonality relation o
Bessel functions applied to Eq.~4.8!.

For z,t, I;utu/(t22z2)(3/4)A21/2J3/2(AAt22z2). Thus

@F,Ḟ#;
~z0z08!5/2utu

~ t22z2!(3/4)
g22nBE

0

`

dA A3/211

3Jn~gAz08
3/2!Jn~gAz0

3/2!J3/2~AAt22z2!.

~4.9!

This integral vanishes whengz08
3/22gz0

3/2.At22z2 @9#~6-
578, 5 and 8!. To see if this indeed means outside of t
‘‘light cone’’ of the bulk theory, we can look at the metri
~4.1! and see that in differential form, a null trajectory,dt
5dz0z0

1/2gY MN1/2, is exactly the differential ofgz08
3/2

2gz0
3/25t. Therefore, we constructed local fields in th

bulk. It is possible to turn the argument around, and ar
that in order to have a bulk local theory, the boundary o
erators had to satisfy a relation similar to Eq.~4.7!.

V. INTERACTIONS

We have constructed local fields only to leading order
1/N. It is true that locality should ultimately be broken in th
bulk, because of holography, but we believe this to be
nonperturbative effect. Thus it should be possible in pr
ciple to construct bulk local fields perturbatively in 1/N. So,
06600
s

e
-

a
-

we can ask the question: Can we repeat the BDHM-BK
construction for interacting cases ?

At next to leading order in 1/N, the boundary theory no
longer looks like a free theory. Rather, foriÞ j Eq. ~3.1! is
replaced by

Oi~xi !Oj~xj !5
1

N (
k
E ddxQi jk~xux1 ,x2!Ok~x!,

~5.1!

where Qi jk(xux1 ,x2) can be obtained from the bounda
3-point function.

Also, the bulk theory will have extra terms in the La
grangian, of the form

Lint5di jkF iF jFk . ~5.2!

We expect Eq.~2.6! to be valid in the interacting case a
well. The practical way to check locality to next to leadin
order in 1/N is to use the interacting bulk equations of m
tion for the boundary ‘‘free’’ operators, and compare t
result with the one obtained using the free bulk equation
motion for the boundary ‘‘interacting’’ theory. If the 1/N
contributions cancel outside of the light cone, the bulk fie
are local.

Nevertheless, the computation is very hard. We tried
compute the commutator of bulk fields using the bound
‘‘interacting’’ theory and the free equations of motion, b
the technical difficulties were too big for us. As we said
the Introduction, we cannot but hope that some reader w
more audacity and more technical inclinations might bring
to completion.

VI. CONCLUSIONS

There are two new results in this paper. The first one
the computation of the transfer function relating bounda
operators with bulk fields, in the context of the AdS-CF
correspondence.

The second one is the expansion of the BDHM-BKL
procedure to nonconformal cases. We presented a metho
constructing bulk fields in the near-horizon geometry o
collection of Dp branes, and verified locality explicitly fo
the D2 brane case.
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