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We consider the theory of closedp-branes propagating on (p11)-dimensional space-time manifolds. This
theory has no local degrees of freedom. Here we study the canonical and BRST structures of the theory. In the
case of locally flat backgrounds one can show that thep-brane theory is related to another known topological
field theory. In the general situation some equivalent actions can also be written for the topologicalp-brane
theory.

PACS number~s!: 11.25.2w
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I. INTRODUCTION

In the present paper we consider ap-brane propagating on
a (p11)-dimensional background manifold. In this mod
all degrees of freedom can be gauged away locally. Ho
ever, there may still be nontrivial, nonlocal~topological! de-
grees of freedom. The motivation for the study of this mo
is twofold. First this theory is interesting by itself as a top
logical field theory@1#, and we shall see that there is som
thing one can learn about its canonical and Becchi-Ro
Stora-Tyutin~BRST! structures. Second the present theo
may serve as a toy model for the study of general exten
objects which play an important role in modern string theo
Thus the present model can give some insight into the m
general case ofp-branes propagating on background ma
folds of dimension higher than (p11).

The p-brane theory describes the embedding of ap
11)-dimensional world volume into ad-dimensional space
time manifoldM. The action is given by the volume of th
embedded (p11)-dimensional manifold

S@X#52TE dp11jA2det~Gmn~X!]aXm]bXn!, ~1!

where Gmn is the metric in thed-dimensional space-time
manifold. Throughout the paper we shall look at the case
the Minkowskian signature, and we shall see that the res
can be generalized to the Euclidean case in a straightforw
way. It is assumed that the metricGmn is not degenerate a
any point of the manifoldM, det(Gmn)Þ0. The action~1! is
called the Nambu-Goto action. The parameterT is called
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tension and it is a direct generalization of the concept
mass top-branes. Thep-brane action can be equivalent
written in the Polyakov form

S@X,h#52
T

2E dp11jA2h

3@hab]aXm]bXnGmn~X!2~p21!#, ~2!

where the hab transform as a world-volume metric@h
[det(hab)# and play the role of Lagrange multipliers. Th
equivalence can be checked by varying this action with
spect tohab , solving the resulting equations of motions an
putting the resulting solution forhab into Eq. ~2!. The result
is the action~1!. One should notice that within the equiva
lence between actions~1! and~2! the induced world-volume
metric must be nondegenerate.

Now let us discuss the symmetries of the theory. Ther
a local diffeomorphism invariance for the action~1!

dXm5£zX
m, ~3!

where £z stands for the Lie derivative alongza. For the
Polyakov action~2! the transformation~3! should be supple-
mented by the appropriate transformation for the auxilia
world-volume metricdhab5£zh

ab. For the casep51 there
is an extra local symmetrydhab5Lhab ~Weyl rescaling!. In
addition both actions~1! and~2! are invariant under arbitrary
diffeomorphisms onM, if Gmn is transformed properly.

The local symmetry~3! allows one to choose locally th
following gauge:

Xm5jm, m50,1, . . . ,p, ~4!

which is usually called the static gauge. The existence
static gauge can be argued from the picture of embeddin
a manifold into another one. Thus in the case of interesd
5p11 one can locally gauge away all degrees of freedo
However on a nontrivial background manifoldM one can-
©2000 The American Physical Society05-1
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not do this globally and therefore there are nontrivial glo
~topological! degrees of freedom. One can also see that
generate situations„when det@Gmn(X)]aXm]bXn#50… do
not appear because of Eq.~4!. In the static gauge the dete
minant of the induced metric is equal to the determinant
the background metric which is assumed to be nondege
ate. Therefore as soon as we want to keep the local dif
morphism symmetry~3! ~i.e., the picture of embedding o
one manifold into another! it is assumed everywhere that

det@Gmn~X!]aXm]bXn#Þ0. ~5!

Throughout the paper we use the following notation:m, n
denote space-time indicesa, b world-volume indices anda,
b, c spatial world-volume indices.

Let us assume that the space-time manifoldM is compact
and oriented. When we come to the Hamiltonian treatm
we also assume thatM5R3S whereS is a compact and
oriented spatial manifold.p-branes can be closed or ope
For closedp-branes periodicity conditions must be impos
along all spatial directions. The analysis of openp-branes is
more involved since the theory should be supplemented
appropriate boundary conditions. In this paper we look o
at closedp-branes. In the case of closed branes the Nam
Goto action is a constant for all field configurations and it
equal to the volume of the background manifoldM. We
hope to come back to the case of openp-branes elsewhere.

In this paper we study mainly the classical aspects of
theory. The paper is organized as follows. In Sec. II we
through the Hamiltonian treatment of the closed bra
theory. Three equivalent sets of constraints are presente
Sec. III we take a look at the construction of BRST gene
tors for these three sets of constraints. Three different BR
generators are related to each other through canonical tr
formations in the extended phase space. In Sec. IV we l
at equivalent forms of the action and specifically discuss
case of locally flat backgrounds. The degrees of freedom
briefly considered and the subtleties related to the degene
solutions are pointed out. In the last section we discuss
results and outline possible generalizations of the model

II. HAMILTONIAN TREATMENT

In this section we take a look at the Hamiltonian treatm
of the system. Thep-brane theory is a generally covaria
system and therefore the naive Hamiltonian vanishes ide
cally. In this theory the full Hamiltonian is given by a linea
combination of the corresponding constraints which are fi
class. Our goal is to write down three different sets of co
straints for the model.

In order to carry out the Hamiltonian formulation of th
theory we choose one of the integration variablesja as the
evolution parameter~in the case of a relativistic metric with
signature (21,1, . . . ,1), theone-parameter group of diffeo
morphisms defined by the translations in that variable sho
be generated by a timelike vector field!, which we take to be
j0; the remaining integration variables, which parametr
the brane itself, are represented byja, with the small Latin
letters taking values from 1 top. The system is totally con
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strained since the theory is invariant under redefinitions
the evolution parameter.

Denoting byPm the momenta conjugate to theXm and
starting from either the Polyakov action~2! or the Nambu-
Goto action~1! the constraints can be worked out as@2#

HI5S H
Ha

D 5S Gmn~X!PmPn1T2 det@qab#

Pm]aXm D , ~6!

where

qab5Gmn~X!]aXm]bXn ~7!

is the induced spatial metric on the brane. The constraints~6!
are first class and obey the algebra

$Ha@Ma#,Hb@Nb#%5Ha@£MNa#, ~8!

$Ha@Ma#,H@N#%5H@£MN#, ~9!

$H@M #,H@N#%5Ha@qqab~M]bN2N]bM !#,
~10!

where £N stands for the Lie derivative along the vector fie
Na, and q5det(qab). Since there ared pairs of canonical
conjugate variables andp11 constraints, the theory pos
sesses (d2p21) degrees of freedom per brane point. The
fore in the case of a (d21)-brane one has got no dynamic
degrees of freedom and the theory is purely topological. T
algebra~8!–~10! is called the algebra of many-fingered tim
~the name is due to Wheeler!. The constraints~6! and their
algebra~8!–~10! are true for ap-brane in any space-time
dimensiond. The algebra~8!–~10! is closed only for the case
p,2. Now let us analyze the specific properties for
p-brane propagating on a (p11)-dimensional space-time.

Starting from the Nambu-Goto action~1! one can see tha
the constraints can be written in a form in which all of the
are linear in the momenta. In order to do so, we observe
for p-branes the dimension of the world-volume in Eq.~1! is
the same as the dimension of the embedding space-t
namely,p11. Consequently]aXm is a square matrix, and
one can write

det~Gmn~X!]aXm]bXn!5G~X!det2~]aXm!, ~11!

with

G~X!5det@Gmn~X!#. ~12!

The action~1! becomes then

S56TE dp11jA2G 1

~p11!!

3ea0•••apem0•••mp
]a0

Xm0
•••]ap

Xmp, ~13!

where 6 corresponds to the two possible solutions of t
square root. Let us keep both signs in all calculations a
eventually one can see that the sign ambiguity correspond
the two possible orientations on the manifold. The equati
of motion for Eq.~13! are somewhat trivial. They tell us tha
5-2
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REMARKS ON TOPOLOGICAL BRANE THEORIES PHYSICAL REVIEW D62 066005
the exterior derivative of the volume form is zero. Thep
11) decomposition of Eq.~1! is straightforward:

S56TE dj0dpjnmẊm, ~14!

where an overdot represents a derivative with respect to
evolution parameterj0, and the vectornm is a function of the
configuration variablesXm given by

nm5
1

p!
A2Gemn1•••np

ea1•••ap]a1
Xn1

•••]ap
Xnp. ~15!

The vectornm satisfies the following properties:

Gmnnmnn52det@qab#, ~16!

nm]aXm50. ~17!

In this form it is clear that the momenta conjugate to theXm

are

Pm56Tnm . ~18!

The Hamiltonian vanishes and one must include the prim
constraints given by Eq.~18! with the aid of some Lagrang
multiplier functionslm:

L65E dpj@PmẊm2lmC m
6#, ~19!

C m
65Pm7Tnm~X!. ~20!

The obtained constraints are linear in the momenta and
Poisson bracket algebra vanishes strongly. The two set
constraintsC m

1 andC m
2 correspond to two different branche

of the constraint surface. These two sets intersect only on
degenerate solutions

C m
15C m

250⇒nm50⇒det~qab!50. ~21!

Thus exluding degenerate solutions one has two indepen
branches of the theory with different LagragiansL7. The
constraintsC m

6 generate the following transformation:

dXm5$Xm,C m
6@NI #%5Nm. ~22!

In fact one can see that this is the real symmetry of the ac
~13!. The natural question might arise about the relation
tween Eq.~22! and the local diffeomorphism invariance~3!.
There is a one to one map between the two transformati

dXm5£zX
m5~]aXm!za5Nm, ~23!

when the quadratic matrix (]aXm) is assumed to be nonde
generate. Thus for every vectorz there is unique vectorN
and vice versa. However it should be stressed that in gen
the gauge symmetries~3! and~22! have different properties
By using transformation~22! one can bring a nondegenera
solution to a degenerate one. One cannot do this by using
transformation~3!.
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To get another set of constraints one can contractC m
6 with

the set of independent vectorsGmnnn and ]aXm, resulting,
respectively, in

H I
65S H 6

Ha
D 5S GmnnmPn6Tdet@qab#

Pm]aXm D . ~24!

Comparing with Eqs.~6! we see that only the scalar con
straint is modified, now being linear in the momenta, n
quadratic. The constraints~24! obey the same Poisso
bracket algebra as Eqs.~8!–~10!. Again the two sets of con-
straintsH I

1 and H I
2 describe the two separate branches

the degenerate solutions are excluded, and they obey
many-fingered algebras on the corresponding indepen
branches of the theory. The constraints~24! basically tell us
that the system can be thought of as a parametrized
theory ~parametrized cosmological constant term! @3#. The
equation of motion forXm is given by

Ẋm5$Xm,Ha@Na#1H 6@M #%5Na]aXm1MGmnnn ,
~25!

which is nothing else but the geometrodynamical canon
decomposition@3# with respect to basic vectors (Gmnnn ,
]aXm).

Now one can check explicitly the equivalence of the
three sets of constraintsC m

6 , H I
6 , andHI . It is clear thatC m

6

implies bothHI
6 and HI . To check the converse we not

that the second equationsHa50 in the sets of constraints~6!
and ~24!, have the general solution

Pm5anm , ~26!

wherea is any function which does not carry indices. Plu
ging this result into the last equation ofH one gets

~T22a2!det~qab!50⇒T5a or T52a or det@qab#50.
~27!

The first solution is justC m
1 , the second isCm

2 and the last
one corresponds to a degenerate solution. Applying the s
procedure toH 6 one finds that

C m
150⇔H I

150, C m
250⇔H I

250, ~28!

if det(qab)Þ0 is assumed.
Thus we have shown that all three sets of constraints

equivalent

~C m
150 andC m

250! ⇔ HI50 ⇔ ~H I
150 andH I

250!,
~29!

if the case of degenerate metric is excluded and there
these three sets of constraints describe the same constr
surface. Since the manifoldS is assumed oriented the tw
branches of the theory are dynamically independent.

III. BRST GENERATORS

In this section we construct the BRST generators wh
correspond to the different sets of constraints discusse
5-3
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BENGTSSON, BARROS e SA´ , AND ZABZINE PHYSICAL REVIEW D 62 066005
the previous section. We have a first class constrained sy
and its Hamiltonian is a linear combination of the constrai
C I . Introducing the ghost variablesh I and the ghost mo-
mentaPI one can define the classical Grassmann-odd BR
generator~charge! Q in the extended phase space@4#

Q5E dpjh I~j!C I~j!

1 (
n50

r E dpj1•••E dpjnQI 1•••I n~j1 , . . . ,jn!

3PI 1
~j1!•••PI n

~jn!, ~30!

such thatQ is nilpotent and real. The ghost number ofV
should be equal to 1. The BRST construction is import
because it reveals that the different representations of
constraint surface can be thought of as being obtained f
each other by a canonical transformation in the exten
phase space. In expression~30! the numberr is called the
rank of the BRST generator. The concept of rank is not
trinsic and can be made equal to zero by appropriate red
nitions of constraints@4#.

For the general case ofp-branes with constraintsHI given
by Eq. ~6! the classical BRST generatorQ has been con-
structed by Henneaux@5#. The rank ofQ is equalp. Now we
can construct the BRST generator for the other two set
constraintsC m

6 andH I
6 . Since the Poisson brackets algeb

for C m
6 vanishes strongly~thus the algebra is commutative!

the BRST operatorQ6 has rank 0:

Q65E dpjhm~j!C m
6~j!, ~31!

whereQ1 andQ2 are defined for the two different sector
In this case the BRST transformation (d6A5$A,Q6%) in the
extended phase space has a simple form

d6Xm5hm,d6hm50,d6Pm52Fm ,

d6Pm57T
1

~p21!!
A2Gemn1n2•••np

3ea1•••ap]a1
hn1]a2

Xn2
•••]ap

Xnp. ~32!

The BRST generatorQ 6 for the constraintsH I
6 can also

be worked out, being given by

Q 65E dpj@hH61haHa1~ha]ah1h]aha!P

1~q+qabh]ah1ha]ahb!Pb#, ~33!

where (h,P) and (ha,Pb) are the ghost pairs associated w
H 6 andHa , respectively. Its rank is 1. Thus we have co
structed three different BRST generators for the same the
They should relate to each other by canonical transfor
tions in the extended phase space. We were unable to
struct these canonical transformations in any simple clo
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form. However, one can certainly construct them pertur
tively in same fashion as in Refs.@4# and @6#.

As we saw the three sets of constraintsHI , H I
6 , andC m

6

describe the same constraint surface if we exclude dege
ate solutions. There should be the following relation amo
the sets of constraints which describe the same constrain
face:

HI5~S6! I
mC m

6 , H I
65~S! I

mC m
6 , ~34!

where (S6) I
m and (S) I

m must be nondegenerate. It is not di
ficult to construct these matrices explicitly. Thus forS6 we
have the following expression:

S65S ]1X0 . . . ]1Xp

]2X0 . . . ]2Xp

. . . . . . . . .

G0n~Pn6Tnn! . . . Gpn~Pn6Tnn!

D , ~35!

and, forS,

S5S ]1X0 ]1X1 . . . ]1Xp

]2X0 ]2X1 . . . ]2Xp

. . . . . . . . . . . .

G0nnn G1nnn . . . Gpnnn

D . ~36!

Let us calculate the determinants of these matrices

det~S6!5~21!pnmGmn~Pn6Tnn!5~21!pH̃6, ~37!

det~S!5~21!p11det@qab#. ~38!

We see thatS is non degenerate if degenerate solutio
(det@qab#50) are excluded. The matrixS1 is not degenerate
either as long as we stay at the branch defined byC m

150 ~or,
equivalently, byH I

1) andS2 is not degenerate at the branc
defined byC m

2 ~or, equivalently, byH I
2). Therefore using

these matrices one can construct perturbatively the rele
canonical transformations in the extended phase space.

IV. p-BRANE THEORY IN LOCALLY FLAT
BACKGROUND

To understand the theory better we would like to stu
alternative representations of this model. In many cases
ternative representations of a theory may help to anal
their degrees of freedom. In this section we study some c
sically equivalent actions and analyze the degrees of free
corresponding to the topologicalp-brane theory. It is hard to
say anything explicit about the degrees of freedom when
theory is formulated in the form~1! or ~2!. Intuitively we
understand that the number of degrees of freedom is rel
to the number of patches needed to cover the manifoldM.
However, it is hard to count them explicitly. Therefore w
can try to reformulate the theory in a more transparent w
One can reach this goal by using new variables. Since
task is difficult for generic curved background manifolds, w
look first at the case of locally flat manifoldsM:
5-4
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Gmn5hmn . ~39!

At the end of this section we will take a brief look on equiv
lent actions for the generic case. However, it is still proble
atic to analyze the degrees of freedom in all generality.

Now we are assuming that Eq.~39! holds. Let us enlarge
the gauge symmetry of the system defining the tetrad fie

ea
m5]aXm ~40!

as the new configuration variables. They are subject to
constraints

] [aeb]
m50. ~41!

One can easily see that there is a one to one correspond
between new and old variables in the locally flat space-tim
The static gauge~4! in new variables corresponds toea

m

5da
m .

The action in these new variables and their canonical c
jugate momentapa

m can be obtained from the generatin
functional depending on the old coordinates and the n
momenta

SXp52E dpj]aXmpa
m . ~42!

One has

ea
m52

dSXp

dpa
m

5]aXm, ~43!

Pm52
dSXp

dXm
52]apa

m . ~44!

Plugging this result into Eq.~20! one gets

S5E dp11jpa
mėa

m1fab
m] [aeb]

m1lmH ]apa
m

6T
1

p!
ea1•••ademn1•••np

ea1

n1
•••eap

npJ , ~45!

where fab
m are the Lagrange multiplier functions for th

constraints~41!. In the case of a nonflat metric the Lagran
ian ~45! would be nonlocal in the new variables since
involves the original coordinatesXm present in the determi
nant of the metricGmn . But this problem does not arise i
the case of a flat metric. We have then the following acti

S5E dp11jFpa
m]0ea

m1fab
m] [aeb]

m1lm]apa
m

6Tlm
1

p!
ea1•••apemn1•••np

ea1

n1
•••eap

npG , ~46!

which can be given in a covariant form if one identifies t
Lagrange multiplierslm with the time components of th
tetrad fields
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lm5e0
m , ~47!

and writes the momentapa
m and the Lagrange multipliers

fab
m as the components of a (p21)-form Fm ,

pa
m5eab1•••bp21Fb1•••bp21m , ~48!

fab
m5~p21!eabc1•••cp22F0c1•••cp22m . ~49!

Equation~46! then becomes

S5E dp11jFea0•••ap]a0
ea1

mFa2•••apm

6T
1

~p11!!
ea0•••apen0•••np

ea0

m0
•••eap

mpG , ~50!

which can be compactly written in the differential form la
guage as

S5E Fm`dem6T
1

~p11!!
en0•••np

en0`•••`enp,

~51!

whereen is a one-form andFm is a (p21)-form. The action
~51! is explicitly topological since it does not involve th
metric. After all one can see just at level of actions that
actions~13!, ~51! are equivalent to each other. This equiv
lence can be established by integrating out the fieldFm .

Now let us take a look at the symmetries and equation
motions of the action~51!. The action has the following ob
vious symmetry

dFm5dwm , ~52!

which is the shift ofFm by any exact (p21)-form. There is
one extra symmetry which is less obvious

dem5d fm, ~53!

dFm56
T

~p21!!
emn1n2•••np

f n1en2`•••`enp, ~54!

where f m is an arbitrary zero-form~function!. The equations
of motion are the following:

dem50, ~55!

dFm57
T

p!
emn1 . . . np

en1`•••`enp. ~56!

The classical moduli space is given by gauge non-equiva
solutions of equations~55! and ~56!. Thus we were able to
reformulate the topologicalp-brane theory in a locally flat
background as an Abelian BF-like model@7# with the action
given by Eq.~51!. The model has a bunch of U~1! fields em

and the nontriviality comes from the last ‘‘mass’’ term whic
mixes different gauge fields. For the casep>2 the action
~51! can be thought as the zero gravitational constant li
for the general relativity with cosmological constant
5-5
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BENGTSSON, BARROS e SA´ , AND ZABZINE PHYSICAL REVIEW D 62 066005
(p11)-dimensional space-time. This limit should be tak
in the first order formalism@8#.

The degrees of freedom~the classical moduli space! for
the action~51! can be analyzed in a straightforward fashi
through the cohomology groups. In general the situation
pends on the details of the topology of the background m
fold or more precisely, on the structure of the first cohom
ogy groupH1(M,R). Since the one-formsem are closed and
any two solutions that differ by an exact one-form are gau
equivalent,em is a element ofH1(M,R). The equations for
Fm are more difficult to analyze since the right hand s
involvesem. If dim@H1(M,R)#,p then the last equation o
motion in Eq.~55! reduces todFm50. We have not enough
elements of the first cohomology group to construct a n
zero right-hand side. Thus in this case the model coinci
with (p11) copies of an Abelian BF system@7#. Therefore
the space of solutions forem andFm is given byp11 copies
of H1(M,R) % Hp21(M,R). In the caseM5R3S we have

H1~M,R!'H1~S,R!'Hp21~S,R!'Hp21~M,R!,
~57!

where we used Poincare´ duality on thep-dimensional mani-
fold S . Thus the space of gauge inequivalent solutions
even dimensional and it is given by the product of 2p
11) copies of the first cohomology group:H1(S,R). The
situation with dim@H1(M,R)#>p is more involved. One
should analyze what kind of right hand side in the last eq
tion ~55! can be constructed fromem. For instance, in the
caseM5R3S it might be possible to construct out ofem

the volume form forS: e1`•••`ep. Since the volume form
cannot be exact the corresponding equation has no solu
We will not analyze this situation in all generality. Howeve
the task might be solved straightforwardly as soon as
know explicitly the content ofH1(M,R). Above analysis of
degrees of freedom is appropriate for the actions~13! and
~51! where the degenerate solutions are included. Howe
to incorporate into the analysis the restriction of nondeg
eracy can be hard since the removal of degennerate solu
from the phase space might destroy the gauge orbits.
similar problem appears in the relation between 211 gravity
and Chern-Simons theory@9#.

On a curved space-time manifold there is no such sim
BF-like action as in locally flat case. However, one can wr
the following action:

S5E ~dXm2hm!`Bm

6T
1

~p11!!
A2Gem0•••mp

hm0`•••`hmp, ~58!

which is classically equivalent to the Nambu-Goto acti
~13!. In the action ~58! hm and Bm are one-forms and
p-forms, respectively. The action is nonlinear inXm and
therefore it is difficult to analyze it in the same fashion
before. The casep51 is definitly special. By itself the
Nambu-Goto action~13! can be interpreted as topologic
sigma model@10# in two dimensions sinceA2Gemn might
06600
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serve as closed symplectic form onM. Also the Nambu-
Goto action is equivalent to the following action:

S5E dXm`hm6
T

2
~2G!21/2emnhm`hn ~59!

which is the Poisson sigma model on two-dimensionalM
@11#. Therefore we see that two-dimensional topologic
string theory is classically equivalent to other known theor
up to some subtleties related to degenerate configuration

V. DISCUSSION AND OUTLINE

In the present work we considered the classical aspec
closedp-brane theory defined on (p11)-dimensional back-
ground manifoldsM. We analyzed the Hamiltonian an
BRST structure of the theory. We saw that model has diff
ent equivalent realizations. However, the classical equ
lence between the constraints and the actions might fa
the quantum level due to normal ordering problem~different
regularizations!. One can look at the most familiar examp
p51. For the case of quadratic constraints there is
anomaly in the Virasoro algebra and therefore the system
not first class anymore. In the case of linear constraints~20!
there is no anomaly possible since the constraints are c
pletely linear. This discussion gives us an example that at
quantum level the Nambu-Goto action~natural source for
linear constraints! and the Polyakov action~the natural
source for quadratic constraints! are not equivalent to eac
other. As well at the classical level different status of deg
erate solutions can bring extra problems into identification
two theories.

The actions~13! and~58! have a straightforward general
zation to the following topological models:

S5T
1

~p11!! E dp11jCm0•••mp
~X!

3ea0 . . . ap]a0
Xm0 . . . ]ap

Xmp ~60!

and

S5E ~dXm2hm!`Bm1T
1

~p11!!

3Cm0•••mp
~X!hm0`•••`hmp, ~61!

where C is a (p11)-form defined on thed-dimensional
background manifoldM @d might be any value equal o
greater than (p11)]. If the form C is closed the model ha
many similarities with the topologicalp-brane studied in the
present work. We shall consider the classical and quan
aspects of these theories in coming work.

ACKNOWLEDGMENTS

We are grateful to Ansar Fayyazuddin for discussions
5-6



n,

2

REMARKS ON TOPOLOGICAL BRANE THEORIES PHYSICAL REVIEW D62 066005
@1# D. Birmingham, M. Blau, M. Rakowski, and G. Thompso
Phys. Rep.209, 129 ~1991!.

@2# P. A. Collins and R. W. Tucker, Nucl. Phys.B112, 150~1976!.
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