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We consider the theory of closgebranes propagating omp - 1)-dimensional space-time manifolds. This
theory has no local degrees of freedom. Here we study the canonical and BRST structures of the theory. In the
case of locally flat backgrounds one can show thatpeane theory is related to another known topological
field theory. In the general situation some equivalent actions can also be written for the topgbelgiaak
theory.

PACS numbds): 11.25—w

[. INTRODUCTION tension and it is a direct generalization of the concept of
mass top-branes. Thep-brane action can be equivalently
In the present paper we considep-arane propagating on written in the Polyakov form

a (p+1)-dimensional background manifold. In this model
all degrees of freedom can be gauged away locally. How- gX.h]=— If dp“g\/—_h
ever, there may still be nontrivial, nonlocdbpologica) de- ' 2
grees of freedom. The motivation for the study of this model
is twofold. First this theory is interesting by itself as a topo- X[h*9,Xt95X"G,,(X)=(p—1)],  (2)
logical field theory[1], and we shall see that there is some- .
thing one can learn about its canonical and Becchi-Rouet\f_Vhere theh,, transform as a world-volume .m.etrl[:h
Stora-Tyutin (BRST) structures. Second the present theory det(haﬁ)] and play the role of Lagrange .multlplllers..The
may serve as a toy model for the study of general extendeaquwalence can _be checked _by varying this aCt'On with re-
objects which play an important role in modern string theory.s’pef:t t0h g, solvmg the r_esultmg eguaﬂons of motions and
Thus the present model can give some insight into the morBUtting the resulting solution fdu, s into Eq. (2). The result
general case op-branes propagating on background mani-'S the action(1). O_ne should notlce_that within the equiva-
folds of dimension higher tharp¢ 1). lence between actior{d) and(2) the induced world-volume

The p-brane theory describes the embedding of m ( metric must be.nondegenerate. . .
+1)-dimensional world volume into d-dimensional space- Now l?t us d|scu_ss the symmetries of the t_heory. There is
time manifold M. The action is given by the volume of the a local diffeomorphism invariance for the acti¢h)
embedded g+ 1)-dimensional manifold SXE=E XH, 3)

where £ stands for the Lie derivative along”. For the
S[X]= _Tf dp+1§\/_de(GM(X)aaXMaBXV)’ (1) Polyakov action2) the tr_ansformatlom3) s_hould be suppl_e_-
mented by the appropriate transformation for the auxiliary
world-volume metricsh®?=£,h*A. For the cas@=1 there
_ o . . _ is an extra local symmetrgh®?= Ah“# (Weyl rescaling. In
where G, is the metric in thed-dimensional space-time addition both actiongl) and(2) are invariant under arbitrary

the Minkowskian Signature, and we shall see that the results The local Symmetr)(:a) allows one to choose |Oca||y the

can be generalized to the Euclidean case in a straightforwa¥g|iowing gauge:

way. It is assumed that the meti@,, is not degenerate at

any point of the manifold\1, det(G,,) #0. The actior(1) is XF=¢*, u=01,...p, (4)
called the Nambu-Goto action. The parameters called

which is usually called the static gauge. The existence of
static gauge can be argued from the picture of embedding of

*Email address: ingemar@physto.se a manifold into another one. Thus in the case of intedest
"Email address: nunosa@physto.se =p+1 one can locally gauge away all degrees of freedom.
*Email address: zabzin@physto.se However on a nontrivial background manifaldt one can-
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not do this globally and therefore there are nontrivial globalstrained since the theory is invariant under redefinitions of
(topologica) degrees of freedom. One can also see that dethe evolution parameter.

generate situationgwhen deftG,,,(X)d,X*3;X"]=0) do Denoting byP, the momenta conjugate to th¢“ and
not appear because of E@). In the static gauge the deter- starting from either the Polyakov actidg) or the Nambu-
minant of the induced metric is equal to the determinant ofGoto action(1) the constraints can be worked out[23$

the background metric which is assumed to be nondegener-

ate. Therefore as soon as we want to keep the local diffeo- (M) [GH(X)P,P,+T?de{qap] 6
morphism symmetry(3) (i.e., the picture of embedding of = Hy - P d.X* ' ©)
one manifold into anothgit is assumed everywhere that a
where
def G, ,(X)d X 9zX"]#0. (5)
“ ’ Qab= G, (X) 7 X X" (@)

Throughout the paper we use the following notatign: v
denote space-time indices B8 world-volume indices and,
b, ¢ spatial world-volume indices.

is the induced spatial metric on the brane. The constréits
are first class and obey the algebra

Let us assume that the space-time manifdlds compact {HI M3, Hy[ NPT} =M [ EmN?], (8)
and oriented. When we come to the Hamiltonian treatment
we also assume tha!=RX 2 where3, is a compact and {H M2, H[NT}=H[EuN], (9)
oriented spatial manifoldp-branes can be closed or open.
For closedp-branes periodicity conditions must be imposed {HIM],HIN]} =H[qg**(MIpN—NIM)],
along all spatial directions. The analysis of ogehranes is (10

more involved since the theory should be supplemented by
appropriate boundary conditions. In this paper we look onlywhere % stands for the Lie derivative along the vector field
at closedp-branes. In the case of closed branes the NambuN?, and gq=det(q,p). Since there arel pairs of canonical
Goto action is a constant for all field configurations and it isconjugate variables ang+1 constraints, the theory pos-
equal to the volume of the background manifold. We  sessesd—p—1) degrees of freedom per brane point. There-
hope to come back to the case of ogebranes elsewhere. fore in the case of ad—1)-brane one has got no dynamical
In this paper we study mainly the classical aspects of thelegrees of freedom and the theory is purely topological. The
theory. The paper is organized as follows. In Sec. Il we gaalgebra(8)—(10) is called the algebra of many-fingered time
through the Hamiltonian treatment of the closed brandthe name is due to WheejeiThe constraint$6) and their
theory. Three equivalent sets of constraints are presented. #lgebra(8)—(10) are true for ap-brane in any space-time
Sec. Il we take a look at the construction of BRST generadimensiond. The algebrd8)—(10) is closed only for the case
tors for these three sets of constraints. Three different BRSP<2. Now let us analyze the specific properties for a
generators are related to each other through canonical trang-brane propagating on & 1)-dimensional space-time.
formations in the extended phase space. In Sec. IV we look Starting from the Nambu-Goto actigth) one can see that
at equivalent forms of the action and specifically discuss théhe constraints can be written in a form in which all of them
case of locally flat backgrounds. The degrees of freedom arere linear in the momenta. In order to do so, we observe that
briefly considered and the subtleties related to the degenerafier p-branes the dimension of the world-volume in Eb).is
solutions are pointed out. In the last section we discuss ththe same as the dimension of the embedding space-time,
results and outline possible generalizations of the model. namely,p+1. Consequently , X* is a square matrix, and
one can write

Il. HAMILTONIAN TREATMENT de(GMV(X)aaX,u(?’BXV) _ G(X)deto'((?aX"“), (11)
In this section we take a look at the Hamiltonian treatment .
. . with
of the system. The-brane theory is a generally covariant
system and therefore the naive Hamiltonian vanishes identi- G(X)=defG,,(X)] (12)
nv :

cally. In this theory the full Hamiltonian is given by a linear
combination of the corresponding constraints which are firstrhe action(1) becomes then
class. Our goal is to write down three different sets of con-

straints for the model. 1
In order to carry out the Hamiltonian formulation of the S= iTJ dPHE=G or D!
theory we choose one of the integration variakj&sas the '
evolution paramete(in the case of a relativistic metric with X 6“0“‘%6#0.,,%&%X“0~ . -&apX"p, (13
signature 1,1, ...,1), theone-parameter group of diffeo-

morphisms defined by the translations in that variable shouldvhere = corresponds to the two possible solutions of the
be generated by a timelike vector figlevhich we take to be square root. Let us keep both signs in all calculations and
&% the remaining integration variables, which parametrizeeventually one can see that the sign ambiguity corresponds to
the brane itself, are represented &y with the small Latin  the two possible orientations on the manifold. The equations
letters taking values from 1 tp. The system is totally con- of motion for Eq.(13) are somewhat trivial. They tell us that
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the exterior derivative of the volume form is zero. The ( To get another set of constraints one can contqucWith
+ 1) decomposition of Eq(l) is straightforward: the set of independent vecto&"*"n, and d,X*, resulting,

respectively, in
s=+T [ dgaren, . (14 Hi) (G””nﬁpyﬂdetqabl 24
— 24

o . Ha P dX*
where an overdot represents a derivative with respect to the m

eVOlytion Parame.t%(), and the VeCtonM is a function of the Comparing with EqS.(G) we see that 0n|y the scalar con-
configuration variableX* given by straint is modified, now being linear in the momenta, not
1 quadratic. The constraint$24) obey the same Poisson
”u:_p/zﬂw L, €A XL g X, (15) bragket algebra asiEqéS)—(lO). Again the two sets of con- _
p: e ! P straints#,” and’H, describe the two separate branches if
the degenerate solutions are excluded, and they obey two
many-fingered algebras on the corresponding independent
branches of the theory. The constraifg) basically tell us
(16) ; .
that the system can be thought of as a parametrized field
n a.X*=0 (17) theory (parametrized cosmological constant terf]. The
nYa . . . . .
equation of motion foiX* is given by

i

The vectom, satisfies the following properties:

GI—Wn#nV: - de(qab]v

In this form it is clear that the momenta conjugate to Xte ) .
are Xt={X* H N2+ H " [M]} =N, X*+MG*"n,,,
(25

which is nothing else but the geometrodynamical canonical
The Hamiltonian vanishes and one must include the primarglecomposition[3] with respect to basic vectorsG(“'n,,

constraints given by Eq18) with the aid of some Lagrange d,X*).
multiplier functionsx*: Now one can check explicitly the equivalence of these

three sets of constraings, , ;" , and, . Itis clear tha’,

=+Tn,. (18

I

*_ p NN implies both,” and H,. To check the converse we note
- f e[, X =NCL ], (19 that the second equatiofts,= 0 in the sets of constraints)

. and(24), have the general solution
Cu=PuxTnu(X). (20

P,=an,, (26)

The obtained constraints are linear in the momenta and its ) ) ) o

Poisson bracket algebra vanishes strongly. The two sets #fherea is any function which does not carry indices. Plug-
constraints”; andC, correspond to two different branches 9ing this result into the last equation &f one gets

of the constraint surface. These two sets intersect only on th

degenerate solutions YO~ o) detqup) =0=T=a of T=~a or defqu] ?207)

t_ _ _
€,=C,=0=n,=0=0deldap) =0. (21 The first solution is just ", the second i€, and the last

ape corresponds to a degenerate solution. Applying the same

Thus exluding degenerate solutions one has two mdependeprocedure tgH* one finds that

branches of the theory with different Lagragiabs. The
constraintC , generate the following transformation: C;=0©H|+=0, C,=0eH, =0, (28)

SXH={X*,C, [N']}=N~. (22 if det(q,p) #0 is assumed.

- . Thus we have shown that all three sets of constraints are
In fact one can see that this is the real symmetry of the aCt'OQquivaIent

(13). The natural question might arise about the relation be-
tween Eq.(22) and the local diffeomorphism invarian¢g). (CF/=0andC, =0) & H,=0 & (H,'=0 andH, =0),
There is a one to one map between the two transformations: * a (29)

OXH=E XH=(9,XH){“=N¥, (23 if the case of degenerate metric is excluded and therefore
. . _ these three sets of constraints describe the same constrained
when the quadratic matrixJ(,X*) is assumed to be nonde- gyrface. Since the manifol¥ is assumed oriented the two

generate. Thus for every vectgrthere is unique vectoN  pranches of the theory are dynamically independent.
and vice versa. However it should be stressed that in general

the gauge symmetrig8) and(22) have different properties. IIl. BRST GENERATORS

By using transformatiori22) one can bring a nondegenerate

solution to a degenerate one. One cannot do this by using the In this section we construct the BRST generators which
transformation(3). correspond to the different sets of constraints discussed in
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the previous section. We have a first class constrained systeform. However, one can certainly construct them perturba-
and its Hamiltonian is a linear combination of the constraintgively in same fashion as in Refgt] and[6].

V¥, . Introducing the ghost variableg' and the ghost mo- As we saw the three sets of constraihts, H| , andC—

mentaP, one can define the classical Grassmann-odd BRS@escribe the same constraint surface if we exclude degener-

generator(charge Q in the extended phase spded ate solutions. There should be the following relation among

the sets of constraints which describe the same constrain sur-
Q- [ arererve face:
r =(S)fC, . Hi=(S)fC,, (34)
+nZO dPgy- - f dP&,Q" (£, ... &) where §°){* and (S){* must be nondegenerate. It is not dif-
- ficult to construct these matrices explicitly. Thus Bt we
XPy (1) P (£n), (300  have the following expression:

such thatQ is nilpotent and real. The ghost number @f 91X° e 0 XP

should be equal to 1. The BRST construction is important . 3,X° coo 0XP

because it reveals that the different representations of the S = . (39

constraint surface can be thought of as being obtained from o T

each other by a canonical transformation in the extended G™P,xTn,) ... GP"(P,=Tn,)

phase space. In expressi@80) the numberr is called the

rank of the BRST generator. The concept of rank is not in- and, forS,

tr!r_13|c and can bg made equal to zero by appropriate redefi- 9.X0 Xt o 9yXP

nitions of constraint$4]. 0 1 o

For the general case pfbranes with constraints, given . X" X X 36
by Eg. (6) the classical BRST generat® has been con- N o R
structed by Henneau%]. The rank ofQ is equalp. Now we c%n Gl GP'n

can construct the BRST generator for the other two sets of
constramts(} and’H; . Since the Poisson brackets algebraj ot s calculate the determinants of these matrices

for C vanlshes stronglythus the algebra is commutatjve

the BRST operato®* has rank 0: de(Si)z(—1)pnMG“”(PviTny):(—1)p7~{i, (37)

—(_1)p+1
Q*= dpgn,u(g)c;—;(g)’ (31) de(S)=(—1)"""defqap]. (38)

We see thatS is non degenerate if degenerate solutions
whereQ* andQ~ are defined for the two different sectors. (defq,,]=0) are excluded. The matr&" is not degenerate
In this case the BRST transformatiod{A={A,Q-}) inthe either as long as we stay at the branch definedpyto (or,

extended phase space has a simple form equivalently, by ,") andS™ is not degenerate at the branch
defined byC, (or, equivalently, by} ). Therefore using
0. Xt=n"6.9"=0,6.P,=-D,, these matrices one can construct perturbatively the relevant

canonical transformations in the extended phase space.

0P, =FT—V=Gé€ppp,. .

(p oL
% Eal' . .apaalnvlaaszz. . aavap. (32)

IV. p-BRANE THEORY IN LOCALLY FLAT
BACKGROUND

To understand the theory better we would like to study

The BRST generato@ * for the constraint§{;" can also  alternative representations of this model. In many cases al-
be worked out, being given by ternative representations of a theory may help to analyze
their degrees of freedom. In this section we study some clas-

sically equivalent actions and analyze the degrees of freedom
Q7= f dPE[pH= + p*H o+ (729am+ ndan®) P corresponding to the topologicpibrane theory. It is hard to
say anything explicit about the degrees of freedom when the
+(q°02Ppap+ 529, 7°) Pyl (33)  theory is formulated in the fornfl) or (2). Intuitively we

understand that the number of degrees of freedom is related
where (,P) and (?,P,) are the ghost pairs associated with to the number of patches needed to cover the manifeld
H* andH,, respectively. Its rank is 1. Thus we have con-However, it is hard to count them explicitly. Therefore we
structed three different BRST generators for the same theorgan try to reformulate the theory in a more transparent way.
They should relate to each other by canonical transforma©ne can reach this goal by using new variables. Since the
tions in the extended phase space. We were unable to cotask is difficult for generic curved background manifolds, we
struct these canonical transformations in any simple closetbok first at the case of locally flat manifold$1:

066005-4



REMARKS ON TOPOLOGICAL BRANE THEORIES

G,uV: Nuv - (39)

At the end of this section we will take a brief look on equiva- and writes the momentaaﬂ

PHYSICAL REVIEW [B2 066005

and the Lagrange multipliers

lent actions for the generic case. However, it is still problem-qﬁabﬂ as the components of @¢1)-formF ,,

atic to analyze the degrees of freedom in all generality.
Now we are assuming that E9) holds. Let us enlarge

the gauge symmetry of the system defining the tetrad fields

8,1 = g XM (40)

as the new configuration variables. They are subject to the

constraints

&[aeb]"=0. (41)

One can easily see that there is a one to one correspondence
between new and old variables in the locally flat space-time.

The static gaugd4) in new variables corresponds &®*
=5,

Wauzfabl'"bp’lFb1'-~bp,1u’ (48)
¢, =(p— 1) 2Foe o . (49)
Equation(46) then becomes
S= J’ dp+1§ 6“0"'ap(7aoea1MFa2--~apM
1
iT(p+—1)!e“0“'“Peyo...,,pe%“& . -eap“p , (50

which can be compactly written in the differential form lan-
guage as

The action in these new variables and their canonical con-

jugate momentar®, can be obtained from the generating

1
functional depending on the old coordinates and the new S:f F#/\deﬂiT(er 1)! 'EVo-"Vpevo/\‘ /e,

momenta
SXw:—f dpgaax“waﬂ. (42
One has
OSxx
et=— S =g XM, (43
a 5 a a
T
OSx
P axe =07, (44)

Plugging this result into Eq20) one gets

S:j dp+l§’7TaM'ea’u'+ ¢abﬁﬁ[aeb]“+ A 0737Talu
1 aq - - a, v v
iTae 1 d's,wl...ypea1 1€ P, (45

(51

wheree" is a one-form andr, is a (p—1)-form. The action
(51) is explicitly topological since it does not involve the
metric. After all one can see just at level of actions that the
actions(13), (51) are equivalent to each other. This equiva-
lence can be established by integrating out the field

Now let us take a look at the symmetries and equations of
motions of the actiori51). The action has the following ob-
vious symmetry

oF ,=dw,, (52

which is the shift ofF, by any exact p—1)-form. There is
one extra symmetry which is less obvious

set=df~, (53)

T

5F#: i(p——l)!eﬁ“’l”z”'

v frie2/\. ../ \ep, (59

wheref# is an arbitrary zero-fornffunction). The equations

where ¢?°, are the Lagrange multiplier functions for the of motion are the following:

constraintg41). In the case of a nonflat metric the Lagrang-

ian (45 would be nonlocal in the new variables since it de*=0, (55
involves the original coordinates” present in the determi- T
nant of the metridG ,, . But this problem does not arise in _
My X . = F — Vl/\. . /\ 14 .
the case of a flat metric. We have then the following action: dF,== p! Cuvy € e (56)
T ho gab p i a The classical moduli space is given by gauge non-equivalent
S= | dP"7E) 70,008,  + H0 0 a8+ N0, solutions of equation£s5) and (56). Thus we were able to
reformulate the topologicgb-brane theory in a locally flat
eTpl aa " ) background as an Abelian BF-like mod&I with the action
=TNE e P€uvy-- v €ay 8o P (46 given by Eq.(51). The model has a bunch of(1) fields e*

and the nontriviality comes from the last “mass” term which

which can be given in a covariant form if one identifies themixes different gauge fields. For the case2 the action
Lagrange multipliers\# with the time components of the (51) can be thought as the zero gravitational constant limit

tetrad fields

for the general relativity with cosmological constant in

066005-5



BENGTSSON, BARROS e ,SAAND ZABZINE PHYSICAL REVIEW D 62 066005

(p+1)-dimensional space-time. This limit should be takenserve as closed symplectic form ow. Also the Nambu-

in the first order formalisn8]. Goto action is equivalent to the following action:
The degrees of freedorfthe classical moduli spagéor

the action(51) can be analyzed in a straightforward fashion T
through the cohomology groups. In general the situation de- Szf dXH#/N\ nﬂtg(—G)*l’ze“”nM/\ 7, (59
pends on the details of the topology of the background mani-
fold or more precisely, on the structure of the first cohomol-
ogy groule(M'R)_ Since the one-forme* are closed and which is the Poisson Sigma model on tWO'dimenSiQMI
any two solutions that differ by an exact one-form are gaugél11l. Therefore we see that two-dimensional topological
equivalente” is a element oH!(M,R). The equations for string theory is clagsically equivalent to other knov_vn the_ories
F, are more difficult to analyze since the right hand sideup to some subtleties related to degenerate configurations.
involvese*. If dim[H(M,R)]<p then the last equation of
motion in Eq.(55) reduces talF,=0. We have not enough V. DISCUSSION AND OUTLINE
elements of the first cohomology group to construct a non-
zero right-hand side. Thus in this case the model coincides In the present work we considered the classical aspects of
with (p+1) copies of an Abelian BF systefi]. Therefore —closedp-brane theory defined orp(- 1)-dimensional back-
the space of solutions f@* andF , is given byp+1 copies ground manifoldsM. We analyzed the Hamiltonian a_nd
of HY(M,R)&HP 1(M,R). In the caseM=Rx 3 we have  BRST structure of the theory. We saw that model has differ-
ent equivalent realizations. However, the classical equiva-
HY(M,R)~H(S,R)~HP L3 ,R)~HP }(M,R), lence between the constraints and the actions might fail at
(570  the quantum level due to normal ordering probl@iiferent
regularizations One can look at the most familiar example
where we used Poincacdality on thep-dimensional mani- p=1. For the case of quadratic constraints there is an
fold X . Thus the space of gauge inequivalent solutions issnomaly in the Virasoro algebra and therefore the system is
even dimensional and it is given by the product ofp2( not first class anymore. In the case of linear constra@@s
+1) copies of the first cohnomology groupt(2,R). The there is no anomaly possible since the constraints are com-
situation with diniH'(M,R)]=p is more involved. One pletely linear. This discussion gives us an example that at the
should analyze what kind of right hand side in the last equaquantum level the Nambu-Goto actignatural source for
tion (55) can be constructed frore*. For instance, in the linear constraints and the Polyakov actior{the natural
caseM=RX3 it might be possible to construct out ef  source for quadratic constraiitare not equivalent to each
the volume form fo2,: el/\. .. /AeP. Since the volume form other. As well at the classical level different status of degen-
cannot be exact the corresponding equation has no solutiofrate solutions can bring extra problems into identification of
We will not analyze this situation in all generality. However, two theories.
the task might be solved straightforwardly as soon as we The actiong13) and(58) have a straightforward generali-
know explicitly the content oH*(M,R). Above analysis of ~zation to the following topological models:
degrees of freedom is appropriate for the acti¢h3 and

(51) where the degenerate solutions are included. However, 1 L

to incorporate into the analysis the restriction of nondegen- S:T(p+1), J dPTHC, . (X)

eracy can be hard since the removal of degennerate solutions '

from the phase space might destroy the gauge orbits. The X g% -%aaoX’LO. . .aapr‘p (60)

similar problem appears in the relation betweenX2gravity
and Chern-Simons theof{)].
X : : . and
On a curved space-time manifold there is no such simple
BF-like action as in locally flat case. However, one can write

the following action: S=f (dXE— ”“)/\BM+T(pj1).
S=f (dX£—7n*)/\B, OOk ASERAY i (61)
T \/__GEMO -up”’m/\' CAgte, (58 where C is a (p+1)-form defined on thed-dimensional

(p+1)! background manifoldM [d might be any value equal or
greater thanf§+1)]. If the form C is closed the model has
which is classically equivalent to the Nambu-Goto actionmany similarities with the topologicad-brane studied in the
(13). In the action(58) »* and B, are one-forms and present work. We shall consider the classical and quantum
p-forms, respectively. The action is nonlinear ¥t* and  aspects of these theories in coming work.

therefore it is difficult to analyze it in the same fashion as
before. The case=1 is definitly special. By itself the
Nambu-Goto action13) can be interpreted as topological

sigma mode[10] in two dimensions since/— Ge,, might We are grateful to Ansar Fayyazuddin for discussions.
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