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Magnetic fields, branes, and noncommutative geometry
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We construct a simple physical model of a particle moving on the infinite noncommutative 2-plane. The
model consists of a pair of opposite charges moving in a strong magnetic field. In addition, the charges are
connected by a spring. In the limit of large magnetic field, the charges are frozen into the lowest Landau levels.
Interactions of such particles include Moyal-bracket phases characteristic of field theories on noncommutative
space. The simple system arises in the light cone quantization of open strings attached to D-branes in anti-
symmetric tensor backgrounds. We use the model to work out the general form of light cone vertices from
string splitting. We then consider the form of Feynman diagrams in~uncompactified! noncommutative Yang-
Mills theories. We find that for all planar diagrams the commutative and noncommutative theories are exactly
the same apart from trivial external line factors. This means that the largeN theories are equivalent in the ’t
Hooft limit. Non-planar diagrams are generally more convergent than their commutative counterparts.

PACS number~s!: 11.25.Db
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I. MODEL

Gauge theories on noncommutative spaces@1,2# are be-
lieved to be relevant to the quantization of D-branes in ba
groundBmn fields @3#. The structure of such theories is sim
lar to that of ordinary gauge theory except that the us
product of fields is replaced by a ‘‘star product’’ defined

f* x5f~X!expH 2 iumn
]

]Xm

]

]YnJ x~Y! ~1!

whereumn is an antisymmetric constant tensor. The effect
such a modification is reflected in the momentum space
tices of the theory by factors of the form

exp@ iumnpmqn#[eip`q. ~2!

The purpose of this paper is to show how these factors a
in an elementary way. We will begin by describing a simp
quantum mechanical system which is fundamental to
construction. We then consider string theory in the prese
of a D3-brane and a constant largeBmn field. In the light
cone frame the first quantized string is described by our
ementary model. We use the model to compute the st
splitting vertex and show how the factors in Eq.~2! emerge.
We then turn to the structure of the perturbation series for
non-commutative theory in infinite flat space. We find th
planar diagrams with any number of loops are identical
their commutative counterparts apart from trivial extern
line phase factors.

Compactification, which can lead to entirely new featur
is not studied in this paper.

A. Model at classical level

Consider a pair of unit charges of opposite sign in a m
netic fieldB in the regime where the Coulomb and the rad
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tion terms are negligible. The coordinates of the charges
xW1 andxW2 or in component formx1

i andx2
i . The Lagrangian

is

L5
m

2
@~ ẋ1!21~ ẋ2!2#1

B

2
e i j ~ ẋ1

i x1
j 2 ẋ2

i x2
j !2

K

2
~x12x2!2

~3!

where the first term is the kinetic energy of the charges,
second term is their interaction with the magnetic field a
the last term is a harmonic potential between the charge

In what follows we will be interested in the limit in which
the first term can be ignored. This is typically the case ifB is
so large that the available energy is insufficient to exc
higher Landau levels@4#. Thus we will focus on the simpli-
fied Lagrangian

L5
B

2
e i j ~ ẋ1

i x1
j 2 ẋ2

i x2
j !2

K

2
~x12x2!2. ~4!

Let us first discuss the classical system. The canonical
menta are given by

pi
15

]L
] ẋ1

i
5Be i j x1

j

pi
252Be i j x2

j . ~5!

Let us define center of mass and relative coordinatesX, D:

XW 5~xW11xW2!/2

DW 5~xW12xW2!/2. ~6!

The Lagrangian is

L5m@~Ẋ!21~Ḋ !2#12Be i j Ẋ
iD j22K~D!2. ~7!
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Dropping the kinetic terms gives

L52Be i j Ẋ
iD j22K~D!2. ~8!

The momentum conjugate toX is

]L
]Ẋi

52Be i j D
j5Pi . ~9!

This is the center of mass momentum.
Finally, the Hamiltonian is

H52K~D!252KS P

2BD 2

5
K

2B2
P2. ~10!

This is the Hamiltonian of a nonrelativistic particle wit
mass

M5
B2

K
. ~11!

Evidently the composite system of opposite charg
moves like a Galileian particle of massM. What is unusual is
that the spatial extensionD of the system is related to it
momentum so that the size grows linearly withP according
to Eq. ~9!. How does this growth with momentum effect th
interactions of the composite? Let us suppose charge 1 in
acts locally with an ‘‘impurity’’ centered at the origin. Th
interaction has the form

V~xW1!5ld~xW1!. ~12!

In terms ofX andD this becomes

V5ld~X1D!5ldS Xi2
1

2B
e i j Pj D . ~13!

Note that the interaction in terms of the center of mass
ordinate is nonlocal in a particular way. The interaction po
is shifted by a momentum dependent amount. This is
origin of the peculiar momentum dependent phases that
pear in interaction vertices on the noncommutative pla
More generally, if particle 1 sees a potentialV(x1), the in-
teraction becomes

VS X2
eP

2BD . ~14!

B. Quantum level

The main problem in quantizing the system is to correc
define expressions like Eq.~14! which in general have facto
ordering and other quantum ambiguities. In order to defi
them, let us assume thatV can be expressed as a Four
transform

V~x!5E dqṼ~q!eiqx. ~15!

We can then formally write
06600
s
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VS X2
eP

2BD5E dqṼ~q!eiq(X2eP/2B). ~16!

The factor ordering is not ambiguous because

@qiX
i ,qle

l j Pj #5qiqle
l j @Xi Pj #50. ~17!

Consider the matrix element

K kUexpF iqS X2
ep

2BD GU l L ~18!

where ^ku and u l & are momentum eigenvectors. Using E
~17! we can write this as

aK kUexp@ iqX#expF2 i
qeP

2B GU l L . ~19!

Sinceu l & is an eigenvector ofP, this becomes

^kuexp@ iqX#u l &expF2 i
qe l

2B G5d~k2q2 l !exp@2 iqe l /2B#.

~20!

The phase factor is the usual Moyal bracket phase tha
ubiquitous in noncommutative geometry.

II. STRING THEORY IN MAGNETIC FIELDS

Let us consider bosonic string theory in the presence o
D3-brane. The coordinates of the brane arex0, x1, x2, x3.
The remaining coordinates will play no role. We will als
assume a background antisymmetric tensor fieldBmn in the
1,2 direction. We will study the open string sector with stri
ends attached to the D3-brane in the light cone frame.

Define

x65x06x3 ~21!

and make the usual light cone choice of world sheet time

t5x1. ~22!

The string action is

L5
1

2E2L

L

dtdsF S ]xi

]t D 2

2S ]xi

]s D 2

1Bi j S ]xi

]t D S ]xj

]s D G .
~23!

We have numerically fixeda8 and the parameterL can be
identified withP2 , the momentum conjugate tox2 .

In what follows we will be interested in the limitB→`.
Let us make the following rescalings:

xi5
yi

AB

t5tB. ~24!

Then
4-2
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L5
1

2E2L

L

dtdsF 1

B2 S ]y

]t D
2

2S ]y

]s D 2

1e i j S ]yi

]t D S ]yj

]s D G .

~25!

Now for B→` we can drop the first term. Furthermor
by an integration by parts and up to a total time derivat
the last term can be written

e i j

]yi

]t
yj u2L

L . ~26!

Thus

L5
1

2E dsdtS ]y

]s D 2

1e i j ẏi y j u2L
L . ~27!

Since forsÞ6L the time derivatives ofy do not appear in
S, we may trivially integrate them out. The solution of th
classical equation of motion is

y~s!5y1
Ds

L
~28!

with D andy independent ofs. The resulting action is

L5F2
2D2

L
1 ẏeDG . ~29!

Evidently, the action is of the same form as the model in S
I with B andK rescaled.

III. INTERACTION VERTEX

Interactions in light cone string theory are represented
string splitting and joining. Consider two incoming string
with momentap1 , p2 and center of mass positionsy1 , y2. If
their endpoints coincide, they can join to form a third stri
with momentum2p3. The constraints on the endpoints a
summarized by the overlapd function:

n5d„~y12D1!2~y21D2!…d„~y22D2!

2~y31D3!…d„~y32D3!2~y11D1!…. ~30!

From Eq.~29! we see that the center of mass moment
is related toD by

P5eD. ~31!

Inserting this in Eq.~30! gives the vertex

n5d„y12y21~ep11ep2!…

3d„y22y31~ep21ep3!…

3d„y32y11~ep31ep1!…. ~32!

To get the vertex in momentum space multiply
ei (p1y11p2y21p3y3) and integrate overy. This yields

n5ei (p1ep2)d~p11p21p3!. ~33!
06600
e
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This is the usual form of the vertex in noncommutative fie
theory. We have scaled the ‘‘transverse’’ coordinatesx1, x2

~but not x0, x3) and momenta so that theB field does not
appear in the vertex. If we go back to the original units, t
phases in Eq.~33! will be proportional to 1/B.

Evidently a quantum of noncommutative Yang-Mil
theory may be thought of as a straight string connecting
opposite charges. The separation vectorD is perpendicular to
the direction of motionP.

Now consider the geometry of the 3-body vertex. T
string endpointsu, v, w define a triangle with sides

D15~u2v !

D25~v2w! ~34!

D35~w2u!

and the three momenta are perpendicular to the corresp
ing D. It is straightforward to see that the phase

e i j piqj /B[p`q ~35!

is just the area of the triangle timesB. In other words, it is
the magnetic flux through the triangle. Note that it can be
either sign.

FIG. 1. ‘‘Feynman tree diagram’’ for the scattering o
strings.
4-3
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More generally, we may consider a Feynman tree diag
constructed from such vertices. For example consider
1~a!. The overall phase is the total flux through the triang
A, B and C. In fact we can simplify this by shrinking th
internal propagators to get Fig. 1~b!. Thus the phase is th
flux through a polygon formed from theD ’s of the external
lines. The phase depends only on the momenta of the e
nal lines and their cyclic order.

IV. STRUCTURE OF PERTURBATION THEORY

In this section we will consider the effects of the Moy
phases on the structure of Feynman amplitudes in nonc
mutative Yang-Mills theory. Let us first review the diagra
rules for ordinary Yang-Mills theory in ’t Hooft double-line
representation.

The gauge propagator can be represented as a double
as if the gauge boson were a quark-antiquark pair as in
2. Each gluon is equipped with a pair of gauge indicesi , j , a
momentump and a polarization« satisfying «•p5«mpm
50.

The vertex describing the 3-gauge boson interaction
shown in Fig. 3. In addition to the Kroneckerd for the gauge
indices and momentumd functions the vertex contains th
factor

~«1•p31«3•p21«2•p1!. ~36!

The factor is antisymmetric under interchange of any p
and so it must be accompanied by an antisymmetric func
of the gauge indices. For a purely Abelian theory the ver
vanishes when symmetrized.

Now we add the new factor coming from the Moy
bracket. This factor is

FIG. 2. Double line representation of the propagator.

FIG. 3. The three-boson interaction and its associated phas
06600
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eip1`p25eip2`p35eip3`p1 ~37!

wherepa`pb indicates an antisymmetric product:

p`q5pmqnumn

umn52unm. ~38!

Because these factors are not symmetric under interchang
particles, the vertex no longer vanishes when Bose sym
trized even for the Abelian theory.

FIG. 4. The elementary ‘‘duality exchange’’ move.

FIG. 5. Basic form of any planar diagram after an appropri
sequence of duality moves.
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The phase factors satisfy an important identity. Let
consider the phase factors that accompany a given diag
In fact from now on a diagram will indicateonly the phase
factor from the product of vertices. Now consider the di
gram in Fig. 4~a!. It is given by

ei (p1`p2)ei (p11p2)`p35ei (p1`p21p2`p31p1`p3). ~39!

On the other hand the dual diagram, Fig. 4~b!, is given by
ei [ p1`(p21p3)1p2`p3] . It is identical to the previous diagram
Thus the Moyal phases satisfy old fashioned ‘‘channel du
ity.’’ This conclusion is also obvious from the ‘‘flux throug
polygon’’ construction of the previous section.

In what follows, a ‘‘duality move’’ will refer to a replace-
ment of a diagram such as in Fig. 4~a! by the dual diagram in
Fig. 4~b!.

Now consider any planar diagram withL loops. By a
series of ‘‘duality moves’’ it can be brought to the form
indicated in Fig. 5 consisting of a tree withL simple one-
loop tadpoles.

Let us consider the tadpole, Fig. 6. The phase factor is
eiq`q51. Thus the loop contributes nothing to the phase a
the net effect of the Moyal factors is exactly that of the tr
diagram. In fact all tree diagrams contributing to a giv
topology have the same phase, which is a function only
the external momentum. The result is that for planar d
grams the Moyal phases do not affect the Feynman inte
tions at all. In particular the planar diagrams have exactly
same divergences as in the commutative theory. Evidentl
the large N limit noncommutative Yang-Mills theory
5ordinary Yang-Mills theory.

On the other hand, divergences that occur in nonpla
diagrams can be regulated by the phase factors. For exa
consider the nonplanar diagram in Fig. 7. The Moyal ph
for the diagram is

FIG. 6. The tadpole diagram.
J

06600
s
m.

l-

st
d

f
-
a-
e
in

ar
ple
e

eip`qeip`q5e2ip`q ~40!

and does not cancel. It is not difficult to see that such os
lating phases will regulate divergent diagrams and m
them finite, unless the diagram contains divergent pla
subdiagrams. Thus it seems that the leading high momen
behavior of the theory is controlled by the planar diagram
Among other things it means that in this region the 1N
corrections to the ’t Hooft limit must vanish.

An interesting question arises if we study the theory o
torus of finite size@5#. For an ordinary local field theory high
momentum behavior basically corresponds to small dista
behavior. For this reason we expect the high momentum
havior on a torus to be identical to that in infinite space on
the momentum becomes much larger than the inverse siz
the torus. However, in the noncommutative case the stor
more interesting. We have seen that high momentum in
1,2 plane is associated withlarge distances in the perpen
dicular direction. Most likely this means that the finite tor
generically behaves very differently at high momentum th
the infinite plane.

Indeed there is an exception to the rule that nonpla
diagrams are finite. If a line with a nonplanar self-ener
insertion such as in Fig. 7 happens to have vanishing m
mentum in the 1,2 plane, then according to Eq.~40! its phase
will vanish. Thus, for a set of measure zero, the nonpla
self-energy diagram can diverge. This presumably lead
no divergences in infinite space when the line in question
integrated over. The situation could be different for comp
noncommutative geometries since integrals over mome
are replaced by sums@6#.

The fact that the largeN limit is essentially the same fo
noncommutative and ordinary Yang-Mills theories impli
that in the AdS conformal field theory~CFT! correspondence
the introduction of noncommutative geometry does n
change the thermodynamics of the theory@7#. It may also be
connected to the fact that in the matrix theory construction
Connes, Douglas and Schwartz@1# and Douglas and Hull@2#,
the largeN limit effectively decompactifiesX11 and should
therefore eliminate the dependence on the 3-form poten
However, the argument is not straightforward since in ma
theory we are not usually in the ’t Hooft limit.

ACKNOWLEDGMENTS

L. S. would like to thank Steve Shenker for discussion

FIG. 7. Non-planar insertion for the self-energy.
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