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Magnetic fields, branes, and noncommutative geometry
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We construct a simple physical model of a particle moving on the infinite noncommutative 2-plane. The
model consists of a pair of opposite charges moving in a strong magnetic field. In addition, the charges are
connected by a spring. In the limit of large magnetic field, the charges are frozen into the lowest Landau levels.
Interactions of such particles include Moyal-bracket phases characteristic of field theories on noncommutative
space. The simple system arises in the light cone quantization of open strings attached to D-branes in anti-
symmetric tensor backgrounds. We use the model to work out the general form of light cone vertices from
string splitting. We then consider the form of Feynman diagran{simcompactifielnoncommutative Yang-

Mills theories. We find that for all planar diagrams the commutative and noncommutative theories are exactly
the same apart from trivial external line factors. This means that the Mutheories are equivalent in the 't
Hooft limit. Non-planar diagrams are generally more convergent than their commutative counterparts.

PACS numbes): 11.25.Db

I. MODEL tion terms are negligible. The coordinates of the charges are
)Zl andiz or in component fornx; andx;. The Lagrangian
Gauge theories on noncommutative spalceg] are be- g
lieved to be relevant to the quantization of D-branes in back-
groundB,,, fields[3]. The structure of such theories is sim- =~ m_. ., . . B ... .. . K )
lar to that of ordinary gauge theory except that the usual £~ E[(Xl) +(x2)7]+ Efij(xlxl_xzxz)_ E(Xl_x2)
product of fields is replaced by a “star product” defined by ®)

where the first term is the kinetic energy of the charges, the
]X(Y) (1)  second term is their interaction with the magnetic field and

the last term is a harmonic potential between the charges.
where#*” is an antisymmetric constant tensor. The effect of In_ what follows we will be intere_sted i_n the fimit in WrJiCh
such a modification is reflected in the moment.um space vert—he first term can be |gnored. This is t'yp'lcally .the cas ié ,
i so large that the available energy is insufficient to excite
tices of the theory by factors of the form

higher Landau levelf4]. Thus we will focus on the simpli-

d
*x=p(X)exp —i 6" ——
¢ x= () p{ oy

exdi0*p,q,]=€"P" . ) fied Lagrangian
The purpose of this paper is to show how these factors arise L= Efij(kille—kizsz) _ E(Xl_x?_)z- @)
in an elementary way. We will begin by describing a simple 2 2

guantum mechanical system which is fundamental to ou
construction. We then consider string theory in the presenc
of a D3-brane and a constant large,, field. In the light

Let us first discuss the classical system. The canonical mo-
Menta are given by

cone frame the first quantized string is described by our el- oL _

ementary model. We use the model to compute the string pilz f:Beiijl

splitting vertex and show how the factors in Eg) emerge. Xy

We then turn to the structure of the perturbation series for the _

non-commutative theory in infinite flat space. We find that pi=—Bejxb. ()

planar diagrams with any number of loops are identical to ) ) .
their commutative counterparts apart from trivial externall€t us define center of mass and relative coordintes:
line phase factors.

Compatctification, which can lead to entirely new features,
is not studied in this paper.

X= (X1 +X5)/2

A= (X1~ X,)/2. (6)
A. Model at classical level The Lagrangian is
Consider a pair of unit charges of opposite sign in a mag- _ _ o
netic fieldB in the regime where the Coulomb and the radia- L=m[(X)*+(A)?]+2Be; X' Al - 2K (A)2. (7)
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Dropping the kinetic terms gives eP _ .
o V(X— §)=f dqV(q)e'aX—<Pi28), (16)
L=2Be;X'AI-2K(A)% (8)

The factor ordering is not ambiguous because

[aiX',q€"P;]=qiq €' [X'P;]=0. (17)

The momentum conjugate ¥is

aL .
= CAl=P.
X 2BeijAI=Pi. © Consider the matrix element
This is the center of mass momentum. . €p
Finally, the Hamiltonian is <k exp{lq(x— 2B ‘|> (18
) 2 5 where (k| and|l) are momentum eigenvectors. Using Eq.
H=2K(A)"=2K| 55 :EP : (10 (17) we can write this as
This is the Hamiltonian of a nonrelativistic particle with a<k exp{in]exp{—iE ‘|> (19)
mass 2B
B2 ( Since|l) is an eigenvector oP, this becomes
M=—.
K

: el .
Evidently the composite system of opposite charges<k|exqu]“>ex% ! ZB} olk=a—lexd ~iqel/2B].

moves like a Galileian particle of mabs What is unusual is (20
that the spatial extensioa of the system is related to its
momentum so that the size grows linearly wiRraccording
to Eq.(9). How does this growth with momentum effect the
interactions of the composite? Let us suppose charge 1 inter-

acts locally with an “impurity” centered at the origin. The Il. STRING THEORY IN MAGNETIC FIELDS
interaction has the form

The phase factor is the usual Moyal bracket phase that is
ubiquitous in noncommutative geometry.

Let us consider bosonic string theory in the presence of a
D3-brane. The coordinates of the brane &fe x!, x2, x3.
The remaining coordinates will play no role. We will also
assume a background antisymmetric tensor figld in the
1,2 direction. We will study the open string sector with string
ends attached to the D3-brane in the light cone frame.

R
V=)\5(X+A):)\5(X'—ﬁe"Pj). (13 Define

V(X)) =NS(Xy). (12)

In terms ofX and A this becomes

+__ 0 3
Note that the interaction in terms of the center of mass co- XT=XTEX (22)

_ordinate is nonlocal in a particular way. The interactic_m .pomtand make the usual light cone choice of world sheet time
is shifted by a momentum dependent amount. This is the
origin of the peculiar momentum dependent phases that ap- r=x". (22)
pear in interaction vertices on the noncommutative plane.

More generally, if particle 1 sees a potenti&lx,), the in- The string action is

teraction becomes ) _ ) .
ax\2 [axi\? axt\ [ axd
- — — +Bi' - R
JaT Jo Norl\ do

B. Quantum level We have numerically fixed:" and the parameter can be
) ) . ) identified withP_, the momentum conjugate ta_.
The main problem in quantizing the system is to correctly |, \yhat follows we will be interested in the limB— .
define expressions like E¢L4) which in general have factor | ot ;s make the following rescalings:
ordering and other quantum ambiguities. In order to define
them, let us assume that can be expressed as a Fourier

1 (L
L= Ef_LdeO'

5l
VI X=55. (14)

(23

Y
transform X=—
VB
V(x)= f dgV(q)e'?x. (15 1B (24
We can then formally write Then
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1(L 1 [ay\? [ay\? ay'\ [ ay)
L’:—J deO'——) === tejl=]l==
2], g2l at] o it |\ oo

Now for B—o we can drop the first term. Furthermore,
by an integration by parts and up to a total time derivativet
the last term can be written

This is the usual form of the vertex in noncommutative field
. theory. We have scaled the “transverse” coordinates x?

(but notx®, x%) and momenta so that th® field does not
(25 appear in the vertex. If we go back to the original units, the
phases in Eq(33) will be proportional to 1B.

Evidently a quantum of noncommutative Yang-Mills
heory may be thought of as a straight string connecting two
opposite charges. The separation vedtds perpendicular to

ay. the direction _of motiorP.
eija—tyj|';|_. (26) Now consider the geometry of the 3-body vertex. The

string endpointsy, v, w define a triangle with sides

Thus

A;=(u—v)
1 ay\c
L= Ef dodr % +Eijyiyj|7L' (27) AZZ(U—W) (34)
Since foro# =L the time derivatives o do not appear in Az=(w—u)
S we may trivially integrate them out. The solution of the .
classical equation of motion is and the three momenta are perpendicular to the correspond-
ing A. It is straightforward to see that the phase
Ao
y(o)=y+—~ (28) €;pi0;/B=p/\q (39
with A andy independent ofr. The resulting action is is just the area of the triangle tim&s In other words, it is
the magnetic flux through the triangle. Note that it can be of
A% . either sign.
L=|— T+y€A . (29

Evidently, the action is of the same form as the model in Sec.
| with B andK rescaled.

[ll. INTERACTION VERTEX

Interactions in light cone string theory are represented by
string splitting and joining. Consider two incoming strings
with momentap,, p, and center of mass positiogs, y,. If
their endpoints coincide, they can join to form a third string
with momentum— p5. The constraints on the endpoints are
summarized by the overlaf function:

v=0((y1— A1) — (Y21t A42)6((y2—Ay)
—(y3+A43)0((ys—Az) —(y1+A1)). (30

From Eq.(29) we see that the center of mass momentum
is related toA by

P=¢€A. (3D
Inserting this in Eq(30) gives the vertex
v=23(y1— Y2+ (€p1+€p2))
X 8(y,— Y3t (€pateps))
X 8(yz—y1t+(€eps+e€py)). (32

To get the vertex in momentum space multiply by
e'(Py1+P2Y2"PaYs) and integrate ovey. This yields
_ FIG. 1. “Feynman tree diagram” for the scattering of
v=e'(P1¥P2 5(p, + p,+ p3). (33)  strings.
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FIG. 2. Double line representation of the propagator. \—/
More generally, we may consider a Feynman tree diagram
constructed from such vertices. For example consider Fig.
1(a). The overall phase is the total flux through the triangles
A, B and C. In fact we can simplify this by shrinking the
internal propagators to get Fig(k. Thus the phase is the
flux through a polygon formed from th&’s of the external
5 /—\ 4

lines. The phase depends only on the momenta of the exter-
nal lines and their cyclic order.

IV. STRUCTURE OF PERTURBATION THEORY

In this section we will consider the effects of the Moyal
phases on the structure of Feynman amplitudes in noncom-
mutative Yang-Mills theory. Let us first review the diagram
rules for ordinary Yang-Mills theory in 't Hooft double-line
representation.

The gauge propagator can be represented as a double line
as if the gauge boson were a quark-antiquark pair as in Fig.
2. Each gluon is equipped with a pair of gauge indicgsa
momentump and a polarizatiore satisfying e-p=e“p,,
=0.

The vertex describing the 3-gauge boson interaction is 2
shown in Fig. 3. In addition to the Kroneckérfor the gauge
indices and momenturd functions the vertex contains the

factor FIG. 4. The elementary “duality exchange” move.

(£1-Pa+eq-Pates o). (36 elP1/\P2= @lP2/\P3 = giP3/\P1 (37)

The factor is antisymmetric under interchange of any pa"yvherepa/\pb indicates an antisymmetric product:

and so it must be accompanied by an antisymmetric function

indi i PAG=p,q, 60"
of the gauge indices. For a purely Abelian theory the vertex uHy
vanishes when symmetrized. , ,
Now we add the new factor coming from the Moyal Orr=—0". (38)

bracket. This factor is

Because these factors are not symmetric under interchange of
1 particles, the vertex no longer vanishes when Bose symme-

trized even for the Abelian theory.

. SN
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~

—

ipAps

O
3 - eiplAPz = e =

s ePh O
! |

2

FIG. 5. Basic form of any planar diagram after an appropriate

FIG. 3. The three-boson interaction and its associated phase. sequence of duality moves.
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e

FIG. 7. Non-planar insertion for the self-energy.

Q eip/\qeip/\q: e2ip/\q (40)
and does not cancel. It is not difficult to see that such oscil-
lating phases will regulate divergent diagrams and make
A them finite, unless the diagram contains divergent planar
subdiagrams. Thus it seems that the leading high momentum
behavior of the theory is controlled by the planar diagrams.
Among other things it means that in this region thé 1/
corrections to the 't Hooft limit must vanish.
An interesting question arises if we study the theory on a
torus of finite siz¢5]. For an ordinary local field theory high

The phase factors satisfy an important identity. Let usmomentum behavior basically corresponds to small distance
consider the phase factors that accompany a given diagrafi€havior. For this reason we expect the high momentum be-
In fact from now on a diagram will indicatenly the phase ~havior on a torus to be identical to that in infinite space once
factor from the product of vertices. Now consider the dia- the momentum becomes much larger than the inverse size of
gram in Fig. 4a). It is given by the torus. However, in the noncommutative case the story is

more interesting. We have seen that high momentum in the

e (P/\P2)gl (P1+P2)\Ps= gl (P1/\P2TP2/\Ps+P1/\P3)  (39) 1.2 plane is associated withrge distances in the perpen-
) ) o dicular direction. Most likely this means that the finite torus

On the other hand the dual diagram, FigbM is given by  generically behaves very differently at high momentum than
e/[P1/\(P2Pa) *P2/\Pal 1t js identical to the previous diagram. the infinite plane.
Thus the Moyal phases satisfy old fashioned “channel dual- |ndeed there is an exception to the rule that nonplanar
ity.” This conclusion is also obvious from the “flux through diagrams are finite. If a line with a nonplanar self-energy
polygon” construction of the previous section. insertion such as in Fig. 7 happens to have vanishing mo-

In what follows, a “duality move” will refer to a replace- mentum in the 1,2 plane, then according to E) its phase
ment of a diagram such as in Figa#tby the dual diagram in  will vanish. Thus, for a set of measure zero, the nonplanar
Fig. 4(b). ] ] ) self-energy diagram can diverge. This presumably leads to

Now consider any planar diagram with loops. By a o divergences in infinite space when the line in question is
series of “duality moves” it can be brought to the form jntegrated over. The situation could be different for compact
indicated in Fig. 5 consisting of a tree withsimple one-  noncommutative geometries since integrals over momenta
loop tadpoles. are replaced by suni$].

_Letus consider the tadpole, Fig. 6. The phase factor is just The fact that the larg®l limit is essentially the same for
e'9\9=1. Thus the loop contributes nothing to the phase anghoncommutative and ordinary Yang-Mills theories implies
the net effect of the Moyal factors is exactly that of the treethat in the AdS conformal field theolCFT) correspondence
diagram. In fact all tree diagrams contributing to a giventhe introduction of noncommutative geometry does not
topology have the same phase, which is a function only ofhange the thermodynamics of the thepry. It may also be
the external momentum. The result is that for planar diatonnected to the fact that in the matrix theory construction of
grams the Moyal phases do not affect the Feynman integrazonnes, Douglas and Schwaftd and Douglas and Hu[P],
tions at all. In particular the planar diagrams have exactly thgne largeN limit effectively decompactifieX** and should
same divergences as in the commutative theory. Evidently itherefore eliminate the dependence on the 3-form potential.
the large N limit noncommutative Yang-Mills theory However, the argument is not straightforward since in matrix

=ordinary Yang-Mills theory. _ theory we are not usually in the 't Hooft limit.
On the other hand, divergences that occur in nonplanar

diagrams can be regulated by the phase factors. For example ACKNOWLEDGMENTS
consider the nonplanar diagram in Fig. 7. The Moyal phase
for the diagram is L. S. would like to thank Steve Shenker for discussion.

FIG. 6. The tadpole diagram.
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