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Renormalization-group flow equations for Uk and Zk

Vincenzo Branchina
Laboratoire de Physique The´orique, Universite´ Louis Pasteur, 3-5, rue de l’Universite´, F-67084, Strasbourg Cedex, France

~Received 16 December 1999; published 25 August 2000!

By considering the gradient expansion for the Wilsonian effective actionSk of a single component scalar
field theory truncated to the first two terms, the potentialUk and the kinetic termZk , I show that the recent
claim that different expansions of the fluctuation determinant give rise to different renormalization-group
equations forZk is incorrect. The correct procedure to derive this equation is presented and the set of coupled
differential equations forUk andZk is definitely established.

PACS number~s!: 11.10.Hi, 11.10.Gh, 11.15.Tk
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During recent years there has been growing interest in
so called exact renormalization-group equation~s! ~ERGE!.
Actually several questions in field theory cannot be a
dressed within the framework of perturbation theory. T
entire subject of symmetry breaking and the problem of c
finement in QCD are well-known examples of questions s
waiting for an explanation. The Wilsonian renormalizatio
group method@1# seems to provide an interesting nonpert
bative approach to these kinds of questions. When the
mentum shell of the eliminated modes is chosen to
infinitesimal, it results in an integrodifferential equation f
the Wilsonian effective action, the actionSk at the current
scalek, the Wegner-Houghton equation@2#. This equation is
useless until a specific ansatz is made which allows fo
systematic approximation scheme. This can be achieve
considering the derivative expansion, whose lowest orde
the so-called local potential approximation~LPA!. Let us
consider a single component scalar field theory. In the LP
Sk contains only one function, the local potentialUk(f), and
the ERGE forSk becomes a differential equation forUk . To
the next orderSk contains in addition the coefficientZk(f)
of the lowest order derivative term]mf]mf. While the deri-
vation of the equation forUk(f) in the LPA is straightfor-
ward and does not present ambiguities@3,4#, the derivation
of the coupled differential equations forUk andZk has been
plagued by uncertaintes. Actually the authors of@5# have
recently applied the expansion of the fluctuation determin
given in @6# to derive these equations. They find an equat
for Zk different from the one that is obtained when the e
pansion of @7# is applied. They also computed the fie
anomalous dimensionh. As from @6# ~but not from@7#! they
find the correct two-loop result, they conclude that the
pansion introduced in@6# has the correct UV behavior whil
that of @7# is misleading in the UV region.

By carefully reconsidering the derivation of the equatio
for Uk and Zk following the method of@6# I show that the
equation forZk presented in@5# is incorrect and that actually
both methods@6,7# give one and the same equation forZk .
Concerning the anomalous dimension at two loops we n
that being anO(\2) result it comes from an infinite resum
mation of terms each coming from a different coefficie
function of the gradient expansion. So the fact thath at this
order comes out from the two termsUk andZk only should
not be used as an argument to decide about the superiori
one expansion with respect to the other. It should rather h
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been proven that the contributions coming from the infin
terms other thanUk and Zk add up to zero. Actually we
already know that this does not happen. By using a differ
but equivalent formalism, the computation ofh up to two-
loop order has been done in@8# where we see that the highe
derivatives actually contribute toh.

I will show in the following how to obtain the correc
result. Before proceeding to this derivation I review now t
functional method of@6# that was intended to provide a wa
to compute the gradient expansion coefficients of the
loop effective action. Let us consider a single-compon
scalar field theory. The effective actionG@F# is a highly
nonlocal functional. It can be given a quasilocal resembla
through the gradient expansion. Up to second order in
derivatives of the field,

G@F#5E d4xFU~F!1
1

2
Z~F!]mF]mFG . ~1!

For definiteness we work ind54 dimensions. In the loop
expansion, on the other hand, up to one-loop order,

G@F#5G0@F#1G1@F#, ~2!

where G0@F# is the tree-level ~bare! action, G0@F#
5*d4x@U(F)1 1

2 ]mF]mF# and U(F) is the classical po-
tential.G1@F# is the one-loop contribution toG@F# and can
also be expanded in powers of the field derivatives. Again
to second order,

G1@F#5E d4xFU1~F!1
1

2
Z1~F!]mF]mFG . ~3!

U1(F) and Z1(F) are the one-loop contributions toU(F)
and toZ(F), respectively.

It is convenient to introduce a Dirac-like notation that w
also be very useful in the following. The one-loop contrib
tion to the effective action can be written as~from now on
U (n) means thenth derivative with respect toF)

G1@F#5Tr ln@ P̂21Û (2)
„F̂~ x̂!…#. ~4!

In fact the second functional derivative of the bare action

d2G0@F#

dF~x!dF~y!
5@2]x

21U (2)
„F~x!…#d~x2y!,
©2000 The American Physical Society10-1
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can be represented as the kernel of the operatorP̂2

1Û (2)
„F̂( x̂)… in the ‘‘x representation’’ once we defineP̂m

andÛ (2)
„F̂( x̂)… to be, respectively,2 i ]m andU (2)

„F(x)… in
this representation, and introduce the notation^xuy&5d(x
2y):

d2G0@F#

dF~x!dF~y!
5^xu@ P̂21Û (2)

„F̂~ x̂!…#uy&. ~5!

Other representations can also be introduced. We are in
ticular interested in the ‘‘p representation,’’ the transforma
tion function being^xup&5(1/AV)eipx (V is the volume!,
where traces are conveniently computed:

Tr Ô5(
p

^puÔup&5VE d4p

~2p!4
^puÔup&. ~6!

The notations above allow us to introduce the ‘‘completen
relations’’ in thex andp representations:

Î 5E d4xux&^xu5(
p

up&^pu. ~7!

We can now state the method of@6# in the following way.
First we write Eq.~4!, a part for a meaningless infinite con
stant, as@we abbreviateÛ (2)

„F̂( x̂)… with Û (2)#:

G1@F#52E
0

`

du Tr@ P̂21Û (2)1u#21. ~8!

Second, with the help of Eq.~6!, the trace in Eq.~8! is

(
p

^pu@ P̂21Û (2)1u#21up&. ~9!

Third, we rewrite Eq.~9! as

(
p

^pu@p21Û (2)1u2~p22 P̂2!#21up&. ~10!

Equation~10!, where we have just added and subtractedp2,
contains the essence of the method. For any fixed va
of p we want to expand the operator@p21Û (2)1u

2(p22 P̂2)#21 around@p21Û (2)1u#21.
Up to the second order in the derivatives of the field

get (Âp5p21Û (2)1u and B̂p5p22 P̂2)

Tr@ P̂21Û (2)1u#215(
p

^pu@Âp
211Âp

21B̂pÂp
21

1Âp
21B̂pÂp

21B̂pÂp
21#up&. ~11!

The first term on the right-hand side~rhs! of Eq. ~11!, after
insertion of Eq.~7! in the x representation and integratio
in the u variable, gives the one-loop contribution
the effective potential,U1(F)5*d4x*@d4p/(2p)4# ln@p2

1U(2)
„F(x)…#.
06501
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The second and the third term on the rhs of Eq.~11! can
be computed by commutingÂp

21 with B̂p and applying the
relation

@ P̂m ,F„F̂~ x̂!…#52 i
]

] x̂m

F„F̂~ x̂!…. ~12!

Inserting again Eq.~7! in thex representation and integratin
in the u variable, we finally get the coefficient o
]mF(x)]mF(x), i.e., the one-loop contributionZ1„F(x)… to
Z„F(x)…. This result coincides, as it should, with the resu
of @9# and @7#.

Now we want to apply this method to the derivation of t
flow equations forUk andZk . Let Sk@F# be the Wilsonian
effective action at the scalek. At an infinitesimal lower scale
k2dk the effective actionSk2dk@F# is given by

e2Sk2dk[f]5E @Dh#e2Sk[f1h]5e2Sk[f]E @Dh#

3expF2S E d4x
dSk@f#

df~x!
h~x!

1
1

2E d4xd4y
d2Sk@f#

df~x!df~y!
h~x!h~y! D G .

~13!

In Eq. ~13! we have writtenF(x)5f(x)1h(x), separating
the componentf(x) with modes from zero up tok2dk,
from h(x), the component with modes within the shell@k
2dk,k#. We have also assumed that the expansion aro
the background fieldf(x) is saturated by the trivial saddl
point h50. In @10# the spontaneously broken symmet
case, where nontrivial saddle points appear, is treated. H
we limit ourselves to consider the unbroken case. In addit
we have kept only terms up toO(h2) as in the infinitesimal
shell limit (dk→0) the Gaussian approximation is exact@2#.

Let us callF the subspace of functions with modes with
the shell, i.e., F5$c(x)uc(x)5( p̃c p̃ei p̃x, u p̃uP@k
2dk,k#%. The tilde over the momentump is used from now
on to indicate thatu p̃uP@k2dk,k#.

By the help of the Dirac-like notation previously intro
duced we can write

E d4x
dSk@f#

df~x!
h~x!5^sk

(1)uh&

~14!

E d4xd4y
d2Sk@f#

df~x!df~y!
h~x!h~y!5^huŜk

(2)uh&.

Equations~14! define the vector̂sk
(1)u and the operatorŜk

(2)

whose ‘‘entries’’ in thex representation are, respectivel
dSk@f#/df(x) and d2Sk@f#/df(x)df(y). By the help of
Eqs.~14!, Eq. ~13! can be written in the compact form

e2Sk2dk[f]5e2Sk[f]E @Dh#e2^sk
(1)uh&21/2̂ huŜk

(2)uh&. ~15!
0-2
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Note that in^sk
(1)uh& only the Fourier components ofusk

(1)&
belonging to the shell@k2dk,k# give a contribution. Simi-
larly for ^huŜk

(2)uh&. Performing the Gaussian integration
Eq. ~15! we get

Sk2dk@f#5Sk@f#1
1

2
Tr8 ln S̃k

(2)1
1

2
^sk

(1)u@S̃k
(2)#21usk

(1)&.

~16!

Few comments are in order. It is clear that the trace has t
taken in the subspaceF, and this has been indicated by th
label 8 in Tr8. MoreoverS̃k

(2) in Eq. ~16! is not the operator

Ŝk
(2) defined in Eq.~14! but rather itsrestriction to the sub-

spaceF. This point has been overlooked in the previo
literature@11,12,5# and Eq.~16! has always been written as
Ŝk

(2) rather thanS̃k
(2) appeared in it. This illegal replaceme

is at the origin of the incorrect result of@5#. It is easy to write
down S̃k

(2) . The projection operator ontoF is P̂5( p̃u p̃&^ p̃u
and S̃k

(2)5P̂Ŝk
(2)P̂.

As for the effective actionG(F) in Eq. ~1!, we write
down now the gradient expansion for the Wilsonian act
Sk up to the lowest order derivative term, i.e.,

Sk@F#5E d4xFUk~F!1
1

2
Zk~F!]mF]mFG . ~17!

From Eq.~16! we obtain thenUk2dk andZk2dk and finally,
sendingdk→0, the flow equations forUk andZk . It is not
difficult to show~details will be presented in@13#! that with
the ansatz~17! ^sk

(1)u@S̃k
(2)#21usk

(1)&50. Then in Eq.~16! we

are only left with the computation of Tr8 ln S̃k
(2) .

To illustrate the procedure and make our point clear
will be sufficient to work with a field independentZk term.
For the complete treatment we only need to follow simi
steps starting with a field-dependentZk .

Writing the logarithm of the operator as in Eq.~8!, we
have

Tr8 ln S̃k
(2)52E

0

`

du Tr8@P~ZkP̂
21Ûk

(2)1u!P#21,

~18!

and expanding as in Eq.~11!:

Tr8 ln S̃k
(2)52E

0

`

du(
p̃

^ p̃u@Ãp̃
21

1Ãp̃
21

B̃p̃Ãp̃
21

1Ãp̃
21

B̃p̃Âp̃
21

B̃p̃Ãp̃
21

#u p̃&, ~19!

whereÃp̃5PÂp̃P and B̃p̃5PB̂p̃P.
It is clear that in Eq.~19! only the first term gives a

contribution. In fact asB̃p̃5Zk( p̃8( p̃22 p̃82)u p̃8&^ p̃8u and
both p̃ andp̃8 belong to the shell@k2dk,k#, the operatorB̃p̃

is O(dk). From the sum overp̃ in the shell comes anothe
O(dk) and then in Eq.~19! all the terms apart from the firs
have to be ignored being at leastO(dk2).
06501
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We are already in a position to compare our result w
those of@5#. From Eqs.~7!, ~8!, and~9! of that paper we see
that the operators in the full space, i.e.,Âp̃ and B̂p̃ , and not
their restriction to theF subspace are considered. If we no
replace in our Eq.~19! the operatorsÃp̃ andB̃p̃ with Âp̃ and
B̂p̃ , respectively, we pick up additional contributions fro
the second and third term of Eq.~19!. Performing for in-
stance such a replacement in the second term, by the he
Eqs. ~6! and ~7! we get immediately @ap̃(x)5Zkp̃

2

1Uk
(2)
„f(x)…1u#:

VE d4p̃

~2p!4E d4x^ p̃ux&^xuÂp̃
21

B̂p̃Âp̃
21u p̃&

52ZkE d4p̃

~2p!4E d4x
e2 i p̃x

ap̃~x!
~]m]m1 p̃2!

eip̃x

ap̃~x!
.

~20!

From Eq. ~20! we can easily see where the mistake ori
nates. The operator]m]m acting on

eip̃x

Zkp̃
21U (2)

„f~x!…1u

gives rise to three terms. One is proportional top̃m and gives
zero after the angular integration in the momentum varia
p̃. Another is proportional to2 p̃2 and cancels against thep̃2

term. Finally, a third term is

E d4p̃

~2p!4E d4x
2Zk

Zkp̃
21Uk

(2)
„f~x!…1u

3]m]m

1

Zkp̃
21Uk

(2)
„f~x!…1u

. ~21!

This term is not zero and gives additional spurious contri
tions toZk2dk .

We now take a closer look at the first term of Eq.~19!:

(
p̃

^ p̃u@P~Zkp̃
21Ûk

(2)1u!P#21u p̃&. ~22!

In @5# this contribution is written as

E d4p̃

~2p!4E d4x
1

Zkp̃
21Uk

(2)
„f~x!…1u

. ~23!

Again this would be right if we could ignore the presence
the projection operatorP in Eq. ~22!. As Pu p̃&5u p̃&, this
would amount to replacing the inverseÃp̃

21in F of the re-

stricted operatorÃp̃ with the restriction inF of the inverse
operator,PÂp̃

21P . This replacement would be correct if th

operatorÂp̃ was diagonal in thep representation. As we se
from its definition, this is certainly not the case.
0-3
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Actually the projection operator in Eq.~22! is not easy to
handle unless we develop$P@Zkp̃

21Ûk
(2)
„f̂( x̂)…1u#P%21

around thediagonaloperator@P„Zkp̃
21Uk

(2)(f0)1u…P#21,
obtained expandingf(x) around the constant valuef0

@Uk
(n)(f0)5Uk0

(n)#:

Uk
(2)~f!5Uk0

(2)1Uk0
(3)]mf1

1

2
Uk0

(4)]mf]mf1•••.

~24!

If we now insert Eq.~24! in Eq. ~22! and then integrate in the
u variable, we get the same result we would have obtaine
we had started by expanding the logarithm in the fluctuat
determinant of Eq.~16! around

ln@P~ZkP̂
21Uk0

(2)!P#, ~25!

i.e., as if we had used from the very beginning the expans
of @7#.

We can now come to our reassuring conclusion. Ther
no contradiction between the two methods of@6# and@7# that,
when applied to the fluctuation determinant in Eq.~16!, give
one and the sameresult forZk2dk , i.e., the same flow equa
tion for Zk . We have also learned that, due to the constra
imposed by the presence of the projection operatorP the
method of@6# trivially turns to the method of@7#.

I give now a couple of differential equations forUk and
Zk that are obtained once the fullf dependence ofZk is
taken into account (A5Zkk

21Uk
(2) and Zk

(n) , A(n) are de-
rivatives with respect to the field!:

k
]

]k
Uk52

k4

16p2
ln A, ~26!

k
]

]k
Zk52

k4

16p2 S Zk
(2)

A
2

2Zk
(1)A(1)

A2
2

Zk
(1)2k2

4A2
1

ZkA
(1)2

A3

1
Zk

(1)ZkA
(1)k2

A3
2

Zk
2A(1)2k2

A4 D . ~27!

These equations have already been presented in@14,15# and
similar equations in@11,12#, but a word of caution has to b
said concerning their derivation. In@11,12#, where to derive
the flow equations the method of@7# was applied, the pres
ence of the projection operatorP was not taken into accoun
In addition there is one point that I have deliberately avoid
et
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mentioning up to now. The presence of the projection ope
tor P, that is due to the choice of a sharp cutoff for the mo
elimination, has another effect: it potentially brings add
tional terms in the derivation ofZk2dk from Eq. ~16!. Again
due to the neglect ofP, these terms went unnoticed i
@11,12#. These derivations are then not on a firm foot. In@14#
Eq. ~27! is obtained by considering the fluctuation opera
directly in thep representation. No ambiguity is then prese

concerning the restriction of the operatorŜk
(2) . Nevertheless

the method employed, namely the choice of a particu
background fieldf(x), carries ambiguities due to the ap
pearance of these additional nonanalytic terms@16# in con-
tradiction with the gradient expansion itself. Those terms
there neglected without any justification and the who
method seems not to be firmly established.

In @15# the first step beyond the LPA is taken by bru
force integration in the space of the Fourier components
the fluctuation field, i.e., without any reference to the fun
tional methods of@6# and @7#. Again a special nonconstan
background field is chosen to extract the differential equat
for Zk , namely a field with a single Fourier compone
f(x);@wqeiqx1w2qe2 iqx#, with q;0. As in @14# addi-
tional terms nonanalytic inq2 are found but, for the first
time, the method allowed us to compare the magnitude
these terms with the ones that are retained in establishing
~27!. In this way it was possible to find the conditions und
which these terms can be safely neglected, i.e., the vali
conditions of Eq.~27!. But at that time it was not yet clea
that the result of@5# was incorrect, i.e., if Eq.~27! or the
corresponding Eq.~18! of @5# was the correct one. Actually
in @15# we incorrectly argued that both equations could
right as being different approximations for different physic
situations. Only now it appears clearly that the system
Eqs.~26! and ~27! is the next order of approximation to th
Wegner-Houghton equation in the gradient expansion, a
the LPA of @3,4#.

In a forthcoming paper@13#, I will present a complete
analysis of the problems related to the presence of a s
cutoff. It is sufficient to say here that the results of this wo
more general than that of@15#, as no reference to a specifi
background field is done, actually meet in this respect th
of @15#: for a sufficiently smooth background field, thes
additional terms can be neglected and Eqs.~26! and~27! give
the correct approximation to the Wegner-Houghton equa
at this order.

I would like to thank H. Mohrbach for useful discussion
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