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Renormalization-group flow equations forU, and Z;
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By considering the gradient expansion for the Wilsonian effective a&joof a single component scalar
field theory truncated to the first two terms, the poteritiagland the kinetic ternZ,, |1 show that the recent
claim that different expansions of the fluctuation determinant give rise to different renormalization-group
equations foiZ, is incorrect. The correct procedure to derive this equation is presented and the set of coupled
differential equations folJ, and Z, is definitely established.

PACS numbgs): 11.10.Hi, 11.10.Gh, 11.15.Tk

During recent years there has been growing interest in thbeen proven that the contributions coming from the infinite
so called exact renormalization-group equanERGE).  terms other tharlJ, and Z, add up to zero. Actually we
Actually several questions in field theory cannot be ad-already know that this does not happen. By using a different
dressed within the framework of perturbation theory. Thebut equivalent formalism, the computation gfup to two-
entire subject of symmetry breaking and the problem of contoop order has been done(i8] where we see that the higher
finement in QCD are well-known examples of questions stillderivatives actually contribute tg.
waiting for an explanation. The Wilsonian renormalization- | will show in the following how to obtain the correct
group method1] seems to provide an interesting nonpertur-result. Before proceeding to this derivation | review now the
bative approach to these kinds of questions. When the mdunctional method of6] that was intended to provide a way
mentum shell of the eliminated modes is chosen to b&o compute the gradient expansion coefficients of the one
infinitesimal, it results in an integrodifferential equation for loop effective action. Let us consider a single-component
the Wilsonian effective action, the actid at the current scalar field theory. The effective actidi{®] is a highly
scalek, the Wegner-Houghton equati]. This equation is  nonlocal functional. It can be given a quasilocal resemblance
useless until a specific ansatz is made which allows for ahrough the gradient expansion. Up to second order in the
systematic approximation scheme. This can be achieved hyerivatives of the field,
considering the derivative expansion, whose lowest order is
the so-called local potential approximatighPA). Let us
consider a single component scalar field theory. In the LPA,
S, contains only one function, the local potentifl( ), and
the ERGE forS, becomes a differential equation fo,.. To For definiteness we work id=4 dimensions. In the loop
the next orderS, contains in addition the coefficie@ ()  €Xpansion, on the other hand, up to one-loop order,
of the lowest order derivative terd), ¢d,¢. While the deri- B
vation of the equation folJ () ighthe#LPA is straightfor- F[@]=To[ @]+ T[], 2
ward and does not present am_biguit[6s4], the derivation \\here T [®] is the tree-level (bare action, T'o[®]
of the coupled dlffer_ent|al equations foh, andZ, has been = [d*[U (D) + %&Mq)ﬁ#q)] and U(®) is the classical po-
plagued by uncertaintes. Actually the authors[bf have  tentia| T,[®] is the one-loop contribution tB[®] and can

recently applied the expansion of the fluctuation determinant g, pe expanded in powers of the field derivatives. Again up
given in[6] to derive these equations. They find an equation, second order

for Z, different from the one that is obtained when the ex-
pansion of[7] is applied. They also computed the field
anomalous dimension. As from[6] (but not from[7]) they Fl[‘D]:f d*x
find the correct two-loop result, they conclude that the ex-
pansion introduced if6] has the correct UV behavior while U,(®) andZ,(P) are the one-loop contributions td(®)
that of[7] is misleading in the UV region. and toZ(®d), respectively.

By carefully reconsidering the derivation of the equations |t is convenient to introduce a Dirac-like notation that will
for U, and Z following the method of 6] | show that the  also be very useful in the following. The one-loop contribu-
equation forZ, presented if5] is incorrect and that actually tjon to the effective action can be written €som now on

both methodg46,7] give one and the same equation #y. U™ means theth derivative with respect td)
Concerning the anomalous dimension at two loops we note

that being arO(#%?) result it comes from an infinite resum- Cy[®]=TrIn[P2+0@(d(%))]. %)
mation of terms each coming from a different coefficient
function of the gradient expansion. So the fact thait this  In fact the second functional derivative of the bare action,
order comes out from the two ternis, andZ, only should

i o T[]
not be used as an argument to decide about the superiority of 0 =[— 2+ UD(D(x))]8(x—Y)
one expansion with respect to the other. It should rather have oD (xX) 6D (y) X ’

1
U(®)+5Z(D)9, 0o, | (1)

r[@]=f d*x

1
Us(®)+ 5Z:(D)d, 00,8 |. (3
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can be represented as the kernel of the operddr The second and the third term on the rhs of Bd) can
+U@(@(x)) in the “x representation” once we defirfe, ~ e computed by commuting, * with B, and applying the
andU@)(d(x)) to be, respectively;-id, andU@(d(x)) in relation
this representation, and introduce the notat{ety)= 5(x 5
) [P F@(0))=—i ——F (@), (12
52F0[(I)] _ l':\)z N (2) (’I\) ~ .
6D (x) 6D (y) =(XI[PE+ U 0)]ly)- ®) Inserting again Eq(7) in thex representation and integrating
in the u variable, we finally get the coefficient of
Other representations can also be introduced. We are in pag, ®(x)d,®(x), i.e., the one-loop contributiod; (P (x)) to
ticular interested in the f§ representation,” the transforma- Z(®(x)). This result coincides, as it should, with the results
tion function being(x|p)=(1/yV)e/P* (V is the volumg,  of [9] and[7].
where traces are conveniently computed: Now we want to apply this method to the derivation of the
flow equations folU, andZ, . Let S,[®] be the Wilsonian
effective action at the scale At an infinitesimal lower scale
(p|OIp). (6) k- sk the effective actiorS,_ 5[ ®] is given by

4

Tr0=§p3 <p|0|p>=Vf 2

The notations above allow us to introduce the “completeness g—Sk-sl4] = f [Dyple Sdé+7l :e*Sk[qS]f [D7]
relations” in thex andp representations:

. 5sk[¢]
= f d*xx) (<=3 Ip)(pl. (7 Xex‘{ U ax o

[ 528k[¢] ”

We can now state the method [] in the following way.
First we write Eq.(4), a part for a meaningless infinite con-

stant, agwe abbreviatd) @ (d(x)) with 0@)]: (13
o fo e . In Eg. (13) we have writtend® (Xx) = ¢(x) + n(X), separating
Fl[q)]:_fo duTr{P?+ 0@ +u] . (8)  the componenip(x) with modes from zero up td— ok,
from 7(x), the component with modes within the shigi
Second, with the help of Ed6), the trace in Eq(8) is — 0k,k]. We have also assumed that the expansion around

the background fieldp(x) is saturated by the trivial saddle
L point »=0. In [10] the spontaneously broken symmetry
> (pl[P2+0@+ul Y p). (9  case, where nontrivial saddle points appear, is treated. Here
P we limit ourselves to consider the unbroken case. In addition
we have kept only terms up ©(7?) as in the infinitesimal
shell limit (6k— 0) the Gaussian approximation is exf2}
> Let us callF the subspace of functions with modes within
2, (2 _ 2_p2y1-1 . -~ ~
% (pl[p*+ U +u—(p*—P*)] Yp). (10 the shell, e, F={p(q)|p(x)=Spupe™, [plelk
— 0k,k]}. The tilde over the momentumis used from now
Equation(10), where we have just added and subtragi#d ~ on to indicate thaip| e [k— ok k]. _ _ _
contains the essence of the method. For any fixed value By the help of the Dirac-like notation previously intro-
of p we want to expand the operatdip?+(0®+uy  duced we can write
—(p?—P?)] t around[p?+ U@ +u] L. 5 4]
Up to the second order in the derivatives of the field we f dx—— B n(x)=(sM| n)
get A,=p?+ U@ +u andB,=p?—P?) ¢

Third, we rewrite Eq(9) as

(14
52
. . °Sd ¢] 2
TIP2+ 0@+ 1] 1= (p|[A, 1+ A, 1B A, ! f AxdY 5 say) 700 TV =S ).
P
+A;1B,A 1B,A Ylp). (1) Equations(14) define the vectots”)| and the operatoS”
whose “entries” in thex representation are, respectively,

The first term on the right-hand sidehs) of Eq. (11), after ~ 8S[ #1/84(x) and 8°SJ 1/ 5¢(x) 5p(y). By the help of
insertion of Eq.(7) in the x representation and integration Egs.(14), Eq. (13) can be written in the compact form
in the u variable, gives the one-loop contribution to
the effective potential,U,(®)=[d*x[[d*p/(27)*]In[p? _ _ sy 1 &2
U@ (x))]. P 1(P)=Jd*xJ[d"p/(2m)"]In[p e Sk-adldl=¢ Sk[‘f’]f[Dn]e (s Im=120I87 7 - (15)
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Note that in(s{")| ) only the Fourier components ¢¢(") We are already in a position to compare our result with
belonging to the shellk— 6k,k] give a contribution. Simi- those of[5]. From Eqs(7), (8), and(9) of that paper we see

larly for (7| 3{?)| 7). Performing the Gaussian integration in that the operators in the full space, iA; andBj, and not

Eq. (15 we get their restriction to theF subspace are coniidered. lf we now
replace in our Eq(19) the operatorg\; andBj, with A; and
Se sl ¢>]=Sk[¢]+%Tr’ InNS((Z)Jr;(s(kl)|[~8£2)]‘1|sf<1)>. B", respectively, we pick up additional contributions from

the second and third term of E¢L9). Performing for in-
(16) stance such a replacement in the second term, by the help of

Few comments are in order. It is clear that the trace has to bléqs (6) and (7) we get immediately [a5(x)= Zp?
taken in the subspacg, and this has been indicated by the +Uk (@(x))+ul:

label " in Tr’. MoreoverSk 2) in Eq. (16) is notthe operator d4p

S defined in Eq.(14) but rather itsrestriction to the sub- Vf Z d4x(f)|x><x|A~;1I§5A~;1|B>

spaceF. This point has been overlooked in the previous (2m)

literature[11,12,9 and Eq.(16) has always been written as if

" 1 dAB e—if)x ~ eiI;X
S?) rather thanS{?) appeared in it. This illegal replacement = —Zkf 2| d*x (0,3,+P?) .
is at the origin of the incorrect result ). It is easy to write (2m) ap(x) ap(X)
down'S?). The projection operator ont& is P=S3p)(p| (20)
andS?)=PS2P.

From Eg.(20) we can easily see where the mistake origi-

As for the effective action’(®) in Eq. (1), we write nates. The operatar,d, acting on

down now the gradient expansion for the Wilsonian action

Sy up to the lowest order derivative term, i.e., iPx

n? (2)
k(P)+ 1Zk(<13)¢9 D9, P|. (17 Zp+U(o(x))+u

si®1- [ a%
gives rise to three terms. One is proportionaf);pand gives
From Eq.(16) we obtain therlJ,_ 5 andZ,_ 5 and finally,  zero after the angular integration in the momentum variable
sendingsk—0, the flow equations fot), andZ,. It is not  p. Another is proportional to- p? and cancels against tipé
difficult to show (details will be presented ifi3]) that with  term. Finally, a third term is
the ansatZ17) (s|[${®]}|s!)=0. Then in Eq(16) we ~
are only left with the computation of TmS? . f d"p dix —Z
To illustrate the procedure and make our point clear, it (2m)* ZP?+UP((x))+u

will be sufficient to work with a field independed, term.
For the complete treatment we only need to follow similar 1
steps starting with a field-dependezt. X 3#‘9MZ 52 UD((x)+u (21
Writing the logarithm of the operator as in E(B), we K k

have This term is not zero and gives additional spurious contribu-
. tions toZy_ s
Tr' InS?= _f duTr[P(ZP2+ 0P +u)P) 1, We now take a closer look at the first term of Efj9):
0
18 - — n .
(9 2 (PP +0P+u)Pl p). (22
and expanding as in Eq4l1): P
In [5] this contribution is written as

T 3= - [ “au3 (pIrA; 4 As BiAs
p

dp [, 1
Fo1m A-lm -1 f 2m)* d 7 P2+UP(H(x)+u 3
+A; BrA; BrA; (D), (19) (2m) P UT(@(x)+u
Again this would be right if we could ignore the presence of

It is clear that in Eq.(19) only the first term gives a the projection operato’P. in Eq. ,(22)' f‘?ﬂ P)=[p), this
contribution. In fact 33§5=Zk25/(52—5'2)|5'><5'| and would amount to replacing the |nver$>eb in F of the re-
bothp andp’ belong to the shellk— sk, k], the operato~B'F3 stricted operatoﬁ;, with the restriction inF of the inverse

» L ’ ~—1 . H

is O(6k). From the sum ovep in the shell comes another operator,PA; “P . This replacement would be correct if the

O(6k) and then in Eq(19) all the terms apart from the first operatorA;, was diagonal in th@ representation. As we see
have to be ignored being at lea®{ 5k?). from its definition, this is certainly not the case.

whereA5= PAP and Br="PByP.
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Actually the projection operator in EQR2) is not easy to  mentioning up to now. The presence of the projection opera-
handle unless we develofP[Z,p?+U@(¢(x))+u]P}~t  tor P, thatis due to the choice of a sharp cutoff for the mode

around thediagonaloperatm{P(Zkf)erUﬁz)(¢0)+u)7>]*l, elimination, has another effect: it potentially brings addi-

obtained expandings(x) around the constant valuey, tional terms in the derivation o, _ 5 from Eq. (16). Again -
[UM (o) =UMDT; due to the neglect ofP, these terms went unnoticed in

[11,12. These derivations are then not on a firm foot[ 14]
1 Eq. (27) is obtained by considering the fluctuation operator
UP(4)=Uig+ U(k%)au¢+§Ul(<%)‘9u¢‘9u¢+ e directly in thep representation. No ambiguity is then present
(29 concerning the restriction of the operafﬁff). Nevertheless
the method employed, namely the choice of a particular
i5,)ackground fieldep(x), carries ambiguities due to the ap-
Jpearance of these additional nonanalytic teft# in con-
tradiction with the gradient expansion itself. Those terms are
there neglected without any justification and the whole
521102 method seems not to be firmly established.
In[P(2P"+ Uig) P, @9 In [15] the first step beyon{i the LPA is taken by brute
i.e., as if we had used from the very beginning the expansioffrce integration in the space of the Fourier components of
of [7]. the fluctuation field, i.e., without any reference to the func-
We can now come to our reassuring conclusion. There i§onal methods of6] and[7]. Again a special nonconstant
no contradiction between the two method§@fand[7] that,  background field is chosen to extract the differential equation
when applied to the fluctuation determinant in Etg), give  for Z,, namely a field with a single Fourier component
one and the sameesult forZ,_ 5, i.e., the same flow equa- ¢(X) ~[@q€' T+ ¢_qe '], with g~0. As in [14] addi-
tion for Z,. We have also learned that, due to the constraintional terms nonanalytic im?* are found but, for the first
imposed by the presence of the projection opera}d]he time, the method allowed us to compare the magnitude of
method of[6] trivially turns to the method of7]. these terms with the ones that are retained in establishing Eq.
| give now a Coup|e of differential equations fbrk and (27) In this way it was pOSSibIe to find the conditions under

Z, that are obtained once the fu$p dependence of, is  Which these terms can be safely neglected, i.e., the validity
taken into accountA=Zk?+U® andz(", A are de- conditions of Eq.(27). But at that time it was not yet clear

If we now insert Eq(24) in Eq.(22) and then integrate in the

u variable, we get the same result we would have obtained
we had started by expanding the logarithm in the fluctuatio
determinant of Eq(16) around

rivatives with respect to the field that the result of 5] was incorrect, i.e., if Eq(27) or the
corresponding Eq(18) of [5] was the correct one. Actually
9 K4 in [15] we incorrectly argued that both equations could be
k%Uk= — 5 InA, (26) right as being different approximations for different physical
16m situations. Only now it appears clearly that the system of
) ) Eqgs.(26) and (27) is the next order of approximation to the
J_ k! z) 2zPAW Dz AL Wegner-Houghton equation in the gradient expansion, after
KT T Ten2\ A Az apz Al the LPA of[3,4].

In a forthcoming papef13], | will present a complete

analysis of the problems related to the presence of a sharp
(27 cutoff. It is sufficient to say here that the results of this work,
more general than that §15], as no reference to a specific
background field is done, actually meet in this respect those
of [15]: for a sufficiently smooth background field, these
additional terms can be neglected and E@6) and(27) give
the correct approximation to the Wegner-Houghton equation
at this order.

zWz, ALK2  Z2ZA1K2
+ A3 — A .

These equations have already been present&tiiis and
similar equations 111,12, but a word of caution has to be
said concerning their derivation. (11,12, where to derive
the flow equations the method pf] was applied, the pres-
ence of the projection operat®rwas not taken into account.
In addition there is one point that | have deliberately avoided | would like to thank H. Mohrbach for useful discussions.
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