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Functional integral formulation of the Thirring model with two fermion species
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A two-dimensional Abelian model with quartic interaction among two species of Fermi fields is analyzed
through a functional integral formulation. We consider the bosonization of the generating functional of the
model in order to establish the fermion-boson mapping in the Hilbert space of states. The grand partition
function of the statistical mechanical system associated with the effective bosonized theory is obtained and the
corresponding exact equation of state exhibits a critical line characterizing a Kosterlitz-Thouless phase
transition.

PACS number~s!: 03.70.1k, 11.10.Kk
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I. INTRODUCTION

In the last few years, an impressive amount of effort h
been made by many physicists to understand the underl
properties of quantum field theories in two dimensions@1#,
as well as to try to picture these models as theoretical la
ratories to obtain insight into more realistic four-dimension
field theories and, more recently, to apply them to lo
dimensional condensed matter systems@2#, as well as to
N-body problems in nuclear physics@3#.

The structure of a relativistic quantum-mechanical tw
body system in one space dimension has been discuss
Ref. @4#, through a solvable two-body Dirac equation with
interaction in the form of a delta function. The Dirac equ
tion is solved analytically for bound and scattering stat
Exact solutions for a relativistic three-body bound state
one space dimension are found in Ref.@5#. In this generali-
zation of the two-body model introduced in Ref.@4#, the
three Dirac particles interact with each other through p
wise delta function potentials of vector type. In a furth
publication@6#, the exact solution forN-body bound state o
Dirac particles interacting through a delta function poten
in one space dimension is discussed. The boundary cond
for the solution leads to a constraint for the coupling const
and the particle number.

The field theory generalization of the quantum
mechanical model introduced in Ref.@4# was discussed in a
recent paper by Sakamoto and Heike@3#. The field theoreti-
cal model corresponds to a massive Thirring-like model@7#
in which the quartic Fermi field interaction is a curren
current interaction of two different Fermi field species. Usi
the functional integral bosonization the effective bosoniz
theory is obtained and corresponds to a model with t
coupled sine-Gordon fields.

The functional integral bosonization scheme used in R
@3# requires the introduction of auxiliary vector fields in o
der to recast the theory in terms of a Lagrangian quadrati
the Fermi fields. As stressed in Refs.@8–11#, the bosoniza-
tion procedure introduces a redundant Bose field alge
which contains more degrees of freedom than those nee
for the description of the physical content of the model. T
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main purposes of the present article are the following.
~i! A discussion of structural aspects related with the

pearance of decoupled massless Bose fields in the functi
integral bosonization scheme. To this end, and in orde
obtain the fermion-boson mapping in the Hilbert space
states, we shall perform the bosonization of the genera
functional of the theory without disregarding the role play
by the ‘‘decoupled’’ massless Bose fields. In order to obt
some insight into the bosonization of the non-Abelian mod
we review the presentation of Ref.@3# by using the Abelian
reduction of the Wess-Zumino-Witten theory@12,13,11#. The
redundant decoupled massless Bose fields are kept thr
the bosonization of the generating functional of the theo
We show that their only effect is to generate constant c
tributions to the Wightman functions in the Hilbert space
states. In the present approach close attention is pai
maintaining a complete control on the Hilbert space struct
needed for the representation of the intrinsic field alge
generated by the set of fundamental fields whose Wightm
functions define the model. We show that the factorization
the partition function of the effective bosonized theory c
lead to incorrect conclusions concerning the physical con
of the model, such as the existence of infinitely delocaliz
states and the violation of the asymptotic factorization pr
erty. The present approach clarifies some delicate aspect
evident in the presentation of Ref.@3# and also streamlines
the discussion of the functional integral bosonization of tw
dimensional models presented in Refs.@14,15#. This is done
in Sec. II.

~ii ! To provide a statistical-mechanical description of t
effective bosonized theory corresponding to the two-bo
field theory model discussed in Ref.@3#. This is performed in
Sec. III. We obtain the grand partition function of th
statistical-mechanical system associated with the effec
bosonized theory. The exact equation of state is obtained
exhibits a critical line characterizing a Kosterlitz-Thoule
phase transition.

II. FUNCTIONAL INTEGRAL BOSONIZATION

The two-dimensional Thirring model with current-curre
interaction of two Fermi fields species is defined by the f
lowing Lagrangian density@3#:
©2000 The American Physical Society09-1
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L5c̄a~ i ]”2m0!ca1c̄b~ i ]”2m0!cb2
g2

2
JmaJb

m , ~2.1!

where the vector current is1 Jk
m5c̄kg

mck , and k5a,b de-
note the two fermion species.

Within the operator formulation, the Hilbert spaceH of
the model is constructed as a representation of the intri
field algebraI, generated by the set of fundamental loc
field operators$c̄a ,ca ,c̄b ,cb%, and whose Wightman func
tions define the theory:H8Iu0&. In the functional integral
formalism, the Hilbert space of the model can be built fro
the generating functional with source terms for the ba
fields that generate the polynomial field algebraI,

Z@ua ,ūa ,ub ,ūb#5N 21E Dc̄aDcaDc̄bDcb

3eiW[ c̄a ,ca ,c̄b ,cb ,ua ,ūa ,ub ,ūb] ,

~2.2!

whereW@c̄a ,ca ,c̄b ,cb ,ua ,ūa ,ub ,ūb# is the action in the
presence of external Grassmann-valued sourcesuk and ūk :

W@c̄a ,ca ,c̄b ,cb ,ua ,ūa ,ub ,ūb#

5E d2x$L1c̄aua1 ūaca1c̄bub1 ūbcb%. ~2.3!

Following the procedure adopted in Refs.@3,15#, we next
modify the field algebra slightly and define an enlarged fi
algebraI8 by introducing the ‘‘auxiliary’’ vector fieldsam
andbm , in such a way that the new field algebra is given
I8[I8$am ,bm ,c̄a ,ca ,c̄b ,cb%. The Hilbert space of this
enlarged theory can be built from the ‘‘interpolating’’ ge
erating functional

Z8@ua ,ūa ,ub ,ūb ,za
m ,zb

m#

5N 21E Dc̄aDcaDc̄bDcbE DamDbm

3expS i E d2xH 1

2
ambm1amza

m1bmzb
mJ

1 iW@c̄a ,ca ,c̄b ,cb ,ua ,ūa ,ub ,ūb# D . ~2.4!

1Our conventions are

g005152g11, e0152e1051,

g05S 0 1

1 0D , g1S 0 1

21 0D , g55g0g1,

gmg55emngn , x65x06x1, ]65]06]1 ,

A65A06A1.
06500
ic
l

c

d

The source terms for the auxiliary vector fieldsam and bm
are included in order to control the effects of the bosoni
tion procedure on the construction of the Hilbert spa
H88I8u0&. As we shall see, the bosonized generating fu
tional Z8 defines an enlarged positive semidefinite Hilb
spaceH8.

The next step in the functional integral bosonization is
reduce the action of the Thirring model with two fermio
species to quadratic actions in the Fermi fieldsck . This can
be done by performing the ‘‘change of variables’’@3,14,15#

am5A m2gJb
m , bm5B m2gJa

m , ~2.5!

such that

E DamDbmexpS i E d2x
1

2
$ambm2g2Ja

mJm
b % D

5E DAmDBmexpS i E d2x
1

2
$AmB m2gJa

mAm

2gJb
mBm% D . ~2.6!

In this way, the generating functional~2.4! can be written in
terms of the effective Lagrangian density

Le f f8 5c̄aD” ~A!ca1c̄bD” ~B!cb

2m0c̄aca2m0c̄bcb1
1

2
AmB m, ~2.7!

where the covariant derivatives are defined byD” (A)8 i ]”
2(g/2)A” . The local gauge noninvariance of the model
now explicited by the last term in Eq.~2.7!. In order to
decouple the Fermi and vector fields, we introduce the
rametrization of the vector fields (A6 ,B6), in terms of the
U(1)-group-valued Bose fields (Uk ,Vk) as follows@11#:

G 1
k 5

2

g
Uk

21i ]1Uk , G 2
k 5

2

g
Vki ]2Vk

21 , ~2.8!

whereG 6
k [(A6 ,B6) for k5a,b. Performing the fermion

chiral rotation@11#

ck[S c (1)k

c (2)k
D 5S Vkx (1)k

Uk
21x (2)k

D 5Vkxk , ~2.9!

introducing in the functional integral the identities

15E DUk@detD1~Uk!#dS g

2
G 1

k 2Uk
21i ]1UkD ,

~2.10!

15E DVk@detD2~Vk!#dS g

2
G 2

k 2Vki ]2Vk
21D ,

~2.11!

and taking into account the corresponding change in the
mionic integration measure@11#, we get
9-2
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)
k5a

b

Dc̄kDckDA6DB65)
k5a

b

Dx̄kDxkDUkDVkJ@U,V#,

~2.12!

with

J @U,V#5expH 2 i(
k

~G@Uk#1G@Vk# !

1 icE d2z~AmA m1BmB m!J
5expH 2 i(

k
FG@Uk#1G@Vk#

1
4c

g2E d2z~Uk
21]1Uk!~Vk]2Vk

21!G J ,

~2.13!

whereG@G# is the Wess-Zumino-Witten~WZW! functional
@12#, which enters in Eq.~2.13! with a negative level. In the
Abelian case the WZW functional reduces to the free act

G@G#5
1

8pE d2z]mG21]mG. ~2.14!

The last term in Eq.~2.13! has been added, exploiting th
regularization freedom in the computation of the Jacobia
due to the local gauge noninvariance of the model. Using
Abelian version of the Polyakov-Wiegmann identity@13#

G@UV#5G@U#1G@V#1
1

4pE d2z~U21]1U !~V]2V21!,

~2.15!

and defining the ‘‘regularization’’ parametera by

a

2p
8

1

4p
2

4c

g2
, ~2.16!

we can write Eq.~2.13! as

J5expF(
k

H 2 iG@Sk#1 i
a

2pE d2z

3~Uk
21]1Uk!~Vk]2Vk

21!J G , ~2.17!

with Sk8UkVk . The so-called ‘‘gauge invarian
regularization,’’2 which is adopted in Ref.@3#, corresponds to
seta50. In this case the Jacobian~2.13! depends only on the
gauge invariant variablesSk . In what follows we shall con-

2The gauge-invariant regularization can be used in the comp
tion of the Jacobian taking into account the local gauge invaria
of the fermionic piece of the effective theory.
06500
n

s,
e

sider the general case with 0<a,1. In this way, the gener-
ating functional~2.4! can be written in terms of the effectiv
action

We f f5W@U,V#1E d2z(
k5a

b

$x̄ki ]”xk2m0~x (1)k* x (2)k

3Sk
211x (2)k* x (1)kSk!%, ~2.18!

where

W@U,V#5 (
k5a

b H 2G@UkVk#1
a

2pE d2z~Uk
21]1Uk!

3~Vk]2Vk
21!J 2

1

g2E d2z (
k,k85a
kÞk8

b

~Uk
21]1Uk!

3~Vk8]2Vk8
21

!. ~2.19!

The vector fields in two dimensions can be decompo
as

G m
k 52

1

g
~emn]nf̃

k
1]mh

k
!, ~2.20!

and this corresponds to parametrizing the Bose fie
(Uk ,Vk) as follows:

Uk5ei (f̃k1hk)/2, Vk5ei (f̃k2hk)/2. ~2.21!

The effective Lagrangian density, corresponding to
action ~2.18!, can be written as

Le f f8 5 (
k5a

b

x̄ki ]”xk2m0(
k5a

b

$x (1)k* x (2)ke
2 i f̃k

1x (2)k* x (1)ke
i f̃k%2

1

8p
~12a!

3 (
k5a

b

~]mf̃k!
22

1

2g2
]mf̃a]mf̃b2

a

8p

3 (
k5a

b

~]mhk!
21

1

2g2
]mha]mhb . ~2.22!

Introducing the fields$f̃6 ,x6%, defined by

f̃68
1

A2
~f̃a6f̃b!, h68

1

A2
~ha6hb!, ~2.23!

we can write the effective Lagrangian density~2.22! as

a-
e

9-3
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Le f f8 5x̄ai ]”xa1x̄bi ]”xb2
1

2
d1~]mf̃1!21

1

2
d2~]mf̃2!2

1
1

2
a1~]mh1!22

1

2
a2~]mh2!2

2m0$x (1)a* x (2)ae~2 i /A2)~f̃11f̃2!

1x (1)b* x (2)be~2 i /A2)~f̃12f̃2!1H. c.%, ~2.24!

where the constantsa6 andd6 are defined by

d68
1

2g2 F16
g2

2p
~12a!G , a68

1

2g2 F17
g2a

2p G .
~2.25!

For 0<a,1, the model exhibits two distinct ranges fo
the coupling constantg:

~ i! 0,g2,
2p

~12a!
, d1.0, d2.0, ~2.26!

which from Eq.~2.24! implies that the fieldf̃1 is quantized
with negative metric and the fieldf̃2 is quantized with posi-
tive metric; in this coupling constant range, the fieldh1 is
quantized with positive metric and the fieldh2 is quantized
with negative metric (0,g2a,2p); and

~ ii ! g2.
2p

~12a!
, d1.0, d2,0. ~2.27!

In this case both fieldsf̃6 are quantized with negative me
ric. In this range the model loses its physical meaning, si
the unitarity is spoiled. We shall consider only the first ran
~2.26! in which the free theory limitg→0 exists and can be
performed. Fora50, Eq. ~2.26! reduces to the boundar
condition compatibility constraint for the coupling consta
and the particle number (n52) found in Ref.@6# for the
two-body bound state solution for two-dimensional Dir
particles.

Introducing canonical fields by rescaling the fieldsf̃6

→d6
21/2f̃6 , and defining the constantsb68d6

21/2/A2, the
effective Lagrangian density can be written as

Le f f8 5
1

2
a1~]mh1!22

1

2
a2~]mh2!22

1

2
~]mf̃1!2

1
1

2
~]mf̃2!21x̄ai ]”xa1x̄bi ]”xb

2m0$x (1)a* x (2)aei (b1f̃11b2f̃2)

1x (1)b* x (2)bei (b1f̃12b2f̃2)1H. c.%. ~2.28!

The bozonized effective theory is obtained introduci
the bosonized expression for the Fermi fields$x

a
,x

b
% in

terms of the Bose fields$w̃
a
,w̃

b
%, according to
06500
e
e

t

xk~x!5S m

2p D 1/2

e2 ipg5/4:

3expS 2 ibH g5w̃k~x!1E
x1

1`

ẇ̃k~x0,z1!dz1J D :,

~2.29!

x̄k~x!i ]”xk~x!5
1

2
:@]mw̃

k
~x!#2:, ~2.30!

x (1)k* ~x!x (2)k~x!5
m

2p
:e2 ibw̃

k
~x!:, ~2.31!

with b52Ap, and the double overdots indicate normal o
dering with respect to the free propagator (h1m2)21 in the
limit m→0. Defining the fieldsw̃

6
8(1/A2)$w̃

a
6w̃

b
%, and

the constantsb85b/A2, m085m0m/p, we can write the ef-
fective bosonized Lagrangian density as

Le f f8 5
1

2
a1~]mh1!22

1

2
a2~]mh2!22

1

2
~]mf̃1!2

1
1

2
~]mf̃2!21

1

2
~]mw̃1!21

1

2
~]mw̃2!2

22m08 :cos$b8w̃
1
~z!1b1f̃

1
~z!%::cos$b8w̃

2
~z!

1b2f̃
2
~z!%:. ~2.32!

For g50 (a650,b650,d650) we recover the bosonize
action corresponding to the free theory of two independ
massive Fermi fields, and which is given by

Le f f8 ug505
1

2
:@]mw̃a~z!#2:1

1

2
:@]w̃b~z!#2:

2m08 :cos$2Apw̃a~z!%:2m0 :cos$2Apw̃b~z!%:.

~2.33!

In order to reduce the algebra of the interacting fields
the effective theory given by Eq.~2.32!, and recover the two
dynamical degrees of freedom of the theory in the origi
fermionic formulation of the model, consider the followin
canonical transformations:

ß1F̃18b8w̃11b1f̃1 , ß1j̃18b1w̃11b8f̃1 ,
~2.34!

ß2F̃28b8w̃21b2f̃2 , ß2j̃28b2w̃22b8f̃2 .
~2.35!

For the range considered for the coupling constant, we g

ß6
2 5b827b1

2 5
2p7ag2

16
g2

2p
~12a!

.0, ~2.36!
9-4
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and the fieldj1 is quantized with negative metric. In thi
way, the bosonized effective Lagrangian density is given

Le f f8 52
1

2
~]mj̃1!21

1

2
~]mj̃2!21

1

2
a1~]mh1!2

2
1

2
a2~]mh2!21

1

2
~]mF̃1!21

1

2
~]mF̃2!2

22m08 :cos$ß1F̃
1
~z!%::cos$ß2F̃

2
~z!%:. ~2.37!

The effective bosonized theory is described by two coup
sine-Gordon theories and four decoupled massless fi
quantized with opposite metric. As stressed in Ref.@15# the
extraction of these decoupled Bose fields relies on a st
tural problem which is related to the fact that the fieldsh6

andj6 do not belong to the field algebraI8 and cannot be
defined in the Hilbert space of statesH8. We shall discuss
this question in the next section.

Settinga[b, thenh250, j250, F250, and the ef-
fective Lagrangian density~2.37! reduces to the bosonize
Lagrangian of the massive Thirring model with

ßTh
2 5

@4p22ag2#

F11
g2

2p
~12a!G . ~2.38!

Setting a50 we recover the standard massive Thirri
model.

III. INTRINSIC FIELD ALGEBRA AND HILBERT SPACE
HIERARCHY

It seems to be very instructive to express the set of f
damental fields$Am ,Bm ,ca ,cb% that define the field algebr
I8 in terms of the sine-Gordon-like fieldsF̃6 . Performing
the canonical transformations~2.34! on the auxiliary vector
fields ~2.20!, we obtain (k5a,b)

G k
m5

1

g
emn]nS b1

2

ß1
F̃17

b2
2

ß2
F̃2D 2 l k

m , ~3.1!

wherel k
m5 l 1

m 6 l 2
m (k5a,b) are longitudinal currents and

l m
65

1

gA2
]m~h66a6

21/2j6!. ~3.2!

Performing the chiral fermion rotation~2.9!, together with
the canonical transformations~2.34!, and using the
bosonized expression~2.29! for the free massive Fermi field
we get

ck5Vkxk5Cksk , ~3.3!

where the Fermi fieldsCk can be factorized in terms of th
fields C6 with Lorentz spins5 1

4 as follows:

ca5C1C2 , cb5C1C2* , ~3.4!
06500
y

d
ds

c-

-

with

C6~x!5S m

2p D 1/4

e2 ipg5/4:exp2 i H g5ß6F̃6~x!

1
b8

ß6
E

x1

1`

Ḟ̃6~x0,z1!dz1J :. ~3.5!

The fieldssk are given by

sa5e2 igl a5s1s2 , ~3.6!

sb5e2 igl b5s1s2* , ~3.7!

with

s65e2 igl 6 , ~3.8!

where l 6 are the potentials for the longitudinal currents,l 6
m

5]ml 6 .
Taking into account the invariance of the fermionic pie

of the effective theory under local gauge transformations,
fermion currents are computed using a gauge-invariant re
larization, and we obtain (k5a,b.)

Jm
k 5

1

g2
emn]nS b1

2

ß1
F̃16

b2
2

ß2
F̃2D . ~3.9!

In this way, we can rewrite Eq.~3.1! as

A m5gJb
m2 l a , B m5gJa

m2 l b . ~3.10!

The bosonized interpolating generating functional~2.4!
can be written as

Z@ua ,ūa ,ub ,ūb ,zm
a ,zm

b
#

5N 21E Dh1eiW0[h1]E Dh2e2 iWo[h2]

3E Dj1Dj2e2 iW0[ j1]eiW0[ j2]

3E DF̃1DF̃2eiW[ F̃1 ,F̃2]

3expS i E d2x(
k

$~C̄ksk* !uk1 ūk~Cksk!2zm
k l k

m% D ,

~3.11!

where W0@h6# are the free actions for the noncanonic
massless fieldsh6 , quantized with opposite metric,W0@j6#
are the free actions for the canonical massless fieldsj6 ,
quantized with opposite metric, andW@F̃1 ,F̃2# is the ac-
tion for the coupled sine-Gordon fieldsF̃6 .

From the generating functionalZ8 we obtain the genera
2n-point functions for the Thirring model with two fermion
species, as, for instance,
9-5
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^0uc̄k~x1!•••c̄k~xn!ck~y1!•••ck~yn!u0&8

5^0uC̄k~x1!•••C̄k~xn!Ck~y1!•••Ck~yn!u0&

3^0usk* ~x1!•••sk* ~xn!sk~y1!•••sk~yn!u0&0 ,

~3.12!

where the notation̂0udu0& means average with respect
the coupled sine-Gordon theories and^0udu0&0 means aver-
age with respect to the free theories of the massless B
fields h6 andj6 . As a result of the opposite metric quan
zation for the fieldsh6 and j6 , the functional integration
over the fieldj6 cancels those arising from the integratio
over the fieldh6 in such a way that the fieldss6 generate
constant contributions to the Wightman functions:

^0us6* ~x1!•••s6* ~xn!s6~y1!•••s6~yn!u0&o51.
~3.13!

This implies the following isomorphism:

^0uc̄k~x1!•••c̄k~xn!ck~y1!•••ck~yn!u0&8

[^0uC̄k~x1!•••C̄k~xn! Ck~y1!•••Ck~yn!u0&.

~3.14!

In this way, for any global gauge-invariant function
F$c̄k ,ck%PI, we obtain the general one-to-one fermio
boson mapping

^0uF$c̄k ,ck%u0&8[^0uF$C̄k ,Ck%u0&. ~3.15!

From the generating functional~3.11! we see that the lon
gitudinal currents~3.2! create from the vacuum zero nor
states inH8,

^0u l k
m~x!l k

n~y!u0&50, ~3.16!

implying that the Hilbert spaceH8 is positive semidefinite.
Although the partition function obtained from Eq.~3.11!

factorizes in the form

Z8@0#5Zh1

0 @0#3Zh2

0 @0#3Zj1

o @0#3Zj2

0 @0#

3Z$F1 ,F2%@0#, ~3.17!

the fact that the spurious fieldssk appears attached to th
bosonized Fermi fields in the source terms implies that
generating functional~3.11! cannot be factorized and th
massless scalar fields cannot be removed in a naive w
contrary to what is usually done@16,3#. As a matter of fact,
the bosonization procedure leads to the appearance of s
ous fieldssk(x) with zero scale dimension, implying a stru
tural problem that refers to the existence of infinitely de
calized statessk

nu0& in H8, and that would imply the
violation of the asymptotic factorization property. Althoug
the fieldss6 generate constant contributions to the Wig
man functions, these fields cannot be defined by itself inH8
and the cluster decomposition property is not violated. T
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question can be clarified on the basis of general principles
examining the intrinsic algebraic structure of the model.

The set of fields$c̄k ,ck% constitute the intrinsic math
ematical structure of the model and generate the local p
nomial field algebraI5I$c̄k ,ck%. The Wightman functions
generated from the field algebraI define the model and iden
tify the Hilbert spaceH of the theory,H8Iu0&. The intro-
duction of the auxiliary vector fieldsam andbm enlarges the
field algebraI→I85I8$am ,bm ,c̄k ,ck%, and the change o
variables ~2.5! leads to a field algebra I8

5I8$Am ,Bm ,c̄k ,ck%. This field algebra is represented
the enlarged Hilbert spaceH88I8u0&. The field algebraI is
a proper subalgebra ofI8, I,I8, such thatH,H8. Within
the bosonization procedure, the fundamental fields defin
the field algebraI8 are written in terms of the Bose field

$F̃6 ,h6 ,j6%. This set of Bose fields defines an enlarg
redundant field algebraIB, which is represented in the in
definite metric Hilbert spaceH B

8I
B
u0&. These Bose fields

are the building blocks in terms of which the bosonized
lution is constructed and, as stressed in Refs.@8–11#, should
not be considered as elements of the intrinsic field alge
I8. Only some particular combinations of them belong to t
field algebra I8, in such a way that,I8,IB and thus
H8,H B

. The auxiliary vector fieldsA m5gJb
m2 l a

m , B m

5gJa
m2 l a

m belong to the field algebraI8, and sinceJk
m

PI8, thenl k
mPI8. In this way, the positive semidefinite Hil

bert space H8 is generated from the field algebr
I8$Am ,Bm ,c̄k ,ck%5I8$I0 ,C̄ksk* ,Cksk%, whereI0,I8 is
the field subalgebra generated by the longitudinal curre
l k
m , I05I0$ l k

m%, and that generates zero norm stat
H08I0u0&,H8. The fieldsl k , which act as potentials fo
the longitudinal currentsl k

m , do not belong to the field alge
bra I8 and only their space-time derivatives occur inI8. In
this way, the exponential fieldssk also do not belong toI8.
Since these fields cannot be defined by itself inH8, the Hil-
bert space cannot be factorized, as, for instance,H8ÞHsk

^ HF1 ,F2
. This implies that the asymptotic factorizatio

property is not violated inH8.
From the algebraic point of view, the fact that the fiel

sk do not belong to the field algebraI8 and thus are not
defined as operator inH8 follows from the charge content o
H

B
andH8, since sometopologicalcharges3 get trivialized

in going fromH B to H8 andH @8#. To begin with, consider
the following currents that belong to the Bose field algeb
I

B
:

j k1

m 8G k
m1]mjk, j k2

m 8G k
m1

1

g
]mhk . ~3.18!

Although the vector fieldsG m
k belong to the field algebraI8,

and the field derivatives]mhk and]mjk belong to the Bose

3These charges are calledtopological in the sense that the corre
sponding conservation laws are totally unrelated to any Noe
symmetry exhibited by the Lagrangian defining the model.
9-6
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field algebraIB, they only occur inI8 as the combination
l k
m52]m(jk1a21/2hk). This ensures thatj ki

m PI
B
. The cor-

responding charges are given by

Qki
8E

2`

1`

dz1 j ki

0 ~z!, ~3.19!

such that@Qki
,IB#Þ0. This implies that the chargesQki

do

not vanish onH B: Qki
H BÞ0. The chargesQki

commute

with ck , Jk
m , and l k

m , that is,

@Qki
,I0#50, @Qki

,I#50→@Qki
,I8#50. ~3.20!

This means that the chargesQki
are trivialized in the restric-

tion from H B to H8 andH @8–11#:

Qki
H BÞ0, Qki

H850, Qki
H50. ~3.21!

Since @Qki
,sk#Þ0, the stateusk&5sku0& cannot belong to

H8 and the fieldsk cannot be defined as an operator in t
Hilbert spaceH8 @8–11#.

The states in the positive semidefinite Hilbert spaceH8
can be accommodated as equivalence classes modulol k

mu0&
in such a way that the Hilbert spaceH of the model is a
proper subspace ofH8, and is given by the quotient spac
H;H8/H0.

From the operator point of view, the equivalence est
lished by Eq.~3.14! implies the algebraic isomorphism

I$c̄a ,ca ,c̄b ,cb%;I9$C̄asa* ,Casa ,C̄bsb* ,Cbsb%

;I$C̄a ,Ca ,C̄b ,Cb%, ~3.22!

where I95I82I0. In this sense we obtain the fermion
boson mapping in the Hilbert space of states,

Z8@ua ,ūa ,ub ,ūb,0,0#;Z@ua ,ūa ,ub ,ūb#

;Z$F1 ,F1%@ua ,ūa ,ub ,ūb#,

~3.23!

where

Z$F1 ,F1%@ua ,ūa ,ub ,ūb#5N 21E DF̃1DF̃2eiW[ F̃1 ,F̃2]

3expS i E d2x$C̄aua1 ūaCa

1C̄bub1 ūbCb% D , ~3.24!

andW@F̃1 ,F̃2# is the action corresponding to the Lagran
ian density of two coupled sine-Gordon theories:
06500
-

Le f f5
1

2
~]mF̃1!21

1

2
~]mF̃2!2

22m08 :cos$ß1F̃1~z!%::cos$ß2F̃2~z!%:.

~3.25!

IV. STATISTICAL-MECHANICAL DESCRIPTION

In this section we shall consider in the two-dimension
Euclidean space the statistical-mechanical system assoc
with the effective bosonized theory in the quotient spaceH,
which is built from the generating functional~3.24!.

Denoting by$F̃a% the set of Bose fields$F̃1 ,F̃2%, and
by W0(F̃a) the corresponding free field Euclidean action
the vacuum functional of the effective theory is given by t
Euclidean region functional integral~Euclidean Gell-Mann
and Low formula!

Z5
1

Z0
E )

a
dm0~F̃a!exp,S 2m08E d2zF~z! D , ~4.1!

whereF̃aP$F̃a% are random classical fields whose distrib
tions are given by the free field~Gaussian! probability mea-
sures

dmo~F̃a!5e2W0(F̃a)@DF̃a#, ~4.2!

with @DF̃a# the formal Lebesgue measure, and

Z05E )
a

dm0~F̃a!. ~4.3!

By expanding the exponential of the interaction action
the Gell’Mann-Low formula~4.1! in a power series of the
bare massm08 , the interaction term of the effective theor
can be treated as a perturbation in the corresponding
field theories defined by the actionsW0(F̃a). This proce-
dure, when applied to a sine-Gordon-like systems, co
sponds to agas expansion@17# and leads to a two-
dimensional neutral-Coulomb-like gas description.

A. Grand partition function

In order to obtain the partition function of the statistic
mechanical system associated with the effective theory
scribed by actionW@F̃1 ,F̃2#, we perform the gas expan
sion by expanding the exponential of the interaction term
the action in powers ofm08 @17#:

expS 2m08E d2zF~z! D5 (
n50

`
~2m08!n

n! E )
i 51

n

d2zi)
j 51

n

F~zj !,

~4.4!

with

F~z!5:cos$ß1F̃
1
~z!%::cos$ß2F̃

2
~z!%:. ~4.5!
9-7
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The vacuum functional~4.1! can be written in terms o
mixed correlation functions of order~disorder! variables of
the fields$F̃a%, in which the averages are taken with resp
to the free field probability measuresdm0(F̃a). The Euclid-
ean vacuum functional can be written as

Z5 (
n50

`
~m08!n

2nn!
Z(n), ~4.6!

where

Z(n)5
1

Zo
(

$l j
1%n

$lk
2%n

E )
j 51

n

d2zj

3E )
a

dm0~F̃a!)
j 51

n

eil j
5ß1F̃

1
(zj ))

k51

n

eilk
2ß2F̃

2
(zk),

~4.7!

where l j
1561, lk

2561, and ($l j
1%n ,$lk

2%n
runs over all

possibilities in the sets$l1
1 , . . . ,ln

1%, $l1
2 , . . . ,ln

2%. In
this way the partition function~4.7! can be factorized in
terms of statistical averages of order variables taken w
respect to the free theories of the massless fields$F̃a%:

Z(n)5 (
$l j

1%n

$lk
2%n

E )
j 51

n

d2zj K )
j 51

n

eil j
1ß1F̃

1
(zj )L

0

3K )
k51

n

eilk
2ß2F̃

2
(zk)L

0

, ~4.8!

where the averages of any functionalF@F̃# of a field F̃

P$F̃a% are given by

^F@F̃#&0[
E dm0~F̃ !F@F̃#

E dmo~F̃ !

. ~4.9!

Defining the charge densities of finite suppo
j 6
n (x;z1 , . . . ,zn) as

j 6
n ~x;z1 , . . . ,zn!5 iß6(

j 51

n

l j
6d (2)~x2zj !, ~4.10!

the n-point correlation function appearing in Eq.~4.8! is
given by

K )
k51

n

eilk
6ß6F̃6(zk)L

0

5^e2F̃6
n ( j )&0[e2^ j 6

n ,2h21 j 6
n &/2,

~4.11!
06500
t

h

where we have defined

F̃6
n ~ j !8E d2x j6

n ~x;z1 , . . . ,zn!F̃6~x!, ~4.12!

such that

e^ j ,2h21 j &/2[eS 1

2 E d2xE d2x8 j ~x;z1 , . . . ,zn!D0~x2x8!

3 j ~x8;z1 , . . . ,zn! D , ~4.13!

in which

Do~x!5 lim
m2→0

D~x;m!52
1

4p
ln$2m2~ uxu21«2!%

~4.14!

is the infrared and ultraviolet regularized massless Gr
function of the two-dimensional Laplacian operator. W
carry out the calculations in the presence ofm2, and setm2

→0 at the end. Thus, we get

expH 1

2
^ j 1

n ,h21 j 1
n &1

1

2
^ j 2

n ,h21 j 2
n &J

5expH 1

2
ß1

2 (
i , j 51

n

l i
1l j

1D0~zi2zj !

1
1

2
ß2

2 (
k,l 51

n

lk
2l l

2D0~zk2zl !J . ~4.15!

Using Eq.~4.15!, we can write Eq.~4.8! as

Z(n)5E )
j 51

n

d2zj

3 (
$l j

1%n

expS 1

2
ß1

2 (
i , j 51

n

l i
1l j

1D0~zi2zj !D
3 (

$lk
2%n

expS 1

2
ß2

2 (
k,l 51

n

lk
2l l

2D0~zk2zl !D .

~4.16!

The contributions of the infrared cutoffm2 in Eq. ~4.16! can
be factorized and are given by

f ~m2!5~m2!(1/8p)ß1
2 S (

j 51

n

l j
1D 2

~m2!(1/8p)ß2
2 S (

j 51

n

l j
2D 2

.

~4.17!

The correlation functions will be~infrared! instability free if
both superselection rules are satisfied:

(
j 51

n

l j
150, (

k51

n

lk
250. ~4.18!
9-8
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This means that only neutral configurations contribute, i
configurations with zero total charge:

Q 6
n 5E

2`

1`

dz1 j 6
n ~x;z1 , . . . ,zn!50. ~4.19!

The only nonzero contributions for the correlation functi
are those withn even. In this way, we get

Z(2n)5 lim
«→0

f 2n~«!E )
j 51

2n

d2zj

3 (
$l j

1%n

expH ß1
2

8p (
iÞ j

2n

l i
1l j

1ln~ uzi2zj u21«2!J
3 (

$lk
2%n

expH ß2
2

8p (
kÞ l

2n

lk
2l l

2ln~ uzk2zl u21«2!J ,

~4.20!

wheref («)5(«2)ß2/8p, andß25ß1
2 1ß2

2 . The contributions
of f (2n)(«) are eliminated by a redefinition of the fugaci
z8m08 f («)/2. Thegrand-partition function~4.6! can be writ-
ten as

Z5 (
n50

` z2n

~2n!!
Z(2n), ~4.21!

where

Z(2n)5 lim
«→0

E )
j 51

2n

d2zj

3 (
$l i

1%n

expH ß1
2

8p (
i , j 51
iÞ j

2n

l i
1l j

1 ln~ uzi2zj u1u«u!J
3 (

$lk
2%n

expH ß2
2

8p (
k,l 51
kÞ l

2n

lk
2l l

2 ln~ uzk2zl u1u«u!J .

~4.22!

B. Equation of state

Following the standard procedure@17#, in order to obtain
the equation of state of the statistical-mechanical system
scribed by the partition function~4.21!, we shall consider the
system confined in a finite volumeV5pR2. The themody-
namical limit is performed in the end of all calculation
Making the change of variablesz→ ẑ5z/R, we can write
the partition function~4.21! as

Z5 (
n50

` z2n

~2n!!
V2n(12ß2/8p)Ẑ(2n), ~4.23!

with
06500
.,

e-

Ẑ(2n)5 lim
«̂→0

E
uẑi u,1

)
j 51

2n

d2ẑj

3 (
$l i

1%n

expH ß1
2

8p (
i , j 51
iÞ j

2n

l i
1l j

1 ln~ uẑi2 ẑj u1u«̂u!J
3 (

$lk
2%n

expH ß2
2

8p (
k,l 51
kÞ l

2n

lk
2l l

2 ln~ uẑk2 ẑl u1u«̂u!J .

~4.24!

Introducing the potentialV52g lnZ, with g5kT, the
pression is given by

P52S ]V

]V D5g
1

Z S ]Z
]V D . ~4.25!

The variation of Eq.~4.25! with respect to the volume lead
to the following equation of state:

PV5S 12
ß2

8p D ^N&kT, ~4.26!

where^N& is the expected number of particles defined by

^N &5
1

Z (
n50

` z2n

~2n!!
V2n(12 ß2/8p)~2n!Ẑ(2n). ~4.27!

The equation of state~4.26! exhibits a Kosterlitz-Thouless
~KT! phase transition at the critical temperature:

~ß1
2 1ß2

2 !c58p. ~4.28!

For atractive and repulsive Thirring couplings, the critic
line characterizing the KT phase transition starts at the c
cal value of the coupling constant

gc
25

2p

A~12a!~22a!
. ~4.29!

For g50, the equation of state~4.26! reduces to

PV5
1

2
^N &kT. ~4.30!

In the free case, the equation of state can be writen in te
of the equation of state describing a Coulomb gas. Sinc
the free case the action is writen as a sum of two decoup
sine-Gordon actions, the partition function~4.1! factorizes as
terms of two Coulomb gas partition functionsZ5Z1
3Z2, whereZa are the partition functions of two noninter
acting Coulomb gas in a volumeV:

Za5 (
na50

` z2na

~2na! !2
VnaẐ(2na), ~4.31!

with
9-9
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Ẑ(2na)5 lim
«→0

E )
j 51

2na

d2ẑj

3expH 1

2 (
i , j 51
iÞ j

2na

l il j ln~ uẑi2 ẑj u1u«̂u!J .

~4.32!

The total pressure is given by

P5g
1

Z S ]Z
]V D5P11P25

kT

v S 1

2
^N1&c1

1

2
^N2&cD ,

~4.33!

where^Na&c is the expected number of particles of a Co
lomb gas in a volumeV @17#:

^Na&c5
1

Za
(

na50

` z2na

~2na! !2
Vna~2na!Ẑ(2na). ~4.34!

V. CONCLUSIONS

Using the Abelian reduction of the WZW theory we ha
considered the functional integral bosonization of a mo
with two fermionic fields with Thirring-like coupling. We
showed that the use of auxiliary vector fields in the boson
tion procedure enlarges the Hilbert space by the introduc
of an external field algebra and that should not be conside
as an element of the intrinsic algebraic structure defining
model. The correct identification of the original positive me
ric Hilbert space as a proper subspace of the enlarged in
nite metric Bose Hilbert space has been done withouta pri-
ori disregarding the decoupled scalar fields. We have s
that a null metric combination of derivatives of scalar fiel
persists as an element of the algebra of observables afte
dequartizing procedure. Contrary to naive expectations
spite of the zero norm fields the Hilbert spaceH8 does not
contains infinitely delocalized states and the asymptotic
torization property is not violated. The factorization of th
partition function will generally leads to incorrect concl
sions concerning the physical content of the model. The
gebraic structure of the model was identified according
general structural properties of quantum field theory, a
which are related to the trivialization of some topologic
charges in going from the enlarged bosonic Hilbert sp
H B to the Hilbert spacesH8 andH. This procedure allows
for the identification of the original Hilbert space as a co
space. The disregarding of the zero norm fields, as usu
06500
-

l

-
n

ed
e

-
fi-

en

the
in

c-

l-
o
d
l
e

t
lly

done in the treatment of functional integral bosonization
rigorously justified through this result.

The statistical-mechanical description of the bosoniz
theory has been performed. As a result of the coupling of
sine-Gordon fields, the grand partition function of the as
ciated statistical system does not factorizes as a produc
partition functions of two Coulomb gas systems. Indeed
partition function describes a gas of two types of point p
ticles carrying independent Abelian charges which can
sume plus or minus signals independently. The Coulomb
teraction only occurs between charges of the same type.
selection rules, which ensure the infrared stability of t
composite statistical-mechanical system, are indepen
and lead to two conservation laws for each type of charge
the free theory limit (g50, ß1

2 5ß2
2 52p) the grand parti-

tion function factorizes as the product of two Coulomb g
partition functions. The associated equation of state is, h
ever, very simple even in the interacting case. It exhibits
Kosterlitz-Thouless phase transition characteristics of so
two-dimensional models.

The peculiar nature of the cosine interaction for this tw
Fermi fields model could be forecasted by a Fierz-like tra
formation of the fields. By interchanging the role of the le
Lorentz components of both fields we obtain two Thirrin
models with the interaction in the mass term( i c̄ ic i

→c̄acb1c̄bca . This redefinition of the fields calls attentio
to the close relation with Gross-Neveu O~2! model.

The two-fermion system with contact interaction that m
tivates the present study does not incorporate the interac
with the electromagnetic field. It would be instructive
study the generalization of the model here dealt with by
troducing the coupling with a physical electromagnetic fie
besides the vector auxiliary ones. Notice further that the s
tetlies associated with the proper definition of the Hilb
space will come about in the analogous to the model h
dealt with in higher dimensions using the bosonization of
currents.

After over a quarter of a century of investigations of tw
dimensional field theories we have learned that, besides t
peculiar formal aspects, two-dimensional models have a
the value of providing a better conceptual and structural
derstanding of general properties of quantum field the
@18–20#.
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