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Functional integral formulation of the Thirring model with two fermion species
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A two-dimensional Abelian model with quartic interaction among two species of Fermi fields is analyzed
through a functional integral formulation. We consider the bosonization of the generating functional of the
model in order to establish the fermion-boson mapping in the Hilbert space of states. The grand partition
function of the statistical mechanical system associated with the effective bosonized theory is obtained and the
corresponding exact equation of state exhibits a critical line characterizing a Kosterlitz-Thouless phase
transition.

PACS numbsefs): 03.70-+k, 11.10.Kk

I. INTRODUCTION main purposes of the present article are the following.
(i) A discussion of structural aspects related with the ap-

In the last few years, an impressive amount of effort hagpearance of decoupled massless Bose fields in the functional
been made by many physicists to understand the underlyinigtegral bosonization scheme. To this end, and in order to
properties of quantum field theories in two dimensiphs  obtain the fermion-boson mapping in the Hilbert space of
as well as to try to picture these models as theoretical labostates, we shall perform the bosonization of the generating
ratories to obtain insight into more realistic four-dimensionalfunctional of the theory without disregarding the role played
field theories and, more recently, to apply them to low-py the “decoupled” massless Bose fields. In order to obtain
dimensional condensed matter systef§ as well as to  some insight into the bosonization of the non-Abelian model,
N-body problems in nuclear physi¢3]. we review the presentation of Ré8] by using the Abelian

The structure of a relativi.fstic qgantum-mechan_ical tWo-reduction of the Wess-Zumino-Witten thedny?,13,11. The
body system in one space dimension has been discussed dgqundant decoupled massless Bose fields are kept through
Ref.[4], through a solvable two-body Dirac equation with anhe hosonization of the generating functional of the theory.
interaction in the form of a delta function. The Dirac equa-\e show that their only effect is to generate constant con-
tion is solved analytically for bound and scattering statestihytions to the Wightman functions in the Hilbert space of
Exact solutiqns for_ a relativistic _three—body pound state iNstates. In the present approach close attention is paid to
one space dimension are found in R&]. In this generali-  majntaining a complete control on the Hilbert space structure
zation of the two-body model introduced in Ré#], the  needed for the representation of the intrinsic field algebra
three Dirac particles interact with each other through pairgenerated by the set of fundamental fields whose Wightman
wise delta function potentials of vector type. In a furtherfynctions define the model. We show that the factorization of
publication[6], the exact solution foN-body bound state of = the partition function of the effective bosonized theory can
Dirac particles interacting through a delta function potentialiead to incorrect conclusions concerning the physical content
in one space dimension is discussed. The boundary conditi#} the model, such as the existence of infinitely delocalized
for the solutipn leads to a constraint for the coupling constangiates and the violation of the asymptotic factorization prop-
and the particle number. o erty. The present approach clarifies some delicate aspects not

The field theory generalization of the quantum-eyident in the presentation of RdB] and also streamlines
mechanical model introduced in R¢#| was discussed in a the discussion of the functional integral bosonization of two-
recent paper by Sakamoto and Hefl. The field theoreti-  gimensional models presented in Réfs4,15. This is done
cal model corresponds to a massive Thirring-like mddel i, sec. |1
in which the quartic Fermi field interaction is a current-  (jj) To provide a statistical-mechanical description of the
current interaction of two different Fermi field species. Usingeffective bosonized theory corresponding to the two-body
the functional integral bosonization the effective bosonizedie|g theory model discussed in RE8]. This is performed in
theory is obtained and corresponds to a model with twosec, 1. We obtain the grand partition function of the
coupled sine-Gordon fields. _ statistical-mechanical system associated with the effective

The functional integral bosonization scheme used in Refposonized theory. The exact equation of state is obtained and

[3] requires the introduction of auxiliary vector fields in or- exhibits a critical line characterizing a Kosterlitz-Thouless
der to recast the theory in terms of a Lagrangian quadratic iphase transition.
the Fermi fields. As stressed in Ref8-11], the bosoniza-
tion procedure introduces a redundant Bose field algebra
which contains more degrees of freedom than those needed
for the description of the physical content of the model. The Il FUNCTIONAL INTEGRAL BOSONIZATION
The two-dimensional Thirring model with current-current
interaction of two Fermi fields species is defined by the fol-

*Email address: belve@if.uff.br lowing Lagrangian densitj3]:
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L= Tl 0= M) ol 0= M) = -3, (2.1

where the vector current’is)¥= iy .y*i, andk=a,b de-

note the two fermion species.

Within the operator formulation, the Hilbert spa¢é of
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The source terms for the auxiliary vector fields andb,,
are included in order to control the effects of the bosoniza-
tion procedure on the construction of the Hilbert space
H'=7'|0). As we shall see, the bosonized generating func-
tional Z’ defines an enlarged positive semidefinite Hilbert
spaceH’.

The next step in the functional integral bosonization is to

the model is constructed as a representation of the intrinsigquce the action of the Thirring model with two fermion
field algebraZ, genera_ted by the set of fundamental |°Ca|species to quadratic actions in the Fermi fiefgs This can

field operator§ ¢, , ¥7a , ¥, ¥}, and whose Wightman func- be done by performing the “change of variable3,14,15

tions define the theory®=7J|0). In the functional integral
formalism, the Hilbert space of the model can be built from

atk=Ar—glfy, bt=B+*-gdy, (2.5

the generating functional with source terms for the basic

fields that generate the polynomial field algebra

2003.00.00.01-N " | DyDUDHDY,
X @ WlWa.a ¥ i 0a 0 O . Op]

(2.2

whereW[ ¢ra, ha, o, 0, 04, 0, 0] is the action in the

presence of external Grassmann-valued sou@gemd?k:
WL tha,tha sty 1y, Oz, B, O O]

= f 2| L+ a0+ Oathat P0p+ ot} 2.3

Following the procedure adopted in Reff3,15], we next

such that
i 2 . ” 2qm1b
Da,Db,exgi | d xi{a b,—g°J5J,}
= i 2 ! Iz I
= | DA, DBexgi | d XE{A#B —gJA,

—gJé‘BM})- (2.6)

In this way, the generating function&.4) can be written in
terms of the effective Lagrangian density

L= D (A) o+ gD (B) i,

— — 1
—Mohatha— Moihpthp+ EA;LBM’ (27)

modify the field algebra slightly and define an enlarged fieldwhere the covariant derivatives are defined bf.A)=i4

algebraJ’ by introducing the “auxiliary” vector fieldsa,,

—(g/2).A. The local gauge noninvariance of the model is

andb,,, in such a way that the new field algebra is given bynow explicited by the last term in Ed2.7). In order to
3'=3{a,.b, . ¥a, Vs, . ¥p}. The Hilbert space of this decouple the Fermi and vector fields, we introduce the pa-
enlarged theory can be built from the “interpolating” gen- rametrization of the vector fields4. ,5.), in terms of the

erating functional
Z'[0a,0a, 05,05, 55 L8]
=N"1 J Dip, Dipy Dify Dty J Da, Db,
. 1
Xex;{lf dzx{EaMbM+aM§§+ bﬂﬁf}

+ivv[$ail//avab1‘//b10a1§av€b1§b])- (24)

Our conventions are

gP=1=—gll, 0l=—¢l0=1,

0 01 10 1 5 0.1
Y71 o Y\-1 o YTV

d.=dp*dy,

=

Yy =elry, . xT=x0xx!,

AT =A%+ AL

U(1)-group-valued Bose fieldsJ(,V,) as follows[11]:
2 2
gﬁzauk‘lia+uk, g"_=§vkia_vk‘l, (2.9

whereGX =(A. ,B.) for k=a,b. Performing the fermion
chiral rotation[11]

’ =( lﬂ(l)k) _
K P2k

introducing in the functional integral the identities

VieX (1)

_ =Xk, (2.9
Sh lX(2)k kX k

1=fDuk[detm(uk)]a(ggﬁ—uk‘lia+uk),
(2.10

1= f DVk[detD_(Vk)]é( ggk_ —V,d a_vk‘l) ,
(2.1

and taking into account the corresponding change in the fer-
mionic integration measurd 1], we get
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b b sider the general case with<ta<<1. In this way, the gener-
kH Dy DpyDA.DB.. =kH Dx«DxDU DV, J U, V], ating functional(2.4) can be written in terms of the effective
=a =a .
2.12 action
with b

Weff:\/\/[U’V]+f dzzga {xd Ox— Mo X{1)kX (2)k
J[U-V]:eXP[—izk (TTUI+ TV

XEEIWLX?z)kX(l)kEk)}, (2.18
+icf dzz(AMA“wLB,LB“)] where
i - a 2 -1
—expl —i 3 MU+ TV, WUVI= 3 |- TTUd+ o | dP20; %9, 0y
=a
4c 1 i
22 @0t v Vi } < v -5 2 3w
g g kk'=a
k#k’
(2.13 y .
(Vied_Vh. 2.19

wherel'[ G] is the Wess-Zumino-WitteWZW) functional
[12], which enters in Eq(2.13 with a negative level. In the

Abelian case the WZW functional reduces to the free action 1he vector fields in two dimensions can be decomposed
as

1
I'[G]= ﬁf d?z9,G 1o G. (2.14 1
Gh=— §(€”V&V¢k+ 9um,), (2.20
The last term in Eq(2.13 has been added, exploiting the

regularization freedom in the computation of the Jacobians, i . !
due to the local gauge noninvariance of the model. Using th@"d this corresponds to parametrizing the Bose fields

Abelian version of the Polyakov-Wiegmann identit3] (Ui, Vi) as follows:
1 _ ai(d 2 _ ai(de—m2
F[UV]=F[U]+F[V]+EJ d?z(U~19,U)(Va_ VY, U=e'ltmd2 v, = el(dm 2, (2.21
(2.15

The effective Lagrangian density, corresponding to the

and defining the “regularization” parametarby action(2.18, can be written as

a 1 A4c A — b 5
E_E_E’ (2.19 ’Ceffzkga Xk'ﬁ)(k_mokza {X{nrx e '

we can write Eq(2.13 as

J=exr{2k [—iF[Ek]H%J d?z

~ 1
+ XX k€ P — g(l— a)

b

~ 1 - - a

2__— 1

nga (au(bk) 2g2&M¢aa ¢b 8

x<ugla+uk><vkavk‘1)] } (2.17) b L

XkZa ((7;477k)2+F(7M77a(7M77b- (2.22

with  2,=U,V,. The so-called ‘“gauge invariant g

regularization,® which is adopted in Ref3], corresponds to _

seta=0. In this case the Jacobi&?.13 depends only on the Introducing the field§ ¢ ,x~}, defined by
gauge invariant variables, . In what follows we shall con-

~ 1 - - 1
b= E(Qﬁai éb), M= E( Nat M), (2.23
°The gauge-invariant regularization can be used in the computa-
tion of the Jacobian taking into account the local gauge invariance
of the fermionic piece of the effective theory. we can write the effective Lagrangian dendi&22 as
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1/2
/ Vi o 1 = \2 + = \2 ~ —i'n'y5/4.
Leff:Xa|f)Xa+Xb|‘9Xb_§5+((9,u¢+) +§5—(’9#¢—) Xk(X)= o e :
a
i1, (9 )2—E (9,7 )2 xexp —iB{ Yoo (x)+ O M d |
25T wT+ 2“— wTl- Y Pk oL Pk ’ o
_mO{XE\—l)aX(Z)ae(ii/ﬁ)(a++:¥‘5—) (2.29
* (—iN2) (T — 1 ~
FXfpXen® TS w R (229 W0=5 13,5001 (230
where the constants.. and 5. are defined by
M o~
1 g2 g%a Xfl)k(X)X(z)k(X)IEZE—I,B(PK(X)i, (2.3)
S.=—|1x—(1-a)|, a=—|1F——
292 2w 292 2w

(2.25  Wwith B=2/m, and the double overdots indicate normal or-
dering with respect to the free propagatt € x2) ! in the
For O<a<1, the model exhibits two distinct ranges for limit x—0. Defining the ﬁe|d§piﬁ(1/ﬁ){;ai;b}, and

the coupling constarg: the constantg’ = /.2, mgy=mou/, we can write the ef-

fective bosonized Lagrangian density as

(i) 0<g’< 5.>0, 6.>0, (2.2

2
(1-a) .1 , 1 , 1=
_ eff:§a+(¢9ﬂ7]+) _Ea’—(a,ﬂ?—) _E(ay,d’-%—)
which from Eq.(2.24) implies that the fieldp . is quantized
with negative metric and the field_ is quantized with posi-
tive metric; in this coupling constant range, the fiejd is
guantized with positive metric and the fielgl is quantized ) - - -
with negative metric (62g2a<2); and —2mg:codB’e (2)+ B+ ¢ (2)}::cofB’¢ (2)

-$_(2)}. 2.3
(12_7;)1 6,>0, 6_<0. (2.27) +B-¢ (2)} (2.32

1 - ) 1 - ) 1 - 5

(i) g>>
Forg=0 («¢.=0,8.=0,6.=0) we recover the bosonized

In this case both fields. are quantized with negative met- action corresponding to the free theory of two independent
ric. In this range the model loses its physical meaning, sincg'assive Fermi fields, and which is given by
the unitarity is spoiled. We shall consider only the first range 1 1
(2.26) in which the free theory limig—0 exists and canbe /| _Z.r5 7 (7124 = gon(2) 12
performed. Fora=0, Eq.(2.26 reduces to the boundary etilo=0=7 1 0u¢a(DI 5 [00n(2)]
condition compatibility constraint for the coupling constant

and the particle numbem&2) found in Ref.[6] for the —mg:cog2/mep,(2)}: —Mp:cog 2\ men(2)}:.
two-body bound state solution for two-dimensional Dirac (2.33
particles.

Introducing canonical fields by rescaling the fields. In order to reduce the algebra of the interacting fields in

—.6:Y%% | and defining the constanf. = 5,22, the the effective theory given by E@2.32, and recover the two

effective Lagrangian density can be written as dyna_mu_:al degree_s of freedom of the the_ory in the orlgmal
fermionic formulation of the model, consider the following

1 1 1 . canonical transformations:
Eéffzz05+(8M7]+)2_§a,((?#ﬂ,)z_z(aﬂ¢+)2 _ _ _ _ _ —_
By®,=p'0s+Brdy, Bié& =p.o,+B ¢,

1~ o, — — (2.34
+5(0u-)"F Xal bxat xoi Oxp ~ _ _ N ~ ~
o _ BO =p'¢ +B ¢, B E=B ¢ —B'¢_.
_mo{Xﬁ)aX(z)ae'(ﬁ*d’*HL‘M (2.35
+Xﬁ)bX(z)bei(B*?’;*_B’a’)ﬂLH- cl. (2.28  For the range considered for the coupling constant, we get
The bozonized effective theory is obtained introducing 2 o o 2WF ag’
the bosonized expression for the Fermi fields,x,} in Bi=p""+p'= 2 >0, (2.36
~ o~ + — —
terms of the Bose fielde , ¢, }, according to 1_277(1 2
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and the field¢, is quantized with negative metric. In this with
way, the bosonized effective Lagrangian density is given by

P va B
A U U | , ‘1’+(X)=(§) e '™ ’4:eXp—i[ YR P (X)
eff™ — E(ap,§+) + E(apg—) +§a+(&,u7]+)
! +oo
1 S O +§_J1 @t(xo,zl)dzll:. (3.5
—Ea,(&ﬂn,) +§(5,L(D+) +§(07‘uq),) +JX
—Zm(’,:cos{B+(T)+(z)}::cos{B,CTD_(z)}:. (2.3 The fieldsoy are given by
. . . . o= Ya=¢g_ o, (3.6)
The effective bosonized theory is described by two coupled
sine-Gordon theories and four decoupled massless fields or=e 9= o* 3.7)
quantized with opposite metric. As stressed in R&§] the b A '
extraction of these decoupled Bose fields relies on a StruGyith
tural problem which is related to the fact that the fielgs
and ¢. do not belong to the field algebfd and cannot be o.—e 9l (3.9

defined in the Hilbert space of staté§. We shall discuss
this question in the next section.

Settinga=b, then_=0, ¢(&_.=0, ®_=0, and the ef-
fective Lagrangian densit{2.37) reduces to the bosonized
Lagrangian of the massive Thirring model with

, [4m—2ag%]
rSTh: 2

1+ —(1—a
27T( )

(2.39

Setting a=0 we recover the standard massive Thirring

model.

III. INTRINSIC FIELD ALGEBRA AND HILBERT SPACE
HIERARCHY

It seems to be very instructive to express the set of fun

damental field$.4,,,B,, , ¥, , ¥y} that define the field algebra

3’ in terms of the sine-Gordon-like field. . Performing
the canonical transformatiori2.34) on the auxiliary vector
fields (2.20, we obtain k=a,b)

2 2
‘ia);ﬁ—-a))—m,

g, (3.2

Q‘k‘zaewﬁv
wherel{=14*=1# (k=a,b) are longitudinal currents and

+a %), (3.2

1
I = 3, (m=
#ogy2 t

Performing the chiral fermion rotatiai2.9), together with
the canonical transformationg2.34), and using the
bosonized expressid@.29 for the free massive Fermi field,
we get

b= Qx= Yoy, (3.3
where the Fermi field¥, can be factorized in terms of the
fields W .. with Lorentz spins=; as follows:

Y=V W_,

Y=, T* (3.4)

wherel .. are the potentials for the longitudinal currerlts,
=" . .

Taking into account the invariance of the fermionic piece
of the effective theory under local gauge transformations, the
fermion currents are computed using a gauge-invariant regu-
larization, and we obtainkE=a,b.)

1 Bi. B
k_ — o F o
JM—gzeﬂV& (B+<D+iB_CI>_ . (3.9
In this way, we can rewrite Eq3.1) as
At=gd—1,, Bt=gli—I,. (3.10

The bosonized interpolating generating functiof2l4)
can be written as

— — b
Z[05,04,00,0,.05.0,]

:N—lj D77+eiW0[’7+]j Dy_e Wol7-]
xfp§+pg_e*iWo[§+]eiWo[§7]
focT>+D<T>,e‘W[5’+@—]

xexp(i f xS {(Fof )bt O Wi~ 183 .
(3.1

where Wy[ n..] are the free actions for the noncanonical
massless fieldg.. , quantized with opposite metrigy[ £~ ]
are the free actions for the canonical massless fiélds
quantized with opposite metric, aMI[® . ,® _] is the ac-
tion for the coupled sine-Gordon fields. .

From the generating function&’ we obtain the general
2n-point functions for the Thirring model with two fermion
species, as, for instance,

065009-5



L. V. BELVEDERE AND R. L. P. G. AMARAL

O]t X1) - - - Y(Xp) Yi(Y1) - - i Y) [O)
=(0| Wy (x1)- - V(X)) W(Y1) - - - VoY) |0
X(0|ok (X1) - - - g (Xn) oY1) - - - oY) |0)o,
(3.12

where the notatioq0|®|0) means average with respect to
the coupled sine-Gordon theories aij®|0), means aver-
age with respect to the free theories of the massless Bo
fields ». and&.. . As a result of the opposite metric quanti-
zation for the fieldsy.. and ¢., the functional integration
over the fieldé. cancels those arising from the integration
over the fieldn-. in such a way that the fields.. generate
constant contributions to the Wightman functions:

(0o (x1) - 0L (Xp) o+ (Y1) -0+ (Yn)|0)o=1.
(3.13

This implies the following isomorphism:

(O] gh(X1) - Y X) (Y1) - - - (Y1) [O)
=(0| Wy (X1) - Wp(%n) Wilyr)- - Wi (yn)|O).
(3.19

In this way, for any global gauge-invariant functional

]—"{Jk,zpk}ej, we obtain the general one-to-one fermion-
boson mapping

(O] F{ .| 0) =(O| W, W }|0). (3.19

From the generating functioné.11) we see that the lon-
gitudinal currents(3.2) create from the vacuum zero norm
states inH’,

(OIE(X)1(y)|0)=0, (3.16
implying that the Hilbert space{’ is positive semidefinite.
Although the partition function obtained from E.11)
factorizes in the form
Z'[0]= 29 [0]x Z) [0]x 2} [0]x 2] [0]

XZ, o [0], (3.17

Yfariables (2._5)

PHYSICAL REVIEW D62 065009

question can be clarified on the basis of general principles by
examining the intrinsic algebraic structure of the model.
The set of fields{, ¢} constitute the intrinsic math-
ematical structure of the model and generate the local poly-
nomial field algebrai=J{¢y,#}. The Wightman functions
generated from the field algebbadefine the model and iden-
tify the Hilbert spaceH of the theory,H=73|0). The intro-
duction of the auxiliary vector fielda, andb, enlarges the
field algebra—3'=3"{a,,b, ¥, ¥}, and the change of
leads to a field algebra 7’
=J3'{A,.B, ., . This field algebra is represented in
the enlarged Hilbert spade’ =3'|0). The field algebrd is
a proper subalgebra 6f, JC7J’, such that<{CH’. Within
the bosonization procedure, the fundamental fields defining
the field algebrad’ are written in terms of the Bose fields

{abt ,+,&+}. This set of Bose fields defines an enlarged
redundant field algebra®, which is represented in the in-
definite metric Hilbert spacéiBth|O). These Bose fields
are the building blocks in terms of which the bosonized so-
lution is constructed and, as stressed in Rié¥s.11], should

not be considered as elements of the intrinsic field algebra
J'. Only some particular combinations of them belong to the
field algebra3d’, in such a way thatJ'C3® and thus

H'CH'. The auxiliary vector fieldsd#=gJf—14, B*
=gJi—I4 belong to the field algebrd’, and sinceJj
eJ’', thenl{ e J’. In this way, the positive semidefinite Hil-
bert space H' is generated from the field algebra
j,{AM ,Bﬂ,lﬂk,lﬂk}:j,{jo,\yk()': ,\I’k()'k}, Wherej()Cj, is

the field subalgebra generated by the longitudinal currents
I, Jo=Tp{l{}, and that generates zero norm states:
Ho=To|0)CH'. The fieldsl,, which act as potentials for
the longitudinal currents, do not belong to the field alge-
braJ’ and only their space-time derivatives occurdin In
this way, the exponential fields, also do not belong t6’.
Since these fields cannot be defined by itseltify the Hil-
bert space cannot be factorized, as, for instaftte# He,
®Hge, ¢ - This implies that the asymptotic factorization
property is not violated ir’.

From the algebraic point of view, the fact that the fields
o do not belong to the field algebr® and thus are not
defined as operator iK' follows from the charge content of
HB andH’, since someopological charges get trivialized

in going from B to #’ and [8]. To begin with, consider

the fact that the spurious fields, appears attached to the trée following currents that belong to the Bose field algebra
bosonized Fermi fields in the source terms implies that theg :
generating functional3.11) cannot be factorized and the
massless scalar fields cannot be removed in a naive way,
contrary to what is usually dorléd6,3]. As a matter of fact,

the bosonization procedure leads to the appearance of spuri-

ous fieldsa,(x) with zero scale dimension, implying a struc- Although the vector fieldg¥ belong to the field algebra,

tural problem that refers to the existence of infinitely delo-and the field derivatives, », andd, &, belong to the Bose
calized statesoy|0) in H', and that would imply the

violation of the asymptotic factorization property. Although

the fieldso.. generate constant contributions to the Wight- 3These charges are calléabologicalin the sense that the corre-
man functions, these fields cannot be defined by itselfin  sponding conservation laws are totally unrelated to any Noether
and the cluster decomposition property is not violated. Thisymmetry exhibited by the Lagrangian defining the model.

(3.18

g =0kt "8 Jig=glct g e
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FUNCTIONAL INTEGRAL FORMULATION OF THE . ..

field algebraJ®, they only occur inJ’ as the comb|nat|on
lff=—3,(&+a"Y?p,). This ensures thaf e 3°. The cor-
responding charges are given by

oo
Qki = J:

such thaf Qki,jB]aéO. This implies that the charg@ki do
not vanish on}®: Q, H®+#0. The charge®, commute
with ¢, J, andl{, thatis,

dz'jg(2), (3.19

[Q.901=0, [Qy,3]=0-[Q\,3']=0. (3.20

This means that the chargé€k, are trivialized in the restric-
tion from H B to H’ and® [8-11]:
QHP#0, (3.21

QM'=0, QH=0.

Since[ Ok, 0¢]#0, the statgoy)=0,|0) cannot belong to

PHYSICAL REVIEW D 62 065009

1 ~ 5 1 ~
Eeffzi(ﬁ,uq)Jr) +§(<9,ﬂ)7)

—2mj:codR D (2)}::codR_D_(2)}:.

(3.295

IV. STATISTICAL-MECHANICAL DESCRIPTION

In this section we shall consider in the two-dimensional
Euclidean space the statistical-mechanical system associated
with the effective bosonized theory in the quotient spage
which is built from the generating functioné3.24).

Denoting by{®,} the set of Bose fields®, ,®_}, and
by WO(CTDC,) the corresponding free field Euclidean actions,
the vacuum functional of the effective theory is given by the
Euclidean region functional integrdEuclidean Gell-Mann
and Low formula

1 ~
:Eof 1;[ duo(®,)exp, 2m(’)f dzz]-‘(z)), 4.1

H' and the fieldo, cannot be defined as an operator in thewhere® , < {® ,} are random classical fields whose distribu-

Hilbert spaceH’ [8-11].

The states in the positive semidefinite Hilbert spate
can be accommodated as equivalence classes mogl@p
in such a way that the Hilbert spadé of the model is a
proper subspace dft’,
H~H'IH,.

and is given by the quotient space

tions are given by the free fiel@Gaussiain probability mea-
sures

From the operator point of view, the equivalence estab-

lished by Eq.(3.14) implies the algebraic isomorphism

j"{\l_faa'; Va0, ,‘I_’ba'; W pop)

(3.22

j{Ea ’ ‘/’a 1Eb ’ l//b}N
~3{\I_fa,‘l’a,‘?b,\lfb},

where 3"=73"—7J,. In this sense we obtain the fermion-
boson mapping in the Hilbert space of states,

Z,[ 0&1 vga ' Hb 15[)10!0]~ Z[ 03 15& ’ eb 15[3]

21 0,,04,00, 0],
(3.23

—_ Z{ D

where
Z10+ P 0,,0,,05,05]=N 1 f D, DP_eMP+ D]
Xex;{if d2x{W ,0,+ 6,%,

+\E,0b+?b\1fb}), (3.24

andW[ @, ,® _] is the action corresponding to the Lagrang-

ian density of two coupled sine-Gordon theories:

do( D) = W@ DD ], 4.2)
with [D® ] the formal Lebesgue measure, and
Zo= [ 1 duol,). @3

By expanding the exponential of the interaction action in
the Gell’Mann-Low formula(4.1) in a power series of the
bare masanj, the interaction term of the effective theory
can be treated as a perturbation in the corresponding free
field theories defined by the actioMdy(®,). This proce-
dure, when applied to a sine-Gordon-like systems, corre-
sponds to agas expansion[17] and leads to a two-
dimensional neutral-Coulomb-like gas description.

A. Grand partition function

In order to obtain the partition function of the statistical
mechanical system associated with the effective theory de-
scribed by actionM[ @, ,®_], we perform the gas expan-
sion by expanding the exponential of the interaction term of
the action in powers afng [17]:

2 n
exp{Zm(’)f dzz}‘(z)) Zo( o) H dzz,H Az,
(4.9
with
F(z)=:cofR. P (2)}::codR_-D (2)}:. (4.5
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The vacuum functional4.1) can be written in terms of where we have defined
mixed correlation functions of ordddisordej variables of

the fields{<~I>_a}, in which _the averages are taken with rgspect a)r;(j)ﬁj A (%2, ... Z)Bo(x), (412

to the free field probability measurég.,(P,). The Euclid-

ean vacuum functional can be written as such that

o (mg)" _
Z:nzo o (46 g0 Mi2=g| = fdz fdzx’J(x Zy, ... Zy)Do(x—x")
where XJj(x";z4, . .. ,zn)), (4.13
1 n
ZM=— E H d?z in which
o\, 7Tt
N 201|120 o2
Do(x)= lim A(x; M)—__m{ (X2 + %)}
n2—0
(4.19
n o n .
XJ IT duo(@ )T ™ B+ G ere B (@, is the infrared and ultraviolet regularized massless Green
«@ =1 k=1 function of the two-dimensional Laplacian operator. We
4.7 carry out the calculations in the presenceudt and setu?
—0 at the end. Thus, we get

Where)\J-+=i1, AN ==*1, andE{)\r}n A}, fUns over all . L

possibilities in the setg\; s DN D U Ap b In eXF’[g(]i ,Dfljrl>+§<jrl ,Dljn>]

this way the partition function4.7) can be factorized in

terms of statistical averages of order variables taken with

respect to the free theories of the massless figlelg}:

Z(n)_
{x I
N tn

n
< H e B-P (z) ’
k=1 o

S [ o [T )

0

(4.9

where the averages of any functio@]®] of a field ®
e{®,} are given by

_ fduo(c"b)F[Eb]
(F[®])o= - (4.9
fduo(q))
Defining the charge densities of finite support
iN(Xzq, ...z, as
n
Lz, ...z =iBe 2 ATP(x—7), (410
=1

the n-point correlation function appearing in E¢.9) is
given by

n
<H eixk*r3+<i>+(zk)> —(e P00y =~ (L. ~O7HD)2,
k=1 0
(4.10

l n
—exp 587 2 N\ Do(z—2)
2 ihj=1

1 n
+5 rzékI}:)l )\k)\|D0(zk—z,)’. (4.15

Using Eq.(4.15, we can write Eq(4.8) as
n
Z(”)=f H dzzj
j=1

X 2

N

x> exp( E A\ D

M

1 n
exp( §Bii12:1 )\f)\]*Do(zi—zj))

—z|>).

(4.19

The contributions of the infrared cutoft? in Eq. (4.16 can
be factorized and are given by

2 n 2
)\j*) (;/«2)(1’8”"‘2—(2‘,1 xj) .
(4.17)

The correlation functions will béinfrared instability free if
both superselection rules are satisfied:

n

fmZ):wZ)(”&"’“i( >

n n
]Zl N =0, > N\ =0. (4.19
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This means that only neutral configurations contribute, i.e.,

configurations with zero total charge: Zen= I|m H d?z
iod lzl<1i=
Fm gk R2 2"
= dz'ji(x;z1,...,25)=0. 4.1 ~ - -
- 206z ) (4.19 X > expl — > NN In(|zi—z)] + e])
A
i i#]

The only nonzero contributions for the correlation function

are those witm even. In this way, we get Rz 2
' Y e g x> exp{ PIR T L(ERARAE |]

2n {)‘k tn k¢|
ZM = |im f2"(g) H dZZ] (4.24)
e—0 )
2 2n Introducing the potentialQ= —vyIn Z, with y=kT, the
% 2 ex 8_+ 2 )\i+)\j+|n(|zi_zj|2+82)] pression is given by
* mi#]
Bn Y 1(02 45
2z . P=olw )Tzl v ) .29
X > ex 2 NN In(|ze—z)|%+e%) ¢,
Pctn The variation of Eq(4.25 with respect to the volume leads
(420 o the following equation of state:
_(.2\R%/8m 2_p2 .2 - R?
wheref(g)=(&°) , and3“= 7 +R% . The contributions PV=|1— —|(MKT, (4.26)
of f@"(¢) are eliminated by a redefinition of the fugacity 8w
,{Z;”;‘;f(s)/ 2. Thegrand-partition functior4.6) can be writ- where(N) is the expected number of particles defined by
i " 2n(1- R?/87) (2n)
o2 NYy=Z 2 Z=y V2 m(2n) Z@". (4.2
= 2 Z(2n), (4.21) < > 4 (2n)! (2n) (4.27
n=o (2n)!
The equation of staté4.26 exhibits a Kosterlitz-Thouless
where (KT) phase transition at the critical temperature:

2n (R2 +R%),=8. (4.29
Z@n) = Iimf d?z,
e—0 Jl:[]- )

For atractive and repulsive Thirring couplings, the critical
p{ 2 on ] line characterizing the KT phase transition starts at the criti-

X >, ex

cal value of the coupling constant
> exp g 2 NN In(lzi—z] +el) Ping
{)‘i }n

I#J , 277
Rz 2n 9= (4.29
> exp{ 2 N In(z-z) e |>] Vi-a)(2-a)
ek ki' For g=0, the equation of stat@.26) reduces to
(4.22 )
PV= §<N>kT. (4.30

B. Equation of state

Following the standard proceduf#7], in order to obtain |n the free case, the equation of state can be writen in terms
the equation of state of the statistical-mechanical system def the equation of state describing a Coulomb gas. Since in
scribed by the partition functio®.21), we shall consider the  the free case the action is writen as a sum of two decoupled
system confined in a finite volumé=7R?. The themody- sine-Gordon actions, the partition functiéh) factorizes as
namical limit is performed in the end of all calculations. terms of two Coulomb gas partition function€= =,
Making the change of variables—z=z/R, we can write X Z,, whereZ, are the partition functions of two noninter-

the partition function4.21) as acting Coulomb gas in a volumé
V2n(1 BZ/BW)Z(ZFI) 4.2 _ \Ma Z(2n5) 43
nZ() (2n)| ( 3 naE—O (zn |)2 ’ ( :D
with with
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A Mg done in the treatment of functional integral bosonization, is
Z@na) = Iimj I1 d% rigorously justified through this result.
e—07 1=1 The statistical-mechanical description of the bosonized
2n, theory has been performed. As a result of the coupling of the
Xexpl = 2 NN In(|2i_2j|+|é|) _ s!ne-Gordqn_fleIds, the grand patrtition fgnctlon of the asso-
2i=1 ciated statistical system does not factorizes as a product of
i

partition functions of two Coulomb gas systems. Indeed the

(4.32 partition function describes a gas of two types of point par-
ticles carrying independent Abelian charges which can as-

sume plus or minus signals independently. The Coulomb in-
teraction only occurs between charges of the same type. The

1 T(1 1 selection rules, which ensure the infrared stability of the
P= Yz(w) :P1+P2:7<§<N1>C+E<N2>c : composite statistical-mechanical system, are independent
(4.33  and lead to two conservation laws for each type of charge. In
) _ the free theory limit (=0, R2 =R2=27) the grand parti-
where () is the expected number of particles of a Cou-tion function factorizes as the product of two Coulomb gas

The total pressure is given by

lomb gas in a volume&/ [17]: partition functions. The associated equation of state is, how-
ever, very simple even in the interacting case. It exhibits the
1 2 722 ~ Kosterlitz-Thouless phase transition characteristics of some
(Na)e=—4" > 5V"a(2n,) Z@M). (4.34  two-dimensional models.
ana=0(2n,!) The peculiar nature of the cosine interaction for this two
Fermi fields model could be forecasted by a Fierz-like trans-
V. CONCLUSIONS formation of the fields. By interchanging the role of the left

Using the Abelian reduction of the WZW theory we have Lorentz co'mponent.s of bqth f|§lds we obtain two Thirring
considered the functional integral bosonization of a mode/MCdels with the interaction in the mass tertiy;y;
with two fermionic fields with Thirring-like coupling. We — ¥aip+ ¥pia . This redefinition of the fields calls attention
showed that the use of auxiliary vector fields in the bosonizato the close relation with Gross-Neveu2D model.
tion procedure enlarges the Hilbert space by the introduction The two-fermion system with contact interaction that mo-
of an external field algebra and that should not be considereidvates the present study does not incorporate the interaction
as an element of the intrinsic algebraic structure defining thavith the electromagnetic field. It would be instructive to
model. The correct identification of the original positive met- study the generalization of the model here dealt with by in-
ric Hilbert space as a proper subspace of the enlarged indefiroducing the coupling with a physical electromagnetic field,
nite metric Bose Hilbert space has been done witteopti- besides the vector auxiliary ones. Notice further that the sub-
ori disregarding the decoupled scalar fields. We have seeigtlies associated with the proper definition of the Hilbert
that a null metric combination of derivatives of scalar fieldsspace will come about in the analogous to the model here
persists as an element of the algebra of observables after th@alt with in higher dimensions using the bosonization of the
dequartizing procedure. Contrary to naive expectations, igurrents.
spite of the zero norm fields the Hilbert spaké does not After over a quarter of a century of investigations of two-
contains infinitely delocalized states and the asymptotic facdimensional field theories we have learned that, besides their
torization property is not violated. The factorization of the peculiar formal aspects, two-dimensional models have also
partition function will generally leads to incorrect conclu- the value of providing a better conceptual and structural un-
sions concerning the physical content of the model. The alderstanding of general properties of quantum field theory
gebraic structure of the model was identified according td18—20.
general structural properties of quantum field theory, and
which are rela_ted to the trivialization of some 'Fopological ACKNOWLEDGMENTS
charges in going from the enlarged bosonic Hilbert space
H?B to the Hilbert space${’ and™. This procedure allows One of the authors$L.V.B.) is grateful to Conselho Na-
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