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We study the electric flux tubes that undertake color confinemerit#R2 supersymmetric Yang-Mills
theories softly broken down t&/=1 by perturbing with the first two Casimir operators. The relevant Abelian
Higgs model is not the standard one due to the presence of an off-diagonal coupling among different magnetic
U(1) factors. We perform a preliminary study of this model at a qualitative level. Bogomol'nyi-Prasad-
Sommerfield(BPS vortices are explicitly obtained for particular values of the soft breaking parameters.
Generically, however, even in the ultrastrong scaling limit, vortices are not critical but exist in a “hybrid” type
Il phase. Also, ratios among string tensions are seen to follow no simple pattern. We examine the situation at
the vacua half broken by the Higgs mechanism and find evidence for solutions with the behavior of supercon-
ducting strings. In some cases they are solutions to BPS equations.

PACS numbes): 11.27+d, 11.30.Pb, 12.38.Aw

[. INTRODUCTION fivebrane version of QCD, also named MQQD1]. The
string tension of theN—1 electric flux tubesT,, k
Certainly, one of the most beautiful ideas in the context of=1,...N—1, is given—up to a dimensioned factor that is
quantum chromodynamid¢®CD) is the confinement mecha- different for each theory but independentket-by a dimen-
nism envisaged by 't Hooftl] and Mandelstani2] through ~ sionless functiorf (k) =sin(7k/N). This function is some-
the condensation of light monopoles. In essence it states thBPW universal as long as the soft breaking perturbation is
the QCD vacuum should behave aslaal superconductor carried by a single Casimir operat#,11,12. Even in that
where magnetic order occurs, and electric flux tubes fornfase, the problem of finding such solutions in the particular
thus producing color confinement. In the context of QCD jtMmodel that emerges in this context has not yet been ad-
represents a kind of descriptive scheme, as long as it is néiressed in detaﬂ,probably due to the naive expectation that
known how magnetically charged quanta can arise and corjihe effective theory consists &f—1 copies of the standard

dense in the effective low-energy theory. In this respect, théJ(l) Abelian Higgs model. It was already shown by Dou-

idea of Abelian projection proposed by 't Hooft has received}?llas aand Shtenket;] that tge m%gnetltc;] U(l). fr:]atc):to;]s O(fj thfet'r?'
increasing support from numerical simulations on the Iatticer;%rso gluear;ilrimular?tci)(?s/ a?gcrclo:,ln% e{8]e _r;ﬁ'g exci);tgr?ce Oof €
in the last few yearg3]. Even in the continuum, recent work thesepoff—dia gnal counlings wgs cénfirmed N two dif-
using a novel parametrization of QCI4] points in the di- 9 UPIINGs; X .

rection of the above scenario for color confinen&it From ferent framew_orks. FII’St,. they appear in the expression of the
the analytical side, the understanding of nonperturbative phégonaldson-wnten func_uonal for gauge group 3“-)([15]_-
nomena in four dimensional quantum field theory has beefl0reover, these couplings were shown to satisfy a stringent

put several steps forward since Seiberg and Witten conconstraint coming from the Whitham hierarchy formulation

structed an exact solution for the low-energy dynamics o’ the Seiberg-Witten SO'?ft'_On in Ref16] where, in addi-
SU(2) N=2 supersymmetric Yang-Mills theofg]. In par-  tion, @ general ansatz fai" is given.

ticular, it was possible for them to show that the mechanism N this paper, we extend the wofid3] to the case of

of color confinement devised by 't Hooft and MandelstamSU(N), N=2 supersymmetric Yang-Mills theory softly bro-
occurs when supersymmetry is broken dowoMe 1. These Ken to N=1. The analysis is performed in a “peculiar”
results were soon extended to the case offNJ7—9]. Fur-  scaling limit (named “ultrastrong™ in[11]). We show that,
thermore, whenV'=2 supersymmetry is softly broken down €ven in that I|m|.t, generlcally.there are no Bogomol’lnyl-
to A’=0, the same mechanism has been shown to persigtrasao_l-SommerfleI@BPS elec_trlc flux tubes. A perturbative
[10]. analysis leads to the conclusion that the phase of dual super-

In spite of the fact that these results are well known, nofconductivity is of.type Il; i.e.,.there isla short range repulsive
much attention has been paid to the actual solutions in thirce between different vortices. This fact supports the ex-
strong coupling limit corresponding to electric flux lines pectation that indeed electric flux lines are safely confined
that would undertake quark confinement. In H&f, it was
shown that this sort of vortex should have a spectrum
of string tensions that distinguishes among different factors *Except for SY2), both at the maximal singularity of the Cou-
in the magnetic U(1Y~! theory arising in the infrared. lomb branch for pure gauge3], and on the Higgs branch in the
The same result was found in the framework of kfi¢heory  theory with massive fundamental matféa#.
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into stable flux tubes, a feature of the confinement mechafhey are accordingly called maximal singularitfes.

nism that is not granted priori.2 It is worth mentioning in The addition of a microscopic superpotential breaks su-

this respect that numerical simulations in lattice QCD seenpersymmetry and leads to afi=1 theory

to point out that the type of Abelian Higgs model behind the

picture of dual superconductivity is a critical one between 1 ‘

type | and type 1[18]. WN=1:k22 NI e ()
The plan of the paper is as follows. The setup of the -

problem is given in Sec. Il where some aspects of the IOW'N

energy dynamics of\V'=2 supersymmetric gauge theories

softly broken down toV=1 are reviewed. We emphasize the

existence of nonvanishing couplings between the differen&angerously irrelevant operatd20,21. We will not discuss
U(1) factors—even at the maximal singularity—which play §

. ; these subtleties here, and shall restrict ourselves to the case
an essential role in our results. In Sec. Ill, we show that th

. : ) : ) of up to cubic perturbations,
string tension of vortex like configurations obeys a
Bogomol'nyi bound in the ultrastrong scaling limit. How- 1 1
ever, there are no BPS electric vortices in the system unless Wye1=su Trd2+ — v Trd3, (2
the complex phases of the soft breaking parameters corre- 2 3

sponding to different Casimir operators are aligned. Even in

this case, we show that the string tensions of the resultind IS bréaking is soft, in fact, renormalizable. The continuum
BPS vortices are governed by a dimensionless functio acuum degeneracy is lifted except for a given set of points

f(K), which is different from the one obtained|ig,11], the ~ that depend on the actual values of the parameteasd v
latter being recovered as a particular limit of our system Let us focu; on the low-energy effect_|ve f_|e_ld theory near
corresponding to a single quadratlé=1 perturbation. In & Maximal point that we phoose,zfor simplicity, to be that
Sec. IV, we focus for convenience on the group SU(3) and"”th real quadlratlc Ca5|m|ru=NA_. This is a dual\=2
analyze the critical vortex solutions in certain simplified SUPETSYmmetric gauge system with gauge group U(d)
cases. We speculate about the full spectrum of such configy¢hich includes both chiral multiplet®’i"=(x;, Vi), and
rations. A perturbative analysis of the dynamics expected fohypermultipletsH;=(M;,M;) that correspond to the mono-
nearly critical vortices is performed in Secs. V and VI by poles that become light in that patch of the moduli space.
means of energetic arguments. This analysis reveals the efne can choose a homology basis for the cycles on the aux-
istence of repulsive forces among vortices corresponding tdiary curve such that each monopole has a unit of charge
different magnetic U(1) factors. Thereafter we refer to thiswith respect to each dual gauge field. The quanti§€s

phase as a “hybrid" type Il phase. In Sec. VI, vacua half \,, and i, are chiralA’=1 superfields, whilev? are
broken by the Higgs mechanism are considered. The simi= 1 yector superfieldgand WP their corresponding super-

larities with and differences from the model proposed byfigg strengths For completeness, we give also thé=0
Witten to describe cosmic superconducting strifd8] are  -onient of these superfields ’

discussed. We find solutions to the Bogomol'nyi equations
W|th_the behavior of superco_nductmg strings. Finally, Sec. XP:(¢P 0 F, VP:((AS)i A;,D)),
VIII is devoted to our conclusions and further remarks.

N

otice that those contributions in E@.) with k>3 are non-
renormalizable. However, this does not necessarily mean that
they do not affect the low-energy dynamics. They could be

Mi:(d)miiwmi!':mi)v mi:(amivzbmiiﬁmi)i
Il. INFRARED DYNAMICS AT MAXIMAL _ o _ N
SINGULARITIES where the notation for fermionic, bosonic, and auxiliary
_ components is the standard one. Settitig=(¢P°), the co-
The quantum moduli space of vacud, of SU(N), N ordinates at the point of maximal singularity that we are
=2 supersymmetric gauge theory has a singular locus giveycysing on area®=0. The dominant piece of tha/=2
by hypersurfaces of complex codimension 1 that may interjoy.energy effective Lagrangian is given in terms of a holo-

sect with each othejf7]. Along each of these hypersurfaces, mqrhic function, called the effective prepotential:
an extra massless degree of freedom—whose quantum num-

bers can be read off from the monodromy matrix correspond-———

ing to a closed path encircling the singularity—must be in- s _ o

cluded into the effective action. At the intersections, many ~In SU(3), forexample, the singular locus is given by the com-
states become simultaneously massless. Of special interd¥¢* Cur"ess‘mg_27(vi2/\3)?:0',Where”:(llszr ¢?) andv

are those singularities whetd—1, i.e., the maximum al- = (1/3XTr ¢°) are the gauge invariant order parameters constructed

lowed number of mutually local states, become masslesQUt of the scalar field belonging to thé=2 vector supermultiplet,
' andA is the quantum dynamical scale. Higher intersections of these

curves lead to the so-callet}, and Z; singularities, given, respec-
tively, by the points{u®=27A%,0v=0} and{u=0p%=4A%.
2It could happen, for example, that the electric vortices turn out to “For instance, in the case of $8), thetheory has generically five
be unstable, and their core grows and smears in such a way thAf=1 vacua, three of which are the maxinZgl points. In the limit
they do not lead to confinement of electric charffEg. u—0, the remaining vacua approach the points[9].
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9F (P whereU; andV; are the derivatives dff andV with respect
( f d* D to ¢ [8]

Uj(¢2)=uf®A+ 2 ufP(¢°)A*P,
de WDIwDaJ p=1
aXI aXJ

ul®=—2j sing;, (12)
jd“G{MT VUM + Me 2V )

(¢D)_U(0)A2+E (p) ¢ )Az p

+Ref d2oW(x°,M,M). (3)

v{9=—2jsin 26, (12)
The monopole fields have been “integrated in” in order to
soak up the singularity of the effective action whaﬁ
=(¢’)—0, whereM,; becomes massless. The effective su-
perpotential at low energies is

while u(p)(qﬁD) andv(p)(qu) are homogeneous polynomials
in ¢| of degreep, so thatC; are regular functions in the

vicinity of the maximal smgularlty Flnally“J?PJ is (1/4ar
WO M, M) = 2Mix M+ utd (%) + V(X)) 2

times the imaginary part of the period matr
D D
. . - (¢P)= —5—5= g( ¢—),

the last two terms being the effective contribution of the ! f9¢in7¢ Zm A
supersymmetry breaking superpotent@l. In fact,2/ andV (13
are the Abelian superfields arising, respectively, from the
quadratic and cubic Casimir operators in the low-energywhereA; Asme ande =ja/N. When expanding around
theory. The vacuum expectation values of their lowest comthe vacuum expectatlon valtaa$ ($P), r”((bD) yields the

i+ Ti‘}”+o

ponentsU andV are the holomorphic coordinates iwt, , effective coupling constant matrix. The logarithmic singular-
(U)=u and(V)=v. ity when aP=0 corresponds to the perturbative running of

Written in component fields, the bosonic sector of thethe dual coupling constant up to the maximal point, display-

system is described by the Lagrangian ing the asymptotic freedom of the dual description. The cou-

pling flows to zero due to the fact that the quantum fluctua-
= b (F. )V (E*). +(D VDA tions of massless monopoles have been integrated out. This
oit. 5= ~ 3PP (F);+(Duém)* D i is fine as long as one is interested only in searching for
vacuum solutions. Thekl andMT in Egs.(3), (4) stand for

~ ~ D
+Du¢mi(D”¢mi)* +bijd,. i *‘9’%1 the zero modes of the monopole figkke the discussion in
1 [10]). Here, however, in order not to run into double count-
—|Zb;;D;D;+b;F*F+F* F. +E* Ep, ing of degrees of freedom, we should introduce, on physical
i : 1 |

grounds, an infrared cutoff for the monopole loop integrals.
(5) In each U(1) factor the natural energy scale is set by the soft
breaking parameters’ ~|C(%|*2 with

where the auxiliary fields are solved as

Ci(0)= ,uui(O)A-i- VUi(O)AZZ —2iA(usin,+ vA sin 26,),

_bﬁl(|¢mj|2_|amj|2)v (14)
F=—p! D +C. 6 and the perturbative couplings of each monopole to its cor-
! ! (N2 b ) © responding dual vector field
247 B, Fo=—26% ¢, ) ar 1 [|CO)
. . . . = T am 2 | (19
whereas field strengths and covariant derivatives are given Ybi Aj
b
y show logarithmic variations among different U(1) factors.
(F#V)izﬁﬂ(AE)i_av(A;D;,)ia (8)
— :AD
D#¢mi_ a#¢mi+l(Aﬂ)i¢mi’ %In other words, we are dealing here with a macrosceépiassi-
cal) theory of the Ginzburg-Landau type, and we should consider
Dﬂ¢mi:aﬂ¢>mi—i(A2)i¢>mi. (9) the coupling constant of th; and M/ classical fields to VP :
wave-particle duality connecty, with the running coupling con-
ConcerningC; in Eq. (6), it stands for stant of the quantum theory through the formdlgp;=gp;(a°
. ~|Ci(°)|l’2), the strong coupling limit becoming the classical limit
Ci(¢°)=pnU;j(¢P)+vV,(¢°)=|Cj|e'F, (100 for the magnetically charged quarj2].
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Even in the close vicinity of the singularity, different yjth c(©=|c(®|ei#” given in Eq.(14). Since the absolute
magnetic U(1) factors are coupled througfi [7.8]. Exactly  phases ofn; are not fixed, it has the topology of a torus of
at the singularity, i.e., a =0, the generic expression pro- genusg=N- 1. Equation(23) shows that the scalar compo-

posed in[16] for these off-diagonal couplings is nents of the monopole superfields condense in the vacua
5 N1 N placed at the maximal points. Although the presence of con-
off 4! LA s 0 densation suggests that confinement indeed takes place,
7ij N2 kgl sink S|nk0qu2:1 Té’q) cosk o, coskflg some further analysis is required before this can be defini-
(16)  tively established. An important question to be answered is
whether the collimation of the electrior dual magnetic
where TSQ is given by flux lines is energetically favored or not. This is a dynamical

issue that goes beyond the simple vacuum analysis.

7= 8pq > log(2 cosf,— 2 cosby)?
k#p I1l. BOGOMOL'NYI BOUND IN THE ULTRASTRONG

—(1-3,q)log(2 cosh,—2 cosby)?,  (17) SCALING LIMIT

) The resulting effective theory we have arrived at, in the
with 0p=(p—1/2)7r/l\(l)ﬁan_d P,q=1,...N. In the case of ,qonic sector, is an AbelianN(1) Higgs model with
SU(3), forexample,ry;=i/mlog2[7,8,18. These interac-  cqupled U(1) factors and a quite nonstandard Higgs poten-
tions are also present in the effective potential obtained frongia| The search for stable vortex solutions in the complete

the terms in square brackets of E§), system is a hard problem. On general grounds, one should
1 not expect to have BPS string solutions in spite of the fact
Veri==b: H( )| b= Pm|D (| dml?—|dm |?) that /=1 supersymmetry is enough, generically, to have
er =3P (¢ |9 "= 19ml ) Sm "= BPS vortices in four dimensiori&€3,24. At least, this is the
D12 5 1~ 12v . -1, 4D case ofNV=1 QCD, where the strings are conserved modulo
+2|¢7] (|¢’mi| +|¢mi| )+ by (%) N so they cannot carry an additive conserved quantity such
~ 5 ~ .- as a central charge5]. There is a limit, however, in which
X[\/§¢mi¢mi+ci(¢ )][\/§¢mj¢mj+cj(¢ )] the system simplifies and admits BPS vorti¢&&]. It hap-

(18) pens whenever the condensation paramete®ds are inde-
pendent of$®, something that corresponds to linear pertur-
Notice that;; * being positive definite, the potential is either bations in the superpotentié), i.e., Fayet-lliopoulos terms.

positive or zero. Given the expectation values of the complex his kind of term together with properly normalized quartic
scalars potentials are known to lead to Abelian Higgs models that

admit BPS vorticeq 24,26,21. Taking into account Egs.
<¢P>=ai'3, (pm)=m;, (Em):ﬁh, (19 (11), (12), one should consideh —c and small values of
' ' the soft breaking parameteis—0 andv— 0, such thaju A
N=1 supersymmetric vacua are in one to one correspor@nd vA? remain finite. In this “ultrastrong” limit,C;(¢p)

dence with zeros o¥/q;;: HCi(O) are constants, and one can easily check that setting

aP=(¢P)=0 is a consistent constraint. One may then study
J2mm;=—C;(aP), (200  the existence of extended solutions in the remaining fields.
The (bosonic part of theeffective Lagrangian adopts the
ma’=ma’=0, (21 form
|| = my]. (22) Eé\ﬁ’lB:_%bi(jO)FLWFJM_,_(Dﬂgbmi)* D¥ b,

i=12,...N—1. From Eq.(21) we learn that monopole con- ~ 5

densation can occur only at hypersurfaces Wlarprero for +D/”¢mi(Dﬂ¢mi)*

somei. At the maximal singularity, evergliD vanishes, and it

is clear from Eqs(20)—(22) that N—1 monopoles have a — }b-(p)D-(O)D(O)—I—b-(Q)F-(O)*F(O) (24)

chance to condense. While soft breaking is parametrized by 270 -t vt ey

u and v, monopole condensation is controlled By. If for

somej we haveaP=0 and adjusC{”=0, the corresponding whereb(” stands for the actual value bf; at the maximal
U(1) remains unbrokenng=m;=0), and the vacuum is singularity andD{® ,F(* are obtained from Eq(6) by re-
said to be partially broken by the Higgs mechanism. Sumplacing b;; with bi(jo). It is now feasible following
marizing, the Higgs vacuuri at the maximal point is given Bogomol'nyi [28] to give an expression or the energy per

by unit length corresponding to static and magnetically neutral
_ _ _ o [(Ag)i:O] vortexlike configurations(i.e., configurations
H={m;, m;/|m;|>=|m;|>=|C?|/2, m=—€#"mf},  with translational symmetry along one axisy means of the

(23) remaindetV= 1 supersymmetrj23,24] (see als¢26] where
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a multi-Higgs system has been tregtelthdeed, the energy which is saturated for configurations solving the following

density can be rearranged as follows:
1 (0)( i ) (gl (0) i 2
5eff:§bij (F1.=D{)(F1,= D) +|(D1£iD ) ¢y |

+[(D1 %D ) iy >+ B FOF O % €000
(25

where the last term, corresponding to the currefy

= —i(¢nDpdm+ émDpdm), does not contribute to the

set of first order equations:

L==\2Rege“F®), DO+iy2Ime*F?)=0,

(33

(D1£iD3)dn =0, (D1%iDy)y=0. (34
The second equation if83) implies

b | =1 bm |, IM(E[V2h0 b +C{V)=0. (35

string tension for finite energy configurations. It is easier toThese constraints should hold at any point, in particular, at
analyze this system in a different set of variables, obtainegeros of the Higgs field. Thus

from the above by means of an SUR2jransformation,
yielding

DO—D@=— 2 Ree*F?), (26)
V2RO 2FO=—e ¢(D@O+i2 Ime“F?)), (27
y I —iaT %
d’mi_’qsmi:_ﬁ(d’mi_e ¢mi)a (28)
B =— i—eia(¢ +e g ). (29)
m; m; \/E m; m;
The tensionogs= [ d?xEq¢ NOW reads
2 1 (O)(Ei VO (el +(0)
Terr= | dX| 5D (F1= D7) (F1,= D))
+|(D1iiD2)<Aﬁmi|2+|(D1iiD2)Zﬁmi|2
+bOFOFO* = \2F) Re(e'“C(?)|. (30

The last term explicitly breaks SU(R symmetry. Finiteness

of the string tension demands regularity of the fieldsRdn

)
d’m-:_elﬁ' ¢:1

(36)

with a+B=0 or 7. Consequently, foi #j, g{)'=p"
_131(0):0 or 7. Summarizing,there are no BPS electric
vortices in the system unless the complex numbé?sate
aligned or antialigned This alignment, in turn, requires su-
persymmetry breaking parameters to have no relative com-
plex phases. Notice that this corresponds to havingR
invariant bare Lagrangian. For definiteness, in the case of
SU(3) one easily sees that

CP=V3A(u+vA), CP=\3A(u—vA), (37)
so thatB)=0 or = if and only if arg(vA) = argu+n= and
[vA|<|u| or |[vA|>]|u|, respectively.

A comment is in order at this point regarding the string
tensions of unit vortices, whose existence will be discussed
below. From Eq(32), the string tension of electric vortices
carrying a single flux quantum,=1, n;.,=0 is immedi-
ately clean. Up to a common factor, it is given by

T Afy(k), fn(k)=|msinb+vAsin26]. (39
This result makes clear the dependencd k) on the su-
persymmetry breaking deformation entering the superpoten-
tial. It generalizes previous results [i8,11,14 and, in par-

and vanishing of the potential energy, field strengths, andicyjar it shows that, for perturbations other than the
covariant derivatives at infinity. Altogether, these require-quadratic one, the string tensions are modified with respect

ments cause the space of solutions to split iffto* discon-
nected pieces that differ by the winding numbers of e@g;,ih

to those in the above mentioned results. In particular, notice
that whenu and v do not vanish it is possible to have dif-

over the border of the plane. The electric fluxes label thesgerent string tensions even in the case of SU(3) and, in gen-

sectors. In particular, in theng,n,, ..
are

. ,Nn—1) sector they

CIDI-:—JdZXFle:Zﬂ'nj, ji=1,2,...N—-1. (31

eral, Ty#Tn_k-

IV. ALIGNED VACUA: CRITICAL VORTICES

We will focus hereafter on the case of &). When the
constantsy and v are fine tuned in such a way that the

The string tension of possible vortex configurations with to-phases of the two complex energy sca8 and C{®) are
pologically quantized 1f;,n,) electric flux exhibits a either aligned or antialigned, i.8{=0 or , respectively,

Bogomol'nyi bound

oet=M2mA Y, |(wsing+ vA sin 28;)cog a+ BP)ny|,
I
(32)

we are at the self-dual point. The Bogomol'nyi equations

(33), (34), after Eq.(36), read

: 1
Fio= x50 el gjP~vf), (39
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(D;*i€Dy)p;=0, (40)  nonrelativistic non-Abelian Chern-Simons theor[@9], in
which the same mixing appears in the field strength and co-
Whereszei(ﬁﬁj(o)):il andbi(jo) is variant derivative equations. Here, there is mixing in the

former but not in the latter, and, given such an asymmetry, it

. 1 is much more difficult to show whether the local equations
Op1 —2Iog 2 and the global conditions reconcile or not.
b(0) = 4 (41) On general grounds, it is reasonable to expect that Egs.
1 1 5 ’ (42)—(45) will exhibit solutions in the topological sector
ﬁlogz Op2 (nq,ny) with nqy,n, representing the integrated flux of an

“ensemble” of noninteracting vortices located at different

. ._(maybe coincidentpositions. Indeed, the smallness of the
Also, we have performed, for convenience, some redeflmg Y Otp

. ) ratio y/\; suggests considering this system as a perturbation
tions of the fieldsp;=2¢y,, and parameters{ =2y2|C{*. thg diago?w%l situation, so gthat th)e/ above so?utions will
Let us further remark that E¢39) gives an unusual contri- come out from continuous deformations of the standard criti-
bution to the electric field of each dual U(1) factor from cal Abrikosov vortices. Only in some simple cases, can the
zeros of both Higgs fields. This is a straight consequence afuestion about the existence of solutions be answered by
the presence of off-diagonal couplings and leads to interestaking advantage of known results from the standard Abelian

ing results. It is clear that solutions to Eq89), (40) also  Higgs model. This will be done in the following two situa-
satisfy the Euler-Lagrange equations. Without loss of genertions.

ality, we can adjustr so thatel=+1,6256=eiﬁ(2(i)=t1. Solutions of type(n,0) and (0,n). Clearly it will be
Let us focus on the BPS solutions with the upper sign. Theenough to prove existence of one type, say0f. Assume
first order system can be written as therefore thatp,=| ¢,|€'2 is nowhere vanishing on the finite
transverse plane. As usual, E45) couplesé, andA,. So, if
Fio= Ml eal?=v]) — ev(| p2l*~v3), (42 |¢,| has nowhere a zero, regularity of the phase enfofges
to have vanishing circulation around any loop. By Stokes
Fi=—v(|ei?—v]) +eny(|@a?—v3), (43)  theoremF2,=0 everywhere, and inserting this back into Eq.
(43) yields a constraint that correlates the profile$eff and
(D1+iD2)¢1=0, 44) |,
D;,+ieD =0, 45
DurieDales “ [pal?= €5 (| pal2=vD)+03. (48
with 2

Existence of the required vortex profile fop,| can be
i (46) proved by inserting Eq48) into Eq.(42), which leads to the

«Q
on

92 195 o
A=b®1= 1_LD'2|0922
1} 1

62 2 standard Bogomol'nyi equations for the critical Abelian
Higgs model(after a suitable renormalization of the Higgs
field):
_, log2
y=b T =—— (g5 ot g5 ). (47)
87 2

F%2=)\1(l—;\/—)(|cpl|2—vi), (49
Note that, as we are in the wea) coupling regime,y 2
<\;. Naively, one would suspect that in the scaling limit we )
are investigating the system diagonalizes. Notice, however, (D1+iD2)¢1=0. (50
the important fact that the relative factor betwegnand y . 2
vanishes only logarithmically. Hence, for example, setting’Ve €am frorr12 Eq(48) that, if |¢;1| ranges from O(at the
|Ci|/A2~10"1%in Eq. (15) yields y~ (log 2/5)\;~0.13; . origin) up tov7 (at infinity), |2(pz| 2W|II Cozrrespondln.gly in-
The topology of the configuration space determines globaiérpolate betweer e(y/\z)vi+v3; anduv;. To remain con-
properties of the solutions in two ways: the quantization ofSistent with our.|n|t|a!05)isumpt.|on ﬂ;@bﬂ vamszhed nowhere
the fluxes is due either to the asymptotics of Ajefields or ~ We must setoelthe621 =0 with v3>(y/\p)vy, or elsee
to the existence of a prescribed number of zeros ofghe  =—1, ie., %)= 7. We observe that the latter possibility is
These global inputs should be made compatible with the difless contrived.
ferential equations, as happens in the Abelian Higgs model. Solutions of typgn,n) for a single perturbationLet us
In the present situation things are less clear; from E4%,  briefly consider the case of SU(3)=2 supersymmetric
(45), where no mixing between the two(lU)’s shows up, Yang-Mills theory softly broken taV=1 only by means of a
one reads the electric fluxes using Stokes theorem and trgingle Casimir operator, i.ey=0 or »=0. In both cases,
asymptotics ofA;. On the other hand, Eq$42), (43) mix (D=0 or m, and the theory is critical. Moreovek,; =\,
the factors and botlp; and ¢, contribute together to each =x, C{¥=Cc{, and hencev,=v,=v, so that the
'». In this respect, our system is quite awkward as comBogomol'nyi equations have an almost trivial solution of
pared with other nondiagonal models such as, for examplesorticity (n,n) [or (n,—n)], by imposing the ansatz;
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=¢, A=A (or ¢53=¢1=¢, —A,=A;=A) in the case WT(Z,?)zz_m, z=0. (61
(D=0 (or 7). The system is again reduced, after a suitable N
normalization of the Higgs field, to the critical Abelian |n particular, if we consideW. =—aW?, we get, near the

Higgs model origin,
Fio=*(\—ey)(|e[*~v?), (59) f=—az ™  £=0, 62)
(D1%iDy)e=0, e=e'. (52  so that

It is crucial, for the system to admit regular solutions, that p1=2"""(zZ"-a), ¢@;=2". (63)

y<\ as indeed happens. As is well known, the general so-

lution to this sytem represents an assemblynafeparated This perturbation realizes the splitting of am, (1) vortex at

vortices centered at the zeros of In our case, every such the origininto an —m,n) at that point anan (1,0) vortices

zero is doubled and we have assembliesnofouples of located at them roots of the coefficiena. The analysis for

superimposed vortices of both U(1) fields. (2%)= 7 (i.e., e=—1) is totally equivalent and yields noth-
Also, self-dual configurations in which the center of theing but vortices of type 1 and antivortices of type 2 or vice

vortices of different types split apart can easily be con-versa, moving freely with respect to each other.

structed along the lines if80,31]. To see this, we perturb For the general analysis, following Jaffe and Taul2s,

one of the solutions just described 863 =0, the Higgs fields should be “couched” as
(Pj, =)+ 5@] , Aj,:Aj+ 5Aj ' (53) (szvje(uj*'i(lj)/Z, (64)
and linearize the self-duality equations to get to recast the Higgs system in the following form:
—4i9,6A1— 2\ @* 81+ 2y@* 5p,=0, (54) V2u; =2\ v5(e"1— 1) —2eyv5(€"2— 1) + e cdpdey,
(65
—4i9,6A,+2y0* 51— 2\ 0* S¢,=0, (55
V2U2: - 2’}/0%(6”1_ 1) + 26)\20%(6”2_ 1) + SbcabaCQZ .
igpe oA+ (d,+1gpA;) d¢;j=0, (56) (66)
where we use the notation,=3(d;—id,), Aj=3[(Ay); The gauge fields are determined by
+i(A2);], j=1,2, and fix the gauge conditions as 1
A)1=— (901 +ecadaUq), 6
3o(8Ac)1=~ N @[26Q+ ¥]¢|250,, (57) (Aehi= =5 Gethat ecalath) (©7
de(6AL) = 250, —\|¢|?6Q,. (59 €
o(oA)z= el o0 ~M e ot (Ac)2= =5 (32t Badali). (69

By writing d¢;= ¢¢; and using Eq(56), the vector pertur-
bations are found to béA; = (i/gp)J;¢; and the system of At each 1;,n,) sector, regularity implies that; has exactly
linearized equations reduces to n; zeros onC, say,z},z), . .. ,z{1j . Also, these are the only

points at which the singularities of the phases can occur. We

2 — — 2
VAW, =2(X 5 7)gp| ¢ "W, (59 can then choose the particular gauge

with W, =&, + &,. Notice that in both equations\& v)gp n;

>0. Although they have no regular square-integrable solu- 91(2'5:22 argz—z{), (69)
tions, we can admit singular ones provided the singularities =1

of ¢; fit with the zeros ofe in such a way thabe; is well

behaved. Take, for instance, the case of a radially symmetrign which the problem reduces to

solution of vorticityn centered at the origin of the complex

plane. Then, for smat, V2uy=2\03(e"1—1)—2eyv3(e2—1)
— ny
~ 7N

0(2.2)=2", (60 +a4n3, 8(z-2)), (70
and a singularity ofN.. at the origin is harmless if its order
is lower than or equal to. Equation(59) has indeed solu- V2u,= —2yv§(e“l—l)+26>\zv§(e”2— 1)
tions with such a behavigf32]; to be exact, two sets of ny
linearly indepeqdent self-dual perturbationd?(z,z),m +47y, 8z—2)), (77)
=1,2,3...,n, with =1
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where bothu; should vanish at space infinity. The general (D;FiD,)¢,=0, (80)
analysis is involved, and usually requires numerical relax-
ation techniques or hard Sovolev estimates.

and critical configurations are naturally of the forntif,,
¥n,), ny,n,=0 saturating the bound=7|nws—n,v3.
V. HYBRID TYPE Il VORTICES Here, in contrast, vortex-vortex solutions of the form
(£n4,*n,) would lead to the same energy surplus as in Eq.
76). But now 5£=0 for aligned magnetic fields, and this
erm decreases by minimizing the overlap, that is, by taking
he cores far apart.

In summary, to a first approximation, we see that, if not
eutral, vortex-vorteXvortex-antivortex configurations be-
ave repulsivelyattractively as in type Il superconductors.

ince this interaction involves vortices of differad{1)’s,
e speak of a “hybrid type II” phase.

By itself, the Abelian Higgs model we are dealing with is
worth a detailed analysis. For the moment, and awaiting
sounder analytical or numerical study of its solutions, asid
from the two simplified samples considered above little ca
be said about the generia{,n,) vortex solution. An inter-
esting peculiarity comes from the fact that there are only tw
overall choices of signs available in Eq89) and (40): ei-
ther the upper or lower signs have to be taken simultaneous&/
on all the equations or the bouri82) will not be saturated. . .- .
This should be contrasted with the situation in the standar?. Le;[ us d&s?uss ft.he pectul_|art|:]|es e atrlse Whgne'\zlgrtone
diagonal Abelian Higgs model, where each U(1) can be cong €S 10 model confinement in e.presen scenario. Hrst we
jugated ndeperdenty. To beter grasp wat s gang onf 0 ALY o coenience he shamosiee Toces

) o . - . 1,05
Ieg(i)u:socon&der the Bogomol'nyi equatioé2)—(45) with effect are (1,0)(“vortex 1") and (0,1) (“vortex 2,,).. n
' turn, quarks enter the system as external probes with chro-
moelectric charges@;,Q,) equal to (1,0)(“red quark”),

Flo= = (Wi — W), (72 (0,~1) (“blue quark”), and (~1,1) (“yellow quark”).
_ (hy,hy) is the “monopole” basis of the Cartan algebra of
(D1%iD2) e, =0, (73 the dual SY3) group and the fundamental BPS monopoles
correspond to the simple coroots of &). In other words,
Fi= = (W — yWy), (74)  the chromomagnetic charges of tige field quanta areh;
=1h;.;=0. Consider now, for example, the cgg8§,=0.
(D1xiD,)p,=0, (75 According to our previous analysis, chromoelectric flux

tubes of both (1,0) and (0,1) type form in response to par-
with W,=(|¢i|?—v?). If y<\i,A,, (=nq,*=n,) vortices  allel external electric field&, andE,. Vortices of type 1 end
with n,n,>0 come from solutions to the previous equa- at pairs of red quark-antiquark and vortices of type 2 finish at
tions with the uppeflower) sign, which should correspond pairs of blue antiquark-quark. There is therefore confinement
to deformations of analogous configurations in the case of red and blue quarks in a critical phase between type | and
=0. In the diagonal limity=0 the vortex-antivortex solu- type Il superconductivity, whereas the yellow quark confine-
tions (£n;,¥n,) would also solve the previous equations ment occurs in a hybrid type Il phase. The weak repulsion
but with a choice of one sign for Eq$72), (73) and the between the vortex 1/antivortex 2 pair pulls the flux lines
opposite one for Eqg74), (75). If y#0, as is now the case, slightly apart from each other. Thus, the quark-antiquark po-
solutions with this second choice of sign do not saturate théential energy would increase slower than linearly with the
bound(32) and, indeed, there is an energy remnant cominglistance, and one is allowed to expect deviations from the
from the off-diagonal piec€= m|nv5+nyv3|+ 6€. area law, but the force is still confining. If, instead’}
=1, a pair of yellow quark-antiquark will now be joined by
0g 2 a stable and non-interacting vortex 1/antivortex 2 pair of flux
2J d?xF1,F3,.  tubes. In conclusion, the cas@$}=0 or = can be physi-
2m cally distinguished by the behavior of the yellow quark-
(76) antiquark force. At large separatidf-pair production leads

- L . . . to instability of the string and the lowest string tension gov-
For antialigned magnetic fields, this extra term is negative, ., the large distance regirf@ 11]

and tends to increase the overlap by attracting the cores otr In the framework of condensed matter it is well known
vortices of different kind. _ B _that, in standard type Il superconductivity on a finite piece of
A similar reasoning can be carried out 857 = . In this material, although mutually repelling, vortices tend to form a
case, the equations read regular pattern by lying at the sites of a triangular lattice.
This fact can be reproduced analytically by variational meth-

5E= J d?x S ti= J d?x2b{YF1,F2,=

F%ZZ (N Wyt yWs), 77 ods[34]. We expect a similar situation here, the difference
) being that now repulsion involves vortex cores of distinct
(D;+iD,)¢;=0, (78 Higgs fields. Upon substitution of E36) into Eq. (24), the
, exact second order equations witl)= , corresponding to
Fi=F (AWt yWy), (79 vortices of types 1 and 2, in a finite piece of material
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b(lg)aa(Fab)l"' b(lg)aa([:ab)z O Q O O O
i o ® o [ o
=5(¢1Dpe1~ ¢1DpeT), (8D) O O O O O
0874 F ap)a-+ D0a(Fan) ¢ & o o o
| o O O o O
i
=5(¢3Dpp2— ¢2Dpe3), (82) ® ® ® ® ®
O O O O O
1 — .
DDegr= = oibl) Mgl =vh- D (@3 ¢ o6& o o o
O O O O O
= xn(0)=1) 22\ 1)\Bai FIG. 1. The type Il hybrid lattice. Black and white circles rep-
DcDee, \/E‘PZ b (leil*=vi) (= 1), (B4 esent the cores of vortices corresponding to differefi)s.

should now be supplemented with periodic boundary condiof a square with vortices of type 2 at the vertices and vice
tions. Thus, the system of differential equations is defined irversa is stable against small fluctuations.

a torus of modular parameter=L,/L,e'’. We have chosen
the x, axis as the direction of the firdt; periodicity; the
length and direction of the second periodicity is determined
by L,e'?. Application of the Rayleigh-Ritz variational
method as i134] plus previous work on the role of Riemann
theta functions in magnetic systerf35], suggest the field

VI. MISALIGNED VACUA

As discussed earlier, there are no BPS vortices in the
generic case where soft breaking parameters are not aligned.
We would be interested, however, in the response of the BPS

configurations

1
o= leexp<in1mllmz—E(Rez—nlml)z),
mye
(85

) 1
¢,= > Cpn ex;{mzmzlm z——(Rez—nzmz)z),
myeZ 2 2
(86)

and z= \Jgp(A — ¥)((X1

where n;,n, are integers

configuration when an infinitesimal misalignmﬁ)zs or

D=7+ ¢ is turned on. The dynamics of the system drives
the configuration off the constrait®6) which, therefore, can
no longer be imposed consistently. In fact, although the
Higgs mechanism yields a critical mass spectrum for any
value ofe (an obvious consequence of supersymmethe
eigenvectors do depend on this phase difference in such a
way that, when it is different from O ofr, massive excita-
tions do not respect the constraint surf486).

In the same vein as above, for small values: ofre will

treat the system as a perturbation of the critical situation in

+ix,)/L,), as trial functions to model extremals of the en- Which the net effect of the misalignment reflects itself in a

ergy. In fact, the choice of the coefficier®@, andCp, in
such a way that

"(z)=exp —n (Im2)?) = ®- ’ (z l) (87
(Pl 1 Im~ I1=1 _|1/n1 nq ’
2y N2 [ 1
Mooy (Imz) 2 T
@, (2)=exp —mn, Teege Az
=1 _|2/n2+ bl n;
(88)

force between the formerly noninteracting vortices. The
shortcut to obtain the sign of this force is to split the energy
(30) of the configuration into a BPS contribution plus an
additional perturbation. That is, after inserting the ansatz
(36) into Eq.(24), solutions to Eqs(39), (40) exhibit a string
tensiona 1= oon+ 80err, Whereosy is given in Eq.(32)

and

2
Y€
&reff:e?f d*(|esl?~vD (| @al?~03) (<)

(89)
leads to(metg stable solutions to the field equations. Here
li=1,...n;, and®[}](z|7) are the Riemann theta func-

tions with characteristics; sel85] and references quoted
therein.

with e=1 for B¥=0+¢ ande=—1 for B{=7+¢. Con-
sider a vortex configuration of type (1,1) where the zeros of
each Higgs field are well separated. Then the above surplus
. . . . of energy is positive foe=1 and decreases as the cores are

) Notice that the solution describeg chrgmoelectnc VO™ taken f%)r/thef apart and the overlap diminishes, hence the
tices, located at the zeros gf, andn, vortices of the other jnteraction in this case is repulsive. When perturbing around
kind centered around the zeros @32. It corresponds there- the antialigned casB(zci)= 7+ ¢, the energy incremer(89)

fore to a hybrid static triangular lattice of vortices; see Fig. 1reverses sign. Previously noninteracting,<{1, antiparallel
One can check from a dynamical point of view that a con-vortex configurations tend to increase the overlap in order to
figuration like this, where a vortex of type 1 is at the centerlower the perturbation, and hence the force is attractive.
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In summary, when perturbing around the aligned or mis-with care. For example, the question of quantum tunneling
aligned scenarios, the vortex configurations are no longewill certainly be much more relevant here than for cosmic
neutral, and the interactions follow the pattern that was prestrings. Incidentally, this question was also address¢86h
viously named “hybrid type II” where, if made of distinct where it was seen that these power law solutions are more
U(1)'s, parallel vortices repel and antiparallel vortices stable than the usual ones.

attract. As compared with Witten’s model, the one here involves
the additional feature of a nondiagonal kinetic term for the

VII. VACUA HALF BROKEN (dua) vector particleqcf. Eq. (24)]. But precisely the fact
BY THE HIGGS MECHANISM that the quadratic forms of kinetic term and potential are

related paves the way to the possibility of rewritting the en-

As pointed out |n[9], for particular values of the soft ergy as a sum of Squarég(_))_ We may therefore expect
breaking parametera and » we have four instead of five yortex solutions of the superconducting type with dynamical
vacua. This happens whenever one of the two vacua haffroperties of BPS configurations. We can check that this is
broken by the Higgs mechanisnja?+0,a5=0} with  indeed the case by looking at the smooth deformation of a
C1(u,v)=0, or (1-2), meets and replaces one of the nor-generic(antialigned scenarif.Let us follow a continuous
mal vacua at{a?=0,a5=0}. This possibility is actually line of antialigned p%9==) vacuaC{®¥’#0,C{®—0. Pre-
achieved by turning ofCi(O) fori=1 or 2. Since precisely at cisely in this situation, Eq48) presents no obstruction to a
the Z, point we have Eq(37), this amounts tou and »  smooth deformation of then(0) solutions down to the situ-
satisfyingu=F vA. Let us choose for definitene€$”’=0.  ation wherev,=0. In this limit the profiles of ¢;| and|,|
Inserting this back into E¢18), the effective potential at the are correlated in such a way that both vanish at opposite
maximal point reads ends. In fact, as$p,|? varies from zero up to;f far away,
|@,| interpolates betweeny(\,)vs=(log 2/87%)g3 w? at
the origin(which need not be smaland 0 at infinity. More-
over, since the phase ¢f, is free, the same arguments as in
Ref.[19] can be used to show that a persistent current oc-
curs. We would call this 8PS superconducting string solu-
tion.

1 1
V= 57\1(|€D1|2_Ui)2+ g?\2|902|4

. 2 22
_27005,31|<P2| (le1l*—v1). (90

Observe that the phase of, is free. When cog;<0 this is VIIl. CONCLUDING REMARKS

precisely the type of situation that was studied by Witten

[19] and shown to lead to superconducting strings for spe- The present paper is devoted to the low-energy dynamics
cific ranges of parameters. Let us briefly recall the essence ¢ff N'=2 supersymmetric gauge theories softly broken\io
the mechanism. As the vacuum equati¢®6) exhibit, only =1 by a superpotential containing up to cubic perturbations.
the first U(1) is broken by the vacuum expectation valueThe effective Lagrangian in the neighborhood of maximal
(VEV) (¢,)=v,, whereas the second U(1) remains intactsingularities of the quantum moduli space corresponds to an
since(¢,)=0. This is fine for vacuum solutions, but sup- Abelian U(1)'~* multi-Higgs system with couplings among
pose now thatp; develops a vortex line. At the core of the different dual U(1) factors. The case of SU(3) has been
vortex (¢1)=0 and, in turn, it may become favorable that analyzed in some detail. There are generically no BPS elec-
(@,)#0 there. Actually, the model considered [ih9] is tric vortices in the system unless the soft breaking param-

slightly more general than ours, involving the potential ~ eters have coincident complex phasesthey differ by )
and the ultrastrong scaling limit.1] is taken. We have seen

1 s ap Lo, ol 12 ot 12 f[ha_lt_the_ effect_ over a BPS configuration of turning on an
V—§9(|<Pl| —v9) +Zg|<P2| + 11| ol “—m?[ % infinitesimal misalignment among these parameters is the ap-
(91) pearance of a net repulsive force between parallel vortices
corresponding tdzeros of different Higgs fields. In a finite
The detailed analysis of the dynamics showed that for papiece of material, metastable solutions take place and vorti-
rameters in the ranglk 2=m? instability actually takes over ces develop static triangular lattice. We call this phase “hy-
and the superconducting string indeed forms. We see easil§fid type 11" dual superconductivity.
that the present situation lies precisely at the boundary of the When the theory is perturbed with a cubic superpotential,
region of validity, since in our casév?—m?=0, and the the ratio of string tensions differs from that computed in the
induced mass term fap, exactly vanishes. Ifi36], this situ-  quadratic casé8] whether the Teb? perturbation is present
ation was also studied and seen to yield a power law decay of
the profile ofp, which leads to a long range scalar attractive

Interaction among vortices. ®As we approach the situation wh&y— 0, the parameters that
At this point we would not like to put forward too strong enter Eq.(90) are such thaty,\,<\, [see Egs(15), (46), and

a claim, but simply point out the occurrence of this coinci- (47)]. Hence at very low energy the second U(1) seemingly de-

dence among models. The possible existence and relevangguples. This is suggested by thé=2 exact effective solution,

of structures such as superconducting strings in the micraalthough it is reasonable to expect modifications of the renormal-

scopic context of confinement models should be handletkation group flow in the\'=1 theory.
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or not. In the former case, we found that these ratios evelVhitham approach to the Seiberg-Witten solution, where the
depend on the supersymmetry breaking parameters. Thestw times of the hierarchy can be used as spurionic sources
results were obtained after imposing the ultrastrong scalingf soft supersymmetry breakiri@1].
limit. 1t would certainly be interesting to know if similar
results emerge in the context of MQCD. This is intriguing in
the sense that string tensions in MQCD are given by the
distance ofD4-branes which, for a single Casimir perturba- We are pleased to thank JoBe Barbm, A. Gonzéez-
tion, are stretched at the roots of unity over a circle of radiusArroyo, Michael Douglas, Amihay Hanany, and Marcos
of order A [11], so one would not expect them to be modi- Marino for interesting discussions. J.M. wants to thank J. J.
fied (except, possibly, for a global factor due to an inducedBlanco Pillado for pointing out Ref36]. The work of J.D.E.
change inA) as compared to the purely quadratic case. has been supported by the National Research Council
A natural extension of the present work involves the cas¢ CONICET) of Argentina and the Ministry of Education and
of N'=2 supersymmetric theories softly broken downNo Culture of Spain. The work of J.M. was partially supported
=0, and possible soft breaking by higher than the two firstoy DGCIYT under Contract No. PB96-0960 and European
Casimir operators. This program can be addressed within thenion TMR Grant No. ERBFM-RXCT960012.
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