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We study the electric flux tubes that undertake color confinement inN52 supersymmetric Yang-Mills
theories softly broken down toN51 by perturbing with the first two Casimir operators. The relevant Abelian
Higgs model is not the standard one due to the presence of an off-diagonal coupling among different magnetic
U(1) factors. We perform a preliminary study of this model at a qualitative level. Bogomol’nyi-Prasad-
Sommerfield~BPS! vortices are explicitly obtained for particular values of the soft breaking parameters.
Generically, however, even in the ultrastrong scaling limit, vortices are not critical but exist in a ‘‘hybrid’’ type
II phase. Also, ratios among string tensions are seen to follow no simple pattern. We examine the situation at
the vacua half broken by the Higgs mechanism and find evidence for solutions with the behavior of supercon-
ducting strings. In some cases they are solutions to BPS equations.

PACS number~s!: 11.27.1d, 11.30.Pb, 12.38.Aw
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I. INTRODUCTION

Certainly, one of the most beautiful ideas in the contex
quantum chromodynamics~QCD! is the confinement mecha
nism envisaged by ’t Hooft@1# and Mandelstam@2# through
the condensation of light monopoles. In essence it states
the QCD vacuum should behave as adual superconductor
where magnetic order occurs, and electric flux tubes fo
thus producing color confinement. In the context of QCD
represents a kind of descriptive scheme, as long as it is
known how magnetically charged quanta can arise and c
dense in the effective low-energy theory. In this respect,
idea of Abelian projection proposed by ’t Hooft has receiv
increasing support from numerical simulations on the latt
in the last few years@3#. Even in the continuum, recent wor
using a novel parametrization of QCD@4# points in the di-
rection of the above scenario for color confinement@5#. From
the analytical side, the understanding of nonperturbative p
nomena in four dimensional quantum field theory has b
put several steps forward since Seiberg and Witten c
structed an exact solution for the low-energy dynamics
SU(2) N52 supersymmetric Yang-Mills theory@6#. In par-
ticular, it was possible for them to show that the mechan
of color confinement devised by ’t Hooft and Mandelsta
occurs when supersymmetry is broken down toN51. These
results were soon extended to the case of SU(N) @7–9#. Fur-
thermore, whenN52 supersymmetry is softly broken dow
to N50, the same mechanism has been shown to pe
@10#.

In spite of the fact that these results are well known,
much attention has been paid to the actual solutions in
strong coupling limit corresponding to electric flux line
that would undertake quark confinement. In Ref.@8#, it was
shown that this sort of vortex should have a spectr
of string tensions that distinguishes among different fact
in the magnetic U(1)N21 theory arising in the infrared
The same result was found in the framework of theM-theory
0556-2821/2000/62~6!/065008~11!/$15.00 62 0650
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fivebrane version of QCD, also named MQCD@11#. The
string tension of theN21 electric flux tubesTk , k
51,...,N21, is given—up to a dimensioned factor that
different for each theory but independent ofk—by a dimen-
sionless functionf N(k)5sin(pk/N). This function is some-
how universal as long as the soft breaking perturbation
carried by a single Casimir operator@8,11,12#. Even in that
case, the problem of finding such solutions in the particu
model that emerges in this context has not yet been
dressed in detail,1 probably due to the naive expectation th
the effective theory consists ofN21 copies of the standard
U(1) Abelian Higgs model. It was already shown by Do
glas and Shenker that the magnetic U(1) factors of the
frared quantum theory describing the neighborhood of
monopole singularities are coupled@8#. The existence of
these off-diagonal couplingst i j

off was confirmed in two dif-
ferent frameworks. First, they appear in the expression of
Donaldson-Witten functional for gauge group SU(N) @15#.
Moreover, these couplings were shown to satisfy a string
constraint coming from the Whitham hierarchy formulatio
of the Seiberg-Witten solution in Ref.@16# where, in addi-
tion, a general ansatz fort i j

off is given.
In this paper, we extend the work@13# to the case of

SU(N), N52 supersymmetric Yang-Mills theory softly bro
ken to N51. The analysis is performed in a ‘‘peculiar
scaling limit ~named ‘‘ultrastrong’’ in@11#!. We show that,
even in that limit, generically there are no Bogomol’ny
Prasad-Sommerfield~BPS! electric flux tubes. A perturbative
analysis leads to the conclusion that the phase of dual su
conductivity is of type II; i.e., there is a short range repulsi
force between different vortices. This fact supports the
pectation that indeed electric flux lines are safely confin

1Except for SU(2), both at the maximal singularity of the Cou
lomb branch for pure gauge@13#, and on the Higgs branch in th
theory with massive fundamental matter@14#.
©2000 The American Physical Society08-1
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into stable flux tubes, a feature of the confinement mec
nism that is not granteda priori.2 It is worth mentioning in
this respect that numerical simulations in lattice QCD se
to point out that the type of Abelian Higgs model behind t
picture of dual superconductivity is a critical one betwe
type I and type II@18#.

The plan of the paper is as follows. The setup of t
problem is given in Sec. II where some aspects of the lo
energy dynamics ofN52 supersymmetric gauge theorie
softly broken down toN51 are reviewed. We emphasize th
existence of nonvanishing couplings between the differ
U(1) factors—even at the maximal singularity—which pl
an essential role in our results. In Sec. III, we show that
string tension of vortex like configurations obeys
Bogomol’nyi bound in the ultrastrong scaling limit. How
ever, there are no BPS electric vortices in the system un
the complex phases of the soft breaking parameters co
sponding to different Casimir operators are aligned. Even
this case, we show that the string tensions of the resul
BPS vortices are governed by a dimensionless func
f N(k), which is different from the one obtained in@8,11#, the
latter being recovered as a particular limit of our syst
corresponding to a single quadraticN51 perturbation. In
Sec. IV, we focus for convenience on the group SU(3) a
analyze the critical vortex solutions in certain simplifie
cases. We speculate about the full spectrum of such con
rations. A perturbative analysis of the dynamics expected
nearly critical vortices is performed in Secs. V and VI b
means of energetic arguments. This analysis reveals the
istence of repulsive forces among vortices correspondin
different magnetic U(1) factors. Thereafter we refer to t
phase as a ‘‘hybrid’’ type II phase. In Sec. VII, vacua ha
broken by the Higgs mechanism are considered. The s
larities with and differences from the model proposed
Witten to describe cosmic superconducting strings@19# are
discussed. We find solutions to the Bogomol’nyi equatio
with the behavior of superconducting strings. Finally, S
VIII is devoted to our conclusions and further remarks.

II. INFRARED DYNAMICS AT MAXIMAL
SINGULARITIES

The quantum moduli space of vacuaML of SU(N), N
52 supersymmetric gauge theory has a singular locus g
by hypersurfaces of complex codimension 1 that may in
sect with each other@7#. Along each of these hypersurface
an extra massless degree of freedom—whose quantum n
bers can be read off from the monodromy matrix correspo
ing to a closed path encircling the singularity—must be
cluded into the effective action. At the intersections, ma
states become simultaneously massless. Of special int
are those singularities whereN21, i.e., the maximum al-
lowed number of mutually local states, become massl

2It could happen, for example, that the electric vortices turn ou
be unstable, and their core grows and smears in such a way
they do not lead to confinement of electric charges@17#.
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They are accordingly called maximal singularities.3

The addition of a microscopic superpotential breaks
persymmetry and leads to anN51 theory

WN515 (
k52

N
1

k
lkTr Fk. ~1!

Notice that those contributions in Eq.~1! with k.3 are non-
renormalizable. However, this does not necessarily mean
they do not affect the low-energy dynamics. They could
dangerously irrelevant operators@20,21#. We will not discuss
these subtleties here, and shall restrict ourselves to the
of up to cubic perturbations,

WN515
1

2
m Tr F21

1

3
n Tr F3. ~2!

This breaking is soft, in fact, renormalizable. The continuu
vacuum degeneracy is lifted except for a given set of po
that depend on the actual values of the parametersm andn.4

Let us focus on the low-energy effective field theory ne
a maximal point that we choose, for simplicity, to be th
with real quadratic Casimir,u5NL2. This is a dualN52
supersymmetric gauge system with gauge group U(1)N21

which includes both chiral multipletsC i
D5(x i

D ,Vi
D), and

hypermultipletsHi5(Mi ,M̃ i) that correspond to the mono
poles that become light in that patch of the moduli spa
One can choose a homology basis for the cycles on the
iliary curve such that each monopole has a unit of cha
with respect to each dual gauge field. The quantitiesx i

D ,

Mi , and M̃ i are chiralN51 superfields, whileVi
D are N

51 vector superfields~and Wa
Di their corresponding super

field strengths!. For completeness, we give also theN50
content of these superfields,

x i
D5~f i

D ,c i ,Fi !, Vi
D5~~Am

D! i ,l i ,Di !,

Mi5~fmi
,cmi

,Fmi
!, M̃ i5~f̃mi

,c̃mi
,F̃mi

!,

where the notation for fermionic, bosonic, and auxilia
components is the standard one. Settingai

D[^f i
D&, the co-

ordinates at the point of maximal singularity that we a
focusing on areai

D50. The dominant piece of theN52
low-energy effective Lagrangian is given in terms of a ho
morphic functionF, called the effective prepotential:

o
at

3In SU(3), for example, the singular locus is given by the com
plex curves 4u3227(v62L3)250, whereu5(1/2)̂ Tr f2& andv
5(1/3)̂ Tr f3& are the gauge invariant order parameters construc
out of the scalar field belonging to theN52 vector supermultiplet,
andL is the quantum dynamical scale. Higher intersections of th
curves lead to the so-calledZ2 andZ3 singularities, given, respec
tively, by the points$u3527L6,v50% and$u50,v254L6%.

4For instance, in the case of SU(3), thetheory has generically five
N51 vacua, three of which are the maximalZ2 points. In the limit
m→0, the remaining vacua approach theZ3 points @9#.
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L e f f
N525

1

4p
ImS E d4u

]F~xD!

]x i
D

x i
D†

1
1

2E d2u
]2F~xD!

]x i
D]x j

D
Wa

DiWDa j D
1E d4u$Mi

†e2Vi
D
M i1M̃ i

†e22Vi
D
M̃ i%

1ReE d2uW~xD,M ,M̃ !. ~3!

The monopole fields have been ‘‘integrated in’’ in order
soak up the singularity of the effective action whenai

D

5^f i
D&→0, whereMi becomes massless. The effective s

perpotential at low energies is

W~xD,M ,M̃ !5A2Mix i
DM̃ i1mU~xD!1nV~xD!, ~4!

the last two terms being the effective contribution of t
supersymmetry breaking superpotential~2!. In fact, U andV
are the Abelian superfields arising, respectively, from
quadratic and cubic Casimir operators in the low-ene
theory. The vacuum expectation values of their lowest co
ponentsU and V are the holomorphic coordinates inML ,
^U&5u and ^V&5v.

Written in component fields, the bosonic sector of t
system is described by the Lagrangian

Le f f, B
N51 52

1

4
bi j ~Fmn! i~Fmn! j1~Dmfmi

!* Dmfmi

1Dmf̃mi
~Dmf̃mi

!* 1bi j ]mf i
D* ]mf j

D

2F1

2
bi j DiD j1bi j Fi* F j1Fmi

* Fmi
1F̃mi

* F̃mi G ,
~5!

where the auxiliary fields are solved as

Di52bi j
21~ ufmj

u22uf̃mj
u2!,

Fi52bi j
21~A2fmj

f̃mj
1Cj !, ~6!

Fmi
52A2f i

D* f̃mi
* , F̃mi

52A2f i
D* fmi

* , ~7!

whereas field strengths and covariant derivatives are g
by

~Fmn! i5]m~An
D! i2]n~Am

D! i , ~8!

Dmfmi
5]mfmi

1 i ~Am
D! ifmi

,

Dmf̃mi
5]mf̃mi

2 i ~Am
D! if̃mi

. ~9!

ConcerningCj in Eq. ~6!, it stands for

Cj~fD!5mU j~fD!1nVj~fD![uCj ueib j , ~10!
06500
-

e
y
-

n

whereU j andVj are the derivatives ofU andV with respect
to f j

D @8#,

U j~fD!5uj
(0)L1 (

p>1
uj

(p)~fD!L12p,

uj
(0)522 j sinû j , ~11!

Vj~fD!5v j
(0)L21 (

p>1
v j

(p)~fD!L22p,

v j
(0)522 j sin 2û j , ~12!

while uj
(p)(fD) andv j

(p)(fD) are homogeneous polynomia
in f i

D of degreep, so thatCj are regular functions in the
vicinity of the maximal singularity. Finally,bi j is (1/4p
times! the imaginary part of the period matrixt i j

D ,

t i j
D~fD!5

]2F
]f i

D]f j
D

5
1

2p i
logS f i

D

L i
D d i j 1t i j

off1OS fD

L D ,

~13!

whereL j5L sinûj and û j5 j p/N. When expanding around
the vacuum expectation valueai

D5^f i
D&, t i j

D(fD) yields the
effective coupling constant matrix. The logarithmic singula
ity when ai

D50 corresponds to the perturbative running
the dual coupling constant up to the maximal point, displa
ing the asymptotic freedom of the dual description. The c
pling flows to zero due to the fact that the quantum fluctu
tions of massless monopoles have been integrated out.
is fine as long as one is interested only in searching
vacuum solutions. ThenM andM† in Eqs.~3!, ~4! stand for
the zero modes of the monopole field~see the discussion in
@10#!. Here, however, in order not to run into double coun
ing of degrees of freedom, we should introduce, on phys
grounds, an infrared cutoff for the monopole loop integra
In each U(1) factor the natural energy scale is set by the
breaking parametersai

D;uCi
(0)u1/2 with

Ci
(0)5mui

(0)L1nv i
(0)L2522iL~m sinû i1nL sin 2û i !,

~14!

and the perturbative couplings of each monopole to its c
responding dual vector field

4p

gD
2

i

.2
1

4p
logS uCi

(0)u

L i
2 D , ~15!

show logarithmic variations among different U(1) factors5

5In other words, we are dealing here with a macroscopic~classi-
cal! theory of the Ginzburg-Landau type, and we should consi

the coupling constant of theMi and M̃ i
† classical fields to Vi

D :
wave-particle duality connectsgD with the running coupling con-
stant of the quantum theory through the formula\gDi5gDi(ai

D

;uCi
(0)u1/2), the strong coupling limit becoming the classical lim

for the magnetically charged quanta@22#.
8-3
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Even in the close vicinity of the singularity, differen
magnetic U(1) factors are coupled throught i j

off @7,8#. Exactly
at the singularity, i.e., atai

D50, the generic expression pro
posed in@16# for these off-diagonal couplings is

t i j
off5

2i

N2p
(
k51

N21

sinkû i sinkû j (
p,q51

N

tpq
(0) coskup coskuq ,

~16!

wheretpq
(0) is given by

tpq
(0)5dpq(

kÞp
log~2 cosup22 cosuk!

2

2~12dpq!log~2 cosup22 cosuq!2, ~17!

with up5(p21/2)p/N and p,q51, . . . ,N. In the case of
SU(3), for example,t12

off5 i /p log 2 @7,8,16#. These interac-
tions are also present in the effective potential obtained fr
the terms in square brackets of Eq.~5!,

Ve f f5
1

2
bi j

21~fD!~ ufmi
u22uf̃mi

u2!~ ufmj
u22uf̃mj

u2!

12uf i
Du2~ ufmi

u21uf̃mi
u2!1bi j

21~fD!

3@A2fmi
f̃mi

1Ci~fD!#@A2fmj
f̃mj

1Cj~fD!#* .

~18!

Notice that,bi j
21 being positive definite, the potential is eith

positive or zero. Given the expectation values of the comp
scalars

^f i
D&5ai

D , ^fmi
&5mi , ^f̃mi

&5m̃i , ~19!

N51 supersymmetric vacua are in one to one corresp
dence with zeros ofVe f f :

A2mim̃i52Ci~aD!, ~20!

miai
D5m̃iai

D50, ~21!

umi u5um̃i u. ~22!

i 51,2, . . . ,N21. From Eq.~21! we learn that monopole con
densation can occur only at hypersurfaces whereai

D50 for
somei. At the maximal singularity, everyai

D vanishes, and it
is clear from Eqs.~20!–~22! that N21 monopoles have a
chance to condense. While soft breaking is parametrized
m andn, monopole condensation is controlled byCi . If for
somej we haveaj

D50 and adjustCj
(0)50, the corresponding

U(1) remains unbroken (mj5m̃j50), and the vacuum is
said to be partially broken by the Higgs mechanism. Su
marizing, the Higgs vacuumH at the maximal point is given
by

H5$mi ,m̃i /umi u25um̃i u25uCi
(0)u/A2, m̃j52eib j

(0)
mj* %,

~23!
06500
m

x

n-

by

-

with Ci
(0)5uCi

(0)ueib i
(0)

given in Eq.~14!. Since the absolute
phases ofmi are not fixed, it has the topology of a torus
genusg5N21. Equation~23! shows that the scalar compo
nents of the monopole superfields condense in the va
placed at the maximal points. Although the presence of c
densation suggests that confinement indeed takes p
some further analysis is required before this can be de
tively established. An important question to be answered
whether the collimation of the electric~or dual magnetic!
flux lines is energetically favored or not. This is a dynamic
issue that goes beyond the simple vacuum analysis.

III. BOGOMOL’NYI BOUND IN THE ULTRASTRONG
SCALING LIMIT

The resulting effective theory we have arrived at, in t
bosonic sector, is an Abelian (N21) Higgs model with
coupled U(1) factors and a quite nonstandard Higgs po
tial. The search for stable vortex solutions in the compl
system is a hard problem. On general grounds, one sh
not expect to have BPS string solutions in spite of the f
that N51 supersymmetry is enough, generically, to ha
BPS vortices in four dimensions@23,24#. At least, this is the
case ofN51 QCD, where the strings are conserved mod
N so they cannot carry an additive conserved quantity s
as a central charge@25#. There is a limit, however, in which
the system simplifies and admits BPS vortices@11#. It hap-
pens whenever the condensation parameters~10! are inde-
pendent offD, something that corresponds to linear pertu
bations in the superpotential~4!, i.e., Fayet-Iliopoulos terms
This kind of term together with properly normalized quar
potentials are known to lead to Abelian Higgs models t
admit BPS vortices@24,26,27#. Taking into account Eqs
~11!, ~12!, one should considerL→` and small values of
the soft breaking parametersm→0 andn→0, such thatmL
and nL2 remain finite. In this ‘‘ultrastrong’’ limit,Ci(fD)
→Ci

(0) are constants, and one can easily check that set
ai

D5^f i
D&50 is a consistent constraint. One may then stu

the existence of extended solutions in the remaining field
The ~bosonic part of the! effective Lagrangian adopts th

form

Le f f, B
N51 52

1

4
bi j

(0)Fmn
i F j mn1~Dmfmi

!* Dmfmi

1Dmf̃mi
~Dmf̃mi

!*

2F1

2
bi j

(0)Di
(0)D j

(0)1bi j
(0)Fi

(0)* F j
(0)G , ~24!

wherebi j
(0) stands for the actual value ofbi j at the maximal

singularity andDi
(0) ,Fi

(0) are obtained from Eq.~6! by re-
placing bi j with bi j

(0) . It is now feasible following
Bogomol’nyi @28# to give an expression or the energy p
unit length corresponding to static and magnetically neu
@(A0

D) i50# vortexlike configurations~i.e., configurations
with translational symmetry along one axis! by means of the
remainderN51 supersymmetry@23,24# ~see also@26# where
8-4
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a multi-Higgs system has been treated!. Indeed, the energy
density can be rearranged as follows:

Ee f f5
1

2
bi j

(0)~F12
i 6Di

(0)!~F12
j 6D j

(0)!1u~D16 iD 2!fmi
u2

1u~D16 iD 2!f̃mi
u21bi j

(0)Fi
(0)F j

(0)* 7eab]aJb ,

~25!

where the last term, corresponding to the currentJb

52 i (fmi
* Dbfmi

1f̃mi
* Dbf̃mi

), does not contribute to the

string tension for finite energy configurations. It is easier
analyze this system in a different set of variables, obtai
from the above by means of an SU(2)R transformation,
yielding

Di
(0)→D̂ i

(0)52A2 Re~eiaFi
(0)!, ~26!

A2Fi
(0)→A2F̂ i

(0)52e2 ia~Di
(0)1 iA2 Im~eiaFi

(0)!!, ~27!

fmi
→f̂mi

52
i

A2
~fmi

2e2 iaf̃mi
* !, ~28!

f̃mi
* → f̂̃mi

* 52
i

A2
eia~fmi

1e2 iaf̃mi
* !. ~29!

The tensionse f f5*d2xEe f f now reads

se f f5E d2xF1

2
bi j

(0)~F12
i 6D̂ i

(0)!~F12
j 6D̂ j

(0)!

1u~D16 iD 2!f̂mi
u21u~D16 iD 2!f̂̃mi

u2

1bi j
(0)F̂ i

(0)F̂ j
(0)* 7A2F12

i Re~eiaCi
(0)!G . ~30!

The last term explicitly breaks SU(2)R symmetry. Finiteness
of the string tension demands regularity of the fields onR2,
and vanishing of the potential energy, field strengths,
covariant derivatives at infinity. Altogether, these requi
ments cause the space of solutions to split intoZN21 discon-
nected pieces that differ by the winding numbers of eachfmi

over the border of the plane. The electric fluxes label th
sectors. In particular, in the (n1 ,n2 , . . . ,nN21) sector they
are

F j52E d2xF12
j 52pnj , j 51,2, . . . ,N21. ~31!

The string tension of possible vortex configurations with
pologically quantized (n1 ,n2) electric flux exhibits a
Bogomol’nyi bound

se f f>4A2pL(
i

u~m sinû i1nL sin 2û i !cos~a1b i
(0)!ni u,

~32!
06500
o
d

d
-

e

-

which is saturated for configurations solving the followin
set of first order equations:

F12
i 56A2 Re~eiaFi

(0)!, Di
(0)1 iA2 Im~eiaFi

(0)!50,
~33!

~D16 iD 2!f̂mi
50, ~D16 iD 2!f̂̃mi

50. ~34!

The second equation in~33! implies

ufmj
u5uf̃mj

u, Im~eia@A2fmj
f̃mj

1Cj
(0)# !50. ~35!

These constraints should hold at any point, in particular
zeros of the Higgs field. Thus

fmi
52eib i

(0)
f̃mi

* ~36!

with a1b i
(0)50 or p. Consequently, foriÞ j , b i j

(0)[b i
(0)

2b j
(0)50 or p. Summarizing,there are no BPS electric

vortices in the system unless the complex numbers Ci
(0) are

aligned or antialigned. This alignment, in turn, requires su
persymmetry breaking parameters to have no relative c
plex phases. Notice that this corresponds to having aCP
invariant bare Lagrangian. For definiteness, in the case
SU(3) one easily sees that

C1
(0)5A3L~m1nL!, C2

(0)5A3L~m2nL!, ~37!

so thatb21
(0)50 or p if and only if arg(nL)5 argm1np and

unLu,umu or unLu.umu, respectively.
A comment is in order at this point regarding the stri

tensions of unit vortices, whose existence will be discus
below. From Eq.~32!, the string tension of electric vortice
carrying a single flux quantumnk51, niÞk50 is immedi-
ately clean. Up to a common factor, it is given by

Tk}L f N~k!, f N~k!5um sinûk1nL sin 2ûku. ~38!

This result makes clear the dependence off N(k) on the su-
persymmetry breaking deformation entering the superpo
tial. It generalizes previous results in@8,11,12# and, in par-
ticular, it shows that, for perturbations other than t
quadratic one, the string tensions are modified with resp
to those in the above mentioned results. In particular, no
that whenm andn do not vanish it is possible to have di
ferent string tensions even in the case of SU(3) and, in g
eral,TkÞTN2k .

IV. ALIGNED VACUA: CRITICAL VORTICES

We will focus hereafter on the case of SU(3). When the
constantsm and n are fine tuned in such a way that th
phases of the two complex energy scalesC1

(0) and C2
(0) are

either aligned or antialigned, i.e.,b21
(0)50 or p, respectively,

we are at the self-dual point. The Bogomol’nyi equatio
~33!, ~34!, after Eq.~36!, read

F12
i 56

1

2
bi j

(0)21e j~ uw j u22v j
2!, ~39!
8-5
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~D16 i e jD2!w j50, ~40!

wheree j5ei (a1b j
(0))561 andbi j

(0) is

bi j
(0)5S gD,1

22 1

4p2
log 2

1

4p2
log 2 gD,2

22 D , ~41!

Also, we have performed, for convenience, some redefi
tions of the fieldsw j52fmj

and parametersv j
252A2uCj

(0)u.
Let us further remark that Eq.~39! gives an unusual contri
bution to the electric field of each dual U(1) factor fro
zeros of both Higgs fields. This is a straight consequenc
the presence of off-diagonal couplings and leads to inter
ing results. It is clear that solutions to Eqs.~39!, ~40! also
satisfy the Euler-Lagrange equations. Without loss of gen

ality, we can adjusta so thate1511,e2[e5eib21
(0)

561.
Let us focus on the BPS solutions with the upper sign. T
first order system can be written as

F12
1 5l1~ uw1u22v1

2!2eg~ uw2u22v2
2!, ~42!

F12
2 52g~ uw1u22v1

2!1el2~ uw2u22v2
2!, ~43!

~D11 iD 2!w150, ~44!

~D11 i eD2!w250, ~45!

with

l i5bii
(0)215S 12

gD,1
2 gD,2

2

16p2
log2 2D 21

gD,i
2

2
, ~46!

g5b12
(0)215

log 2

8p2
~gD,1

2 l21gD,2
2 l1!. ~47!

Note that, as we are in the weakgD coupling regime,g
,l i . Naively, one would suspect that in the scaling limit w
are investigating the system diagonalizes. Notice, howe
the important fact that the relative factor betweenl i andg
vanishes only logarithmically. Hence, for example, sett
uCi u/L i

2;10210 in Eq. ~15! yields g;(log 2/5)l i;0.13l i .
The topology of the configuration space determines glo

properties of the solutions in two ways: the quantization
the fluxes is due either to the asymptotics of theAj fields or
to the existence of a prescribed number of zeros of thew j .
These global inputs should be made compatible with the
ferential equations, as happens in the Abelian Higgs mo
In the present situation things are less clear; from Eqs.~44!,
~45!, where no mixing between the two U(1)’s shows up,
one reads the electric fluxes using Stokes theorem and
asymptotics ofAj . On the other hand, Eqs.~42!, ~43! mix
the factors and bothw1 and w2 contribute together to eac
F12

i . In this respect, our system is quite awkward as co
pared with other nondiagonal models such as, for exam
06500
i-

of
t-

r-

e

r,

g

al
f

f-
l.

he

-
e,

nonrelativistic non-Abelian Chern-Simons theories@29#, in
which the same mixing appears in the field strength and
variant derivative equations. Here, there is mixing in t
former but not in the latter, and, given such an asymmetry
is much more difficult to show whether the local equatio
and the global conditions reconcile or not.

On general grounds, it is reasonable to expect that E
~42!–~45! will exhibit solutions in the topological secto
(n1 ,n2) with n1 ,n2 representing the integrated flux of a
‘‘ensemble’’ of noninteracting vortices located at differe
~maybe coincident! positions. Indeed, the smallness of th
ratio g/l i suggests considering this system as a perturba
of the diagonal situation, so that the above solutions w
come out from continuous deformations of the standard c
cal Abrikosov vortices. Only in some simple cases, can
question about the existence of solutions be answered
taking advantage of known results from the standard Abe
Higgs model. This will be done in the following two situa
tions.

Solutions of type(n,0) and (0,n). Clearly it will be
enough to prove existence of one type, say (n,0). Assume
therefore thatw25uw2uei j2 is nowhere vanishing on the finit
transverse plane. As usual, Eq.~45! couplesj2 andA2. So, if
uw2u has nowhere a zero, regularity of the phase enforcesA2
to have vanishing circulation around any loop. By Stok
theoremF12

2 50 everywhere, and inserting this back into E
~43! yields a constraint that correlates the profiles ofuw1u and
uw2u:

uw2u25e
g

l2
~ uw1u22v1

2!1v2
2 . ~48!

Existence of the required vortex profile foruw1u can be
proved by inserting Eq.~48! into Eq.~42!, which leads to the
standard Bogomol’nyi equations for the critical Abelia
Higgs model~after a suitable renormalization of the Higg
field!:

F12
1 5l1S 12

g2

l2
D ~ uw1u22v1

2!, ~49!

~D11 iD 2!w150. ~50!

We learn from Eq.~48! that, if uw1u2 ranges from 0~at the
origin! up to v1

2 ~at infinity!, uw2u2 will correspondingly in-
terpolate between2e(g/l2)v1

21v2
2 andv2

2. To remain con-
sistent with our initial asumption thatuw2u vanished nowhere
we must set eitherb21

(0)50 with v2
2.(g/l2)v1

2 , or elsee
521, i.e.,b21

(0)5p. We observe that the latter possibility
less contrived.

Solutions of type(n,n) for a single perturbation.Let us
briefly consider the case of SU(3)N52 supersymmetric
Yang-Mills theory softly broken toN51 only by means of a
single Casimir operator, i.e.,m50 or n50. In both cases,
b21

(0)50 or p, and the theory is critical. Moreover,l15l2

[l, C1
(0)5C2

(0) , and hence v15v2[v, so that the
Bogomol’nyi equations have an almost trivial solution
vorticity (n,n) @or (n,2n)#, by imposing the ansatzw j
8-6
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[w, Aj[A ~or w2* 5w1[w, 2A25A1[A) in the case
b21

(0)50 ~or p). The system is again reduced, after a suita
normalization of the Higgs field, to the critical Abelia
Higgs model

F1256~l2eg!~ uwu22v2!, ~51!

~D16 iD 2!w50, e5eib21
(0)

. ~52!

It is crucial, for the system to admit regular solutions, th
g,l as indeed happens. As is well known, the general
lution to this sytem represents an assembly ofn separated
vortices centered at the zeros ofw. In our case, every suc
zero is doubled and we have assemblies ofn couples of
superimposed vortices of both U(1) fields.

Also, self-dual configurations in which the center of t
vortices of different types split apart can easily be co
structed along the lines in@30,31#. To see this, we perturb
one of the solutions just described forb21

(0)50,

w j85w j1dw j , Aj85Aj1dAj , ~53!

and linearize the self-duality equations to get

24i ]zdA122lw* dw112gw* dw250, ~54!

24i ]zdA212gw* dw122lw* dw250, ~55!

igDwdAj1~] z̄1 igDAj !dw j50, ~56!

where we use the notation]z5
1
2 (]12 i ]2), Aj5

1
2 @(A1) j

1 i (A2) j #, j 51,2, and fix the gauge conditions as

]c~dAc!152luwu2dV11guwu2dV2 , ~57!

]c~dAc!25guwu2dV12luwu2dV2 . ~58!

By writing dw j5wj j and using Eq.~56!, the vector pertur-
bations are found to bedAj5( i /gD)] z̄j j and the system o
linearized equations reduces to

¹2W652~l7g!gDuwu2W6 , ~59!

with W65j16j2. Notice that in both equations (l7g)gD
.0. Although they have no regular square-integrable so
tions, we can admit singular ones provided the singulari
of j j fit with the zeros ofw in such a way thatdw j is well
behaved. Take, for instance, the case of a radially symme
solution of vorticityn centered at the origin of the comple
plane. Then, for smallz,

w~z,z̄!.zn, ~60!

and a singularity ofW6 at the origin is harmless if its orde
is lower than or equal ton. Equation~59! has indeed solu-
tions with such a behavior@32#; to be exact, two sets o
linearly independent self-dual perturbationsW6

m(z,z̄),m
51,2,3, . . . ,n, with
06500
e

t
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-

-
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ric

W6
m~z,z̄!.z2m, z.0. ~61!

In particular, if we considerW652aW6
m , we get, near the

origin,

j1.2az2m, j2.0, ~62!

so that

w18.zn2m~zm2a!, w28.zn. ~63!

This perturbation realizes the splitting of an (n,n) vortex at
the origin into an (n2m,n) at that point andm (1,0) vortices
located at them roots of the coefficienta. The analysis for
b21

(0)5p ~i.e., e521) is totally equivalent and yields noth
ing but vortices of type 1 and antivortices of type 2 or vi
versa, moving freely with respect to each other.

For the general analysis, following Jaffe and Taubes@33#,
the Higgs fields should be ‘‘couched’’ as

w j[v je
~uj 1 iV j !/2, ~64!

to recast the Higgs system in the following form:

¹2u152l1v1
2~eu121!22egv2

2~eu221!1«bc]b]cV1 ,

~65!

¹2u2522gv1
2~eu121!12el2v2

2~eu221!1«bc]b]cV2 .

~66!

The gauge fields are determined by

~Ac!152
1

2
~]cV11«ca]au1!, ~67!

~Ac!252
e

2
~]cV21«ca]au2!. ~68!

At each (n1 ,n2) sector, regularity implies thatw j has exactly
nj zeros onC, say,z1

j ,z2
j , . . . ,znj

j . Also, these are the only

points at which the singularities of the phases can occur.
can then choose the particular gauge

V j~z,z̄!52(
l 51

nj

arg~z2zl
j !, ~69!

in which the problem reduces to

¹2u152l1v1
2~eu121!22egv2

2~eu221!

14p(
l 51

n1

d~z2zl
1!, ~70!

¹2u2522gv1
2~eu121!12el2v2

2~eu221!

14p(
l 51

n2

d~z2zl
2!, ~71!
8-7
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where bothuj should vanish at space infinity. The gene
analysis is involved, and usually requires numerical rel
ation techniques or hard Sovolev estimates.

V. HYBRID TYPE II VORTICES

By itself, the Abelian Higgs model we are dealing with
worth a detailed analysis. For the moment, and awaitin
sounder analytical or numerical study of its solutions, as
from the two simplified samples considered above little c
be said about the generic (n1 ,n2) vortex solution. An inter-
esting peculiarity comes from the fact that there are only t
overall choices of signs available in Eqs.~39! and ~40!: ei-
ther the upper or lower signs have to be taken simultaneo
on all the equations or the bound~32! will not be saturated.
This should be contrasted with the situation in the stand
diagonal Abelian Higgs model, where each U(1) can be c
jugated independently. To better grasp what is going
let us consider the Bogomol’nyi equations~42!–~45! with
b21

(0)50,

F12
1 56~l1W12gW2!, ~72!

~D16 iD 2!w150, ~73!

F12
2 56~l2W22gW1!, ~74!

~D16 iD 2!w250, ~75!

with Wi5(uw i u22v i
2). If g!l1 ,l2 , (6n1 ,6n2) vortices

with n1 ,n2.0 come from solutions to the previous equ
tions with the upper~lower! sign, which should correspon
to deformations of analogous configurations in the casg
50. In the diagonal limitg50 the vortex-antivortex solu
tions (6n1 ,7n2) would also solve the previous equatio
but with a choice of one sign for Eqs.~72!, ~73! and the
opposite one for Eqs.~74!, ~75!. If gÞ0, as is now the case
solutions with this second choice of sign do not saturate
bound~32! and, indeed, there is an energy remnant com
from the off-diagonal pieceE5pun1v1

21n2v2
2u1dE.

dE5E d2xdse f f5E d2x2b12
(0)F12

1 F12
2 5

log 2

2p2 E d2xF12
1 F12

2 .

~76!

For antialigned magnetic fields, this extra term is negat
and tends to increase the overlap by attracting the core
vortices of different kind.

A similar reasoning can be carried out forb21
(0)5p. In this

case, the equations read

F12
1 56~l1W11gW2!, ~77!

~D16 iD 2!w150, ~78!

F12
2 57~l2W21gW1!, ~79!
06500
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~D17 iD 2!w250, ~80!

and critical configurations are naturally of the form (6n1 ,
7n2), n1 ,n2>0 saturating the boundE5pun1v1

22n2v2
2u.

Here, in contrast, vortex-vortex solutions of the form
(6n1 ,6n2) would lead to the same energy surplus as in E
~76!. But now dE>0 for aligned magnetic fields, and thi
term decreases by minimizing the overlap, that is, by tak
the cores far apart.

In summary, to a first approximation, we see that, if n
neutral, vortex-vortex~vortex-antivortex! configurations be-
have repulsively~attractively! as in type II superconductors
Since this interaction involves vortices of differentU(1)’s,
we speak of a ‘‘hybrid type II’’ phase.

Let us discuss the peculiarities that arise whenever
tries to model confinement in the present scenario. First
fix some notation for convenience: the chromoelectric flux
(n1 ,n2) of the basic vortices arising in the dual Meissn
effect are (1,0)~‘‘vortex 1’’ ! and (0,1) ~‘‘vortex 2’’ !. In
turn, quarks enter the system as external probes with c
moelectric charges (Q1 ,Q2) equal to (1,0)~‘‘red quark’’!,
(0,21) ~‘‘blue quark’’!, and (21,1) ~‘‘yellow quark’’ !.
(h1 ,h2) is the ‘‘monopole’’ basis of the Cartan algebra
the dual SUˇ (3) group and the fundamental BPS monopo
correspond to the simple coroots of SU(3). In other words,
the chromomagnetic charges of thew i field quanta arehi

51,hj Þ i50. Consider now, for example, the caseb21
(0)50.

According to our previous analysis, chromoelectric fl
tubes of both (1,0) and (0,1) type form in response to p
allel external electric fieldsEW 1 andEW 2. Vortices of type 1 end
at pairs of red quark-antiquark and vortices of type 2 finish
pairs of blue antiquark-quark. There is therefore confinem
of red and blue quarks in a critical phase between type I
type II superconductivity, whereas the yellow quark confin
ment occurs in a hybrid type II phase. The weak repuls
between the vortex 1/antivortex 2 pair pulls the flux lin
slightly apart from each other. Thus, the quark-antiquark
tential energy would increase slower than linearly with t
distance, and one is allowed to expect deviations from
area law, but the force is still confining. If, instead,b21

(0)

5p, a pair of yellow quark-antiquark will now be joined b
a stable and non-interacting vortex 1/antivortex 2 pair of fl
tubes. In conclusion, the casesb21

(0)50 or p can be physi-
cally distinguished by the behavior of the yellow quar
antiquark force. At large separationW-pair production leads
to instability of the string and the lowest string tension go
erns the large distance regime@8,11#.

In the framework of condensed matter it is well know
that, in standard type II superconductivity on a finite piece
material, although mutually repelling, vortices tend to form
regular pattern by lying at the sites of a triangular lattic
This fact can be reproduced analytically by variational me
ods @34#. We expect a similar situation here, the differen
being that now repulsion involves vortex cores of distin
Higgs fields. Upon substitution of Eq.~36! into Eq. ~24!, the
exact second order equations withb21

(0)5p, corresponding to
vortices of types 1 and 2, in a finite piece of material
8-8
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b11
(0)]a~Fab!11b12

(0)]a~Fab!2

5
i

2
~w1* Dbw12w1Dbw1* !, ~81!

b22
(0)]a~Fab!21b21

(0)]a~Fab!1

5
i

2
~w2* Dbw22w2Dbw2* !, ~82!

DcDcw152
1

A2
w1* b1 j

(0)21~ uw j u22v j
2!~21!b1 j , ~83!

DcDcw252
1

A2
w2* b2 j

(0)21~ uw j u22v j
2!~21!b2 j , ~84!

should now be supplemented with periodic boundary con
tions. Thus, the system of differential equations is defined
a torus of modular parametert5L2 /L1eiu. We have chosen
the x1 axis as the direction of the firstL1 periodicity; the
length and direction of the second periodicity is determin
by L2eiu. Application of the Rayleigh-Ritz variationa
method as in@34# plus previous work on the role of Rieman
theta functions in magnetic systems@35#, suggest the field
configurations

w15 (
m1PZ

Cm1
expS in1m1Im z2

1

2
~Rez2n1m1!2D ,

~85!

w25 (
m2PZ

Cm2
expS in2m2Im z2

1

2
~Rez2n2m2!2D ,

~86!

where n1 ,n2 are integers and z5AgD(l2g)((x1
1 ix2)/L1), as trial functions to model extremals of the e
ergy. In fact, the choice of the coefficientsCm1

andCm2
in

such a way that

w1
n1~z!5expH 2pn1

~ Im z!2

Im t J )
l 151

n1

QF 0

l 1 /n1
G S zU t

n1
D , ~87!

w2
n2~z!5expH 2pn2

~ Im z!2

Im t J )
l 251

n2

QF 1
2

l 2 /n21 1
2

G S zU t

n2
D ,

~88!

leads to~meta! stable solutions to the field equations. He
l i51, . . . ,ni , and Q@b

a#(zut) are the Riemann theta func
tions with characteristics; see@35# and references quote
therein.

Notice that the solution describesn1 chromoelectric vor-
tices, located at the zeros ofw1

n1, andn2 vortices of the other

kind centered around the zeros ofw2
n2. It corresponds there

fore to a hybrid static triangular lattice of vortices; see Fig
One can check from a dynamical point of view that a co
figuration like this, where a vortex of type 1 is at the cen
06500
i-
n

d

-
r

of a square with vortices of type 2 at the vertices and v
versa is stable against small fluctuations.

VI. MISALIGNED VACUA

As discussed earlier, there are no BPS vortices in
generic case where soft breaking parameters are not alig
We would be interested, however, in the response of the B
configuration when an infinitesimal misalignmentb21

(0)[« or
b21

(0)[p1« is turned on. The dynamics of the system driv
the configuration off the constraint~36! which, therefore, can
no longer be imposed consistently. In fact, although
Higgs mechanism yields a critical mass spectrum for a
value of« ~an obvious consequence of supersymmetry!, the
eigenvectors do depend on this phase difference in suc
way that, when it is different from 0 orp, massive excita-
tions do not respect the constraint surface~36!.

In the same vein as above, for small values of« we will
treat the system as a perturbation of the critical situation
which the net effect of the misalignment reflects itself in
force between the formerly noninteracting vortices. T
shortcut to obtain the sign of this force is to split the ener
~30! of the configuration into a BPS contribution plus a
additional perturbation. That is, after inserting the ans
~36! into Eq.~24!, solutions to Eqs.~39!, ~40! exhibit a string
tensionse f f5se f f

SD1dse f f , wherese f f
SD is given in Eq.~32!

and

dse f f5e
g«2

8 E d2x~ uw1u22v1
2!~ uw2u22v2

2! ~«!1!

~89!

with e51 for b21
(0)501« ande521 for b21

(0)5p1«. Con-
sider a vortex configuration of type (1,1) where the zeros
each Higgs field are well separated. Then the above sur
of energy is positive fore51 and decreases as the cores
taken further apart and the overlap diminishes, hence
interaction in this case is repulsive. When perturbing arou
the antialigned caseb21

(0)5p1«, the energy increment~89!
reverses sign. Previously noninteracting, (1,21) antiparallel
vortex configurations tend to increase the overlap in orde
lower the perturbation, and hence the force is attractive.

FIG. 1. The type II hybrid lattice. Black and white circles re
resent the cores of vortices corresponding to different U~1!’s.
8-9
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In summary, when perturbing around the aligned or m
aligned scenarios, the vortex configurations are no lon
neutral, and the interactions follow the pattern that was p
viously named ‘‘hybrid type II’’ where, if made of distinc
U~1!’s, parallel vortices repel and antiparallel vortic
attract.

VII. VACUA HALF BROKEN
BY THE HIGGS MECHANISM

As pointed out in@9#, for particular values of the sof
breaking parametersm and n we have four instead of five
vacua. This happens whenever one of the two vacua
broken by the Higgs mechanism$a1

DÞ0,a2
D50% with

C1(m,n)50, or (1↔2), meets and replaces one of the no
mal vacua at$a1

D50,a2
D50%. This possibility is actually

achieved by turning offCi
(0) for i 51 or 2. Since precisely a

the Z2 point we have Eq.~37!, this amounts tom and n
satisfyingm57nL. Let us choose for definitenessC2

(0)50.
Inserting this back into Eq.~18!, the effective potential at the
maximal point reads

V5
1

8
l1~ uw1u22v1

2!21
1

8
l2uw2u4

2
1

4
g cosb1uw2u2~ uw1u22v1

2!. ~90!

Observe that the phase ofw2 is free. When cosb1,0 this is
precisely the type of situation that was studied by Witt
@19# and shown to lead to superconducting strings for s
cific ranges of parameters. Let us briefly recall the essenc
the mechanism. As the vacuum equations~20! exhibit, only
the first U(1) is broken by the vacuum expectation va
~VEV! ^w1&5v1, whereas the second U(1) remains inta
since ^w2&50. This is fine for vacuum solutions, but su
pose now thatw1 develops a vortex line. At the core of th
vortex ^w1&50 and, in turn, it may become favorable th
^w2&Þ0 there. Actually, the model considered in@19# is
slightly more general than ours, involving the potential

V5
1

8
g~ uw1u22v2!21

1

4
g̃uw2u41 f uw1u2uw2u22m2uw2u2.

~91!

The detailed analysis of the dynamics showed that for
rameters in the rangef v2>m2 instability actually takes ove
and the superconducting string indeed forms. We see ea
that the present situation lies precisely at the boundary of
region of validity, since in our casef v22m250, and the
induced mass term forw2 exactly vanishes. In@36#, this situ-
ation was also studied and seen to yield a power law deca
the profile ofw2 which leads to a long range scalar attracti
interaction among vortices.

At this point we would not like to put forward too stron
a claim, but simply point out the occurrence of this coin
dence among models. The possible existence and relev
of structures such as superconducting strings in the mi
scopic context of confinement models should be hand
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with care. For example, the question of quantum tunnel
will certainly be much more relevant here than for cosm
strings. Incidentally, this question was also addressed in@36#,
where it was seen that these power law solutions are m
stable than the usual ones.

As compared with Witten’s model, the one here involv
the additional feature of a nondiagonal kinetic term for t
~dual! vector particles@cf. Eq. ~24!#. But precisely the fact
that the quadratic forms of kinetic term and potential a
related paves the way to the possibility of rewritting the e
ergy as a sum of squares~30!. We may therefore expec
vortex solutions of the superconducting type with dynami
properties of BPS configurations. We can check that thi
indeed the case by looking at the smooth deformation o
generic~anti!aligned scenario.6 Let us follow a continuous
line of antialigned (b21

(0)5p) vacuaC1
(0)Þ0,C2

(0)→0. Pre-
cisely in this situation, Eq.~48! presents no obstruction to
smooth deformation of the (n,0) solutions down to the situ
ation wherev250. In this limit the profiles ofuw1u anduw2u
are correlated in such a way that both vanish at oppo
ends. In fact, asuw1u2 varies from zero up tov1

2 far away,
uw2u interpolates between (g/l2)v1

25(log 2/8p2)gD,1
2 v1

2 at
the origin~which need not be small! and 0 at infinity. More-
over, since the phase ofw2 is free, the same arguments as
Ref. @19# can be used to show that a persistent current
curs. We would call this aBPS superconducting string solu
tion.

VIII. CONCLUDING REMARKS

The present paper is devoted to the low-energy dynam
of N52 supersymmetric gauge theories softly broken toN
51 by a superpotential containing up to cubic perturbatio
The effective Lagrangian in the neighborhood of maxim
singularities of the quantum moduli space corresponds to
Abelian U(1)N21 multi-Higgs system with couplings amon
different dual U(1) factors. The case of SU(3) has be
analyzed in some detail. There are generically no BPS e
tric vortices in the system unless the soft breaking para
eters have coincident complex phases~or they differ byp)
and the ultrastrong scaling limit@11# is taken. We have see
that the effect over a BPS configuration of turning on
infinitesimal misalignment among these parameters is the
pearance of a net repulsive force between parallel vort
corresponding to~zeros of! different Higgs fields. In a finite
piece of material, metastable solutions take place and vo
ces develop static triangular lattice. We call this phase ‘‘h
brid type II’’ dual superconductivity.

When the theory is perturbed with a cubic superpotent
the ratio of string tensions differs from that computed in t
quadratic case@8# whether the TrF2 perturbation is presen

6As we approach the situation whenC2→0, the parameters tha
enter Eq.~90! are such thatg,l2!l1 @see Eqs.~15!, ~46!, and
~47!#. Hence at very low energy the second U(1) seemingly
couples. This is suggested by theN52 exact effective solution,
although it is reasonable to expect modifications of the renorm
ization group flow in theN51 theory.
8-10
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or not. In the former case, we found that these ratios e
depend on the supersymmetry breaking parameters. T
results were obtained after imposing the ultrastrong sca
limit. It would certainly be interesting to know if simila
results emerge in the context of MQCD. This is intriguing
the sense that string tensions in MQCD are given by
distance ofD4-branes which, for a single Casimir perturb
tion, are stretched at the roots of unity over a circle of rad
of orderL @11#, so one would not expect them to be mod
fied ~except, possibly, for a global factor due to an induc
change inL) as compared to the purely quadratic case.

A natural extension of the present work involves the c
of N52 supersymmetric theories softly broken down toN
50, and possible soft breaking by higher than the two fi
Casimir operators. This program can be addressed within
u-
o

’’

ys
i,

s

06500
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Whitham approach to the Seiberg-Witten solution, where
slow times of the hierarchy can be used as spurionic sou
of soft supersymmetry breaking@21#.
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Mariño, ibid. 12, 975 ~1997!.

@11# A. Hanany, M. J. Strassler, and A. Zaffaroni, Nucl. Phy
B513, 87 ~1998!.

@12# M. J. Strassler, Prog. Theor. Phys. Suppl.131, 439 ~1998!.
@13# W. Garcı́a Fuertes and J. Mateos Guilarte, Phys. Lett. B437,

82 ~1998!.
@14# A. Yung, Nucl. Phys.B562, 191 ~1999!.
@15# M. Mariño and G. Moore, Commun. Math. Phys.199, 25

~1998!.
@16# J. D. Edelstein and J. Mas, Phys. Lett. B452, 69 ~1999!.
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