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Ginzburg regime and its effects on topological defect formation
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The Ginzburg temperature has historically been proposed as the energy scale of formation of topological
defects at a second order symmetry breaking phase transition. More recently alternative proposals which
compute the time of formation of defects from the critical dynamics of the system have been gaining both
theoretical and experimental support. We investigate, using a canonical model for string formation, how these
two pictures compare. In particular we show that prolonged exposure of a critical field configuration to the
Ginzburg regime results in no substantial suppression of the final density of defects formed. These results
eliminate the Ginzburg regime as a possible cause of erasure of vortex lines in the recent4He pressure quench
experiments.

PACS number~s!: 11.27.1d, 05.70.Fh, 98.80.Cq
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I. INTRODUCTION

When a rapid symmetry-breaking phase transition occ
in a system with degenerate vacua, topological defects
inevitably form, as was pointed out by Kibble in the cosm
logical context@2#.

The Ginzburg temperatureTG @1# was thought historically
to be the determining energy scale at which topological
fects are formed in the aftermath of a second order symm
breaking phase transition@2–4#. More recently theoretica
and experimental progress has pointed in the direction th
is the critical dynamics of the second order transition,
duced by a change in some external parameter such as
perature or pressure, that determines the numbers~and con-
figuration! of topological defects emerging below the critic
point @5#.

Nevertheless the role of large thermal fluctuations wit
the Ginzburg regime in defect formation mechanisms
mains relatively poorly understood. In particular it is n
clear how a density of defects created, presumably by
critical dynamics of the system, could evade alteration wh
exposed extensively to thermal fluctuations in the Ginzb
regime.

This issue has been rekindled recently due to the poss
ity of new experimental tests@6–9# and, in particular, by the
negative results of a pressure quench experiment in4He @9#,
a system in which~because of strong interactions! the Gin-
zburg regime is particularly extensive. This experiment h
improved on an apparatus used earlier by McClintocket al.
@8# to implement a superfluid transition in4He through a
sudden pressure quench. The results show no evidenc
the formation of topological defects at the anticipated leve
contrary to expectations based both on the old experim
0556-2821/2000/62~6!/065005~8!/$15.00 62 0650
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@8#, the theory1 and the3He data@6,7#.
The discrepancy with the earlier4He quench data is now

seen as the evidence of mechanical stirring in the first v
sion of the experiment. Nevertheless to address this disc
ancy with 3He it was suggested@12# that because the Gin
zburg regime in 4He extends over a broad range
temperatures around thel-line, large scale fluctuations ma
be able to unwind and alter the configuration of the ord
parameter~in contrast to3He) while the quench proceeds
The Ginzburg temperature is defined, somewhat qua
tively, through the loss of ability of the order parameter
hop, through thermal activation, over the potential barr
between broken symmetry minima. Thus one might wo
with Karra and Rivers@12# that when the defect densities a
eventually measured, at a much later time, little or no str
would have survived unwinding through thermal activatio

In this paper we study in detail the role of the Ginzbu
regime in vortex string formation. In Sec. II we discuss o
model and its properties. We show in particular that it tra
scends the more usual time dependent Ginzburg-Lan
~TDGL! dynamics in generality and reduces to it in partic
lar cases. In Sec. III we describe the traditional arguments
the existence of a well defined Ginzburg temperature
critically analyze their underlying assumptions in the light
known results on the thermodynamics of vortex strings. W
also establish a quantitative definition of the Ginzburg te
perature and discuss its uncertainties. In Sec. IV we inve
gate the role of the Ginzburg regime in thedynamicsof
defect formation. This is achieved by exposing field config
rations created at criticality to intermediate temperatu

1Although a factorf *10 in the formula for the string densityn

;1/( f ĵ)2 could explain the new results and seems consistent w
recent numerical studies@10,11#.
©2000 The American Physical Society05-1
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BETTENCOURT, ANTUNES, AND ZUREK PHYSICAL REVIEW D62 065005
within the Ginzburg regime and analyze the effect upon
final density of defects measured at late times. We also s
the memory of the order parameter when subjected to reh
ing. This constitutes a direct test on the theory of def
formation as a consequence of the critical dynamics of
theory. Finally we draw our conclusions and discuss in
light of our results the possible relevance of the Ginzb
regime in explaining recent experimental results in4He pres-
sure quench experiments.

II. LANGEVIN AND FOKKER-PLANCK FIELD
DYNAMICS

As a working model we consider aU(1) symmetriclf4

global field theory in 3 spatial dimensions~3D!, in the ca-
nonical ensemble, i.e. in contact with a heat bath at a gi
temperatureT. This model has the advantage of having be
extensively studied in thermal equilibrium@14,15,13,16# and
moreover of describing the thermodynamics of4He at criti-
cality @17# by permitting the computation of relevant critic
exponents with extreme accuracy.

As such it supplies us with a controlled realistic enviro
ment in which the role of thermal fluctuations within th
Ginzburg regime in changing the density of topological d
fects can be studied. The equations of motion for the fie
are

@] t
21h] t2¹22m2#f i~x!

1lS (
j 51

2

f j
2~x!Df i

2~x!5j i~x,t !,

^j i~x,t !&50,

^j i~x,t !j j~x8,t8!&5Vd~x2x8!d~ t2t8!d i j ,
~1!

where i , j P$1,2% and the heat bath fieldsj i(x,t) obey the
fluctuation dissipation relation in equilibrium. Thus, for lon
times, the system equilibrates to its canonical distribution
temperatureT. This can be shown most conveniently b
writing the Fokker-Planck equation corresponding to
Langevin dynamics of Eq.~1! @18#,

] tPFP@p,f,t#52HFPPFP@p,f,t#, ~2!

where

HFP52
V

2

d2

dp i
2 1p i

d

df i
2

d

dp i
S hp i2¹2f i1

dV~f!

df i
D ,

~3!

where sum overi P$1,2% is implied here and below. If, as in
most applications, the potentialV(f) is explicitly time inde-
pendent we can invoke a separation ansatz forPFP such that

PFP@p,f,t#5P@p,f#T~ t !. ~4!

Thus we can regard Eq.~2! as a functional Schro¨dinger equa-
tion, in imaginary time. Then we can write the time indepe
dent and dependent equations
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HFPPn5EnPn , ] tT~ t !52EnT~ t !. ~5!

The functional dependence on the fields is now limited to
static probability eigenfunctionalsPn . The time evolution of
the Fokker-Planck distribution is completely characteriz
by the spectrum of eigenvalues ofHFP, En .

Formally, we can then project the evolution ofPFP in
terms of its eigenvaluesEn and eigenfunctionalsPn as

PFP@p,f,t#5 (
n50

`

CnPn@p,f#e2Ent, ~6!

where theCi ’s are the projections of the initial timePFP
onto the basis of eigenfunctionalsPn .

The equilibrium solution must be static. It corresponds
a zero eigenvalue in Eq.~5!, which implies the solution

Peq@p,f#5NexpF2bE dDx
p i

2

2
1

~¹f i !
2

2
1V@f#G ,

~7!

where we tookV52h/b, which is the Einstein relation en
forcing equilibrium between fluctuation and dissipation
long times. Summation overi is implied. On general ground
we expect the canonical equilibrium distribution to be a
proached at long times, i.e. we expect the excited tim
dependent statesPn , nÞ0 to decay with time.

The full spectrum of excited states and their correspo
ing eigenvalues can only be found for specific forms of t
field potentialV(f). In particular this is possible in close
analytic form for harmonic potentialsV5 1

2 m2f2. For each
mode in k-space the excited states are given in terms
Hermite polynomials of functions of the field modes a
those of their conjugate momenta. More importantly the c
responding eigenvalues are given by@18#

En5n
h

2
@16A124~k21m2!/h2#.

Close to the phase transition the leading effect of
(l/4)f4 interactions is to make the effective mass tempe
ture dependent as

m2~T!5m0
2UT2Tc

Tc
U2n

~8!

whereTc is the critical temperature andn a universal critical
exponent, which depends only on the dimensionality
space and the internal symmetries of the theory. To 1-loo
perturbation theory we have

m2~T!52m21Dm2~T!,

Dm2~T!5lE dDk

~2p!D ^fkf2k&, ~9!

i.e. the temperature correction tom2 is given by the~classi-
cal! tadpole diagram. The values of theO(2) symmetric
thermal averagêfkf2k& depends on the specific form o
the thermal distribution, classical or quantum. Under th
approximations one obtains the mean-field value ofn51/2.
5-2
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GINZBURG REGIME AND ITS EFFECTS ON . . . PHYSICAL REVIEW D62 065005
In the critical domain we can thus obtain an approxim
analytical description of the non-linear field dynamics
taking the mass in the harmonic potential to be of the fo
~8!. Although only approximately true, we will show belo
that this assumption leads to a good qualitative understa
ing of the full non-linear field dynamics in the critical do
main and the effects of the Ginzburg regime.

The present scheme, Eqs.~1!, is therefore convenient bot
as a thermalization algorithm, if the system is started at
given configuration and run for long times, or as a means
performing effective non-equilibrium dynamics. The equi
bration time itselfteq.1/E1, is dependent on spatial scale~or
wavelength! and on temperature. Qualitatively large spat
scales equilibrate more slowly and in particular, in the cr
cal domain, exhibit critical slowing down. This can be se
explicitly by considering long wavelength modes (k2.0) in
the vicinity of Tc . Then, for half of the eigenvalues th
thermalization time is inversely proportional ton times teq
with

teq5Fh2 „12A124~k21m2!/h2
…G21

~10!

.
h

m2~T!
→`, ~11!

as T→Tc . This is the result for overdamped dynamicsh
@m(T), and could have been obtained by a Langevin eq
tion with a single~dissipative! time derivative. In this sense
the evolution of the long-wavelength modes in the vicinity
Tc is always overdamped, which is the essence of the
haps more familiar TDGL evolution, to which Eqs.~1! re-
duce to in the appropriate regime. Note that the TDGL d
namics is an effective equation for long-wavelength fie
modes in the critical domain while our model holds mo
generally.

In the converse limit the decay of short wavelength mo
is dictated byh and is thus scale invariant in this approx
mation. The appropriate physical value ofh can be com-
puted in perturbation theory given a microscopic model. P
ticularly interesting are situations for whichm(T),h as
happens in the critical domain. Then there is true time-sc
separation in the sense that short wavelength modes ther
ize much faster than long-wavelength modes.

This kind of considerations will help us understand t
behavior of the fully non-linear dynamics in the Ginzbu
regime. Before we do this we need to develop a clear pic
of equilibrium to which we now turn.

III. EQUILIBRIUM RESULTS AND THE DEFINITION OF
THE GINZBURG TEMPERATURE

The rationale behind the original proposal according
which the Ginzburg temperatureTG is the energy scale fo
the formation of topological defects@2,3#, was that, at lower
temperatures, thermal fluctuations would be unable to o
come the potential energy barrier associated with the defe
topological stability. Thus, field configurations with no
trivial topology, below this temperature would necessar
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acquire stability on the average.
It is clear that such an appealingly simple physical pictu

assumes implicitly a separation of physical scales and a
ciated time evolution or equivalently, as we discuss belo
that at least part of the system is out of thermal equilibriu
Indeed one must assume that field configurations can
separated in two populations—one of topological defects
another of thermal fluctuations. The former, at least in
sense of the definition of the Ginzburg regime~see below!
live on a zero temperature background. This situation is
best an idealization.

Strictly in thermal equilibrium at temperatures not to
low, field thermal fluctuations with non-trivial topology wil
always exist. The density of vortex string thermal fluctu
tions in our model is shown in Fig. 1. It is, however, remar
able that long strings can only exist in equilibrium strict
aboveTc @14,15#. This phenomenon is the analog of vorte
pair unbinding in the well known Kosterlitz-Thouless trans
tion in this very same model in 2D@19,20#. In 3D, however,
long strings appear abruptly as we are dealing with a t
critical phenomenon instead of a crossover.

The appearance of long strings exactly atTc can be un-
derstood, in turn, in terms of their thermal statistical prop
ties namely their tensionseff(T) ~free energy per unit length!
and other statistical properties like their fractal or Hausd
dimension @15#. The dependence of the string tension
temperature is shown in Fig. 2. As seen the string tens
diminishes continuously with increasing temperature u
the critical point where it vanishes. This permits the creat
of strings of all lengths aboveTc . Below Tc , on the other
hand strings are exponentially suppressed and only th
smaller than the temperature dependent lengthl .T/seff(T)
are likely as thermal fluctuations. It is the existence of lo
strings as thermal fluctuations that will lead to defect form

FIG. 1. The dependence of the thermal distribution of vor
string field fluctuations on temperature@e5(T2Tc /Tc)#, around
the critical pointe50. The critical point is marked by the sudde
appearance of long strings. The observed fast transient should
come a discontinuous jump in the infinite volume limit@16#.
5-3
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BETTENCOURT, ANTUNES, AND ZUREK PHYSICAL REVIEW D62 065005
tion if the system is suddenly cooled@10#.
Although some of the above comments may seem so

what marginal they establish that the thermodynamics of
U(1) theory under consideration is much richer than the
sumptions on which the traditional role of the Ginzburg
gime is based. They show in particular that the vortex stri
themselves as a subset of the theory’s thermal fluctuat
have a very non-trivial thermodynamics and cannot be ta
as their cold classical solutions over a nontrivial therm
background.

The thermodynamics of vortex strings in more comp
field theories, with gauge fields and larger symmetry grou
remains to date largely unstudied, although some work
been done in the Abelian case@21#. We expect nevertheles
that most of the features of ourU(1) global theory may
persist albeit characterized by different critical exponen
This statement is supported by analytic studies of the sta
tics of free strings@22,23#, which, thanks to their large con
figurational entropy, exhibit a similar~Hagedorn! transition
but display e.g. a different dependence of the string tens
on temperature. The interactions thus change particular t
perature dependences of certain quantities but not their q
tative behavior. In theories where defects are not topolo
cally stable however~as in the case of embedded
semilocal defects! the role of these configurations may b
potentially different and possibly marginal.

The cumulative results from the equilibrium study of t
thermodynamics of vortex strings in our model cast cons
erable doubt upon the assumptions underlying the traditio
role of the Ginzburg temperature in defect formation. It
mains unclear however what the role may be of large ther
fluctuations in the critical domain~aboveTG) in changing

FIG. 2. The dependence of the string tensions ~free energy per
unit length! on temperature in the critical domain. The critical poi
is marked by the vanishing ofs, which in turn allows for the
creation of arbitrarily long strings as thermal fluctuations; s
Fig. 1.
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defect densities produced by the critical dynamics of
fields.

In order to investigate this issue we need a quantita
definition of TG . In tune with the arguments given abov
consider a volume of characteristic sizej(T), the correlation
length, and a theory with two energetically degener
minima of an effective potentialV(f), separated by a poten
tial barrierDV. This applies also for theories with a gener
O(N) symmetry, since we will be interested in the rad
direction only. The effective potential is obtained by singlin
out an arbitrary direction in field space@24#, which we de-
note byw. The rate for the field to change coherently fro
one minimum to the other per unit volume due to therm
activation is

T4exp~2DV/kBT!. ~12!

For an effective potential of the form~obtained, e.g. pertur-
batively at 1-loop!

V~f!52
1

2
m2~T!w21

l

4
w4, ~13!

DV5m(T)4/4l. For a volumej3, we defineTG such that the
probability of overcoming the potential barrier is of ord
unity:

TG :
DV~TG!

TG
•j3~TG!51 ⇔ lTG /m~TG!5

1

4
.

~14!

This definition however has some caveats, for instance
effective potential of the form Eq.~13! is only valid for the
mean field and not on smaller scales. A more careful
counting of scales leads to different results@25#, which show
an enhancement of the hopping probability. Thus, the fac
of 1/4 in Eq.~14! should not be taken at face value.

A perhaps more rigorous definition arises from the ran
of temperatures belowTc for which fluctuations are large
and consequently where perturbative finite temperature fi
theory fails to be useful. In order to set up a perturbat
scheme at finite temperature from an initi
(311)-dimensional quantum field theory one implemen
dimensional reduction which is valid provided the tempe
ture is high compared to all mass scales. As a consequ
the coupling of the dimensionally reduced 3D field theo
becomes dimensionful, i.e.l→lT5l3. In order to proceed
one has to identify an appropriate dimensionless coupl
This is done by takinglT/m(T). The Ginzburg regime is
entered when this 3D effective coupling becomes strong
the vicinity of the critical point, namely

TG : lTG /m~TG!51. ~15!

To computeTG one needs the scaling ofm(T) in the critical
domain. We writem2(T)5m0

2ueun, with e being the reduced
temperaturee5(T2Tc)/Tc.

Thus eG520.18 for n50.5. This mean-field estimat
produces an upper bound inT for TG ~and lower bound for
b51/T). For realistic 3D exponents,n50.67, we obtain
eG520.25. The first criterion, based on the hopping of
correlation sized volume, results in higher values ofTG .

e

5-4
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This brings about a relatively large uncertainty in the va
of TG , which is 18–25 % belowTc .

IV. THE ROLE OF THE GINZBURG REGIME IN THE
DYNAMICS OF DEFECT FORMATION

In order to investigate the role of the Ginzburg tempe
ture in thedynamicsof defect formation we perform a serie
of tests both directly over the evolution of string densit
and the evolution of the order parameter, when expose
thermal fluctuations in the Ginzburg regime.

A. Strings survive the Ginzburg regime

To investigate the effects of thermal fluctuations direc
upon strings we deliberately expose the system to a heat
at temperaturee i , within the Ginzburg regime and below.

We are attempting to emulate the worst case scenari
an experimental quench where the temperature or pres
are dropped monotonically but where the system make
long stopover within the Ginzburg regime. We repeat t
procedure for a range of time intervalsDt, after which the
bath temperature is taken to zero. This set of tempera
trajectories is shown in Fig. 3.

We would expect that, if the Ginzburg regime indeed p
duced enhanced decay of strings, then the string dens
measured at later times should be smaller the longer the
the system spent within the rangeTc>T>TG .

Our results for the final string densities as a function
intermediate temperaturee i andDt are summarized in Fig. 4
There is no apparent effect of the Ginzburg regime in red
ing string densities at formation.

FIG. 3. Temperature trajectories for testing the effect of ex
sure to the Ginzburg regime on string densities. The system is
thermalized at a high temperature and then placed in contact w
heat bath at an intermediate temperaturee i below Tc , for a time
interval Dt.
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If any trend is visible from Fig. 4 it is the opposite
namely a monotonic dependence of the final string dens
on e i—the lower e i , the less string is measured at lat
times.

The knowledge of the vortex string thermodynamics a
of the time response of the fields in the critical domain ag
helps us understand this result. Strings and in particular l
strings are inherited from high temperature~higher thanTc)
topological fluctuations@10#.

We can now use our knowledge of the Fokker-Plan
solution to understand the observations of Fig. 4. As
discussed above the small scales in the system equilib
faster on a characteristic timescalet;h21. Small scale fluc-
tuations dominate the thermal average in Eq.~9!, which then
allows us to take the effective value ofm2.m2(Ti).

On the other hand, upon cooling through the critical po
the large scales in the system display critical slowing dow
This includes in particular the long strings in the samp
which will be responsible for the signal at the time of me
surement later. This slowing down leads to an imbalance
the string population out of equilibrium relative to their equ
librium counterpart, given by the existence of many mo
long strings.

This constitutes an excited state~described byPnÞ0) rela-
tive to the true equilibrium of the system at intermedia
temperatures belowTc . These states will then decay on
timescale teq5En

21;h/m2(Ti). The value of m2(Ti) is
smaller the closerTi is to Tc and thus leads to a longer tim
scale for the decay of long strings.

-
st
a FIG. 4. The string density measured at the same later timt
@Dt vs intermediate temperaturee i . From bottom to top the three
plots correspond toDt510,20,50, during which the system re
mained in contact with a heat bath atTi . There is no visible role
played by intermediate temperatures within the Ginzburg regim
5-5
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BETTENCOURT, ANTUNES, AND ZUREK PHYSICAL REVIEW D62 065005
We can then predict a monotonic behavior for the str
densities as observed in Fig. 4. AtTG in particular m2

5lTG
2 , by definition andteq;lTG

2 /h.
Thus the conclusion is inescapable: The longer the t

the system spends further fromTc the less string it will dis-
play at later times where formation rates are measured.

B. Memory of the order parameter configuration near Tc

An independent test on the possible role of thermal fl
tuations in affecting string densities consists in reheatin
quenched system to a temperature aroundTc ~both below
and above! and cooling it again at the same rate. This p
cess tests the memory of the order parameter as well as
of other related quantities~see also@26#!, such as defects.

The importance of this test is directly related to the c
nonical theory of defect formation as due to the critical d
namics of the fields. The final density of strings formed
the transition are then inferred indirectly through the cor
lation length associated with the two-point correlator of t
fields.

An example of the temperature (e(t)) trajectories used in
testing the memory of the order parameter are shown in
5~a!.

We are particularly interested in investigating under w
circumstances thermal fluctuations can affect the large s
configuration of the order parameter. In order to produc

FIG. 5. ~a! Dependence of the bath temperaturee in time. After
being quenched in temperature (tQ580) the system is reheated
the same rate to a temperaturee f50.469,0.256,0.061,20.068 ~top
to bottom! and cooled again.~b! The correlation function betwee
the field at the time just before reheating and at later tim
^f i(t rh ,x)f i(t1t rh ,x)& is plotted. There is a universal short tim
transient for the decorrelation of the field over small scales w
the long time tails of the correlation function describe change o
the mean fields. All four trajectories cross the Ginzburg regime,

only those reaching or crossing1 ê display a significant memory
loss.
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quantitative test we define the unequal-time two-point cor
lation function

^f~x,t rh!f~x,t1t rh!&5N(
j 51

2

(
i

f j~xi ,t rh!f j~xi ,t1t rh!,

~16!

whereN is an irrelevant normalization factor. This correlat
has several interesting properties. For short times it disp
a characteristic time, which describes the decay of corr
tions over very small spatial scales. This is the initial tra
sient in Fig. 5~b!. We verified that this time and the form o
the correlation function is in agreement with the forms p
dicted from a Boltzmann distribution for the fields. For lat
times the residual correlation comes from the motion of
order parameter~the field volume average!. This average can
be either positive or negative but, if thermal, will converge
zero at and aboveTc .

Now, we are interested in determining whether the fin
field configuration over large spatial scales is correlated
the configuration prior to reheating. Figure 5 shows that o
if one crossesTc , by more than1 ê, is the memory of the
initial quenched configuration erased~see in particular the
two trajectories reaching higher temperatures in compari
to the others!. For these trajectories the field correlatio
reach zero and after reheating evolve to a value manife
different from that prior to reheating.

For trajectories within the Ginzburg regime, that do n
crossTc , the change in the configuration of the order para
eter as measured by Eq.~16! is small. In particular the field
configuration existing before reheating is approximately
covered as the fields are cooled. The same is true for
string densities, including those of long strings.

Again we can understand these results using the tool
veloped in Sec. II. The thermalization time, which is nothi
else than the response timet in the Kibble-Zurek mecha-
nism, for long-wave length modes in the system is given

teq.
h

m2~T!
. ~17!

We argued that it is a reasonable approximation to takeT to
be the final temperature since the small scales in the sys
equilibrate much faster@providedm(T),h].

Now t̂ , or equivalentlyê, is defined as the time when th
long wavelength modes in the system can first respond
change in bath temperature linear in time. It is computed
equating the scaling of the response timet(T),

t„e~T!…5
h

m2enz~T!
, ~18!

to a linear change in time, imposed externally, i.e.

t„e~ t̂ !…5
h

m2enz~ t̂ !
5 t̂ . ~19!

,
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z is another critical exponent whose mean-field value is
see@10#. This relation is usually solved byassuminga linear
dependence in time fore(t)5t/tQ , wheretq is the rate of
the external quench.

Explicit calculation ofDm2(T) in Eq. ~9! for our classical
Boltzmann ensemble shows that

Dm2~T!.
l

p2 LT, ~20!

whereL52p/Dx is the ultraviolet cut off. This cutoff has
physical meaning and is related to the breakdown of
scalar field model for high energy excitations, e.g. fermio
quasi-particles in3He. If indeed the external bath temper
ture is changed linearly thenT in Eq. ~20! can be taken, ove
time scales larger thanh21, to be linear in time. It then
results trivially thate(t) is also linear, which validates ou
assumption.

The significance oft̂ is that only whenue(t)u. ê can the
long wavelength modes in our system thermalize under
externally changing temperature at a ratetQ , i.e. keep pace
with the externally imposed changes. Due to theoretical
certainties the value ofê adopted in Fig. 5~a! was measured
by monitoring the response of the system directly. Deta
are described elsewhere@10#.

At the initial time, for temperature trajectories of Fig.
the system is in the process of breaking theU(1) symmetry
spontaneously, i.e. the expectation value of thek50 mode of
f, ^f& is non-zero. Then, as the system is heated towardTc
equilibration of the long wavelength modes means that^f&
→0 and upon cooling show zero correlation in Fig. 5~b! to
its initial state. Since thermalization of^f& can only occur
for e>ê, only the temperature trajectories crossing1 ê can
attain zero correlations.

It is then clear that the Ginzburg regime cannot chan
the symmetry breaking process of the system, including
associated long string configurations, unless a long amo
of time is allowed. The Ginzburg regime is therefore le
efficient at destroying topological defects~in the sense of
requiring a longer time! than any other temperature rang
outside the critical domain.

V. DISCUSSION AND CONCLUSIONS

In this paper we have performed the most extens
analysis to date of the effects of large thermal fluctuatio
within the Ginzburg regime, on the formation of topologic
defects. Our model field theory has already been studied
tensively both in equilibrium and in tests of the theory
defect formation at temperature quenches, as predicted
the critical dynamics of the theory.

Under these controlled circumstances we analyzed c
06500
,

r
c

n

-

s

e
ts
nt
s

e
s,
l
x-

by

i-

cally the assumptions underlying the traditional argument
the Ginzburg temperature as the energy scale at which to
logical defects are formed. We then proceeded to show
the effects of thermal fluctuations in the Ginzburg regim
upon a population of topological defects formed by the cr
cal dynamics of the theory carries no particular signature
leads mostly to small changes in the defect densities
dicted by the theory of defect formation.

We have also shown that even prolonged exposure
quenched field configuration to the Ginzburg regime h
little consequences in changing the order parameter confi
rations emerging at2 ê, and associated string densities.
addition we established that to truly destroy a quenched fi
configuration existing below2 ê, one has to expose the sy
tem to temperatures well aboveTc . In particular it appears
that for a linear quench and reheating trajectory, such
shown in Fig. 4, a temperature ofe;1 ê, must be reached in
order to erase memory of the initial configuration. This o
servation suggests a more general conjecture: A signific
rearrangement of the topological defects created in a que
with the characteristic freezeout temperatureê appears to
require reheating the system to a temperature of ordeê
above the critical temperature, and keeping it there for a t
t̂ .

These results were confirmed by analytical argume
based on the solutions of the associated Fokker-Planck e
tion. This analysis supports the conclusion that given
same amount of time of exposure to a thermal bath at a g
temperature, the Ginzburg regime is actually the least e
cient range of temperatures at destroying the pattern of s
metry breaking inherited from criticallity. This includes to
pological defect configurations.

Our results fully support the theory of defect formatio
resulting from the critical dynamics of second order tran
tions @5# and all known thermodynamic results for vorte
strings inO(N) theories@14–16,13#. In face of this evidence
we are lead to conclude that arguments singling out a spe
energy scaleTGÞTc , which would play an important role in
defect formation rely on assumptions that are not realized
the true~thermo!dynamics of our model and are thus invali

Thus we expect the results of this paper to carry over
the new Lancaster4He experiments. The results of reporte
in @9# in these experiments cannot therefore be attributed
the effects of Ginzburg regime in4He.
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