PHYSICAL REVIEW D, VOLUME 62, 065005
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The Ginzburg temperature has historically been proposed as the energy scale of formation of topological
defects at a second order symmetry breaking phase transition. More recently alternative proposals which
compute the time of formation of defects from the critical dynamics of the system have been gaining both
theoretical and experimental support. We investigate, using a canonical model for string formation, how these
two pictures compare. In particular we show that prolonged exposure of a critical field configuration to the
Ginzburg regime results in no substantial suppression of the final density of defects formed. These results
eliminate the Ginzburg regime as a possible cause of erasure of vortex lines in the*téeqmessure quench
experiments.

PACS numbegs): 11.27+d, 05.70.Fh, 98.80.Cq

. INTRODUCTION [8], the theory and the®He data[6,7].
The discrepancy with the earliéHe quench data is now

When a rapid symmetry-breaking phase transition occyrSeen as the evidence of mechanical stirring in the first ver-
. . . .5ion of the experiment. Nevertheless to address this discrep-
in a system with degenerate vacua, topological defects wil ncy with 3He it was suggesteflL2] that because the Gin-
inevitably form, as was pointed out by Kibble in the COSMO-zhyrg regime in “He extends over a broad range of
logical context[2]. temperatures around theline, large scale fluctuations may

The Ginzburg temperatufs [1] was thought historically be able to unwind and alter the configuration of the order
to be the determining energy scale at which topological deparameter(in contrast to*He) while the quench proceeds.
fects are formed in the aftermath of a second order symmetryhe Ginzburg temperature is defined, somewhat qualita-
breaking phase transitiof2—4]. More recently theoretical tively, through the loss of ability of the order parameter to

and experimental progress has pointed in the direction that fop. through thermal activation, over the potential barrier
is the critical dynamics of the second order transition, in-P&€tween broken symmetry minima. Thus one might worry

duced by a change in some external parameter such as ter‘ﬁi—th Karra and River$12] that when the defect densities are

erature or pressure, that determines the numiaerd con- eventually measured, at a much later time, little or no string
P P ' would have survived unwinding through thermal activation.

flggratlor'i» of topological defects emerging below the critical |, this paper we study in detail the role of the Ginzburg
point [5]. . _regime in vortex string formation. In Sec. Il we discuss our
Nevertheless the role of large thermal fluctuations withinmodel and its properties. We show in particular that it tran-
the Ginzburg regime in defect formation mechanisms rescends the more usual time dependent Ginzburg-Landau
mains relatively poorly understood. In particular it is not (TDGL) dynamics in generality and reduces to it in particu-
clear how a density of defects created, presumably by th&r cases. In Sec. Il we describe the traditional arguments for
critical dynamics of the system, could evade alteration wherhe existence of a well defined Ginzburg temperature and
exposed extensively to thermal fluctuations in the Ginzburgritically analyze their underlying assumptions in the light of
regime. known results on the thermodynamics of vortex strings. We
This issue has been rekindled recently due to the possibiRISo establish a quantitative definition of the Ginzburg tem-
|ty of new experimenta| testﬁ_g] and, in particu|ar, by the perature and discuss |tS Uncerta”'\“.es. |n Sec. IV We investi-
negative results of a pressure quench experimefitim[9], ~ 9até the role of the Ginzburg regime in tynamicsof
a system in whichbecause of strong interactiorhe Gin- defect formation. This is achieved by exposing field configu-

zburg regime is particularly extensive. This experiment hagations created at criticality to intermediate temperatures

improved on an apparatus used earlier by McClintetkl.

[8] to implement a superfluid transition ifHe through a

sudden pressure quench. The results show no evidence fofAlthough a factorf=10 in the formula for the string density

the formation of topological defects at the anticipated levels~1/(f£)? could explain the new results and seems consistent with
contrary to expectations based both on the old experimentcent numerical studigd0,11.
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within the Ginzburg regime and analyze the effect upon the HepPr=EnPn, 0,T(t)=—E,T(t). (5)
final density of defects measured at late times. We also study
the memory of the order parameter when subjected to reheathe functional dependence on the fields is now limited to the
ing. This constitutes a direct test on the theory of defecstatic probability eigenfunctionaig, . The time evolution of
formation as a consequence of the critical dynamics of théhe Fokker-Planck distribution is completely characterized
theory. Finally we draw our conclusions and discuss in theédy the spectrum of eigenvalues Hfgp, E,,.
light of our results the possible relevance of the Ginzburg Formally, we can then project the evolution Bfp in
regime in explaining recent experimental resultéfte pres- terms of its eigenvalue§, and eigenfunctional®, as
sure quench experiments. "
_ —Ept
Il. LANGEVIN AND FOKKER-PLANCK FIELD PFP[W’(ﬁ’t]_nZo CoPalm, $le =, ©
DYNAMICS
where theC;’s are the projections of the initial tim€gp
As a working model we considerd(1) symmetric\ *  onto the basis of eigenfunctionaf, .

global field theory in 3 spatial dimensiort8D), in the ca- The equilibrium solution must be static. It corresponds to

nonical ensemble, i.e. in contact with a heat bath at a give zero eigenvalue in E@5), which implies the solution
temperaturdl. This model has the advantage of having been

extensively studied in thermal equilibriuph4,15,13,16and o 7 (V)2
moreover of describing the thermodynamics“sfe at criti- Ped m #]=Nexp — 5| d X5 + 2 +Viell,
cality [17] by permitting the computation of relevant critical (7)

exponents with extreme accuracy. o ) ) )

As such it supplies us with a controlled realistic environ-Where we took)=27/3, which is the Einstein relation en-
ment in which the role of thermal fluctuations within the forcing equilibrium between fluctuation and dissipation at
Ginzburg regime in changing the density of topological de-long times. Summation oveiis implied. On general grounds
fects can be studied. The equations of motion for the fieldgve expect the canonical equilibrium distribution to be ap-

are proached at long times, i.e. we expect the excited time-
dependent state3,, n#0 to decay with time.
[&tz+ 79— V?—m?] i (X) The full spectrum of excited states and their correspond-
) ing eigenvalues can only be found for specific forms of the
2 2\ field potentialV(¢). In particular this is possible in closed
A 1-21 ¢J(X)) S (X)=&i(x.D), analytic form for harmonic potentiald=1m?¢2. For each
mode in k-space the excited states are given in terms of
(&(x,1))=0, Hermite polynomials of functions of the field modes and
those of their conjugate momenta. More importantly the cor-
(E(XDE(X))=Q8(x=x")8(t—t") 5, responding eigenvalues are given 4]
(o
_. 7 T2 2
wherei,j €{1,2} and the heat bath field&(x,t) obey the En=n3[1=V1-4(K*+m?)/77].

fluctuation dissipation relation in equilibrium. Thus, for long
times, the system equilibrates to its canonical distribution at Close to the phase transition the leading effect of the
temperatureT. This can be shown most conveniently by (A/4)¢* interactions is to make the effective mass tempera-
writing the Fokker-Planck equation corresponding to theture dependent as
Langevin dynamics of Eq.l) [18],

_ 2v
20T — m?2 c
Pep[ 7, ¢,t]= —HepPep[ 7, b,t], ) M= Te ®
where whereT. is the critical temperature anda universal critical
) exponent, which depends only on the dimensionality of
_ 9 5—+77-i— K V2 + SV(¢) space and the internal symmetries of the theory. To 1-loop in
P2 5w Togy om Kl S ) perturbation theory we have
3
@ m?(T)=—m?+Am?%(T),
where sum overe {1,2 is implied here and below. If, as in 4Pk
most applications, the potentidll ¢) is explicitly time inde- AMA(T :)\f 9
pendent we can invoke a separation ansatZPfey such that m(m) (2m)° {bcd i), ©)
Pep[, ¢, t]=P[ 7, ]T(L). (4) i.e. the temperature correction ne? is given by the(classi-

cal) tadpole diagram. The values of th@(2) symmetric
Thus we can regard ER) as a functional Schdinger equa-  thermal averagé ¢, ¢ ) depends on the specific form of
tion, in imaginary time. Then we can write the time indepen-the thermal distribution, classical or quantum. Under these
dent and dependent equations approximations one obtains the mean-field value ef1/2.
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In the critical domain we can thus obtain an approximate [ R B R
analytical description of the non-linear field dynamics by
taking the mass in the harmonic potential to be of the form
(8). Although only approximately true, we will show below 0.2
that this assumption leads to a good qualitative understand-
ing of the full non-linear field dynamics in the critical do-
main and the effects of the Ginzburg regime.

The present scheme, Ed#%), is therefore convenient both
as a thermalization algorithm, if the system is started at any
given configuration and run for long times, or as a means of
performing effective non-equilibrium dynamics. The equili-
bration time itselft,,~1/E,, is dependent on spatial scat
wavelength and on temperature. Qualitatively large spatial
scales equilibrate more slowly and in particular, in the criti-
cal domain, exhibit critical slowing down. This can be seen 0.05
explicitly by considering long wavelength modd€40) in
the vicinity of T,. Then, for half of the eigenvalues the
thermalization time is inversely proportional totimes t

W|th O||\|||||||||||\|||||"'i“II
0.5 0 -0.5

7 -1 €
teq=|5 (1~ V1—4(K2+m?)/ 7?) (10

0.1

String plaquette densities
TTTTTTTTT ‘ TTTTTTTTT TT 11T TTT ‘ TTTTTTT 1T I TT T T IrT
II\IIIII‘IIIIIIIII|\I\IIIIII‘IIIII\I\IIII\\III

—_

FIG. 1. The dependence of the thermal distribution of vortex
string field fluctuations on temperatufe=(T—T./T.)], around
n the critical pointe=0. The critical point is marked by the sudden
= HZ(_T)HOQ 11 appearance of long strings. The observed fast transient should be-
come a discontinuous jump in the infinite volume lif6)].

as T—T.. This is the result for overdamped dynamigs acquire stability on the average.

>m(T), and could have been obtained by a Langevin equa- |t js clear that such an appealingly simple physical picture
tion with a Slngle(dISSIpatlvé time derlvatwe.- In thIS_S_er_1$e assumes |mp||c|t|y a Separation of physica| scales and asso-
the evolution of the long-wavelength modes in the vicinity of cjated time evolution or equivalently, as we discuss below,
T. is always overdamped, which is the essence of the pethat at least part of the system is out of thermal equilibrium.
haps more familiar TDGL evolution, to which Eq&l) re-  Indeed one must assume that field configurations can be
duce to in the appropriate regime. Note that the TDGL dy-separated in two populations—one of topological defects and
namics is an effective equation for long-wavelength fieldanother of thermal fluctuations. The former, at least in the
modes in the critical domain while our model holds moresense of the definition of the Ginzburg regirteee below
generally. live on a zero temperature background. This situation is at
In the converse limit the decay of short wavelength modedest an idealization. o
is dictated by and is thus scale invariant in this approxi- ~ Strictly in thermal equilibrium at temperatures not too
mation. The appropriate physical value gfcan be com- low, field t_hermal fluctua_ttlons with non-mwal topology will
puted in perturbation theory given a microscopic model. Par@lways exist. The density of vortex string thermal fluctua-
ticularly interesting are situations for whicin(T)<z as  tons in our model is shown in Fig. 1. Itis, however, remark-
happens in the critical domain. Then there is true time-scal@P!€ that long strings can only exist in equilibrium strictly

separation in the sense that short wavelength modes thermglb.oveTC. [1.4’13' This phenomenon is the analog of vortex
ize much faster than long-wavelength modes. pair unbinding in the well known Kosterlitz-Thouless transi-

S . . . tion in this very same model in 2[19,20. In 3D, however,
This kind of considerations will help us understand the : . :
behavior of the fully non-linear dynamics in the Ginzburg long strings appear abruptly as we are dealing with a true

) . .9 critical phenomenon instead of a crossover.
regime. Before we do this we need to develop a clear picture The appearance of long strings exactlyTatcan be un-

of equilibrium to which we now turn. derstood, in turn, in terms of their thermal statistical proper-
ties namely their tensioo«(T) (free energy per unit length

Ill. EQUILIBRIUM RESULTS AND THE DEFINITION OF and other statistical properties like their fractal or Hausdorf

THE GINZBURG TEMPERATURE dimension[15]. The dependence of the string tension on

) ) o ) temperature is shown in Fig. 2. As seen the string tension
The rationale behind the original proposal according togiminishes continuously with increasing temperature until

which the Ginzburg temperatuf®; is the energy scale for the critical point where it vanishes. This permits the creation
the formation of topological defec{®,3], was that, at lower of strings of all lengths abov&,. Below T,, on the other
temperatures, thermal fluctuations would be unable to overhand strings are exponentially suppressed and only those
come the potential energy barrier associated with the defect'smaller than the temperature dependent lehgtfi/ oqq(T)
topological stability. Thus, field configurations with non- are likely as thermal fluctuations. It is the existence of long
trivial topology, below this temperature would necessarilystrings as thermal fluctuations that will lead to defect forma-
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T defect densities produced by the critical dynamics of the
fields.

In order to investigate this issue we need a quantitative
definition of Tg. In tune with the arguments given above
consider a volume of characteristic sigZ@l), the correlation
length, and a theory with two energetically degenerate
minima of an effective potentidl( ¢), separated by a poten-
tial barrierAV. This applies also for theories with a general
O(N) symmetry, since we will be interested in the radial
direction only. The effective potential is obtained by singling
out an arbitrary direction in field spa¢@4], which we de-
note by . The rate for the field to change coherently from
one minimum to the other per unit volume due to thermal
activation is

0.1

T o)

0.05
O (B—B,)1 T4exp(— AV/KgT). (12)

For an effective potential of the forifobtained, e.g. pertur-
batively at 1-loop
byl gl gl gl b ‘.l | l -- J I I | ‘ L1

1 A
0.5 0.25 0 —0.25 —-0.5 V(¢):_§m2(T)¢2+Z(P4Y (13)

€

FIG. 2. The dependence of the string tensioffree energy per  AV=m(T)*/4\. For a volumet®, we defineT s such that the
unit length on temperature in the critical domain. The critical point probability of overcoming the potential barrier is of order
is marked by the vanishing of, which in turn allows for the unity:
creation of arbitrarily long strings as thermal fluctuations; see
Fig. 1. AV(Tg) 1

TG . Tf (TG):l =4 )\TG/m(TG):Z

tion if the system is suddenly cool¢dO]. (14

Although some of the above comments may seem some:, . _— .
his definition however has some caveats, for instance, an

what marginal they establish that the thermodynamics of th X . : .
U(l) thegry unde?lconsideration is much richgr than the as(_affecuve potential of the form Eq13) is only valid for the

sumptions on which the traditional role of the Ginzburg re-mean field and not on sma_ller scales. A more careful ac-
: gountmg of scales leads to different resii?§], which show

, . ~an enhancement of the hopping probability. Thus, the factor
themselves as a subset of the theory’s thermal quctuauon%]c 1/4 in Eq.(14) should not be taken at face value.

have a very non-trivial thermodynamics and cannot be take : o X
A perhaps more rigorous definition arises from the range

as their cold classical solutions over a nontrivial thermal . )
of temperatures below . for which fluctuations are large

background. and consequently where perturbative finite temperature field
The thermodynamics of vortex strings in more complex sequently w perturbative fini perature fi
theory fails to be useful. In order to set up a perturbative

field theories, with gauge fields and larger symmetry groups h £ finit ¢ i f initial
remains to date largely unstudied, although some work ha cheme —at  finite  temperature rom —an - intia
3+1)-dimensional quantum field theory one implements

been done in the Abelian caf2l]. We expect nevertheless di ional reduct hich | lid ided th

that most of the features of ol (1) global theory may tlme.ns;]c.)nﬁ re UCt'Og\tN 'C” IS vall plrow: the tempera-

persist albeit characterized by different critical exponents Ere IS Ilg co;np;}are 1 1o all maﬁs scales. As a fgolnsehquence

This statement is supported by analytic studies of the statis- € coupling o t. N d|m_en5|ona y reduced 3D field theory
ecomes dimensionful, i.a.—AT=X\3. In order to proceed

tics of free strings[22,23, which, thanks to their large con- one has to identify an appropriate dimensionless coupling.

figurational entropy, exhibit a similaiHagedorh transition o ) . o
but display e.g. a different dependence of the string tensioﬁ—hIS is done by_takmg\T/m_(T). The_Glnzburg regime 1s
ntered when this 3D effective coupling becomes strong, in

on temperature. The interactions thus change particular tenfreread | " .

perature dependences of certain quantities but not their quaITiDe vicinity of the critical point, namely

tative behavior. In theories where defects are not topologi- Te @ ANTe/m(Tg)=1. (15)

cally stable however(as in the case of embedded or

semilocal defectsthe role of these configurations may be To computelg one needs the scaling of(T) in the critical

potentially different and possibly marginal. domain. We writem?(T)=mZ|e|*, with € being the reduced
The cumulative results from the equilibrium study of the temperatures=(T—T,)/Tc.

thermodynamics of vortex strings in our model cast consid- Thus eg=—0.18 for v=0.5. This mean-field estimate

erable doubt upon the assumptions underlying the traditiongiroduces an upper bound Thfor Tg (and lower bound for

role of the Ginzburg temperature in defect formation. It re-8=1/T). For realistic 3D exponentsy=0.67, we obtain

mains unclear however what the role may be of large thermaé;= —0.25. The first criterion, based on the hopping of a

fluctuations in the critical domaiaboveTg) in changing correlation sized volume, results in higher valuesTef.
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FIG. 3. Temperature trajectories for testing the effect of expo- c
sure to the Ginzburg regime on string densities. The system is first 1
thermalized at a high temperature and then placed in contact with a FIG. 4. The string density measured at the same later time
heat bath at an intermediate temperaterdelow T., for a time

: > At vs intermediate temperatueg. From bottom to top the three
interval At.

plots correspond ta\t=10,20,50, during which the system re-
o ) o mained in contact with a heat bath Bt. There is no visible role
This brings about a relatively large uncertainty in the valuepjayed by intermediate temperatures within the Ginzburg regime.
of Tg, which is 18—25 % belowr ...

If any trend is visible from Fig. 4 it is the opposite,

IV. THE ROLE OF THE GINZBURG REGIME IN THE namely a monotonic dependence of the final string densities
DYNAMICS OF DEFECT FORMATION on —the lower ¢, the less string is measured at later
times.

In order to investigate the role of the Ginzburg tempera-
ture in thedynamicsof defect formation we perform a series
of tests both directly over the evolution of string densities
and the evolution of the order parameter, when exposed t
thermal fluctuations in the Ginzburg regime.

The knowledge of the vortex string thermodynamics and
of the time response of the fields in the critical domain again
Relps us understand this result. Strings and in particular long
strings are inherited from high temperatuhegher thanT )
topological fluctuation$10].

) ) ] ) We can now use our knowledge of the Fokker-Planck
A. Strings survive the Ginzburg regime solution to understand the observations of Fig. 4. As we

To investigate the effects of thermal fluctuations directlydiscussed above the small scales in the system equilibrate
upon strings we deliberately expose the system to a heat bataster on a characteristic timescate » . Small scale fluc-
at temperature; , within the Ginzburg regime and below. tuations dominate the thermal average in &)}, which then

We are attempting to emulate the worst case scenario d@fllows us to take the effective value of=m?*(T;).
an experimental quench where the temperature or pressure On the other hand, upon cooling through the critical point
are dropped monotonically but where the system makes the large scales in the system display critical slowing down.
long stopover within the Ginzburg regime. We repeat thisThis includes in particular the long strings in the sample
procedure for a range of time intervald, after which the  which will be responsible for the signal at the time of mea-
bath temperature is taken to zero. This set of temperaturgurement later. This slowing down leads to an imbalance in
trajectories is shown in Fig. 3. the string population out of equilibrium relative to their equi-

We would expect that, if the Ginzburg regime indeed pro-librium counterpart, given by the existence of many more
duced enhanced decay of strings, then the string densitidgng strings.
measured at later times should be smaller the longer the time This constitutes an excited stdtiescribed byP,.o) rela-
the system spent within the ranGg=T=Tg. tive to the true equilibrium of the system at intermediate

Our results for the final string densities as a function oftemperatures below,. These states will then decay on a
intermediate temperatueg andAt are summarized in Fig. 4. timescale teq= E, '~ #n/m?(T;). The value of m?(T)) is
There is no apparent effect of the Ginzburg regime in reducsmaller the closeT; is to T, and thus leads to a longer time
ing string densities at formation. scale for the decay of long strings.
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—_

L L L B B e By quantitative test we define the unequal-time two-point corre-
, 08 - lation function
ss 0.6 & -
= 04 c a vz & 2
g o.g 3 NN\ E <¢(X,trh)¢(X,t+trh)>=N;l Z i (X ,tim) dj (X ,t+ 1),
E 02 E R - . (16
= <
-04 & ) '\‘ \ \ X =
—0.6 =L L e e whereN is an irrelevant normalization factor. This correlator
0 40 80 120 160 200 240 280 . : : ) o
. has several interesting properties. For short times it displays
tne a characteristic time, which describes the decay of correla-
|z I . B tions over very small spatial scales. This is the initial tran-
A 08 3 3 sient in Fig. %b). We verified that this time and the form of
N 3 the correlation function is in agreement with the forms pre-
g 06 . E dicted from a Boltzmann distribution for the fields. For later
—~ 04F ST T e = times the residual correlation comes from the motion of the
& ok ‘<// [ order parametetthe field volume averageThis average can
‘vé ok _,,_/_f”- R be either positive or negative but, if thermal, will converge to
L T zero at and abové,.
- 120 160 200 240 ~ Now, we are interested in determining whether the final
time field configuration over large spatial scales is correlated to

the configuration prior to reheating. Figure 5 shows that only

if one crossed ., by more thant+ €, is the memory of the
initial quenched configuration erasésee in particular the
two trajectories reaching higher temperatures in comparison
to the others For these trajectories the field correlations

FIG. 5. (a) Dependence of the bath temperatenm time. After
being quenched in temperaturey=80) the system is reheated at
the same rate to a temperatwe=0.469,0.256,0.06%,0.068 (top
to botton) and cooled againb) The correlation function between
the field at the time just before reheating and at later times : .
(¢1(tX) Bi(t+1s,%)) is plotted. There is a universal short time feach zero and after reheating evolve to a value manifestly

transient for the decorrelation of the field over small scales whiledlfferent f.rom that pr_lor_ to rehee_ltlng. .
the long time tails of the correlation function describe change over [ OF trajectories within the Ginzburg regime, that do not
the mean fields. All four trajectories cross the Ginzburg regime, bufT0SSTc, the change in the configuration of the order param-

only those reaching or crossing% display a significant memory eter_as m_easure_d _by Q) is Small._ln partlcular f[he field
loSs. configuration existing before reheating is approximately re-

covered as the fields are cooled. The same is true for the

We can then predict a monotonic behavior for the stringstring densities, including those of long strings.
densities as observed in Fig. 4. Al in particular m? Again we can understand these results using the tool de-
=\T%, by definition andeq~)\Té/n. veloped in Sec. Il. The thermalization time, which is nothing

Thus the conclusion is inescapable: The longer the tim&lse than the response timein the Kibble-Zurek mecha-
the system spends further frofp the less string it will dis-  nism, for long-wave length modes in the system is given by
play at later times where formation rates are measured.

B. Memory of the order parameter configuration near T, teq™ m%(T)" (17)

An independent test on the possible role of thermal fluc-
tuations in affecting string densities consists in reheating &vVe argued that it is a reasonable approximation to ke
quenched system to a temperature arolipdboth below be the final temperature since the small scales in the system
and abovg and cooling it again at the same rate. This pro-equilibrate much fastefprovidedm(T) < 7].
cess tests the memory of the order parameter as well as that Now t, or equivalentlye, is defined as the time when the
of other related quantitiesee alsd26]), such as defects. long wavelength modes in the system can first respond to a
The importance of this test is directly related to the ca-change in bath temperature linear in time. It is computed by
nonical theory of defect formation as due to the critical dy-equating the scaling of the response tin{d),
namics of the fields. The final density of strings formed at
the transition are then inferred indirectly through the corre-
lation length associated with the two-point correlator of the (e(T))= +
fields. m-e"(T)
An example of the temperature({)) trajectories used in
testing the memory of the order parameter are shown in Figo a linear change in time, imposed externally, i.e.
5(a).
We are particularly interested in investigating under what
circumstances thermal fluctuations can affect the large scale r(e(}))= LA:@ (19)
configuration of the order parameter. In order to produce a m2e**(t)

(18
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z is another critical exponent whose mean-field value is 2¢cally the assumptions underlying the traditional argument for

see[10]. This relation is usually solved bgssuminga linear ~ the Ginzburg temperature as the energy scale at which topo-
dependence in time foe(t) =t/ 7o, wherer, is the rate of logical defects are formed. We then proceeded to show that
the external quench. a the effects of thermal fluctuations in the Ginzburg regime

Explicit calculation ofAm2(T) in Eg. (9) for our classical UPON & population of topological defects formed by the criti-
Boltzmann ensemble shows that cal dynamics of the theory carries no particular signature and

leads mostly to small changes in the defect densities pre-
) A dicted by the theory of defect formation.
Am(T)=—AT, (20) We have also shown that even prolonged exposure of a
a . . . . .

quenched field configuration to the Ginzburg regime has
where A =27/Ax is the ultraviolet cut off. This cutoff has little consequences in changing the order parameter configu-

physical meaning and is related to the breakdown of ourations emerging at- €, and associated string densities. In
scalar field model for high energy excitations, e.g. fermionicaddition we established that to truly destroy a quenched field

quasi-particles in’He. If indeed the external bath tempera- configuration existing below- ¢, one has to expose the sys-
ture is changed linearly tt\?hm Eq. (20) can be taken, over tem to temperatures well abovie . In particular it appears
time scales larger tham ™", to be linear in time. It then that for a linear quench and reheating trajectory, such as

results trivially thate(t) is also linear, which validates our shown in Fig. 4, a temperature ef- + ¢, must be reached in

assumption. o . order to erase memory of the initial configuration. This ob-
The significance of is that only wher{e(t)|>e€ can the  servation suggests a more general conjecture: A significant

long wavelength modes in our system thermalize under apearrangement of the topological defects created in a quench

e>.<ternally changmg_ temperature at a rags, i.e. keep PaCe  \iith the characteristic freezeout temperat&reappears to
with the externally imposed changes. Due to theoretical un-

o ~ R require reheating the system to a temperature of okder
certainties _the value of adopted in Fig. &) was measured_ above the critical temperature, and keeping it there for a time
by monitoring the response of the system directly. Details.
are described elsewhef&0]. t.

At the initial time, for temperature trajectories of Fig. 5,
the system is in the process of breaking thgl) symmetry
spontaneously, i.e. the expectation value ofkked mode of
¢, {¢p) is non-zero. Then, as the system is heated towggds
equilibration of the long wavelength modes means {lgat
—0 and upon cooling show zero correlation in Figb)5to
its initial state. Since thermalization ¢t$) can only occur

for e=e¢, only the temperature trajectories crossing can Our results fully support the theory of defect formation
attain zero correlations. _ _ resulting from the critical dynamics of second order transi-
It is then clear that the Ginzburg regime cannot chang§jons [5] and all known thermodynamic results for vortex
the symmetry breaking process of the system, including itgtrings inO(N) theorieg14—16,13. In face of this evidence
associated long string configurations, unless a long amouRfe are lead to conclude that arguments singling out a special
of 't|rne is aIIowed..The szb.urg regime is therefore Iessenergy scaldg# T, which would play an important role in
efficient at destroying topological defects the sense of yefect formation rely on assumptions that are not realized in
requiring a longer timethan any other temperature range the trye(thermgdynamics of our model and are thus invalid.
outside the critical domain. Thus we expect the results of this paper to carry over to
the new LancastefHe experiments. The results of reported
V. DISCUSSION AND CONCLUSIONS in [9] in these experiments cannot therefore be attributed to

In this paper we have performed the most extensivd!® &ffects of Ginzburg regime ifHe.
analysis to date of the effects of large thermal fluctuations,
within the Ginzburg regime, on the formation of topological
defects. Our model field theory has already been studied ex- We thank T. Kibble, P. Laguna and R. Rivers for useful
tensively both in equilibrium and in tests of the theory of discussions. Numerical work was done on the T-division/
defect formation at temperature quenches, as predicted lNLS Avalon Beowulf cluster, LANL. This research was
the critical dynamics of the theory. supported by the U.S. Department of Energy, under contract

Under these controlled circumstances we analyzed critiW-7405-ENG-36.

These results were confirmed by analytical arguments
based on the solutions of the associated Fokker-Planck equa-
tion. This analysis supports the conclusion that given the
same amount of time of exposure to a thermal bath at a given
temperature, the Ginzburg regime is actually the least effi-
cient range of temperatures at destroying the pattern of sym-
metry breaking inherited from criticallity. This includes to-
pological defect configurations.
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