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Quantization ambiguity and supersymmetric ground state wave functions
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Supersymmetric ground state wave functions of a model of supersymmetric quantum mechaSics on
(supersymmetric simple pendulyirare studied. Supersymmetry can be broken due to the existence of an
undetermined parameter, which is interpreted as a gauge field and appears as a firm consequence of quantiza-
tion on a space with a nontrivial topology suchSis The breaking does not depend on the leading term of the
superpotential, contrary to the usual case. The mechanism of supersymmetry breaking is similar to that through
boundary conditions of fields in supersymmetric quantum field theory on compactified space. The supersym-
metric harmonic oscillator is realized in the limit of the infinite radiusSbfwith the strength of the oscillator
being constant.

PACS numbd(s): 12.60.Jv, 11.30.Pb

[. INTRODUCTION tum mechanics os. The zero-energy state wave functions
can be obtained in closed forfiT] because, thanks to the
supersymmetry algebra satisfied by the system, the wave

e . : functions are obtained by solving simple first-order equations
1 m -
topology such as” inevitably yields an undetermined pa in many cases. Therefore, it may be possible to study the

rameter into the theonfl], affects the supersymmetric . .
b .effects as analytically as possible.
ground state wave functions of a model of supersymmetric : . Lo
Supersymmetric quantum mechanics has been studied in

quantum mechanics o great detail and applied to many physics fidlés Actually,

uantum mechanics @8 was studied for the first time in  : . . )
therath-integraI formalisrf2,3]. We observe that the afore- it provides us with an example of the dynamical supersym-
= metry breaking by instantons in certain modgds-12. In

mentioned parameter appears as a phase factor in the Fe}ﬂ%bse models, the normalizability of the supersymmetric

man kernel due to the nontrivial topology of configuration . . .
L round state wave function crucially depends on the leading
space and, as a result, there are many distinct propagatars . . . .

. térm in the superpotential, by which we determine whether
labeled by the parameter. One can also consider the same

: . ) T or not the supersymmetry is broken. The semiclassical in-
effect in the Lagrangian by adding a total derivative termstanton approximation has been used to estimate the ground
whose coefficient is given by the parameter. Accordingly, PP 9

the canonical momentum is shifted by the amount of theotate energy for the sy_ste_m with broken super_symn{&tB}/.
parameter, so that it can be interpreted as a constant gauge " tis paper we will find another mechanism of super-
field. The total derivative term has physical implications at>ymmetry breaking. The very existence of the gauge field
the quantum level for space with nontrivial topoloig. twists boundary conditions of supersymmetric ground state

Quantization onS! is much different from that on one- wave functions. For certain values of the gauge field, the
dimensional Euclidean space. In the language of canoniciyave functions do not satisfy a required periodic boundary
formalism, the latter case is that the representation of th€ondition and become unphysical though they are normaliz-
canonical algebra is uniquely determined up to a unitaryable. The supersymmetry breaking does not depend on the
equivalent representation. There is essentially one quantusiructure of the superpotential, unlike the usual supersymme-
mechanics on the space. In the former case, however, theretiy breaking discussed in supersymmetric quantum mechan-
an infinite number of inequivalent representations of the funics. Supersymmetry can be broken by the gauge field, that is,
damental algebra, which is introduced as a generalization ahe quantization ambiguity.

In this paper we study how the quantization ambiguity,
which implies that quantization on space with a nontrivial

the canonical algebra by Ohnuki and Kitakd8in order to In the next section we shall introduce a model of super-
formulate quantum mechanics 8h. As a result, there exists symmetric quantum mechanics &h after reviewing briefly
various quantum mechanics &h. the quantum mechanics o8 formulated by Ohnuki and

The various quantum mechanics 6h are parametrized Kitakado. And then, we shall discuss how the gauge field
by the undetermined parameter. The parameter is interpretexfects the supersymmetric ground state wave functions and
as a constant gauge figlf,6]. The gauge field can exist and how it yields supersymmetry breaking. We shall also study
has effects on observables at the quantum level. It is than infinite limit of the radius ofS'. The supersymmetric
existence of the gauge field that leads to the various quanturarmonic oscillator is realized in the limit with the strength
mechanics org®. It may be interesting to study the possible of the oscillator being constant. The final section is devoted
effects of the gauge field on the supersymmetric ground stat® conclusions and a discussion, where we shall also discuss
(zero-energy stajevave functions of supersymmetric quan- the similarities between our mechanism of supersymmetry

breaking and that through the boundary conditions of fields
in supersymmetric quantum field theory on compactified
*Email address: takenaga@alf.nbi.dk space.

0556-2821/2000/68)/0650019)/$15.00 62 065001-1 ©2000 The American Physical Society



KAZUNORI TAKENAGA PHYSICAL REVIEW D 62 065001

1 . . A~
Il. SUPERSYMMETRIC QUANTUM MECHANICS ON S is also an eigenstate &:

We shall study effects of the quantization ambiguity,
which implies that quantization on a space with nontrivial
topolo ields an undetermined parameter, on supersym- .
mgtricggrotnd state wave functionspof supersymmetrir(): qu)afm- or f'XEd‘f’ our Hilbert space, denoted by, where the two
tum mechanics orS'. Let us consider a system in which operatorss,W are defined, is given by completing the vector
there is the fermionic operatdp; that commutes with the space of linear combinations pf+a) (N=0,+1,+2,...). .

A . The set of state vectors forms the orthocomplete system in
HamiltonianH and satisfies the supersymmetry algebra M, . Therefore, we have

[Ql,l:l]=0, {QI!QJ}:6I]H7 |:1,,N (1) o
(m+a|n+a)=mn, 2 [n+a){n+a|l=1,, (7)

GIn+a)=f(n+a)|n+a). (6)

N=2 is the simplest case and it is of our interest.
Since the Hamiltonian is positive semidefinite, a super-

) - ) ) where 1, is an identity operator iri{,. Equation(6) and
symmetric stateQ;|¥)=0 is automatically a zero-energy - . . . .
ground state. Conversely, if we have a zero-energy state, In+a)=[n+1+a) define an ireducible representation of
has to be a supersymmetric ground state. Thanks to this© aIgebra(_Z) on 7. The classification of the wrgdumble
property, finding supersymmetric ground states is reduced t pres(;entatlon of_the algep ral maﬁ_llabe done by _Ponr&g(tb;at_f
solving simple first-order equations instead of solving the o and¥ig are unitary equivalent Hilbert space if and only i

o _ . a— B=integer and(ii) for an arbitrary irreducible represen-
second-order equatiod|")=0. A key point for our study tation H of the algebra, there exists a real numbesuch

is that the fermionic operatdp; (i=1,2) should be written that% is the unitary equivalent off, . Thus, the classifica-
in terms of the operators which are appropriate to describgon js completed; that is, all the inequivalent irreducible rep-
quantum mechanics 08" as shown in Sec. IIB. And we resentations are given by the Hilbert spaée (0<a<1).
shall study the supersymmetric ground state wave functionf spould be emphasized that the alget®ahas an infinite

of such a systerfil 6]. number of inequivalent representations characterized by an
undetermined parameter, as contrary to the usual irreduc-
A. Quantum mechanics onS! ible representation of the canonical algebra on one-

Before we proceed to a model of supersymmetric quanngmenSIonaI Euclidean space.

tum mechanics oS!, it may be important and instructive to SO far, we have constructed ti@&-diagonal representa-

review briefly the Ohnuki-Kitakado formulation of quantum tion. One can also go to thé/-diagonal representation by

mechanics ors! [5]. Those who are familiar with their for- which we will obtain wave functions in the quantum me-

mulation can skip this subsection and go directly to Sec. Il Bchanics orS!. For fixed representation spagg,, sinceW is

where the supersymmetric quantum mechanicsSbis in-  a unitary operator, the eigenvalue equation for it may be

troduced. The discussions below are based on a pépéar  written as

a part of which the quantum mechanics $hnis summarized

clearly. W|6)=€"?|6). 8
The quantum mechanics @1 is defined by a self-adjoint

operatorG and a unitary operatdiV satisfying the commu- Its solution is

tation relation oo

[G,W]=%W. ) |67>=K(6)n:2_oc e "In+a), (9)

The operatorsG, W, and W' generate an algebra. Let us where ¢ is a real parameter anet(6) is an arbitrary
construct its representation. We shall start with an eigenvalueomplex-valued function satisfying«x(6)|=1 and «(6

equation +27)=k(6). It is not difficult to show that
Gla)=thala) with (a|a)=1, (3) |0+2m7n)=|6), n=integer, (10
n=+o
where an eigenvalue is a real number. It is easy to see that
PN : . - =2 8(0—6"+2mn), 11
W(W") raises(lowers the eigenvalues of: (o]e") Trn;x (06 ™) (1)
GW|a)=f(a+1)W|a), GW'|a)=A(a—1)W|a). 2rd@ =
@ [Toeee= 3 ntanral=1,, G2
0 m n=—o
A state vector defined by .
G .
— i\ — — o i\ *
In+a)=Wia), n=integer, ©) ex;{ I)\ﬁ)|0> e "MKr(0)k* (6+N)|6+\), (13
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wherel, is an identity operator ifi{,,. These correspond to

periodicity, orthonormality, completeness, and translation for

the eigenstate diV. Let us note that it may be possible from

Egs.(8) and (13) to identify G and W with the momentum
and the position operators @t, respectively.

Now, let |/) be a state vector and we define a wave
function ¢(6) on St as follows:

P(0)=(6]).

Taking the inner product of Eq13) with |), we obtain

<0|ex;< i

from which theW-diagonal representation & is given by

(14

G _
Kg)|l/f>=é“l<*(0)f<(0+>\)<9+>\|i/f).

(19

N T ()
(6|G|y)= —|ﬁ(9—0—|fu< () 50 +ha ().
(16)
We also obtain, from Eq8),
(01l g)=€"p(0). (17

The inner product ors! is expressed in terms of the wave
function as

2rd@
<x|</f>=fo X" (0)Y(0). (18

Thus, the representation of Hilbert space, which is defined by
Egs.(16) and(17), is the space of the square integrable func-

tion onS. Let us note that all wave functions have to satisfy
the periodic boundary conditiott( 6+ 27n)= (), which

is a direct consequence of E4.0). This periodicity is essen-
tial when we study the supersymmetric ground state wav
functions of the supersymmetric quantum mechanic§on

a. To this end, let us redefineg( ) by utilizing the arbitrari-
ness of it in such a way that( 8) = w(6) ' (6), wherew(6)
has to satisflw(60)|=1 and w(8+27)=w(6). It follows
that|6)=w(6)|6)’, so that the transformed wave function
' (0) is given by

P (0)=w(0)y(0). (19
According to this redefinition, th@/-diagonal representation
for G becomes

~ Jd
(6l0=| it A ) w20
where we have defined
Lo - dw( )
A'(O)=A(0)+iho* (0)—-—,
(21
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A(0)=—ihk*(6) EY:

Equations(19) and(21) stand for the gauge transformation.
Therefore, the parameter has the meaning of the gauge
field. It is easy to see that the gauge field has the properties
(i) A(0), assumed to be an arbitrary real-valued function
satisfying the periodic boundary conditiod\(6+2)
=A(6), can always be made a constant funct®{ 6) = «

by a gauge transformation afid) for two constant functions
A’(6)=a and A’ (0) =B, these are connected by a unique
gauge transformation if and only f— « is an integer. Thus,
we arrive at an important conclusion that all the inequivalent
gauge fields are given b4,=a(0<a<1) [19]. Hereafter,
we choosex(6)=1 for simplicity.

It is a very special feature of the quantum mechanics on
S! that the inequivalent gauge field is restricted to bed
<1. Another way of looking at it is that if we perform a
gauge transformation by/(6)— ' (8)=€"%y(6), we see
that the gauge fielda(6) and A(#) —n#A are equivalent for
n=integer.n has to be restricted to be an integer; otherwise,
the transformed wave functiot’ (6) does not satisfy the
required periodic boundary condition. Therefore, the in-
equivalent gauge field is given by=<0A(6)<#%, which
means B=a<<1. Let us note that the gauge transformation
by é"? with n= noninteger is a singular gauge transforma-
tion and is strictly forbidden.

Different values of the gauge field give different quantum
mechanics orS!. It may be helpful to note that the gauge
field @« may correspond to the magnitude of the magnetic
flux e®/27h ¢ throughSt in the Aharanov-Bohm effect. The
different magnitude of the flux actually gives different phys-
ics.

B. Supersymmetric simple pendulum

Now, we are ready to introduce a model of the supersym-
metric quantum mechanics @t. According to the discus-
sion above, the two operato&andW, which correspond to
the momentum and the position of a particle $n are fun-

Yamental. It may be natural to construct a quantum Hamil-

tonian in terms of these operators. The Hamiltonian in our

Ghodel is assumed to satisfy the supersymemtry algébra

so that the fermionic operatof3; (i=1,2) also have to be
given in terms of them. We will discuss the classical coun-
terpart of the quantum Hamiltonian constructed in this way
later.

Let us define the fermionic operat@; (i=1,2) by

- 1 . ~
QEE(Qﬁ'in)
1 . U DR

= i T =
(\/ﬁRG+IV(W'W))§ qé, (22

- 1 . .

QEE(Ql_le)

=(—1 G-iv(W w+>)‘5za*‘5 (23
J2mR ’
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V(W,W"), which is called the superpotential hereafter, is ain the W-diagonal representation. It is understood tGat

Hermitian operator in terms oV and W'. Here m and R —ihdld6+ha and a is the gauge field discussed in the

stand for the mass of a particle and the radiuSifrespec-  Prévious subsection. _
Let us study the supersymmetric ground state wave func-

tively. The fermionic variableg, ¢ satisfy the algebra tions of the supersymmetric simple pendulum whose Hamil-
. o tonian is given by Eq(30). It follows from the algebrdl)
{£,6=1, &=¢=0. (24)  that the supersymmetric ground states must be zero-energy

states satisfied by
Then, the Hamiltonian is given by
Q|¥)=0 and Q|¥)=0. (31)

A A 1 ~2 YRYVAYVi
HZ{Q,Q} WG +V (W,W)

Let us introduce a matrix representation for the fermionic
variables. It is easy to see that the matrix representations

i - ;
— LGV WY - VOWWH G, (25  9iven by
SRl GV VO GIEE, (25

. (0 O -~ (0 1
where we have used ER4). =1y ol lo o (32
Here, it may be necessary to discuss the classical counter-

part of the quantum Hamiltonia25). To this end, let us satisfy the algebré24). Then, it follows that
note that the fundamental algebf2) may be actually in- '

ferred by the classical Poisson’s brackets for the angle vari- N 1 0

able ¢ and the correponding momentuf, in the polar co- [£,&]= —( )E -0

ordinate: 0 -1
(P, 6% p=—id". (26) Using these, the Hamiltonia(80) becomes

If we replace the classical Poisson’s brackets by the commu- :( 1 &2+ mgNRsinz 0) 1ot f /9N 3 cosd
tation relation divided by#, we obtain the fundamental al- 2mRe” 2 223 NR7

. . . io . A ~
gebra(2) by identifying ¢’ and P, with W and G, respec- ((SIT& 0 ) (lih 0 )

tively. This is the same identification stated earlier.
Therefore, in the classical limit we may replageby € and

G by P,. According to these replacements, we obtain a clas- . . S
. e . . L In the matrix representation, the Hamiltonian is &2 ma-
sical Hamiltonian, ignoring the fermionic variabléss:

s | = A (33
0 qqf 0 H_

trix.
p2 Since the Hamiltoniar{33) commutes with an operator
ﬂﬁHclzﬁz.,.VZ(ei@’e—i@)_ 277  S"=0%2, the eigenstates of the Hamiltonian is labeled by

the eigenvalues o&°. Let us call the two statds-) and|—)
6 i fermion numbers+1/2 and —1/2, respectively[20]. The
0 160 ’
If we chooseV(e”,e™"") as state vector is, now, a two-component vector

the classical Hamiltonian describes a simple pendulum with, ihe \W-diagonal representation, it may be written as
angle 2. Heregy is the gravitation accelerator constant.

On the other hand, given the superpotentia8), the )
guantum counterpart of it is obtained by V(6)= ( U 0)). (35
A i
VW, W = /mgNR(W _W ) (299  The HamiltonianH is diagonalized with respect to the fer-
2 2i mion number+1/2. In this matrix representation, EQ1) is
read as

Having this superpotential, the model of the supersymmetric

quantum mechanics d8t, that is, thesupersymmetric simple 1 P
pendulumis given by the Hamiltonian 0 0)= —( —ih—+ha
q¢+1/2( ) \/ﬁR 90
- 1 ., monR eIV o
= GZ S — —\/—= . mguR .
H=5G?+ — i’ 9 2\/ R COSOL£,€] (30) i gN sind |y, 1 6)=0.
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Note that for noninteger values of the gauge fialdthe
gauge field cannot be removed in E@6) by the gauge
transformation

q'y_1A6)=

—1 ( 'ha-l-ﬁ
Iﬁ o

V2mR

mgyR
—i/ 92N sing
As we stated before, the inequivalent gauge field is given by
Solutions for Eq(36) are found to be O=a<1. Any gauge field in this range cannot be connected
by a regular gauge transformation witH'% (n=integer).

b 0)=0.  (36) Yo 1A 0) = W1 0) =€ 1 6). (39

1 z Only a singular gauge transformation can do it, but it de-
i) = ——=exp —iabf— %cosﬁ , stroys the required periodic boundary condition for the trans-
VIo(22) formed wave function. The singular gauge transformation is
(387)  strictly forbidden, so that the gauge field cannot be gauged
1 z away.
V-1 0)= exp —iaf+ cosf|, Lgt us briefly comment on the ground state energy. We
Vo(22) h y g ay.

have a physical supersymmetric ground state wave function

wherel o(27) in the normalization factor is the zeroth-order for a=integer, so that the ground state energy is exactly

modified Bessel function and we have defined a dimensionzero. On the other hand, for0x <1, supersymmetry is bro-
less parameter ken. The ground state energy is nonzé&uositive. Estimat-

ing the ground state energy is a subtle problem as studied in

mR2 gy mR  z [14,15.
7 R 7 “"n The Hamiltonian(33) cannot be solved analytically. The
bosonic potentialhgyR/2)sir? ¢ is periodic and the classi-
These are normalizable solutions. Thus, one may say th&@l vacuum has a periodic structure. One may expect that
the zero-energy states, that is, supersymmetric ground statd8€re is an instantonlike classical solution, which gives a

exist in the model and the supersymmetry is unbroken. Thignité Euclidean action, connecting the two vacua with dif-
is, however, a hasty conclusion. In addition to the normalizferent fermion numbersi1/2). Actually, there exists such a

ability, all the wave functions have to satisfy the periodicclassical solution in our model. It is given by c@gr)

boundary condition¥(6+2m)=W(6), that is, . 1,5 6+27)  =Ftanfo(r—1)] with the classical Euclidean action being
= 4. 1,(6), which follows from Eq.(10) [21]. It is easy to —2z/h. And the fermion zero mode exists in this classical
see from Eq(37) that background. Therefore, we expect tunneling to occur be-
tween the two vacua. According to the semiclassical argu-
Yoo 0+ 2m)=e 27T, 12 6). (38 ment, the tunneling effect shifts the ground state energy to

give an exponentially small amount of energy in the form of
The boundary condition for the zero-energy state wave funcexp(—2z/#)cos 2ra [22].
tions is twisted by the gauge field The zero-energy state On the other hand, for very small we can resort to
wave functions do not satisfy the required periodic boundanperturbation theory to obtain the energy spectrum of the
condition except fore=integer. Since the inequivalent rep- Hamiltonian. The ground state energy is given By
resentation is given by@a<1, they are inconsistent with ~ (1/2mR)[ «?+0(z?)], where we have set=1. The
the periodic boundary condition and becomaphysical gauge fielde is a dominant contribution to the ground state
wave functions for &ca<<1. Therefore, the supersymmetry energy in this case.
can be broken due to the gauge fieldLet us note that the It may be interesting to consider tfe— o limit. So far,
Witten index Tr(-1)f= ngzo_ ”EZO vanishes in our model. We have fixed the radiuR of S. If R varies to become large,
It is easy to see that;~°=nE="=1 for a=integer and that We expect that the arc of an grpitrary par1S£'Jf\NiII_appr0_ach
n§~%=nE=°=0 for a=noninteger. a straight segment. In the limit ®@— <0, one-dimensional

Unlike the usual supersymmetry breaking, in which theEuclidean space will be recovered. _ .
leading term of the superpotential determines whether or not N order to study the limit, let us define a variabte
supersymmetry is broken, our breaking of supersymmetry~ R6. In terms of this new veirlable, the Hamiltoni&Bd) is
does not depend on the structure of the superpotential. It igritten as, rememberingG=—ihd/d60+ha in the
entirely due to the existence of the gauge fie|dvhich is an W-diagonal representation,
inevitable consequence of the quantization ambiguity when
one quantizes the theory on topologically nontrivial space ~ -h% 0  a
such asS*. The gauge field has the effect of twisting the 2m
boundary conditions of the zero-energy state wave functions.

Among the various supersymmetric quantum mechanics on h \/@03 cos( X
R

2

+
Jx R

mgyR . [ X
+ 2 Sln2<§)

12><2

S' led by the gauge field, it includes theories with broken + 2

supersymmetry due to the gauge field. Let us note that in this
context there is no mechanism to determine the valuas of If we take the limit ofR—< naively, it becomes trivial for
or what values ofx we should take. the Hamiltonian to yield the one for a free particle h

R

. (40
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H= >m (9712x2 (41)

In order to obtain an interacting theory, one has to take the

limit, keeping a relation given by

m /gy Mo .
iNR-7 = (strength of oscillato?=const. (42)

Then, we obtain

o —%2 % mo? 2|4 hw 340 1
“\2m et T2 Xt 5O R
43)

This is the well-known Hamiltonian for the supersymmetric

harmonic oscillatof9] with angular frequencys= gy /R.

Likewise, by taking the same limit, the fermionic operators

0,0 become
R 1 1
Qz\/ﬁ[erlW(x)]ngO =Y Equsy ﬁ )
- 1 . 1 - 1
Q:\/ﬁ[p |W(X)]§+O _2 qusy+o ? )
(44)
where we have defined/(x)=mwX andp=—i#a/dx. It is

easy to check that the HamiltonidA3) satisfies the super-

symmetry algebrdl) with the supercharge@l4) if we use

the canonical commutation relatioip,x]=—i% and Eq.
(32). The usual supersymmetry, by which the supersymmetry

transformations between bosoﬁ)(and fermion ég) are
generated, is realized in the limit &—o with Eq. (42).

The supersymmetric ground state wave functions for the

PHYSICAL REVIEW D 62 065001
~ n Mw
~eX —X
¢+ 12~ € 2%

- (Mo 4 mo
b1 (X)= ﬁ) expg — 57X )

where we have redefined the normalizationjas;;(x)dx
=y.1(0)do/y27R. These are the same as E(5). The
Witten index is Tr1)"=1 in this case.

A simple generalization of the model is &hcomponent
one. The fermionic operators are defined by

L A D

:azl mea"' Vg §a=a§=:1 Jada, (47)
- X 1 DL

= = af
Q 21< Ty a| 6= 2, Gaa, (48)

where V,=V,(6,, ...,0y) and G,=—i%hdld6,+%a, in
the W-diagonal representation. Let us assume

[Ga Wp]=%82pWy,  {&a, &0} = dap,

(49

{%av%b}zon {E_a ,E_b}:o.

Then, the Hamiltonian following from these fermionic op-
erators is

[Gavvb][gavgb] (50)

abEl \/%R

Hamiltonian (43) are obtained by solving the first-order The Hamiltonian (50) may describe the supersymmetric

equation Qg ¥)=0 and qusJ‘I’> 0. Using the same quantum mechanics on the tori§=S'® - -

matrix representation as before, their solutions are

wh.o (X) l{_’_mx
+1/2 24

(45)
h mo | Y4 mw 2
lﬂ_'g/'z(X): ﬁ ex —ﬁx .

-®St As be-

fore, az(a=1, ... N) may be interpreted as the gauge field
appearing as a consequence of the quantization on each to-
pological spacé?.

It is difficult to obtain the exact form of the supersymmet-
ric ground state wave functions of the model. If we, how-
ever, restrict ourselves to certain sectors of the model, they
can be obtained in closed form such as &®) [7]. In order
to see this, let us define

There are two candidates for the supersymmetric ground

N
state.(zero-energy etale(\/ave functi(r)]ns. The one is physical |—)y=]0), |+)= H ZJO) with EaIO)ZO
and its wave function is given by™(x). The other one a=1
#"%,(x) is unphysical because of its non-normalizability. (51
Therefore, we have one supersymmetric grou@ero- (a=1,... N).

energy state. This is consistent with the exact energy spec- A N
trum of the Hamiltoniari43). As easily seen from the Hamil- Then,Q|—)=Q|+)=0 is trivially satisfied, so that in these
tonian, there exists one supersymmetric ground state. In facivo sectors, the supersymmetric ground st@ero-energy

the solutions(45) can be obtained by taking the limit &t
—oo with the relation(42) in Eqg. (37). By noting 14(2)
~ €27z for largez, we obtain

statg wave functions are obtained in closed form by solving
simple first-order equations such as E§8). Aside from the
normalization, the solutions are obtained as

065001-6
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VO, ....0 I o
" ! ¢+1/2(9):exr{—ia0$ \/%fodg V(é”,e"’)),

N (53
\VZ2m ba —
=exp2( |ozac9a+TRa de,
a=1

for the general superpotential. Our mechanism of supersym-
|+), metry breaking iinot_altergd by the choice of the superpo-

tential if exd [?d6 V(€ e '%)] does not violate the period-

icity and the normalizability of the wave functions, which is

T (0, ...,0N) the case for the superpotential satisfying our criterion. Super-
symmetry breaking will always occur for noninteger values

m o of a. Because of thg factorizable prope;rty, there is no way to

=exp2 ( i g6, ? R prevent the gauge field from entering into the supersymmet-

a=1 h ric ground state wave functions and twisting their boundary

conditions. The gauge field cannot be removed by a regular
XVa(01, ... 04, ... EN)) |-). (52)  9auge transformation.
One may wonder whether all the eigenfunctions of the
Hamiltonian (33) become unphysical, that is, those that do
The wave functions have to satisfy the periodic boundarynot satisfy the periodic boundary condition due to the exis-
conditon W*(...,0,+2m, ...)=¥*(...,0,,...)(@ tence of the gauge field. This is not true. In order to see this,
=1,... N). If the contributions coming from the superpo- let us consider a free Hamiltonian, ignoring all terms except
tential in Eq.(52) do not spoil the normalizablity and the for G2 The energy eigenvalue depends @riike (m+ )2
periodicity of the wave functions, the supersymmetry can b&nq the gauge field produces an effect on the observable at

broken for noninteger values af, (a=1,...N). the quantum level6]. The corresponding eigenfunction sat-
isfying the periodic boundary condition is easily found to be
IIl. CONCLUSIONS AND DISCUSSION €™M’ The ground state wave functions and the other eigen-

] o ) functions are obtained by solving essentially different types
We have applied the Ohknuki-Kitakado formulation of of differential equations in the system satisfying the super-
guantum mechanics @8 to the supersymmetric simple pen- symmetry algebrad).
dulum whose Hamiltonian is given by E@3) and satisfies We have also discussed the limit dR—o. One-
the algebra(1). According to their formulation, an undeter- yimensional Euclidean space is realized. In the limit with the

mined parameter, which can be interpreted as a constap lation (42), we have obtained the supersymmetric har-

gauge field, inevitably enters into the theory to yield themonic oscillator with angular frequenay= gy /R. There

various quantum mechanics &. We have studied the ef- X . X
fects of the quantization ambiguity on the supersymmetricex'stS one physical supersymmetric ground state wave func-

ground state wave functions of the model tion. The other one, though it is a zero-energy state, is un-

We have found that supersymmetry can be broken due tBhysical because of its non-normalizability. These two wave
the existence of the gauge field The gauge field twists the funct_ions are actually obtained by tak_ing the Iimit_in_ the
boundary condition of the supersymmetric ground state wav&olutions of the zero-energy wave functid8g). In the limit
functions. For noninteger values af they do not satisfy the all the effects of the gauge field disappear. Then, an infi-
required periodic boundary condition. As a result, they benite number of inequivalent representations is reduced to a
come unphysical wave functions though they are normalizUnique representation, which is nothing but the representa-
able. The mechanism of supersymmetry breaking is differenion of the canonical algebrfp,x]=—i%. The fermionic
from the usual supersymmetry breaking discussed in supebperators become supercharges in the same limit, and they
symmetric quantum mechanics. The latter depends cruciallyenerate supersymmetry transformations between bogdns (
on the structure, the leading term, of the superpotential, . o
while the former is entirely due to the quantization ambiguityand fermions §,¢). . o
resulting firmly from quantization on a space with nontrivial We have also cons_ldered thecomponent generallzanon
topology like S*. of Eg. (25)_ and studied the supersymmetric groun_d state

LR wave functions of the model. The Hamiltoniés0) describes

We have chosen ‘h‘? superpotentv&M/,W) n suph & the supersymmetric quantum mechanics on the tdflsif

way that it becomes a simple pendulum in the classical limit

. . we restrict ourselves to the two sectors giverjbyand|+),
In principle, one can choose any superpotential as IonAg as e wave functions can be obtained in closed faE) by

can be written in terms of integer powers of the operaWirs - solving the simple first-order equations. We have found,
andW'. Thanks to the factorizable property for finding the again, that supersymmetry was able to be broken due to the

supersymmetric ground state wave functions, they are giveaxistence of the gauge field,#integer @=1,... N),
simply by solving the first-order equatidi31) and are ob- which appeared as a consequence of the quantization on
tained in closed form, each topological spac®'.
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Finally, let us discuss the similarities between our mechaand the fermions. The bosdfermion) satisfies théanti)pe-
nism of supersymmetry breaking and that through boundaryiodic boundary condition. The case af=1/2, which actu-
conditions of fields for compactified directions in supersym-ally corresponds to the antiperiodic boundary condition, is
metric quantum field theory. similar to the case of supersymmetry breaking at finite tem-

Strictly speaking, supersymmetry breaking throughperature.
boundary conditions is one thing, and that through our More generally, if one wishes to break supersymmetry
mechanism is another. Nevertheless, it may be interesting tinwrough different boundary conditions between the bosons
discuss the similarities between the two supersymmetrand the fermions such as the finite temperature case, one can
breakings. In the former case, the breaking means that these the boundary condition associated with the W(4ym-
action is no longer invariant under the supersymmetry transmetry [25—27, in which the U(1) charges are different
formations. But it does not necessarily mean the nonexistbetween the bosons and the fermions in a supermultiplet. If
ence of the zero-energy state in the system. The supersyme regard the factor é2”¢ in Eq. (38) as a boundary con-
metric harmonic oscillator at finite temperature is one of thedition that breaks supersymmetry, our mechanism of super-
examples in which the action is not invariant under the susymmetry breaking is quite similar to that through boundary
persymmetry transformations because of the different boundtondition associated with the U(4 symmetry. If one takes
ary conditions between the bosons and the fermions; thergis similarity seriously, one says that a possible physical
exists, however, the zero-energy state in the system, whicbrigin of supersymmetry breaking through the boundary con-
results from Tr(-1)f=1 [24]. In the latter case, we assume dition associated with the U(k)symmetry has been found.
that the Hamiltonian satisfies the supersymmetry algébra Needless to say, in order to confirm this statement, we need
so that supersymmetry breaking immediately means the norio clarify how the quantization ambiguity is realized (gu-
existence of physical zero-energy states in the system, argersymmetrig quantum field theory28].
whether or not supersymmetry is broken is determined defi-

nitely by the existence of the zero-energy state.
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