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Quantization ambiguity and supersymmetric ground state wave functions
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Supersymmetric ground state wave functions of a model of supersymmetric quantum mechanics onS1

~supersymmetric simple pendulum! are studied. Supersymmetry can be broken due to the existence of an
undetermined parameter, which is interpreted as a gauge field and appears as a firm consequence of quantiza-
tion on a space with a nontrivial topology such asS1. The breaking does not depend on the leading term of the
superpotential, contrary to the usual case. The mechanism of supersymmetry breaking is similar to that through
boundary conditions of fields in supersymmetric quantum field theory on compactified space. The supersym-
metric harmonic oscillator is realized in the limit of the infinite radius ofS1 with the strength of the oscillator
being constant.

PACS number~s!: 12.60.Jv, 11.30.Pb
ty
ia
-

c
tr

-
e

on
at
a
rm
ly
th
au
a

-
ic
th
ar
tu
re

un
n

s

et
d
th
tu
le
ta
n-

s
e
ave
ns
the

d in

m-

tric
ing

her
in-
und

r-
eld
ate
the
ary
liz-
the

me-
an-
t is,

er-

eld
and
dy

th
ted
cuss
try
lds
ed
I. INTRODUCTION

In this paper we study how the quantization ambigui
which implies that quantization on space with a nontriv
topology such asS1 inevitably yields an undetermined pa
rameter into the theory@1#, affects the supersymmetri
ground state wave functions of a model of supersymme
quantum mechanics onS1.

Quantum mechanics onS1 was studied for the first time in
the path-integral formalism@2,3#. We observe that the afore
mentioned parameter appears as a phase factor in the F
man kernel due to the nontrivial topology of configurati
space and, as a result, there are many distinct propag
labeled by the parameter. One can also consider the s
effect in the Lagrangian by adding a total derivative te
whose coefficient is given by the parameter. According
the canonical momentum is shifted by the amount of
parameter, so that it can be interpreted as a constant g
field. The total derivative term has physical implications
the quantum level for space with nontrivial topology@4#.

Quantization onS1 is much different from that on one
dimensional Euclidean space. In the language of canon
formalism, the latter case is that the representation of
canonical algebra is uniquely determined up to a unit
equivalent representation. There is essentially one quan
mechanics on the space. In the former case, however, the
an infinite number of inequivalent representations of the f
damental algebra, which is introduced as a generalizatio
the canonical algebra by Ohnuki and Kitakado@5# in order to
formulate quantum mechanics onS1. As a result, there exist
various quantum mechanics onS1.

The various quantum mechanics onS1 are parametrized
by the undetermined parameter. The parameter is interpr
as a constant gauge field@5,6#. The gauge field can exist an
has effects on observables at the quantum level. It is
existence of the gauge field that leads to the various quan
mechanics onS1. It may be interesting to study the possib
effects of the gauge field on the supersymmetric ground s
~zero-energy state! wave functions of supersymmetric qua
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tum mechanics onS1. The zero-energy state wave function
can be obtained in closed form@7# because, thanks to th
supersymmetry algebra satisfied by the system, the w
functions are obtained by solving simple first-order equatio
in many cases. Therefore, it may be possible to study
effects as analytically as possible.

Supersymmetric quantum mechanics has been studie
great detail and applied to many physics fields@8#. Actually,
it provides us with an example of the dynamical supersy
metry breaking by instantons in certain models@9–12#. In
those models, the normalizability of the supersymme
ground state wave function crucially depends on the lead
term in the superpotential, by which we determine whet
or not the supersymmetry is broken. The semiclassical
stanton approximation has been used to estimate the gro
state energy for the system with broken supersymmetry@13#.

In this paper we will find another mechanism of supe
symmetry breaking. The very existence of the gauge fi
twists boundary conditions of supersymmetric ground st
wave functions. For certain values of the gauge field,
wave functions do not satisfy a required periodic bound
condition and become unphysical though they are norma
able. The supersymmetry breaking does not depend on
structure of the superpotential, unlike the usual supersym
try breaking discussed in supersymmetric quantum mech
ics. Supersymmetry can be broken by the gauge field, tha
the quantization ambiguity.

In the next section we shall introduce a model of sup
symmetric quantum mechanics onS1 after reviewing briefly
the quantum mechanics onS1 formulated by Ohnuki and
Kitakado. And then, we shall discuss how the gauge fi
affects the supersymmetric ground state wave functions
how it yields supersymmetry breaking. We shall also stu
an infinite limit of the radius ofS1. The supersymmetric
harmonic oscillator is realized in the limit with the streng
of the oscillator being constant. The final section is devo
to conclusions and a discussion, where we shall also dis
the similarities between our mechanism of supersymme
breaking and that through the boundary conditions of fie
in supersymmetric quantum field theory on compactifi
space.
©2000 The American Physical Society01-1
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II. SUPERSYMMETRIC QUANTUM MECHANICS ON S1

We shall study effects of the quantization ambigui
which implies that quantization on a space with nontriv
topology yields an undetermined parameter, on supers
metric ground state wave functions of supersymmetric qu
tum mechanics onS1. Let us consider a system in whic
there is the fermionic operatorQ̂i that commutes with the
HamiltonianĤ and satisfies the supersymmetry algebra

@Q̂i ,Ĥ#50, $Q̂i ,Q̂j%5d i j Ĥ, i 51, . . . ,N. ~1!

N52 is the simplest case and it is of our interest.
Since the Hamiltonian is positive semidefinite, a sup

symmetric stateQ̂i uC&50 is automatically a zero-energ
ground state. Conversely, if we have a zero-energy stat
has to be a supersymmetric ground state. Thanks to
property, finding supersymmetric ground states is reduce
solving simple first-order equations instead of solving
second-order equationĤuC&50. A key point for our study
is that the fermionic operatorQ̂i ( i 51,2) should be written
in terms of the operators which are appropriate to desc
quantum mechanics onS1 as shown in Sec. II B. And we
shall study the supersymmetric ground state wave funct
of such a system@16#.

A. Quantum mechanics onS1

Before we proceed to a model of supersymmetric qu
tum mechanics onS1, it may be important and instructive t
review briefly the Ohnuki-Kitakado formulation of quantu
mechanics onS1 @5#. Those who are familiar with their for
mulation can skip this subsection and go directly to Sec.
where the supersymmetric quantum mechanics onS1 is in-
troduced. The discussions below are based on a paper@6# in
a part of which the quantum mechanics onS1 is summarized
clearly.

The quantum mechanics onS1 is defined by a self-adjoin
operatorĜ and a unitary operatorŴ satisfying the commu-
tation relation

@Ĝ,Ŵ#5\Ŵ. ~2!

The operatorsĜ, Ŵ, and Ŵ† generate an algebra. Let u
construct its representation. We shall start with an eigenva
equation

Ĝua&5\aua& with ^aua&51, ~3!

where an eigenvaluea is a real number. It is easy to see th
Ŵ(Ŵ†) raises~lowers! the eigenvalues ofĜ:

ĜŴua&5\~a11!Ŵua&, ĜŴ†ua&5\~a21!Ŵ†ua&.
~4!

A state vector defined by

un1a&[Ŵnua&, n5 integer, ~5!
06500
,
l

-
n-

-

it
is
to
e

e

s

-

e

t

is also an eigenstate ofĜ:

Ĝun1a&5\~n1a!un1a&. ~6!

For fixeda, our Hilbert space, denoted byHa where the two
operatorsĜ,Ŵ are defined, is given by completing the vect
space of linear combinations ofun1a& (n50,61,62, . . . ).
The set of state vectors forms the orthocomplete system
Ha . Therefore, we have

^m1aun1a&5dmn , (
n52`

1`

un1a&^n1au51a , ~7!

where 1a is an identity operator inHa . Equation~6! and
Ŵun1a&5un111a& define an irreducible representation
the algebra~2! on Ha . The classification of the irreducible
representation of the algebra may be done by noting tha~i!
Ha andHb are unitary equivalent Hilbert space if and only
a2b5 integer and~ii ! for an arbitrary irreducible represen
tation H of the algebra, there exists a real numbera such
that H is the unitary equivalent ofHa . Thus, the classifica-
tion is completed; that is, all the inequivalent irreducible re
resentations are given by the Hilbert spaceHa (0<a,1).
It should be emphasized that the algebra~2! has an infinite
number of inequivalent representations characterized by
undetermined parametera, as contrary to the usual irreduc
ible representation of the canonical algebra on o
dimensional Euclidean space.

So far, we have constructed theĜ-diagonal representa
tion. One can also go to theŴ-diagonal representation b
which we will obtain wave functions in the quantum m
chanics onS1. For fixed representation spaceHa , sinceŴ is
a unitary operator, the eigenvalue equation for it may
written as

Ŵuu&5eiuuu&. ~8!

Its solution is

uu&5k~u! (
n52`

1`

e2 inuun1a&, ~9!

where u is a real parameter andk(u) is an arbitrary
complex-valued function satisfyinguk(u)u51 and k(u
12p)5k(u). It is not difficult to show that

uu12pn&5uu&, n5 integer, ~10!

^uuu8&52p (
n52`

n51`

d~u2u812pn!, ~11!

E
0

2p du

2p
uu&^uu5 (

n52`

1`

un1a&^n1au51a , ~12!

expS 2 il
Ĝ

\
D uu&5e2 ilak~u!k* ~u1l!uu1l&, ~13!
1-2
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where1a is an identity operator inHa . These correspond to
periodicity, orthonormality, completeness, and translation
the eigenstate ofŴ. Let us note that it may be possible from
Eqs. ~8! and ~13! to identify Ĝ andŴ with the momentum
and the position operators onS1, respectively.

Now, let uc& be a state vector and we define a wa
function c(u) on S1 as follows:

c~u![^uuc&. ~14!

Taking the inner product of Eq.~13! with uc&, we obtain

^uuexpS il
Ĝ

\
D uc&5eilak* ~u!k~u1l!^u1luc&,

~15!

from which theŴ-diagonal representation ofĜ is given by

^uuĜuc&5F2 i\
]

]u
2 i\k* ~u!

]k~u!

]u
1\aGc~u!.

~16!

We also obtain, from Eq.~8!,

^uuŴuc&5eiuc~u!. ~17!

The inner product onS1 is expressed in terms of the wav
function as

^xuc&5E
0

2p du

2p
x* ~u!c~u!. ~18!

Thus, the representation of Hilbert space, which is defined
Eqs.~16! and~17!, is the space of the square integrable fun
tion onS1. Let us note that all wave functions have to satis
the periodic boundary conditionc(u12pn)5c(u), which
is a direct consequence of Eq.~10!. This periodicity is essen-
tial when we study the supersymmetric ground state wa
functions of the supersymmetric quantum mechanics onS1.

Let us next present the physical meaning of the parame
a. To this end, let us redefinek(u) by utilizing the arbitrari-
ness of it in such a way thatk(u)5v(u)k8(u), wherev(u)
has to satisfyuv(u)u51 andv(u12p)5v(u). It follows
that uu&5v(u)uu&8, so that the transformed wave functio
c8(u) is given by

c8~u!5v~u!c~u!. ~19!

According to this redefinition, theŴ-diagonal representation
for Ĝ becomes

8^uuĜuc&5F2 i\
]

]u
1A8~u!Gc~u!, ~20!

where we have defined

A8~u![A~u!1 i\v* ~u!
]v~u!

]u
,

~21!
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A~u![2 i\k* ~u!
]k~u!

]u
1\a.

Equations~19! and ~21! stand for the gauge transformatio
Therefore, the parametera has the meaning of the gaug
field. It is easy to see that the gauge field has the prope
~i! A(u), assumed to be an arbitrary real-valued functi
satisfying the periodic boundary conditionA(u12p)
5A(u), can always be made a constant functionA8(u)5a
by a gauge transformation and~ii ! for two constant functions
A8(u)5a and A8(u)5b, these are connected by a uniqu
gauge transformation if and only ifb2a is an integer. Thus,
we arrive at an important conclusion that all the inequival
gauge fields are given byAa[a(0<a,1) @19#. Hereafter,
we choosek(u)51 for simplicity.

It is a very special feature of the quantum mechanics
S1 that the inequivalent gauge field is restricted to be 0<a
,1. Another way of looking at it is that if we perform
gauge transformation byc(u)→c8(u)5einuc(u), we see
that the gauge fieldsA(u) andA(u)2n\ are equivalent for
n5 integer.n has to be restricted to be an integer; otherwi
the transformed wave functionc8(u) does not satisfy the
required periodic boundary condition. Therefore, the
equivalent gauge field is given by 0<A(u),\, which
means 0<a,1. Let us note that the gauge transformati
by einu with n5 noninteger is a singular gauge transform
tion and is strictly forbidden.

Different values of the gauge field give different quantu
mechanics onS1. It may be helpful to note that the gaug
field a may correspond to the magnitude of the magne
flux eF/2p\c throughS1 in the Aharanov-Bohm effect. The
different magnitude of the flux actually gives different phy
ics.

B. Supersymmetric simple pendulum

Now, we are ready to introduce a model of the supersy
metric quantum mechanics onS1. According to the discus-
sion above, the two operatorsĜ andŴ, which correspond to
the momentum and the position of a particle onS1, are fun-
damental. It may be natural to construct a quantum Ham
tonian in terms of these operators. The Hamiltonian in o
model is assumed to satisfy the supersymemtry algebra~1!,
so that the fermionic operatorsQ̂i ( i 51,2) also have to be
given in terms of them. We will discuss the classical cou
terpart of the quantum Hamiltonian constructed in this w
later.

Let us define the fermionic operatorQ̂i ( i 51,2) by

Q̂[
1

A2
~Q̂11 iQ̂2!

5S 1

A2mR
Ĝ1 iV~Ŵ,Ŵ†!D ĵ[q̂ĵ, ~22!

Q̂̄[
1

A2
~Q̂12 iQ̂2!

5S 1

A2mR
Ĝ2 iV~Ŵ,Ŵ†!D ĵ̄[q̂†ĵ̄. ~23!
1-3
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V(Ŵ,Ŵ†), which is called the superpotential hereafter, is
Hermitian operator in terms ofŴ and Ŵ†. Here m and R
stand for the mass of a particle and the radius ofS1, respec-

tively. The fermionic variablesĵ, ĵ̄ satisfy the algebra

$ĵ, ĵ̄%51, ĵ25 ĵ̄250. ~24!

Then, the Hamiltonian is given by

Ĥ5$Q̂,QC %5
1

2mR2Ĝ21V2~Ŵ,Ŵ†!

2
i

A2mR
@ĜV~Ŵ,Ŵ†!2V~Ŵ,Ŵ†!Ĝ#@ ĵ, ĵ̄ #, ~25!

where we have used Eq.~24!.
Here, it may be necessary to discuss the classical cou

part of the quantum Hamiltonian~25!. To this end, let us
note that the fundamental algebra~2! may be actually in-
ferred by the classical Poisson’s brackets for the angle v
ableu and the correponding momentumPu in the polar co-
ordinate:

$Pu ,eiu%P52 ieiu. ~26!

If we replace the classical Poisson’s brackets by the com
tation relation divided byi\, we obtain the fundamental a
gebra~2! by identifying eiu and Pu with Ŵ and Ĝ, respec-
tively. This is the same identification stated earli
Therefore, in the classical limit we may replaceŴ by eiu and
Ĝ by Pu . According to these replacements, we obtain a c

sical Hamiltonian, ignoring the fermionic variablesĵ, ĵ̄:

Ĥ→Hcl5
Pu

2

2mR2 1V2~eiu,e2 iu!. ~27!

If we chooseV(eiu,e2 iu) as

V~eiu,e2 iu!5AmgNR

2
sinu, ~28!

the classical Hamiltonian describes a simple pendulum w
angle 2u. HeregN is the gravitation accelerator constant.

On the other hand, given the superpotential~28!, the
quantum counterpart of it is obtained by

V~Ŵ,Ŵ†!5AmgNR

2
S Ŵ2Ŵ†

2i
D . ~29!

Having this superpotential, the model of the supersymme
quantum mechanics onS1, that is, thesupersymmetric simple
pendulum, is given by the Hamiltonian

Ĥ5
1

2mR2Ĝ21
mgNR

2
sin2 u2

\

2
AgN

R
cosu@ĵ, ĵ̄ # ~30!
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in the Ŵ-diagonal representation. It is understood thatĜ5
2 i\]/]u1\a and a is the gauge field discussed in th
previous subsection.

Let us study the supersymmetric ground state wave fu
tions of the supersymmetric simple pendulum whose Ham
tonian is given by Eq.~30!. It follows from the algebra~1!
that the supersymmetric ground states must be zero-en
states satisfied by

Q̂uC&50 and Q̂̄uC&50. ~31!

Let us introduce a matrix representation for the fermio
variables. It is easy to see that the matrix representat
given by

ĵ5S 0 0

1 0D , ĵ̄5S 0 1

0 0D ~32!

satisfy the algebra~24!. Then, it follows that

@ ĵ, ĵ̄ #52S 1 0

0 21D[2s3.

Using these, the Hamiltonian~30! becomes

Ĥ5S 1

2mR2Ĝ21
mgNR

2
sin2 u D12321

\

2
AgN

R
s3 cosu

5S q̂†q̂ 0

0 q̂q̂†D [S Ĥ1 0

0 Ĥ2

D . ~33!

In the matrix representation, the Hamiltonian is a 232 ma-
trix.

Since the Hamiltonian~33! commutes with an operato
ŜF[s3/2, the eigenstates of the Hamiltonian is labeled
the eigenvalues ofŜF. Let us call the two statesu1& and u2&
fermion numbers11/2 and 21/2, respectively@20#. The
state vector is, now, a two-component vector

uC&5S u11&
u12& D . ~34!

In the Ŵ-diagonal representation, it may be written as

C~u!5S c11/2~u!

c21/2~u! D . ~35!

The HamiltonianĤ is diagonalized with respect to the fe
mion number61/2. In this matrix representation, Eq.~31! is
read as

q̂c11/2~u!5F 1

A2mR
S 2 i\

]

]u
1\a D

1 iAmgNR

2
sinuGc11/2~u!50,
1-4
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q̂†c21/2~u!5F 1

A2mR
S 2 i\

]

]u
1\a D

2 iAmgNR

2
sinuGc21/2~u!50. ~36!

Solutions for Eq.~36! are found to be

c11/2~u!5
1

AI 0~2z!
expS 2 iau2

z

\
cosu D ,

~37!

c21/2~u!5
1

AI 0~2z!
expS 2 iau1

z

\
cosu D ,

whereI 0(2z) in the normalization factor is the zeroth-ord
modified Bessel function and we have defined a dimens
less parameter

mR2

\
AgN

R
[

mR2

\
v[

z

\
.

These are normalizable solutions. Thus, one may say
the zero-energy states, that is, supersymmetric ground st
exist in the model and the supersymmetry is unbroken. T
is, however, a hasty conclusion. In addition to the norma
ability, all the wave functions have to satisfy the period
boundary conditionC~u12p!5C~u!, that is,c61/2(u12p)
5c61/2(u), which follows from Eq.~10! @21#. It is easy to
see from Eq.~37! that

c61/2~u12p!5e2 i2pac61/2~u!. ~38!

The boundary condition for the zero-energy state wave fu
tions is twisted by the gauge fielda. The zero-energy stat
wave functions do not satisfy the required periodic bound
condition except fora5integer. Since the inequivalent rep
resentation is given by 0<a,1, they are inconsistent with
the periodic boundary condition and becomeunphysical
wave functions for 0,a,1. Therefore, the supersymmet
can be broken due to the gauge fielda. Let us note that the
Witten index Tr(21) f̂5nB

E502nF
E50 vanishes in our model

It is easy to see thatnB
E505nF

E5051 for a5integer and that
nB

E505nF
E5050 for a5noninteger.

Unlike the usual supersymmetry breaking, in which t
leading term of the superpotential determines whether or
supersymmetry is broken, our breaking of supersymme
does not depend on the structure of the superpotential.
entirely due to the existence of the gauge fielda, which is an
inevitable consequence of the quantization ambiguity w
one quantizes the theory on topologically nontrivial spa
such asS1. The gauge field has the effect of twisting th
boundary conditions of the zero-energy state wave functio
Among the various supersymmetric quantum mechanics
S1 led by the gauge field, it includes theories with brok
supersymmetry due to the gauge field. Let us note that in
context there is no mechanism to determine the values oa
or what values ofa we should take.
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Note that for noninteger values of the gauge fielda, the
gauge field cannot be removed in Eq.~36! by the gauge
transformation

c61/2~u!→c61/28 ~u!5e2 iauc61/2~u!. ~39!

As we stated before, the inequivalent gauge field is given
0<a,1. Any gauge field in this range cannot be connec
by a regular gauge transformation with einu (n5 integer).
Only a singular gauge transformation can do it, but it d
stroys the required periodic boundary condition for the tra
formed wave function. The singular gauge transformation
strictly forbidden, so that the gauge field cannot be gau
away.

Let us briefly comment on the ground state energy. W
have a physical supersymmetric ground state wave func
for a5 integer, so that the ground state energy is exac
zero. On the other hand, for 0,a,1, supersymmetry is bro
ken. The ground state energy is nonzero~positive!. Estimat-
ing the ground state energy is a subtle problem as studie
@14,15#.

The Hamiltonian~33! cannot be solved analytically. Th
bosonic potential (mgNR/2)sin2 u is periodic and the classi
cal vacuum has a periodic structure. One may expect
there is an instantonlike classical solution, which gives
finite Euclidean action, connecting the two vacua with d
ferent fermion numbers (61/2). Actually, there exists such
classical solution in our model. It is given by cosucl(t)
56tanh@v(t2t0)# with the classical Euclidean action bein
22z/\. And the fermion zero mode exists in this classic
background. Therefore, we expect tunneling to occur
tween the two vacua. According to the semiclassical ar
ment, the tunneling effect shifts the ground state energy
give an exponentially small amount of energy in the form
exp(22z/\)cos 2pa @22#.

On the other hand, for very smallz, we can resort to
perturbation theory to obtain the energy spectrum of
Hamiltonian. The ground state energy is given byE0
;(1/2mR2)@a21O(z2)#, where we have set\51. The
gauge fielda is a dominant contribution to the ground sta
energy in this case.

It may be interesting to consider theR→` limit. So far,
we have fixed the radiusR of S1. If R varies to become large
we expect that the arc of an arbitrary part ofS1 will approach
a straight segment. In the limit ofR→`, one-dimensional
Euclidean space will be recovered.

In order to study the limit, let us define a variablex
[Ru. In terms of this new variable, the Hamiltonian~33! is
written as, remembering Ĝ52 i\]/]u1\a in the
Ŵ-diagonal representation,

Ĥ5F2\2

2m S ]

]x
1 i

a

RD 2

1
mgNR

2
sin2S x

RD G1232

1
\

2
AgN

R
s3 cosS x

RD . ~40!

If we take the limit ofR→` naively, it becomes trivial for
the Hamiltonian to yield the one for a free particle onS1:
1-5
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Ĥ5
2\2

2m

]2

]x2 1232 . ~41!

In order to obtain an interacting theory, one has to take
limit, keeping a relation given by

m

\
AgN

R
[

mv

\
5~strength of oscillator!25const. ~42!

Then, we obtain

Ĥ5S 2\2

2m

]2

]x2 1
mv2

2
x2D12321

\v

2
s31OS 1

R2D .

~43!

This is the well-known Hamiltonian for the supersymmet
harmonic oscillator@9# with angular frequencyv5AgN /R.
Likewise, by taking the same limit, the fermionic operato

Q̂,Q̂̄ become

Q̂5
1

A2m
@ p̂1 iW~ x̂!#ĵ1OS 1

R2D[Q̂susy1OS 1

R2D ,

Q̂̄5
1

A2m
@ p̂2 iW~ x̂!# ĵ̄1OS 1

R2D[ Q̂̄susy1OS 1

R2D ,

~44!

where we have definedW( x̂)[mv x̂ and p̂[2 i\]/]x. It is
easy to check that the Hamiltonian~43! satisfies the super
symmetry algebra~1! with the supercharges~44! if we use
the canonical commutation relation@ p̂,x̂#52 i\ and Eq.
~32!. The usual supersymmetry, by which the supersymm

transformations between boson (x̂) and fermion (ĵ, ĵ̄) are
generated, is realized in the limit ofR→` with Eq. ~42!.

The supersymmetric ground state wave functions for
Hamiltonian ~43! are obtained by solving the first-orde

equation Q̂susyuC&50 and Q̂̄susyuC&50. Using the same
matrix representation as before, their solutions are

c11/2
h.o ~x!;expS 1

mv

2\
x2D ,

~45!

c21/2
h.o. ~x!5S mv

p\ D 1/4

expS 2
mv

2\
x2D .

There are two candidates for the supersymmetric gro
state~zero-energy state! wave functions. The one is physica
and its wave function is given byc21/2

h.o. (x). The other one
c11/2

h.o. (x) is unphysical because of its non-normalizabilit
Therefore, we have one supersymmetric ground~zero-
energy! state. This is consistent with the exact energy sp
trum of the Hamiltonian~43!. As easily seen from the Hamil
tonian, there exists one supersymmetric ground state. In
the solutions~45! can be obtained by taking the limit ofR
→` with the relation ~42! in Eq. ~37!. By noting I 0(z)
;ez/A2pz for largez, we obtain
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c̃11/2;expS 1
mv

2\
x2D ,

~46!

c̃21/2~x!5S mv

p\ D 1/4

expS 2
mv

2\
x2D ,

where we have redefined the normalization asc̃61/2(x)dx
[c61/2(u)du/A2pR. These are the same as Eqs.~45!. The
Witten index is Tr(21) f̂51 in this case.

A simple generalization of the model is anN-component
one. The fermionic operators are defined by

Q̂5 (
a51

N S 1

A2mRa

Ĝa1 iV̂aD ĵa[ (
a51

N

q̂aĵa , ~47!

Q̂̄5 (
a51

N S 1

A2mRa

Ĝa2 iV̂aD ĵ̄[ (
a51

N

q̂a
†ĵ̄a , ~48!

where V̂a[V̂a(u1 , . . . ,uN) and Ĝa52 i\]/]ua1\aa in
the Ŵ-diagonal representation. Let us assume

@Ĝa ,Ŵb#5\dabŴb , $ĵa , ĵ̄b%5dab ,
~49!

$ĵa ,ĵb%50, $ĵ̄a , ĵ̄b%50.

Then, the Hamiltonian following from these fermionic op
erators is

Ĥ5 (
a51

N
1

2mRa
2ĜaĜa1V̂aV̂a

2 (
a,b51

N
i

A2mRa
@Ĝa ,V̂b#@ ĵa , ĵ̄b#. ~50!

The Hamiltonian ~50! may describe the supersymmetr
quantum mechanics on the torusTN5S1

^ •••^ S1. As be-
fore, aa(a51, . . . ,N) may be interpreted as the gauge fie
appearing as a consequence of the quantization on eac
pological spaceS1.

It is difficult to obtain the exact form of the supersymme
ric ground state wave functions of the model. If we, ho
ever, restrict ourselves to certain sectors of the model, t
can be obtained in closed form such as Eq.~53! @7#. In order
to see this, let us define

u2&[u0&, u1&[ )
a51

N

ĵ̄au0& with ĵau0&50

~51!
~a51, . . . ,N!.

Then,Q̂u2&5 Q̂̄u1&50 is trivially satisfied, so that in thes
two sectors, the supersymmetric ground state~zero-energy
state! wave functions are obtained in closed form by solvi
simple first-order equations such as Eqs.~36!. Aside from the
normalization, the solutions are obtained as
1-6
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C1~u1 , . . . ,uN!

5exp(
a51

N S 2 iaaua1
A2mRa

\ Eua
dūa

3Va~ ū1 , . . . ,ūa , . . . ,ūN! D u1&,

C2~u1 , . . . ,uN!

5exp(
a51

N S 2 iaaua2
A2mRa

\ Eua
dūa

3Va~ ū1 , . . . ,ūa , . . . ,ūN! D u2&. ~52!

The wave functions have to satisfy the periodic bound
condition C6( . . . ,ua12p, . . . )5C6( . . . ,ua , . . . )(a
51, . . . ,N). If the contributions coming from the superpo
tential in Eq. ~52! do not spoil the normalizablity and th
periodicity of the wave functions, the supersymmetry can
broken for noninteger values ofaa (a51, . . . ,N).

III. CONCLUSIONS AND DISCUSSION

We have applied the Ohknuki-Kitakado formulation
quantum mechanics onS1 to the supersymmetric simple pen
dulum whose Hamiltonian is given by Eq.~33! and satisfies
the algebra~1!. According to their formulation, an undete
mined parameter, which can be interpreted as a cons
gauge field, inevitably enters into the theory to yield t
various quantum mechanics onS1. We have studied the ef
fects of the quantization ambiguity on the supersymme
ground state wave functions of the model.

We have found that supersymmetry can be broken du
the existence of the gauge fielda. The gauge field twists the
boundary condition of the supersymmetric ground state w
functions. For noninteger values ofa, they do not satisfy the
required periodic boundary condition. As a result, they
come unphysical wave functions though they are norma
able. The mechanism of supersymmetry breaking is differ
from the usual supersymmetry breaking discussed in su
symmetric quantum mechanics. The latter depends cruc
on the structure, the leading term, of the superpoten
while the former is entirely due to the quantization ambigu
resulting firmly from quantization on a space with nontriv
topology likeS1.

We have chosen the superpotentialV(Ŵ,Ŵ†) in such a
way that it becomes a simple pendulum in the classical lim
In principle, one can choose any superpotential as long
can be written in terms of integer powers of the operatorsŴ

and Ŵ†. Thanks to the factorizable property for finding th
supersymmetric ground state wave functions, they are g
simply by solving the first-order equation~31! and are ob-
tained in closed form,
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c61/2~u!5expS 2 iau7A2mR

\ Eu

dū V~ei ū,e2 i ū ! D ,

~53!

for the general superpotential. Our mechanism of supers
metry breaking is not altered by the choice of the super

tential if exp@*udū V(ei ū,e2 i ū)# does not violate the period
icity and the normalizability of the wave functions, which
the case for the superpotential satisfying our criterion. Sup
symmetry breaking will always occur for noninteger valu
of a. Because of the factorizable property, there is no way
prevent the gauge field from entering into the supersymm
ric ground state wave functions and twisting their bound
conditions. The gauge field cannot be removed by a reg
gauge transformation.

One may wonder whether all the eigenfunctions of t
Hamiltonian ~33! become unphysical, that is, those that
not satisfy the periodic boundary condition due to the ex
tence of the gauge field. This is not true. In order to see t
let us consider a free Hamiltonian, ignoring all terms exc

for Ĝ2. The energy eigenvalue depends ona like (m1a)2

and the gauge field produces an effect on the observab
the quantum level@6#. The corresponding eigenfunction sa
isfying the periodic boundary condition is easily found to
eimu. The ground state wave functions and the other eig
functions are obtained by solving essentially different typ
of differential equations in the system satisfying the sup
symmetry algebra~1!.

We have also discussed the limit ofR→`. One-
dimensional Euclidean space is realized. In the limit with t
relation ~42!, we have obtained the supersymmetric h
monic oscillator with angular frequencyv5AgN /R. There
exists one physical supersymmetric ground state wave fu
tion. The other one, though it is a zero-energy state, is
physical because of its non-normalizability. These two wa
functions are actually obtained by taking the limit in th
solutions of the zero-energy wave functions~37!. In the limit
all the effects of the gauge fielda disappear. Then, an infi
nite number of inequivalent representations is reduced
unique representation, which is nothing but the represe
tion of the canonical algebra@ p̂,x̂#52 i\. The fermionic
operators become supercharges in the same limit, and
generate supersymmetry transformations between bosonx̂)

and fermions (ĵ, ĵ̄).
We have also considered theN-component generalization

of Eq. ~25! and studied the supersymmetric ground st
wave functions of the model. The Hamiltonian~50! describes
the supersymmetric quantum mechanics on the torusTN. If
we restrict ourselves to the two sectors given byu2& andu1&,
the wave functions can be obtained in closed form~52! by
solving the simple first-order equations. We have fou
again, that supersymmetry was able to be broken due to
existence of the gauge fieldaaÞ integer (a51, . . . ,N),
which appeared as a consequence of the quantization
each topological spaceS1.
1-7
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Finally, let us discuss the similarities between our mec
nism of supersymmetry breaking and that through bound
conditions of fields for compactified directions in supersy
metric quantum field theory.

Strictly speaking, supersymmetry breaking throu
boundary conditions is one thing, and that through o
mechanism is another. Nevertheless, it may be interestin
discuss the similarities between the two supersymm
breakings. In the former case, the breaking means that
action is no longer invariant under the supersymmetry tra
formations. But it does not necessarily mean the nonex
ence of the zero-energy state in the system. The supers
metric harmonic oscillator at finite temperature is one of
examples in which the action is not invariant under the
persymmetry transformations because of the different bou
ary conditions between the bosons and the fermions; th
exists, however, the zero-energy state in the system, w
results from Tr(21) f̂51 @24#. In the latter case, we assum
that the Hamiltonian satisfies the supersymmetry algebra~1!,
so that supersymmetry breaking immediately means the n
existence of physical zero-energy states in the system,
whether or not supersymmetry is broken is determined d
nitely by the existence of the zero-energy state.

As seen from Eq.~38!, the boundary condition for theS1

direction is twisted for 0,a,1 by e2 i2pa. If we consider a
theory at finite temperature, it is equivalent to studying
theory in a space where the Euclidean time direction is co
pactified onS1. It is well known that supersymmetry is bro
ken at finite temperature by the different boundary con
tions for the Euclidean time direction between the bos
n

t

t
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and the fermions. The boson~fermion! satisfies the~anti!pe-
riodic boundary condition. The case ofa51/2, which actu-
ally corresponds to the antiperiodic boundary condition,
similar to the case of supersymmetry breaking at finite te
perature.

More generally, if one wishes to break supersymme
through different boundary conditions between the bos
and the fermions such as the finite temperature case, one
use the boundary condition associated with the U(1)R sym-
metry @25–27#, in which the U(1)R charges are differen
between the bosons and the fermions in a supermultiple
we regard the factor e2 i2pa in Eq. ~38! as a boundary con
dition that breaks supersymmetry, our mechanism of sup
symmetry breaking is quite similar to that through bounda
condition associated with the U(1)R symmetry. If one takes
this similarity seriously, one says that a possible physi
origin of supersymmetry breaking through the boundary c
dition associated with the U(1)R symmetry has been found
Needless to say, in order to confirm this statement, we n
to clarify how the quantization ambiguity is realized in~su-
persymmetric! quantum field theory@28#.
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