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Axiomatic approach to radiation reaction of scalar point particles in curved spacetime

Theodore C. Quinn
Enrico Fermi Institute and Department of Physics, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637-1

~Received 10 May 2000; published 28 August 2000!

Several different methods have recently been proposed for calculating the motion of a point particle coupled
to a linearized gravitational field on a curved background. These proposals are motivated by the hope that the
point particle system will accurately model certain astrophysical systems which are promising candidates for
observation by the new generation of gravitational wave detectors. Because of its mathematical simplicity, the
analogous system consisting of a point particle coupled to a scalar field provides a useful context in which to
investigate these proposed methods. In this paper, we generalize the axiomatic approach of Quinn and Wald in
order to produce a general expression for the self-force on a point particle coupled to a scalar field following
an arbitrary trajectory on a curved background. Our equation includes the leading order effects of the particle’s
own fields, commonly referred to as ‘‘self-force’’ or ‘‘radiation reaction’’ effects. We then explore the equa-
tions of motion which follow from this expression in the absence of non-scalar forces.

PACS number~s!: 04.25.2g, 04.30.2w
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I. INTRODUCTION

There has been much recent interest in calculating
motion of astrophysical systems which emit gravitation
waves in anticipation of data from a new generation of
tectors. Full three-dimensional numerical simulations are
quired in order to produce useful results for many of t
most promising observational candidates, such as collid
black holes. However, there also exists a large class of
tems which can be accurately modeled by a small isola
body moving in the fixed background created by a mu
larger body~e.g., a solar mass star falling into a superm
sive black hole!. For such a system, we might hope to pr
duce useful results by treating the smaller object as a p
particle and introducing the effects of its fields and inter
structure as perturbations to the background geodesic o

The perturbations due to the particle’s own fields, co
monly called ‘‘radiation reaction’’ or ‘‘self force’’ effects,
are particularly important because they include the for
responsible for the decay of the body’s orbit. If both t
background spacetime and the unperturbed orbit of the b
possess enough symmetry, it is possible to infer the effec
these forces on the orbit from global conservation princip
one calculates the energy and/or angular momentum rad
to infinity by a particle in geodesic motion, and then modifi
the orbit to reflect this energy and angular momentum los
a time-averaged fashion.~Obviously, this procedure can b
iterated if greater accuracy is required.! Some justification
for this method is provided by Quinn and Wald@1#. How-
ever, in the absence of such symmetries, it is necessa
directly calculate the effects of the local fields in the neig
borhood of the particle. Unfortunately, this problem is i
posed, since the fields diverge in the neighborhood of
particle’s world line, so that any such local calculation mu
include a rule for extracting the appropriate finite part
these divergent fields.

There is an extensive literature devoted to this regular
tion problem. In 1938, Dirac@2# reproduced the force expres
sion ~originally given by Abraham@3#! for a point particle
coupled to an electromagnetic field in Minkowski spaceti
0556-2821/2000/62~6!/064029~9!/$15.00 62 0640
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by imposing local energy conservation on a tube surround
the particle’s world line and subtracting the infinite contrib
tions to the force through a ‘‘mass renormalization’’ schem
In 1960, Dewitt and Brehme@4# generalized this approach t
an arbitrary curved background spacetime.~A trivial calcu-
lational error in their paper was later corrected by Hob
@5#.! More recently, Minoet al. @6# further adapted this ap
proach to produce a force expression for a point part
coupled to a linearized gravitational field on a vacuum ba
ground spacetime, and Quinn and Wald@7# rederived both
the electromagnetic and gravitational forces using an axio
atic approach which, in effect, regularizes the forces by co
paring forces in different spacetimes.

There has emerged from this work a consensus regar
the correct equation of motion for a particle coupled to el
tromagnetic fields on an arbitrary curved background and
a particle coupled to linearized gravitational fields on
vacuum background. In principle, the latter equation allo
one to calculate the dynamics of the astrophysical system
interest described above. In practice, however, very li
progress has been made in applying either equation of
tion to concrete physical examples for two reasons. Fi
given a world line in an arbitrary spacetime, the calculati
of the associated retarded fields is a complex and diffic
problem. Second, once these fields are calculated, the e
tions of motion require one to identify that portion of th
retarded field at each point of the world line which aris
from source contributions interior to the light cone. This p
of the field is often called the ‘‘tail term,’’ and most approx
mation schemes for calculating the retarded field entan
the tail and non-tail contributions to the field.

Nevertheless, some progress has been made, notab
the electromagnetic case. In 1964, DeWitt and DeWitt@8#
calculated the tail term for an electromagnetic particle in
circular orbit on a Schwarzschild background to leading
der in the background curvature and the velocity of the p
ticle. In 1980, Smith and Will@9# calculated the force on an
electromagnetic particle held static on a Schwarzschild ba
ground, essentially by repeating DeWitt and Brehme’s lo
stress-energy conservation argument. More recently, M
and Nakano@10# have proposed a regularization method f
©2000 The American Physical Society29-1
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THEODORE C. QUINN PHYSICAL REVIEW D62 064029
calculating the tail part of the linearized gravitational fie
for a particle in slow motion on a Kerr background. None
these results have led to direct progress on systems of i
est to the gravitational wave astronomy community. Ho
ever, several new ideas have emerged in recent years w
may lead to further progress. Barack and Ori@11# have sug-
gested an alternative regularization scheme for calcula
the tail term through averaging of multipole moments wh
is better adapted to concrete calculations, while others h
suggested a hybrid scheme in which the tail term is ca
lated through a combination of Hadamard expansion te
niques for small distances and multipole techniques
larger distances@12#.

It is clearly important to test these ideas. In particular,
must know whether these schemes are equivalent to
equations of motion discussed above. Because of its m
ematical simplicity, one natural system in which to explo
all of these questions is that of a point particle coupled t
scalar field. Motivated by this, several researchers have
gun to apply the ideas discussed above to the scalar sys
In particular, Barack and Ori’s method has been applied
the motion of scalar particles in spherically symmetric spa
times @11,13–15#, and Wiseman@16# has adapted the calcu
lation of Smith and Will in order to calculate the force on
scalar particle held static in the Schwarzschild spacetime
the present paper, we generalize the axiomatic approac
Quinn and Wald@7# in order to produce the general equati
of motion for a point particle coupled to a scalar field on
arbitrary background spacetime. It is hoped that this gen
expression will be useful in evaluating the validity of th
calculational schemes described above for the scalar c
and that this comparison will ultimately help to clarify th
relationship between the various methods which have b
proposed for the electromagnetic and gravitational cases

In Sec. II, we derive an expression for the force on
particle following an arbitrary trajectory in curved spac
time. Then, in Sec. III, we explore the equations of moti
which follow from this expression in the absence of no
scalar forces.

II. THE SCALAR FORCE

Given a spacetime containing a particle world line an
Klein-Gordon field sourced by the particle, we wish to defi
the total scalar forcef S

a on the particle at each point of th
world line, including so-called self-force or radiation rea
tion effects. For an electromagnetic point particle in fl
spacetime, an expression of this sort was first given by Ab
ham@3# in 1905, was later rederived in a relativistic conte
by Dirac @2#, and is often found in textbooks~e.g., Jackson
@17#!. However, since there are no classical point particle
nature, and the theoretical status of such objects is prob
atic at best, it is important to ask how any such prescript
is constrained by physics.

Our view is that the force law should reflect the force
an extended body coupled to a scalar field in the limit
small spatial extent. In particular, fix the background spa
time and consider a family of extended bodies and co
sponding scalar fields parametrized bye, the spatial size of
06402
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the bodies. For each body in the family, we define a cente
mass world linez(t) ~e.g., by the methods of Beiglbo¨ck
@18#! and calculate the charge,q, and mass,m, of the body
with respect to this world line,1 as well as the forcef S

a@e#
exerted by the scalar field on the body.~For the definition of
the force exerted on a small body by a field to which it
coupled, see Quinn and Wald@7#.! We further require thatm
and q vanish ase goes to zero. For such a one-parame
family, Quinn and Wald@7# argue that it is possible to
specify some set of conditions on the internal structure
composition of the extended bodies such that the limit
f S

a@e# for smalle is independent of their internal details. W
would like our expression forf S

a to correctly the describe the
orderq andq2 contributions tof S

a@e# which are independen
of the internal structure of the body under these conditio
~Other corrections which arise from the internal structu
such as multipole effects and spin effects, have been der
elsewhere and should simply contribute additively at this
der.!

Unfortunately, the limit described above is quite delica
and the task of specifying conditions to ensure its conv
gence appears to be formidable.~The analysis of Dixon@19#
demonstrates the degree of complexity which arises e
without considering self-field effects.! Nevertheless, certain
properties of this limit are strongly suggested by the nat
of the divergences in the scalar field. Following Quinn a
Wald @7#, we will introduce these properties as axioms, a
then give the unique prescription forf S

a which satisfies these
axioms.

In the next subsection, we will motivate our crucial Com
parison Axiom by considering the point particle limit de
scribed above and develop the expansions required to
the axiom. Then, in the following subsection, we state b
axioms and give the unique prescription forf S

a that satisfies
them, which is the main result of this paper.

A. Motivation for the comparison axiom

Consider a spacetime (M ,gab) containing a spatially
compact body characterized by stress-energyTbody

ab and scalar
charge densityr, a smooth Klein-Gordon fieldf, and pos-
sibly some other set of fields which are coupled to the bo
characterized byText

ab . The Klein-Gordon fieldf satisfies the
equation

¹a¹af524pr ~1!

with stress-energy

TS
ab5

1

4p S ¹af¹bf2
1

2
gabgcd¹

cf¹df D . ~2!

1Because the scalar charge density is a scalar quantity, the
charge that one calculates for an extended body depends upo
spacelike surface used to slice the body. This is in contrast to e
tromagnetism, where the charge density is the time component
conserved vector field and the total charge is independent of s
9-2
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Assuming that the total stress-energy is conserved, so th

¹b~Tbody
ab 1TS

ab1Text
ab!50, ~3!

then the force density exerted on the body by the scalar fi
is given by

¹bTbody
ab 1¹bText

ab52¹bTS
ab5r¹af. ~4!

Therefore, naively taking the point particle limit, w
would expect the force on a scalar particle of chargeq to be
given by

f S
a5q¹af. ~5!

Unfortunately, this expression is meaningless as it sta
since¹af diverges on the world line of the particle.~The
situation is exactly the same with the Lorentz force la
f EM

a 5qFabub .) However, if we consider two pointsP andP̃
along the world lines of two different particles in two diffe
ent spacetimes~each with chargeq), and we identify the
neighborhoods ofP and P̃, then we might hope that, unde
some conditions, the difference¹af2¹̃af̃ will be finite
even as the two individual fields diverge. Under such con
tions, it seems reasonable to expect that the difference
tween the forces on the particles will be given by the~finite!
difference between the field gradients. That is,

f S
a2 f̃ S

a5 lim
r→0

q^¹af2¹̃af̃& r . ~6!

~Here, the average over a sphere of radiusr, denoted bŷ & r ,
is introduced to allow for the possibility that ther→0 limit
of the difference is finite, but direction-dependent.!

Quinn and Wald@7# give plausibility arguments which
suggest that the counterpart of Eq.~6! is indeed a property o
the point particle limit in the electromagnetic and gravi
tional cases. These arguments generalize straightforward
the scalar case, so we will not give the details here. Inste
we will simply impose Eq.~6! as an axiom and investigat
the consequences forf S

a . This idea will be the basis of ou
crucial Comparison Axiom in the next subsection. Howev
first we must find out what conditions to impose on t
spacetimes, the world lines nearP and P̃, and the identifica-
tion of their neighborhoods in order to ensure that the diff
ence in the field gradients be finite asr→0. In order to
answer this question, we will now examine in detail the s
gularity structure of the scalar field in the neighborhood
the world line.

Consider a scalar field satisfying Eq.~1! in a spacetime
(M ,gab) with a point particle source

r~x!5E qd4
„x,z~t!… dt. ~7!

In contrast to the electromagnetic case, the Klein-Gord
equation does not require conservation of charge. For s
plicity, we shall assume throughout our analysis that
chargeq is constant along the world line. We wish to expa
f in r, the spatial distance from the world linez(t). We are
06402
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primarily interested in the divergent contributions tof, char-
acterized by the negative powers ofr in the expansion, since
these divergent contributions will determine the conditio
required for convergence of the limit in Eq.~6!. It follows
from the general theory of propagation of singularities~see
theorem 26.1.1 of Hormander@20#! that every solution of Eq.
~1! which is smooth away from the world line will have th
same singularity structure near the world line, so we are f
to choose any convenient solution for our expansion. La
when we wish to produce an explicit expression forf S

a , we
will want to write f in terms of the advanced and retard
solutions. Therefore, these are the solutions which we
analyze in the following expansion.

Given any pointx in a spacetime (M ,gab), there exists a
convex normal neighborhoodC(x) containingx @i.e. a neigh-
borhoodC(x) such that there exists a unique geodesic c
necting any two points withinC(x)]. For x8PC(x), the
Hadamard elementary solution of Eq.~1! can be written in
the form @4#

G(1)~x,x8!5
1

p FU~x,x8!

s~x,x8!
1V~x,x8!lnus~x,x8!u

1W~x,x8!G , ~8!

with corresponding advanced (1) and retarded (2) Green’s
functions

G6~x,x8!5u6~x,x8!@U~x,x8!d„s~x,x8!…

2V~x,x8!u„2s~x,x8!…#. ~9!

Here,s(x,x8) is the biscalar of squared geodesic distan2

and U, V, andW are all smooth biscalar fields.~For an ex-
planation of the bitensor formalism, see Dewitt and Breh
@4#.! The scalar functionu6(x,x8) is unity whenx8 is in the
causal future/past ofx and vanishes otherwise.

For x near the world linez(t), let tS be the proper time
along the world line which is simultaneous withx in the
sense that the spatial surfaceS generated by geodesics pe
pendicular toua at z(tS) intersectsx. In particular, letx lie a
proper distancer along the geodesic generated by unit spa
vector r̂ a at z(tS), and letz(t1) andz(t2) be the intersec-
tion of the world line with the future and past light cones
x, respectively. We require thatx be close enough to the
world line that z(tS), z(t1), and z(t2) all lie within the
neighborhoodC(x), and we denote the future and past inte
sections of the world line with the boundary ofC(x) by
z(T1) andz(T2), respectively. This is illustrated in Fig. 1
For the retarded fieldf2 , we then have

2The biscalar of squared geodesic distances(x,x8) is equal to
half of the squared length of the geodesic connectingx and x8:
negative for timelike separated events, positive for spacelike s
rated events, and zero for null separated events. It is defined
when there is a unique geodesic connectingx andx8.
9-3
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f2~x!5E G2~x,x8!r~x8!A2g d4x8

5E G2~x,x8!S E qd4
„x8,z~t!… dt DA2g d4x8

5qE G2 „x,z~t!…dt

5qE
T2

T1

u2@x,z~t!#†U„x,z~t!…d@s„x,z~t!…#2V„x,z~t!…u@2s„x,z~t!…#‡dt1qE
2`

T2

G2„x,z~t!…dt

5qE
T2

TS

@Ud~s!2Vu~2s!#dt1qE
2`

T2

G2 dt. ~10!
d

-

fo

is

-

In the last line and hereafter, we suppress the spacetime
pendence for all biscalars, since each depends uponx in its
first argument andz(t) in its second argument. For a biten
sor A, we introduce the notation

Ȧ[
d

dt
A„x,z~t!…5ua8¹a8A„x,z~t!…. ~11!

We have

dt5
dt

ds
ds5S ds

dt D 21

ds5ṡ21ds, ~12!

which gives us

f25qF $ṡ21U%t5t2
2E

T2

t2

V dtG1qE
2`

T2

G2 dt. ~13!

We now wish to produce the corresponding expression
¹af2 . Note that the right side of Eq.~13! depends uponx in
two ways: explicitly through the first argument of each b
calar and implicitly throught2 . We have

FIG. 1. The neighborhood containingx andx8.
06402
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¹af25q¹aF $ṡ21U%t5t2
2E

T2

t2

V dtG1qE
2`

T2

¹aG2 dt

5qF $2ṡ22¹aṡU1ṡ21¹aU%t5t2

1$2ṡ22s̈U1ṡ21U̇%t5t2
¹at2

2E
T2

t2

¹aV dt2$V%t5t2
¹at2G2qE

2`

T2

¹aG2 dt.

~14!

Sinces„x,z(t2)…50, we have

¹a$s%t5t2
5$¹as%t5t2

1$ṡ%t5t2
¹at250, ~15!

so that

¹at25$2ṡ21¹as%t5t2
. ~16!

Therefore, we have

¹af25qF $2ṡ22¹aṡU1ṡ21¹aU1ṡ23s̈U¹as

2ṡ22U̇¹as1ṡ21V¹as%t5t2
2E

T2

t2

¹aV dtG
1qE

2`

T2

¹aG2 dt. ~17!

In Eqs.~13! and~17!, we would like to combine the inte
grals which appear on the right side. ForT2<t,t2 , we
have G„x,z(t)…52V„x,z(t)…. Furthermore, sinceV is a
smooth biscalar,

E
T2

t2

V dt5 lim
e→0

E
T2

t22e

V dt ~18!

and

E
T2

t2

¹aV dt5 lim
e→0

E
T2

t22e

¹aV dt. ~19!
9-4
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Therefore, combining the integrals, we have

f25q$ṡ21U%t5t2
1 lim

e→0
qE

2`

t22e

G2 dt ~20!

and

¹af25q$2ṡ22¹aṡU1ṡ21¹aU1ṡ23s̈U¹as

2ṡ22U̇¹as1ṡ21V¹as%t5t2

1 lim
e→0

qE
2`

t22e

¹aG2 dt. ~21!

In order to investigate the singularity structure off2 and
¹af2 near the world line, we need expansions for the
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pressions in brackets on the right sides of Eqs.~20! and~21!
which are valid toO@r 0#. ~The integrals in these equation
make smooth contributions to the fields.! The required small
distance expansions forU, V, s, and their derivatives can al
be found in DeWitt and Brehme@4# or derived straightfor-
wardly from expressions given therein. Switching the ro
of the primed and unprimed indices for notational simplic
and including the corresponding results for the advan
field, f1 , we have

f6~x8!5qS r 212
1

2
aar̂ aD6 lim

e→0
qE

t66e

6`

G6„x8,z~t!… dt

1O@r # ~22!

and
¹a8f6~x8!5qḡa8aS 2r 22r̂ a2
1

2
r 21aa1

1

2
r 21~abr̂ b! r̂ a2

3

8
~abr̂ b!2r̂ a1

3

4
~abr̂ b!aa2

1

6
Rbdceu

bucr̂ dr̂ er̂ a2
1

8
a2r̂ a

2
1

12
Rbcr̂

br̂ cr̂ a1
1

2
~ ȧbr̂ b!ua1

1

12
Rbcu

bucr̂ a1
1

6
Rbcu

br̂ cua1
1

3
Ra

cbdu
bucr̂ d6

1

3
a2ua7

1

3
ȧa7

1

6
Rbcu

bucua

1
1

6
Rabr̂ b2

1

12
Rr̂a7

1

6
Rabub6

1

12
RuaD6 lim

e→0
qE

t66e

6`

¹aG6~x8,z~t!! dt1O@r #, ~23!
co-
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ach
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ex-
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whereḡa8a is the bivector of geodetic parallel displaceme
defined by DeWitt and Brehme@4#.

We began this calculation in order to investigate wh
conditions we need to impose on the spacetime neigh
hoods and trajectories of scalar particles in different spa
times and on our identification of these neighborhoods
order to ensure that the subtraction of field gradients in
~6! is finite, and Eq.~23! provides the answer to this que
tion. Since the divergent terms in Eq.~23! depend only upon
the four-velocity and four-acceleration of the particle~and
not, for example, on higher derivatives of the motion or t
local curvature!, the subtraction in Eq.~6! will be finite as
long as the magnitudes of the four-accelerations of the
particles are equal and we identify the local spacetime ne
borhoods in such a way that the four-velocities and fo
accelerations, the geodesic distances from the world li
and the parallel transport defined bygaa8 all coincide up to
O@r 0#. Given pointsP and P̃ on two world lines such tha
aaaa5ãaãa , we can achieve this by identifying the spac
time neighborhoods ofP andP̃ with their respective tangen
spacesTP andTP̃ via the exponential map,3 and then identi-
fying TP andTP̃ via any linear map which takesua to ũa and
aa to ãa. Under this identification, it is clear that four

3The exponential map identifiesvaPTP with the spacetime poin
which lies unit affine parameter along the geodesic generated bva.
,

t
r-
e-
n
q.

o
h-
-
s,

-

velocities, four-accelerations, and geodesic distances will
incide exactly, so we need only check that parallel transp
will also agree up to the appropriate order.

One way to see this is to write out Eq.~23! explicitly in
coordinates adapted to our identification map, so that e
point in the neighborhood ofP is mapped to the point with
the same coordinates in the neighborhood ofP̃. ~Using such
coordinates, our map identifies a vector field in the neighb
hood of P with the vector field in the neighborhood ofP̃
having the same coordinate components.! One such coordi-
nate system is Riemann normal coordinates.4 In these coor-
dinates, the coordinate components ofga8a are given by

ḡab5gab1
1

6
r 2Ragbd r̂ g r̂ d1O@r 3#. ~24!

~We have dropped the primed indices completely since
pression relates components rather than tensors.! Comparing
this to Eq.~23!, we see thatḡab simply acts as the identity a
this order inr. @The term2(1/6)qRagbd r̂ g r̂ d r̂ a, which arises
from the multiplication of ther 22 term in Eq.~23! and ther 2

4In order to construct Riemann normal coordinates for a neighb
hood of pointP, identify points in the neighborhood with points i
TP via the exponential map, and then pick any orthonormal ba
for TP .
9-5
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THEODORE C. QUINN PHYSICAL REVIEW D62 064029
term in Eq.~24!, vanishes by the symmetries of the Riema
tensor.# Therefore, the divergent terms will indeed canc
under the identification we have described. This provides
basis of our crucial Comparison Axiom in the next subs
tion.

B. The axiomatic approach

We are now prepared to give our prescription forf S
a , the

total scalar force acting on the particle. We have seen tha
subtraction of field gradients in Eq.~6! will be finite as long
as the two particles’ four-accelerations have the same m
nitude and we identify the spacetime neighborhoods via
exponential map as described above. We now elevate
property to the status of an axiom that any prescription forf S

a

must satisfy.
Axiom 1 (Comparison Axiom). Consider two points,P and

P̃, each lying on timelike world lines in possibly differen
spacetimes which contain Klein-Gordon fieldsf and f̃
sourced by particles of chargeq on the world lines. If the
four-accelerations of the world lines atP and P̃ have the
same magnitude, and if we identify the neighborhoods oP

and P̃ via the exponential map such that the four-velocit
and four-accelerations are identified, then the difference
tween the scalar forcesf S

a and f̃ S
a is given by the limit asr

→0 of the field gradients, averaged over a sphere at geod
distancer from the world line atP

f S
a2 f̃ S

a5 lim
r→0

q^¹af2¹̃af̃& r . ~25!

Since the Comparison Axiom requires only that the fo
accelerations of the particles agree, we now need only fix
dependence off S

a on acceleration in some arbitrary spacetim
in order to uniquely determinef S

a . Motivated by the time-
reflection symmetry of the half-advanced, half-retarded so
tion for a uniformly accelerating trajectory in flat spacetim
we impose the following axiom, which should be famili
from electromagnetism.

Axiom 2 (Flat spacetime axiom). If ( M ,gab) is
Minkowski spacetime, the world line is uniformly accelera
ing, and f is the half-advanced, half-retarded solution,f
5 1

2 (f11f2), then f S
a50 at every point on the world line

We will now show that, if there exists a prescription f
f S

a satisfying these two axioms, it must be unique. Conside
point P on the world line of a scalar particle of chargeq in
some spacetime, and let the particle have accelerationaa at
point P. Let f S

a and gS
a be two prescriptions for the scala

force, both satisfying the axioms given above. Now consi
a uniformly accelerating particle with the same chargeq and
the same accelerationaa in a flat spacetime (R4,hab), and
construct the half-advanced, half-retarded solutionf̃

5 1
2 (f̃11f̃2) for this particle. By our second axiom, w

know thatf̃ S
a5g̃S

a50 at every pointP̃ along the world line of
this uniformly accelerating particle. Therefore, identifyin
the neighborhoods ofP and P̃ as in the Comparison Axiom
above, we have
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f S
a2gS

a5~ f S
a2 f̃ S

a!2~gS
a2g̃S

a!

5 lim
r→0

q^¹af2¹̃af̃& r2 lim
r→0

q^¹af2¹̃af̃& r50.

~26!

This argument establishes uniqueness, but it also dem
strates existence by providing a prescription which is gu
anteed to satisfy the axioms. Namely, given a pointP along
the world line of a scalar particle with chargeq in any space-
time, we simply construct the half-advanced, half-retard
solutionf̃ for a uniformly accelerating particle in flat spac
time with the same charge and acceleration. The scalar f
f S

a is then given by

f S
a5 lim

r→0
q^¹af2¹̃af̃& r . ~27!

This is the prescription for the total scalar force which we
out to find at the beginning of this section.

Writing f as f5f in1f2 , we can use Eq.~23! to turn
this prescription into an explicit formula forf S

a . The result is

f S
a5q¹af in1q2S 1

3
~ ȧa2a2ua!1

1

6
~Rabub1Rbcu

bucua!

2
1

12
RuaD1 lim

e→0
q2E

2`

t2e

¹aG2„z~t!,z~t8!… dt8.

~28!

This expression, which is the main result of the paper, allo
us to calculatef S

a for any trajectoryz(t) in any spacetime.
As stated at the beginning of the section, the physical s
nificance of this expression is that it should correctly d
scribe the orderq and q2 contributions to the force on a
nearly spherical extended body in the point particle limit.

III. THE EQUATIONS OF MOTION

We now wish to consider the special case in which
non-scalar forces are present, so that the evolution of
world line z(t) is determined by the scalar field. In the ne
subsection, we derive equations of motion forz(t) in this
case. Then, in the following subsection, we explore one
the consequences of these equations of motion: that the m
of particle varies with time.

A. Derivation of the equations of motion

Consider once again the extended body described in
II. In the absence of non-scalar fields, conservation of stre
energy dictates that

¹bTbody
ab 52¹bTS

ab . ~29!

According to the arguments of Quinn and Wald@7#, in the
point particle limit, the center of mass world linez(t) will
therefore satisfy
9-6
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ub¹b~mua!5
dm

dt
ua1maa5 f S

a , ~30!

wheref S
a is the limiting force we derived in Sec. II. Insertin

our expression forf S
a from Eq. ~28! and separating the com

ponents parallel toua and perpendicular toua, we have

aa5
1

m
~ f S

a1uagbcu
bf S

c!5
q

m
~¹af in1uaub¹bf in!

1
q2

m S 1

3
~ ȧa2a2ua!1

1

6
~Rabub1Rbcu

bucua! D
1 lim

e→0

q2

mE
2`

t2e

~¹aG21uagbcu
b¹cG2! dt8 ~31!

and

dm

dt
52 f S

aua

52qua¹af in2
1

12
q2R

2 lim
e→0

q2E
2`

t2e

ua¹aG2 dt8. ~32!

We now note three important features of these equatio
First, for each point along the world line, the integrals
these expressions represent that portion of¹af2 which
arises from source contributions interior to the past lig
cone of the point. This contribution to the force, often call
the ‘‘tail term,’’ is a direct consequence of the failure
Huygen’s principle in curved spacetime, and can be und
stood as the result of scalar radiation backscattering from
background curvature and re-intersecting the particle wo
line. The presence of this tail term is the primary obstacle
applying these equations in physically realistic situatio
since most methods for calculating the retarded field of
arbitrary world line irretrievably mix the tail and non-ta
portions of the field.

Secondly, we can provide further insight into the nature
Eq. ~32! by tracing the origin of the Ricci scalar term in th
Hadamard expansion of the field given in Sec. II. This te
arises directly from the$V%t5t2

¹at2 term in Eq.~14!. In
particular, we have

lim
t8→t

G2„z~t!,z~t8!…5
1

12
R, ~33!

so that we can rewrite Eq.~32! as

dm

dt
52qua¹a~f in1f tail!, ~34!

wheref tail is defined by
06402
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f tail5 lim
e→0

qE
2`

t2e

G2 dt8. ~35!

The implications of Eq.~34! for global energy conservation
are explored by Quinn and Wald@1#.

Finally, owing to the presence of the Abraham-Lorentzȧa

term, these equations share the unphysical ‘‘runaway’’ so
tions which have been discussed thoroughly in the elec
magnetic case.~See Jackson@17# for one such discussion.! In
order to interpret these solutions, it is important to remem
that we view the force law given by Eq.~28! as an approxi-
mate expression for the force on an extended body, valid
O@q2#, rather than a fundamental description of a point p
ticle. Therefore, we can eliminate these unphysical soluti
through the reduction of order technique. This technique
discussed in detail by Flanagan and Wald@21#, but the basic
idea is simple. Recall that we wish Eq.~31! to describe the
limiting motion of a one-parameter family of extended bo
ies in which both the charge and the mass of the bod
vanish as the parameter goes to zero. For concreteness,
assume that the charge and mass are given byq5ae and
m5be. In order to apply the reduction of order technique
Eq. ~31!, we simply insert the entire right side of the equ
tion in place ofaa in the ȧa anda2ua terms and discard any
resulting terms which areO@e2# or higher. The result is

aa5
q

m
~¹af in1uaub¹bf in!1

1

3

q2

m S q

m
~ub¹b¹af in

1uaubuc¹b¹cf in!2
q2

m2
@¹bf in¹bf in

1~ub¹bf in!2#uaD 1
1

6

q2

m
~Rabub1Rbcu

bucua!

1 lim
e→0

q2

mE
2`

t2e

~¹aG21uagbc¹
bG2uc! dt8, ~36!

which is free of the unphysical runaway solutions.

B. Time variation of the mass

In stark contrast to the electromagnetic case,f S
a includes

contributions which point along the four-velocity of the pa
ticle, resulting in a time-varying mass. This is not a spec
feature of the self force, nor of curved spacetime. Rathe
reflects a fundamental difference between the two continu
theories. Consider a small body in Minkowski spacetim
with a center of mass world linez(t). The rest mass of such
a body is given by

m52E
S
uaTbody

ab ebcde, ~37!

whereua is the four-velocity ofz(t) ~defined away from the
world line by global parallelism!, S is the surface perpen
9-7
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dicular to ua, and eabcd is the volume element compatibl
with the ~flat! metric. Therefore, we have

dm

dt
52

d

dtES
uaTbody

ab ebcde

52E
S
£w@uaTbody

ab ebcde#

52E
S
ua¹bTbody

ab wcecde f , ~38!

wherewa is the vector field which connects successive ti
slicesS(t). For a body coupled to a scalar field, we ha
¹bTbody

ab 52¹bTS
ab5r¹af, so that

dm

dt
52E

S
rua¹afwcecde f , ~39!

which is clearly, in general, nonvanishing. By contrast, in
electromagnetic case, we have¹bTbody

ab 52¹bTEM
ab 5Fabj b ,

so that

dm

dt
52E

S
uaFabj bfwcecde f . ~40!

For typical models of charged matter,j a andua will become
collinear as we take the point particle limit, anddm/dt will
vanish.

Perhaps because it is tempting to generalize from
more familiar electromagnetic case, this time variation of
mass in the scalar case has largely been ignored in the li
ture. Some authors use the equation of motionmaa5q¹af
~e.g., Shapiro and Teukolsky@22#!. This equation is clearly
inconsistent, and therefore in general has no solutions, s
aa is perpendicular to the four-velocity while¹af, in gen-
eral, is not. Others explicitly project¹af perpendicular to
the four-velocity as in Eq.~31! above in order to obtain the
acceleration of the particle, but then simply ignore the co
ponent of¹af which points alongua and assume that th
mass is constant~e.g., Ori@23#!. While such an equation o
motion is mathematically consistent, it violates global co
servation of stress-energy.~See Quinn and Wald@1#.!

In the discussion above, we have motivated our point p
ticle equations of motion by imposing local stress-ene
conservation on continuum matter and taking the point p
ticle limit, using our axioms to extract the appropriate fin
part of the divergent fields. The time variation of the ma
arises as a direct consequence of this local stress-energy
servation. In the literature on point particles, one sometim
sees an alternative derivation which makes no referenc
the continuum theory. Instead, the author defines an ac
for the point particle system and then formally minimiz
this action with respect to variations of the fields and
world line in order to produce equations of motion. For co
pleteness, we give such a derivation here, paying partic
attention to the time dependence of the particle’s mass.

Fix a globally hyperbolic spacetime (M ,gab) and two
Cauchy surfaces for the spacetime,C1 and C2. Let f be a
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smooth scalar field andz(t) be a smooth world line in the
regionV betweenC1 andC2. We fix the value off and the
position ofz(t) on C1 andC2 and define the action,S, as

S5E
V
F 1

8p
~gab¹af¹bf!1

1

2E mgabu
aubd4

„x2z~t!… dt

1E qfd4
„x2z~t!… dtGeabcd. ~41!

Formally minimizing this action with respect to variation
of f, we arrive at

¹a¹af524pE qd4
„x2z~t!… dt, ~42!

while minimization with respect to variations ofz(t) yields

dm

dt
ua1maa5q¹af. ~43!

These are the same equations we arrived at by conside
the point particle limit of the continuum theory. Of cours
here we have assumedf andz(t) to be smooth in order to
define the action, while the solutions of Eq.~42! are clearly
distributional. Therefore, no solutions of these equations
ist. However, we may view this as a formal derivation of o
equations from an action principle.

Note that, if we had assumed from the outset thatm was
constant, the only change to the equations would have b
to setdm/dt50 in Eq. ~43!. Clearly, the resulting equation
is inconsistent, since¹af does not, in general, point alon
the four-velocity. Still, one might wonder, despite the stre
energy conservation arguments given above, whether
above action can be modified to produce the equation
motion

dm

dt
ua1maa5q~¹af1uagbcu

b¹cf!, ~44!

since this equation would have the immediate conseque
that dm/dt50, as in the electromagnetic case. Wisem
@24# has considered a large class of possible coupling te
and has found that, within this class, one cannot produce
~44! without introducing a nonlinear coupling on the rig
side of Eq.~42!. Based on this work and the stress-ener
considerations discussed above, we conjecture that there
ists no action which produces Eq.~44! while preserving Eq.
~42!.
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