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Several different methods have recently been proposed for calculating the motion of a point particle coupled
to a linearized gravitational field on a curved background. These proposals are motivated by the hope that the
point particle system will accurately model certain astrophysical systems which are promising candidates for
observation by the new generation of gravitational wave detectors. Because of its mathematical simplicity, the
analogous system consisting of a point particle coupled to a scalar field provides a useful context in which to
investigate these proposed methods. In this paper, we generalize the axiomatic approach of Quinn and Wald in
order to produce a general expression for the self-force on a point particle coupled to a scalar field following
an arbitrary trajectory on a curved background. Our equation includes the leading order effects of the particle’s
own fields, commonly referred to as “self-force” or “radiation reaction” effects. We then explore the equa-
tions of motion which follow from this expression in the absence of non-scalar forces.

PACS numbegs): 04.25~g, 04.30—w

[. INTRODUCTION by imposing local energy conservation on a tube surrounding
the particle’s world line and subtracting the infinite contribu-
There has been much recent interest in calculating th&ons to the force through a “mass renormalization” scheme.
motion of astrophysical systems which emit gravitational!" 1960, Dewitt and Brehmid] generalized this approach to
waves in anticipation of data from a new generation of de-2n arbitrary curved background spacetir®.trivial calcu-
tectors. Full three-dimensional numerical simulations are relfzt]'?nﬁl)reerrgcénmtlge'l\rﬂiﬁ%gfglw[%ﬁ gﬁ:ﬁrefgég(;)&z% ?leisH:pti bs
ost promising obtervational candidates, such as caliding02Ch, © Produce a force expression for a point particle
) ' oupled to a linearized gravitational field on a vacuum back-
black holes. However, there also exists a large class of sy

hich b | deled b Il isol jround spacetime, and Quinn and W@ rederived both
tems which can be accurately modeled by a small isolate¢hq glectromagnetic and gravitational forces using an axiom-

body moving in the fixed background created by a muchyiic approach which, in effect, regularizes the forces by com-
larger body(e.g., a solar mass star falling into a supermasyaring forces in different spacetimes.
sive black holg. For such a system, we might hope to pro-*  There has emerged from this work a consensus regarding
duce useful results by treating the smaller object as a poirthe correct equation of motion for a particle coupled to elec-
particle and introducing the effects of its fields and internaltromagnetic fields on an arbitrary curved background and for
structure as perturbations to the background geodesic orbita particle coupled to linearized gravitational fields on a
The perturbations due to the particle’s own fields, com-vacuum background. In principle, the latter equation allows
monly called “radiation reaction” or “self force” effects, one to calculate the dynamics of the astrophysical systems of
are particularly important because they include the forceinterest described above. In practice, however, very little
responsible for the decay of the body’s orbit. If both theprogress has been made in applying either equation of mo-
background spacetime and the unperturbed orbit of the bodyon to concrete physical examples for two reasons. First,
possess enough symmetry, it is possible to infer the effects @iven a world line in an arbitrary spacetime, the calculation
these forces on the orbit from global conservation principlesof the associated retarded fields is a complex and difficult
one calculates the energy and/or angular momentum radiatgmtoblem. Second, once these fields are calculated, the equa-
to infinity by a particle in geodesic motion, and then modifiestions of motion require one to identify that portion of the
the orbit to reflect this energy and angular momentum loss imetarded field at each point of the world line which arises
a time-averaged fashiofObviously, this procedure can be from source contributions interior to the light cone. This part
iterated if greater accuracy is require&ome justification of the field is often called the “tail term,” and most approxi-
for this method is provided by Quinn and W4ldl]. How-  mation schemes for calculating the retarded field entangle
ever, in the absence of such symmetries, it is necessary tbe tail and non-tail contributions to the field.
directly calculate the effects of the local fields in the neigh- Nevertheless, some progress has been made, notably in
borhood of the particle. Unfortunately, this problem is ill- the electromagnetic case. In 1964, DeWitt and De\\8it
posed, since the fields diverge in the neighborhood of thealculated the tail term for an electromagnetic particle in a
particle’s world line, so that any such local calculation mustcircular orbit on a Schwarzschild background to leading or-
include a rule for extracting the appropriate finite part ofder in the background curvature and the velocity of the par-
these divergent fields. ticle. In 1980, Smith and Wil[9] calculated the force on an
There is an extensive literature devoted to this regularizaelectromagnetic particle held static on a Schwarzschild back-
tion problem. In 1938, Diraf2] reproduced the force expres- ground, essentially by repeating DeWitt and Brehme’s local
sion (originally given by Abrahani3]) for a point particle stress-energy conservation argument. More recently, Mino
coupled to an electromagnetic field in Minkowski spacetimeand Nakand10] have proposed a regularization method for
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calculating the tail part of the linearized gravitational field the bodies. For each body in the family, we define a center of
for a particle in slow motion on a Kerr background. None of mass world linez(7) (e.g., by the methods of Beiglbk
these results have led to direct progress on systems of intefd8]) and calculate the chargg, and massm, of the body
est to the gravitational wave astronomy community. How-with respect to this world liné,as well as the forcd €]
ever, several new ideas have emerged in recent years whiglixerted by the scalar field on the bodor the definition of
may lead to further progress. Barack and [Ari] have sug- the force exerted on a small body by a field to which it is
gested an alternative regularization scheme for calculatingoupled, see Quinn and Wdld].) We further require thatn
the tail term through averaging of multipole moments whichand g vanish ase goes to zero. For such a one-parameter
is better adapted to concrete calculations, while others haviamily, Quinn and Wald[7] argue that it is possible to
suggested a hybrid scheme in which the tail term is calcuspecify some set of conditions on the internal structure and
lated through a combination of Hadamard expansion techeomposition of the extended bodies such that the limit of
niques for small distances and multipole techniques fofg €] for small e is independent of their internal details. We
larger distancef12]. _ . would like our expression fofg to correctly the describe the

It is clearly important to test these ideas. In partlcular, Wesrderq andg? contributions tofy €] which are independent
must know whether these schemes are equivalent 10 the o internal structure of the body under these conditions.
equations of motion discussed above. Because of its mathigiher corrections which arise from the internal structure,
ematical simplicity, one natural system in which to exploreg, ., a5 multipole effects and spin effects, have been derived

all of these questions is that of a point particle coupled t0 ggeyhere and should simply contribute additively at this or-
scalar field. Motivated by this, several researchers have b

gun to apply the ideas discussed above to the scalar system. ¢qrnately, the limit described above is quite delicate,

In parti(_:ular, Barack anql Ori’_s methqd has been a_pplied nd the task of specifying conditions to ensure its conver-
t_he motion of scalar part_lcles in spherically symmetric spacegence appears to be formidabl@he analysis of Dixori19)]
}lmes[1f1,13.—#5, &:jnd \_1\|/|.semgrﬁ16] hals aldaptehd tPe calcu- gemonstrates the degree of complexity which arises even
ation o Sr_mt and Will in order to calculate the force on a iyt considering self-field effecjsNevertheless, certain
scalar particle held static in the' Schwarzs.,chlld.spaceUme. I operties of this limit are strongly suggested by the nature
the present paper, we generalize the axiomatic approach {the divergences in the scalar field. Following Quinn and

Quinn and Wald 7] in order to produce the general equation 4 (7] we will introduce these properties as axioms, and
of motion for a point particle coupled to a scalar field on ana{L

arbitrary background spacetime. It is hoped that this genert en give the unique prescription f6¢ which satisfies these
: . - : g ioms.
expression will be useful in evaluating the validity of the

calculational schemes described above for the scalar cas In the next subsection, we will motivate our crucial Com-
. ; . . . rison Axiom nsidering th in rticle limi -
and that this comparison will ultimately help to clarify the Sa =0 om by considering the point particle t de

relationship between the various methods which have be scribed above and develop the expansions required to state

. o Clhe axiom. Then, in the following subsection, we state both
proposed for the electromagnetic and gravitational cases. axioms and give the unique prescription fd that satisfies
In Sec. Il, we derive an expression for the force on ath hi hg th niq Fl)t fth'p
particle following an arbitrary trajectory in curved space- em, which 1S the main result ot this paper.
time. Then, in Sec. Ill, we explore the equations of motion
which follow from this expression in the absence of non- A. Motivation for the comparison axiom

scalar forces. Consider a spacetimeM,g,,) containing a spatially

compact body characterized by stress—en@r@gy and scalar
Il. THE SCALAR FORCE charge density, a smooth Klein-Gordon fielé, and pos-
sibly some other set of fields which are coupled to the body,

Given a spacetime containing a particle world line and acharacterized bir2l. The Klein-Gordon fields satisfies the
Klein-Gordon field sourced by the particle, we wish to def'neequation

the total scalar forcdg on the particle at each point of the

world line, including so-called self-force or radiation reac- V&V, p=—4mp (@]
tion effects. For an electromagnetic point particle in flat

spacetime, an expression of this sort was first given by Abragith stress-energy

ham[3] in 1905, was later rederived in a relativistic context

by Dirac[2], and is often found in textbook®.g., Jackson 1 1

[17]). However, since there are no classical point particles in Ta—_—_ | VagVPp— Zgaby VEhVie|. )
nature, and the theoretical status of such objects is problem- S 4w 2 ¢

atic at best, it is important to ask how any such prescription

is constrained by physics.

Our view is that the force law should reflect the force on 1gecayse the scalar charge density is a scalar quantity, the total
an extended body coupled to a scalar field in the limit ofcharge that one calculates for an extended body depends upon the
small spatial extent. In particular, fix the background spacespacelike surface used to slice the body. This is in contrast to elec-
time and consider a family of extended bodies and corretromagnetism, where the charge density is the time component of a
sponding scalar fields parametrized gythe spatial size of conserved vector field and the total charge is independent of slice.
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Assuming that the total stress-energy is conserved, so thatprimarily interested in the divergent contributions#ochar-
ab ab . —ab acterized by the negative powersrah the expansion, since
Vi(Thoayt Ts + Tex) =0, (3 these divergent contributions will determine the conditions
. . required for convergence of the limit in E(). It follows
Fher? the force density exerted on the body by the scalar flelﬂoqm the general thgory of propagation of(g?ngularit(eee
is given by theorem 26.1.1 of Hormandg2Q]) that every solution of Eq.
ab ab_ _ ab_ ypa (1) which is smooth away from the world line will have the
VoToodyt VoTex=~VoTs=pV"¢- @ same singularity structure near the world line, so we are free
Therefore, naively taking the point particle limit, we O choose any convenient solution for our expansion. Later,
would expect the force on a scalar particle of chayge be ~ when we wish to produce an explicit expression fgr we
given by will want to write ¢ in terms of the advanced and retarded
solutions. Therefore, these are the solutions which we will
fi=qVae. (5  analyze in the following expansion.
Given any pointx in a spacetime,g,;,), there exists a
U.nfortunatelly, this expression is meaningless as it standgonvex normal neighborhod@(x) containingx [i.e. a neigh-
sinceV,¢ diverges on the world line of the particléThe  porhoodC(x) such that there exists a unique geodesic con-
situation is exactly the same with the Lorentz force |aWnecting any two points withirC(x)]. For x’ e C(x), the
f2,,=qF"u,.) However, if we consider two poin® andP Hadamard elementary solution of Ed) can be written in
along the world lines of two different particles in two differ- the form[4]
ent spacetimegeach with chargey), and we identify the

neighborhoods oP and P, then we might hope that, under 1 1
G( )(ny’): —

some conditions, the differenceé®¢— V¢ will be finite ™
even as the two individual fields diverge. Under such condi-

tions, it seems reasonable to expect that the difference be-

tween the forces on the particles will be given by tfieite) +W(x,x")
difference between the field gradients. That is,

—— +V(x,x)In|o(x,x")|
o(x,x")

{U(x,x’)

: ®

©6) with corresponding advanced-() and retarded{) Green’s

a_TFa_ | ay _ va’y
fs=fs=lim q(Vi¢=V"4): functions

r—0

(Here, the average over a sphere of radiugenoted by(), , G (X, X")=0-(X,x")[U(X,x") 8(a(x,x"))
is introduced to allow for the possibility that tlie-0 limit _ ool )
of the difference is finite, but direction-dependgnt. VX)) 6(= o (x.x))]. ©)

Quinn and Wald[7] give plausibility arguments which Here, o(x,x') is the biscalar of squared geodesic dist&nce

suggest that the counterpart of E6) is indeed a property of andU, V, andW are all smooth biscalar fieldéEor an ex-

the point particle limit in the electromagnetic and gravita- lanation of the bitensor formalism, see Dewitt and Brehme
tional cases. These arguments generalize straightforwardl . S -
9 9 9 Y 4].) The scalar functiorf..(x,x") is unity whenx’ is in the

the scalar case, so we will not give the details here. Instea L Usal future/past of and vanishes otherwise
we will simply impose Eq(6) as an axiom and investigate For x near {Dhe world linez(7), let s be the. roper time
the consequences fd&. This idea will be the basis of our 7/ ST prop

crucial Comparison Axiom in the next subsection Howeveralong the world line which is simultaneous within the
first we must find out what conditions to impose on the>SNs€ that the spatial surfakegenerated by geodesics per-

pendicular tau® atz(7s) intersect. In particular, leix lie a

spacetimes, the world lines nerand P, and the identifica-  ,roper distance along the geodesic generated by unit spatial
tion of their neighborhoods in order to ensure that the d'ﬁer'vectorfa atz(ry), and letz(,) andz(7_) be the intersec-
ence in the field gradients be finite as-0. In order to 7)) T T

: . . g : . tion of the world line with the future and past light cones of
answer this question, we will now examine in detail the sin-

. o . X, respectively. We require that¢ be close enough to the
tghuelavr\;g/rlgtm]c;ure of the scalar field in the neighborhood ofWorld line thatz(rs), z(.), andz(r_) all lie within the

) i L . . neighborhoodZ(x), and we denote the future and past inter-
(MConilsﬁtrhaasc;Irir f::rlt? Céanggrlgg Ed) in a spacetime sections of the world line with the boundary Gf(x) by
'Gab P P z(T,) andz(T_), respectively. This is illustrated in Fig. 1.
For the retarded fieldp_ , we then have

p(X)=J qs*(x,z(7))dr. 7

In contrast to the electromagnetic case, the Klein-Gordon 21he piscalar of squared geodesic distande,x’) is equal to
equation does not require conservation of charge. For simmalf of the squared length of the geodesic connectinand x’:
plicity, we shall assume throughout our analysis that thehegative for timelike separated events, positive for spacelike sepa-
chargeq is constant along the world line. We wish to expandrated events, and zero for null separated events. It is defined only
¢ inr, the spatial distance from the world lizér). We are  when there is a unique geodesic connectirandx’.
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b (x)= f G_(x,x")p(x')J—g d*x’

sz_(x,x’) fq&"’(x’,z(r))dr)\/—_gd“x’
=qJ G_ (x,z(7)dr
T, T
ZQL 9—[X,Z(T)][U(X,Z(T))5[U(X,Z(T))]—V(X,Z(T))ﬂ[—U(X,Z(T))]]d7+QJ_WG—(X,Z(T))dT

=qu2[U5(0’)—V0(—0')]d7+qu_G_dT. (10
T —e

In the last line and hereafter, we suppress the spacetime de-
pendence for all biscalars, since each depends wporits ~ Va¢-=0V,
first argument and(7) in its second argument. For a biten-
sor A, we introduce the notation

T_
+qJ7 V.G _dr

{&*1U}T=L—JLV dr
T_

=q|{—0 V,oU+0 WV, U},
.od ,
A= E_A(x,z( 7))=u? V A(X,2(7)). (11 =0 26U +o ), Var.
T_ T_
We have —J; VVdr—{V},_, Var_ —qf V.G_dr.
dr (da’ -1 — (14
dr=g,do=\ g, do=o “do, (12 Sinceo(x,z(7_))=0, we have

WhICh giveS us Va{0}7=77:{va0—}r=77+{0}r=77Van:Ov (15)

so that

d)_:q +qu—;G_ dT' (13) VaT—:{_(}_lVaU}T:T,' (16)

{iflu}T:L—ftv dr
T_

Therefore, we have

We now wish to produce the corresponding expression for
V.o . Note that the right side of E¢13) depends uporin Vaib_=q
two ways: explicitly through the first argument of each bis-
calar and implicitly throughr_ . We have

{—072V,0U+0 V,U+0o 30UV, 0

—0 2UV,o+to WV, 0),-, — J V.vdr
T_

z(Ty4) T
+qf V.G_dr. a7
In Egs.(13) and(17), we would like to combine the inte-
grals which appear on the right side. Fbr<7<7_, we
have G(x,z(7))=—V(x,z(7)). Furthermore, since/ is a
smooth biscalar,
f Vdr=lim | Vdr (18)
T_ e—0J T
and
Z(T-)
J V,Vdr= IimJ’ ~ Vvdr (19)
FIG. 1. The neighborhood containingandx’. T e—0J T
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Therefore, combining the integrals, we have pressions in brackets on the right sides of E&6) and(21)
which are valid toO[r°]. (The integrals in these equations
-1 ; - make smooth contributions to the field$he required small
¢-=alo U}—, +limg —o G-dr 20 distance expansions ftr, V, o, and their derivatives can all
be found in DeWitt and Brehmpd] or derived straightfor-
and wardly from expressions given therein. Switching the roles
] ] ] o of the primed and unprimed indices for notational simplicity
Vaqb,:q{—a‘zVaaU+a‘1VaU+cr‘3crUVacr and including the corresponding results for the advanced
field, ¢, , we have

e—0

- &720Va0+ &7lvva0}r: T
+limgq| G.(X,z(7)dr

e—0 TteE

+O[r] (22

+limgq| V.G dr 21)

—o0

1 .
r‘l—iaﬁ‘ra

b+ (X')=q

In order to investigate the singularity structuredf and
V.¢_ near the world line, we need expansions for the ex-and

— ~. 1 1 ~ A~ 3 . .3 . 1 ~na 1L
Va,¢i(x’)=qgara<—r‘zra——r‘la""+Er‘l(abrb)ra—g(abrb)zra+z(abrb)aa——Rbdcybucrdrera—gazra

2 6
—iR FbFCFaJrE(ébF )ua+iR ubu°Fa+£R ubf‘:ualeRa ubucAd+1azua1£éailR uPucu?
12 bc! 2 b 12 bc! 6 bc! 3 chd —3 3 6 bc!
+}RabF —iR?aleabu iRua cimg | V.G (x',z(7)) d7+O[r] (23)
61 b 12 T UeT R )EImA ) Ve X !

whereg, , is the bivector of geodetic parallel displacement, Velocities, four-accelerations, and geodesic distances will co-
defined by DeWitt and Brehmet]. incide exactly, so we need only check that parallel transport
We began this calculation in order to investigate whatWill also agree up to the appropriate order.

conditions we need to impose on the spacetime neighbor- One way to see this is to write out E€3) explicitly in
hoods and trajectories of scalar particles in different spacecoordinates adapted to our identification map, so that each
times and on our identification of these neighborhoods irPOint in the neighborhood dP is mapped to the point with
order to ensure that the subtraction of field gradients in Eqthe same coordinates in the neighborhoodPofUsing such

(6) is finite, and Eq.(23) provides the answer to this ques- coordinates, our map identifies a vector field in the neighbor-
tion. Since the divergent terms in E@3) depend only upon  hood of P with the vector field in the neighborhood &

the fOUr-VelOCity and four-acceleration of the partl@m’]d having the same coordinate Componerme such coordi-
not, for example, on hlgher derivatives of the motion or thenate System is Riemann normal Coordinétm_these coor-

local CUrvatUré, the subtraction in Eq(ﬁ) will be finite as dinates, the coordinate Component%gfa are given by
long as the magnitudes of the four-accelerations of the two

particles are equal and we identify the local spacetime neigh- o 1 o

borhoods in such a way that the four-velocities and four- 9ap=Gapt grszBSr o+ 0[r3]. (24
accelerations, the geodesic distances from the world lines,

and the parallel transport defined by,  all coincide up to

O[r°]. Given pointsP and P on two world lines such that
a%a,=a%,, we can achieve this by identifying the space-
time neighborhoods d? andP with their respective tangent
spacesT and T via the exponential mapand then identi-
fying Tp and T via any linear map which takes to u? and

a? to a® Under this identification, it is clear that four-

(We have dropped the primed indices completely since ex-
pression relates components rather than tensGm@nparing
this to Eq.(23), we see thaEaB simply acts as the identity at
this order inr. [The term— (1/6)qR,, g7 *1 °r , which arises
from the multiplication of the ~2 term in Eq.(23) and ther?

“In order to construct Riemann normal coordinates for a neighbor-
hood of pointP, identify points in the neighborhood with points in
3The exponential map identifies’e Tp with the spacetime point T, via the exponential map, and then pick any orthonormal basis
which lies unit affine parameter along the geodesic generated.by for Tp.
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term in Eq.(24), vanishes by the symmetries of the Riemann

fa_ a_ fa_’fa _(na__~a
tensor] Therefore, the divergent terms will indeed cancel s79s=(fs~19~(9s7 09

under the identification we have described. This provides the =lim q(V3¢—V2), — lim q(V3p— V), =0.
basis of our crucial Comparison Axiom in the next subsec- r—0 r—0
tion. 26)
B. The axiomatic approach This argument establishes uniqueness, but it also demon-

We are now prepared to give our prescription far the strates existence by providing a prescription which is guar-

total scalar force acting on the particle. We have seen that th nteed to §at|sfy the axioms. Nam_ely, given a péirtiong
subtraction of field gradients in E¢6) will be finite as long the world line of a scalar particle with chargan any space-
as the two particles’ four-accelerations have the same maé'—me’ we simply construct the half-advanced, half-retarded
nitude and we identify the spacetime neighborhoods via théolution¢ for a uniformly accelerating particle in flat space-
exponential map as described above. We now elevate thigme with the same charge and acceleration. The scalar force
property to the status of an axiom that any prescriptiorf for f§ is then given by
must satisfy. o

Axiom 1 (Comparison AxiomEonsider two points? and fi=1lim q(V3p—V3s), . (27
P, each lying on timelike world lines in possibly different 0

spacetimes which contain Klein-Gordon fields and ¢ g js the prescription for the total scalar force which we set
sourced by particles of charggon the world lines. If the 4 it to find at the beginning of this section.

four-accelerations of the world lines & and P have the Writing ¢ as ¢= ¢, +¢_, we can use Eq(23) to turn

same magnitude, and if we identify the neighborhood® of this prescription into an explicit formula fdf. The result is
and P via the exponential map such that the four-velocities

and four-accelerations are identified, then the difference be- A oa )
tween the scalar forcei andf2 is given by the limit ag fs=aViénta

—0 of the field gradients, averaged over a sphere at geodesic

distancer from the world line atP _ _Rua) +lim g2 TﬁEVaG_(Z( 2.2(7)) dr.

1. 1
g(a""— a’u?)+ E(RabubJr RpcuPutu?)

fa_F2=limq(Vap— V%), . 25 )
s Is rm(ﬂ ¢ b) (25 28)

Since the Comparison Axiom requires only that the four-This expressioné which is thg main resu!t of the paper, allows
accelerations of the particles agree, we now need only fix theS t0 calculatefs for any trajectoryz(7) in any spacetime.
dependence df on acceleration in some arbitrary spacetime”S stated at the beginning of the section, the physical sig-
in order to uniquely determinég. Motivated by the time- nificance of this expreszsmn is that it should correctly de-
reflection symmetry of the half-advanced, half-retarded solu—SCrIbe the o_rdelq and g contr|b_ut|ons to the fqrce on a
tion for a uniformly accelerating trajectory in flat spacetime,nearly spherical extended body in the point particle limit.
we impose the following axiom, which should be familiar
from electromagnetism. Ill. THE EQUATIONS OF MOTION

Axiom 2 (Flat spacetime axiom)If (M,g,p) is
Minkowski spacetime, the world line is uniformly accelerat-
ing, and ¢ is the half-advanced, half-retarded solutiah,
=3(¢.+¢_), thenfi=0 at every point on the world line.

We will now show that, if there exists a prescription for

2 satisfying these two axioms, it must be unique. Consider
point P on the world line of a scalar particle of chargen
some spacetime, and let the particle have acceleraftoamt
point P. Let f§ and g2 be two prescriptions for the scalar
force, both satisfying the axioms given above. Now consider

We now wish to consider the special case in which no
non-scalar forces are present, so that the evolution of the
world line z(7) is determined by the scalar field. In the next
subsection, we derive equations of motion &fr) in this
case. Then, in the following subsection, we explore one of
the consequences of these equations of motion: that the mass
of particle varies with time.

A. Derivation of the equations of motion

a uniformly accelerating particle with the same chaggend Consider once again the extended body described in Sec.
the same acceleratica in a flat spacetimeR?, 7,,), and Il. In the absence of non-scalar fields, conservation of stress-
construct the half-advanced, half-retarded solutigh ~€nergy dictates that

— 107 ~ i i ;

=5(¢,+¢_) for this particle. By our second axiom, we Vbe;f,’dy:—Vngb. (29)

know thatf3=g2=0 at every poinP along the world line of

this uniformly accelerating particle. Therefore, identifying according to the arguments of Quinn and W4R, in the
the neighborhoods d® andP as in the Comparison Axiom point particle limit, the center of mass world lirzér) will
above, we have therefore satisfy
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T

bu=limq| G_dr. (35)

b dm a a
u Vb(mua)=au +mal=1g, (30

wheref is the limiting force we derived in Sec. II. Inserting The implications of Eq(34) for global energy conservation
our expression fof from Eq. (28) and separating the com- zre explored by Quinn and Wald].

ponents parallel tu® and perpendicular ta®, we have Finally, owing to the presence of the Abraham-Loreaitz
term, these equations share the unphysical “runaway” solu-
tions which have been discussed thoroughly in the electro-
magnetic cas€See Jacksofi7] for one such discussionn
order to interpret these solutions, it is important to remember
that we view the force law given by E(R8) as an approxi-
mate expression for the force on an extended body, valid to
O[g?], rather than a fundamental description of a point par-
ticle. Therefore, we can eliminate these unphysical solutions
through the reduction of order technique. This technique is
discussed in detail by Flanagan and WEd], but the basic
and idea is simple. Recall that we wish E1) to describe the
limiting motion of a one-parameter family of extended bod-
dm ies in which both the charge and the mass of the bodies
—=—fdu, vanish as the parameter goes to zero. For concreteness, let us
dr assume that the charge and mass are givelg®bwe and
m=be. In order to apply the reduction of order technique to
Eq. (31), we simply insert the entire right side of the equa-

tion in place ofa? in thea? anda?u? terms and discard any

1 q
A= (f3+UPgpU’f = — (Vi + UV )

q?(1 . 1
+ 3@ a?u?)+ E(RabubJr Rpcuutu?)

2 T— €
+|im% (VAG_+u?g,uPVeG_)d7 (31

e—0

=—quV,¢, —iqu
ay’in 12

—limg? 7€uaVaG_ dr (32) resulting terms which ar®[ €2] or higher. The result is
e—0 -
q 19°(q
a_ ' a g a, by L LN | a g
We now note three important features of these equations. a _m(V i UURV " bin) + 3 m(m(u VoViéin

First, for each point along the world line, the integrals in
these expressions represent that portionVéfs_ which q°

arises from source contributions interior to the past light +URPUY Ve bin) = — [V Bin Vo bin
cone of the point. This contribution to the force, often called m

the “tail term,” is a direct consequence of the failure of 2

Huygen'’s principle in curved spacetime, and can be under-
stood as the result of scalar radiation backscattering from the
background curvature and re-intersecting the particle world

+(UPVpin) 2Ju?

1
+5 qE(R""bubJr RpcuPuu?)

2

T—

line. The presence of this tail term is the primary obstacle to + lim @ E(VaG,+uagchbG,u°) dr’, (36)
applying these equations in physically realistic situations, ewo MJ—x

since most methods for calculating the retarded field of an

arbitrary world line irretrievably mix the tail and non-tail \which is free of the unphysical runaway solutions.
portions of the field.

Secondly, we can provide further insight into the nature of
Eq. (32 by tracing the origin of the Ricci scalar term in the
Hadamard expansion of the field given in Sec. II. This term  In stark contrast to the electromagnetic cageincludes
arises directly from thgV},_. V.7 term in Eq.(14). I contributions which point along the four-velocity of the par-
particular, we have ticle, resulting in a time-varying mass. This is not a special

feature of the self force, nor of curved spacetime. Rather, it
1 reflects a fundamental difference between the two continuum
lim Gf(Z(T),Z(T'))Zl—ZR, (33)  theories. Consider a small body in Minkowski spacetime
o with a center of mass world ling 7). The rest mass of such
a body is given by

B. Time variation of the mass

so that we can rewrite E432) as
dm m=-— fzuangdyEbcdel 37
E =—q uava( dint Pail), (34

whereu? is the four-velocity ofz(7) (defined away from the

where ¢,y is defined by world line by global parallelisiy % is the surface perpen-
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dicular tou?, and e4.q is the volume element compatible smooth scalar field and(7) be a smooth world line in the
with the (flat) metric. Therefore, we have regionV betweenC, andC,. We fix the value of¢ and the
position ofz(7) on C; andC, and define the actior§, as

-,

+J qopd*(x—z(7))dr

dm d ab
ar d_TLUaTbodyfbcde

1 1
g(gabva‘ﬁvb‘ﬁ)"' Ef mgabuaub54(x_z( T)) dr

=— f Eﬁw[uaTzsdfbcdg
€abcd- (41)

== f uaVnggd))chcdefa (38
* Formally minimizing this action with respect to variations

wherew? is the vector field which connects successive time?f ¢, We arrive at

slices3 (7). For a body coupled to a scalar field, we have

b _ b_
Vo Thoay= — VoTs =pV2, so that V""Vaq’>=—47'rf qs*(x—z(7))dr, (42)
dm B Ao
dr Lpuav PW€cder, (39 \while minimization with respect to variations af7) yields
which is clearly, in general, nonvanishing. By contrast, in the m . a a
electromagnetic case, we haVg oy~ — VyTany=F"y, g Tma=aqvis. (43
so that

dm These are the same equations we arrived at by considering
— = _f UaF2%) L pWCe gor- (40)  the point particle limit of the continuum theory. Of course,
dr = here we have assumeflandz(7) to be smooth in order to
define the action, while the solutions of Eg42) are clearly

li ke th ) il limit. addvdt will distributional. Therefore, no solutions of these equations ex-
co |.n(re]ar as we take the point particle imit, a twi ist. However, we may view this as a formal derivation of our
vanisn. equations from an action principle.

Perhaps because it is tempting to generalize from the “\ie that, if we had assumed from the outset thaas
more famlllar electromagnetic case, this tl_me varlgtlon Of,theconstant, the only change to the equations would have been
mass in the scalar case has largely been ignored in the liter

# setdmvd7=0 in Eq. (43). Clearly, the resulting equation
. . _ a " . 1
ture. SSohme_authodrsTusi tre egua'Ell_(?]r_l of mot_rwi"_— qY ¢I is inconsistent, sinc¥?¢ does not, in general, point along
(e.g., Shapiro and TeukolsK2]). This equation is clearly o for.velocity. Still, one might wonder, despite the stress-
inconsistent, and therefore in general has no solutions, S'”Ctﬁqergy conservation arguments given above, whether the
a” is perpendicular to the four-velocity whife®¢, in gen-  gpque action can be modified to produce the equation of
eral, is not. Others explicitly proje¥®¢ perpendicular to

. . : ; motion
the four-velocity as in Eq(31) above in order to obtain the
acceleration of the particle, but then simply ignore the com-

For typical models of charged matt¢f, andu? will become

ponent of V3¢ which points alongu® and assume that the d_mua+ ma?=q(V3¢+ udg, uPVEee), (44)
mass is constar(e.g., Ori[23]). While such an equation of dr

motion is mathematically consistent, it violates global con-

servation of stress-energ¢See Quinn and Walfil].) since this equation would have the immediate consequence

In the discussion above, we have motivated our point parthat dm/d7=0, as in the electromagnetic case. Wiseman
ticle equations of motion by imposing local stress-energy24] has considered a large class of possible coupling terms
conservation on continuum matter and taking the point parand has found that, within this class, one cannot produce Eqg.
ticle limit, using our axioms to extract the appropriate finite (44) without introducing a nonlinear coupling on the right
part of the divergent fields. The time variation of the massside of Eq.(42). Based on this work and the stress-energy
arises as a direct consequence of this local stress-energy carpnsiderations discussed above, we conjecture that there ex-
servation. In the literature on point particles, one sometimessts no action which produces E@4) while preserving Eq.
sees an alternative derivation which makes no reference t@2).
the continuum theory. Instead, the author defines an action
for the point particle system and then formally minimizes
this action with respect to variations of the fields and the
world line in order to produce equations of motion. For com- | would like to thank Robert Wald for his expert guidance
pleteness, we give such a derivation here, paying particulawsver the course of the last several years. | would also like to
attention to the time dependence of the particle’s mass. thank Alan Wiseman for many useful discussions. This re-

Fix a globally hyperbolic spacetimeM,g,,) and two  search was supported in part by NSF grant PHY95-14726 to
Cauchy surfaces for the spacetin@®, andC,. Let ¢ be a  the University of Chicago.
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