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We study the circumstances under which a Kaluza-Klein reduction onsghere, with a massless trunca-
tion that includes all the Yang-Mills fields &O(n+ 1), can be consistent at the full non-linear level. We take
as the starting point a theory comprising-éorm field strength andpossibly a dilaton, coupled to gravity in
the higher dimensio®. We show that aside from the previously studied cases vilitip)=(11,4) and(10,5
(associated with th&* and S’ reductions ofD =11 supergravity, and th&® reduction of type 1IB supergrav-
ity), the only other possibilities that allow consistent reductions are@fe®, reduced or8?, and forp=3,
reduced ors® or SP 3. We construct the fully non-linear Kaluza-KleAnsazein all these cases. In particular,
we obtainD=3, N=8, SQ(8) andD=7, N=2, SO(4) gauged supergravities fro8{ andS? reductions of
N=1 supergravity inD=10.

PACS numbd(s): 04.65+e€, 11.10.Kk

[. INTRODUCTION exists for the complete massless reductionSon
It is sometimes helpful to study sphere reductions in

Much progress has been achieved recently in understaneivhich only a subset of the complete set of massless fields is
ing the full non-linear structure of certain Kaluza-Klein retained, in such a way that one still has the non-triviality of
sphere reductions. To be specific, we have in mind the rethe inhomogeneous sphere deformations, while at the same
markable cases where it is consistent to include lowertime making the problem of obtaining an explicit reduction
dimensional fields in the reductiofnsatzthat parametrize Ansatzmore tractable and manageable. This can be espe-
inhomogeneous deformations of the internal sphere metricially useful if one actually wants to use tWesatzfor the
Generically, one would expect that performing a truncationpurpose of lifting solutions of the lower-dimensional theory
of the complete Kaluza-Klein towers of massless and masback to the higher dimension, in which case full explicit
sive modes to the purely massless sector would give rise tteduction formulas are highly advantageous. In this spirit,
inconsistencies beyond the linearized level, since currentsonsistent reductions in the three cases mentioned above
built from the massless fields would act as sources for thavere constructed for truncations in which only the maximal
massive fields that have been set to zero. Indeed this is edbelian subgroupdJ(1)?, U(1)® and U(1)? of the full
actly what usually happens; one cannot make a consiste®@O(8), SO(6) andSO(5) gauge groups were retained, to-
Kaluza-Kleinn-sphere reduction of a generic theory in which gether with associated scalar fiel[#d. The U(1)% example
all the massless fields, including, in particular, the full set ofprovided the first concrete evidence for the consistency of
SO(n+1) gauge fields are retained. However, in certainthe S° reduction of type 1B supergravity. The reductiém-
very special cases a consistent reduction of this kind is possazewere sufficiently explicit that they could be used for the
sible. purpose of lifting certain AdS black-hole solutions back to

An important early example of this type was much stud-the higher dimensiofi7], where they become rotating D3-
ied in the 1980s: namely, the seven-sphere compactificatiobrane§8-10,7 and M-brane$11,7].
of eleven-dimensional supergravity. It was first shown at the Other consistent reductions involving subsets of the com-
level of linearized fluctuationg1] around the Adgx S’ plete massless sector have subsequently been constructed,
Freund-Rubin 2] vacuum solution that the massless modesincluding anS* reduction to giveN=2 gaugedSU(2) su-
described four-dimension&=8 gaugedSO(8) supergrav- pergravity inD=7 [12]; an S° reduction toN=4 gauged
ity [3]. Subsequently, it was shown that, despite all the apSU(2)x U(1) supergravity inD=5 [13]; and anS’ reduc-
parent obstacles, the reduction to the masdies8 multip-  tion to N=4 gaugedSO(4) supergravity inD=4 [14]. In
let can be carried through as an exact embedding at the fu#lddition, theN=2 gaugedSU(2) supergravity irD =6 was
non-linear level[4], although the construction is an ex- obtainedvia a consistent reduction from massive type IIA
tremely complex one. It has long been believed that consissupergravity on a locall* internal spacé15]. This is ac-
tent reductions should also be possible in the case oSthe tually the largest possible supersymmetry for a gauged
compactification of type 1IB supergravity, and t88 com-  theory inD=6, even though the maximum supersymmetry
pactification of eleven-dimensional supergravity, to yield thefor ungauged supergravity I$=4.
maximal gauge® O(6) supergravity irD =5, and the maxi- Somtimes, it can also be useful to construct a Kaluza-
mal gaugedSQ(5) supergravity inD=7, respectively. In- Klein sphere reduction in which a non-supersymmetric trun-
deed, the consister8* reduction Ansatzfrom D=11 has cation of the massless supermultiplet is made. One example
recently been constructd®,6]. No analogous construction of this type involved truncating the maximal supergravities
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in D=4, 5 and 7 to a subsector comprising just gravity andar, if we consider aD-dimensional theory consisting of
a set of 7, 5 or 4 scalars respectively. These scalars corrgravity and a singl@-form field strength, an enhancement of
spond to the diagonal subset of fields in the unimodular symthe global symmetry can occunly if (D,p) is equal to
metric tensors T;; describing the scalars in the (11,4), (11,7) or (10,5). Since a 7-form =11 is dual to
SL(8,R)/SO(8), SL(6,R)/SO(6) andSL(5,R)/SO(5) sca- a 4-form this means that the only cases with symmetry en-
lar submanifolds of the full supergravities. [46,17], the = hancements are associated witk- 11 supergravity and type
full non-linear reductionAnsaze for these embedding were 1IB supergravity. The corresponding enhanced symmetries in
constructed, and proved to be consistent. each case are t8L(8,R)/SO(8) in D=4, SL(5R)/SO(5)
Another example of a non-supersymmetric truncation wasn D=7, and SL(6,R)/SO(6) in D=5.2 These enhance-
constructed ifi18], where the full set of twenty scalafg of ~ ments then allow th&Q(8), SO(6) andS(5) gaugings,
the cosetSL(6,R)/SO(6) were retained in a®® reduction respectively’ _ _ _
from D = 10. Consistency now requires that one include also Note that whereas there is a consist&ftreduction of
the full set ofSO(6) Yang-Mills gauge fields. In fact only 9ravity with a self-dual 5-form in whiclenly the metric, the
the metric and self-dual 5-form of the type I1B supergravity SX(6) Yang-Mills fieldsA;, and the 20 scalars;; are re-
are involved in this reduction, and it can equivalently betained, the situation is a little different in thg* and S
viewed as a Kaluza-Klein reduction of a theory of pure grav-réductions fromD=11. In ?ddmon to keeping the corre-
ity plus self-dual 5-form inD =10, with all massless fields SPonding Yang-Mills f'E?Idgs‘(ll) and scalardj; , the consis-
retained inD =5. (The truncation of type 1B supergravity to €N¢y of itheS“ reduction requires also keeping the five
just gravity and the self-dual 5-form is itself a consistent one3-orms A, of the seven-dimensional theory, whilst (5
in D=10.) The self-duality of the 5-form is crucial for the "éduction instead requires also keeping the 35 pseudoscalars
consistency of the reduction. éijw), [self-dual in theSQ(8) indiced. These additional
One should not conclude from the listing of examplesfields are needed in the reductions because the Yang-Mills
above that consistent Kaluza-Klein sphere reductions are #elds act as sources for the8]. In fact we can summarize
commonplace. In fact, if we restrict attention to cases wher¢he situation in all three of these examples of 8te S” and
one starts in the higher dimension with just gravity and aS° reductions as follows. In all cases, the consistesphere
p-form field strength, then it turns out that the only cases thateduction that includes all the Yang-Mills fields &O(n
can give consistent reductions are related to the examples1) requires one to includall the massless fields in the
mentioned abové The reason for this can be understood aslower-dimensional theory. Thus in tt& case, if we reduce
follows. For reductions of the type we are considering, wherehe theory of gravity and the self-dual 5-form then the met-
the lower-dimensional theory obtained by t88 reduction  ric, the SOQ(6) Yang-Mills fields and the scala; indeed
has anSQ(n+ 1) local gauge symmetry, it is essential that constitute the complete set of massless fields in five dimen-
the ungaugedtheory that would result from performing a sions. In theS* reduction fromD =11 the five 3-formsA'(3)
reduction on thex-torus rather than the-sphere should have are massless too, and indeed they must be included also in
scalars described by a coset manif@dH such thatH at  the consistent reduction. Likewise, in t§é reduction from
least containsSO(n+1). The reason for this is that in the D=11 the 35 pseudoscalat;s[il—kl]+ are also massless, and
process of gauging the ungauged theory, a subg®0fn  jndeed they must be included in the consistent reduction.
+1) of the global symme‘FryG must become I'ocaL and t_hIS Further possibilities for consistentsphere reductions in
subgroup must be contained withid. Now if a generic  \yhich all theSO(n+1) Yang-Mills fields are retained can
theory of gravity and antisymmetric tensors is reduced Onyise if we consider a slightly enlarged higher-dimensional
T7, it will give rise to a lower-dimensional theory with & theory, now with a dilatonic scalar as well as gravity and the
GL(n,RR) global symmetry19—-21, for which the maximal form field strength. Again, the key point is that an en-
compact subgroup SQ(n). This is insufficient for allowing  hancement of th&L(n,R) global symmetry that would oc-
anSQ(n+1) gauging. Note that in particular this argument ¢y for the reduction of a generic theory @f is needed, in

shows that it is not possible to perform a consistesphere  orger that the scalar coset manifold in the lower dimension
reduction of a pure gravity theory, in which the Yang-Mills
fields of SO(n+ 1) are retained.

In certain very special theories, tiL(n,R) global sym-
metry arising from aT" reduction is enhanced to a larger
symmetry, as a result of “conspiracies” between scalars ™ 7 :
coming from the Kaluza-Klein reduction of the metric and of%]_ﬂ' onT?, the enhancemem. GL(7.K) to SL(S’R) requires tha.t

. . . . . the 4-form have arFA term in D=11 with precisely the coeffi-
the other higher-dimensional fields. However, as discussed in i db . this in f hat th
[21,22, such cases are very few and far between. In particu‘—:Ierlt ictated by supersymmetry, this In fact means that the en-

== ) hanced symmetry is even larger, namEly For theD =10 theory
reduced onT®, the enhancement frorGL(5,R) to SL(6,R) re-
quires that the 5-form be self-du@r anti-self-dugl.

7o be precise, we should emphasise that what we are discussing The importance of enhancements of the global symmetry in tor-
here is cases whemll of the SO(n+1) Yang-Mills gauge fields oidal reductions was also observed 28], although it was assumed
associated with the isometry group of thesphere are retained in there that the phenomenon was much more widespread than is ac-
the truncation, together with other associated massless scalars. tually the case.

2Actually further conditions must be fulfilled in order for the sym-
etry enhancements to take place. In the cade-efl1 reduced to
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should have a denominator group that is large enough t&QO(n+1) will be possible only if there is a suitable en-
contain the desire&QO(n+1) local symmetry group of the hancement of the generiGL(n,R) global symmetry that
theory reduced o®". It turns out that by including the dila- arises instead in &" reduction, so that the denominator
tonic scalar in the higher dimension, the necessary symmetiyroup of the generic scalar manifoldL(n,R)/O(n) be-
enhancements can be achieved when fhtorm field  comes large enough to conta®O(n+1). We also men-
strength is either a 2-form, or a 3-form. This opens up thjoned that there are only rather limited circumstances under
possibility of finding consistent Kaluza-Klein reductions on yhjch these symmetry enhancements can occur.

2 i D-3 el

gf'o:r?: éggez _‘;_?];r';ecizzé t%r;? v(\)/:fti '?hreogr eSvidﬂu’s flolr ;?]Ga The reason why the possibilities for symmetry enhance-
. ' ' ; . ents are so restrictive is discussed extensivelj2ih22].

D =10 examples, would then constitute the complete list o h | divide i i n 3 . fK/Zih ?}

possibilities for consistent Kaluza-Klemsphere reductions 1 ne scalars divide inta “dilatons,” ¢ coming from the

within the class of theories we are considering, in which alidiagonal metric components of the intermaforus, with the

the Yang-Mills fields ofSO(n+ 1) are retained. rest being “axions” y; coming from the off—_diagonal metric

In this paper, we construct the complete and explicit noncomponents and the reduction of the antisymmetric tensor.
linear Kaluza-KleinAnsazefor these three new possibilities. Each dilaton has a kinetic term of the formze® %(dyx;)?,
We begin in Sec. Il with a detailed discussion of the globalwherec; is the associated constant “dilaton vector” charac-
symmetry enhancements that can occur in the toroidal redugerising the coupling of the dilatons to that particular axion.
tions of theories with gravity, @-form field strength and @ In the n-torus reduction of a theory ob-dimensional
dilaton, in order to establish what are the possibilities forgravity plusp-form field strength with general values bBf
consistent sphere reduction. In Sec. Il we construct®he  and p, the global symmetry will beGL(n,R). In fact the
satzfor the consistent reduction of gravity plus a 3-form and ijaton vectorsh; associated with the axions coming from
a dilaton onS®, keeping all the gauge fields &0(4) and e metric form the complete set of positive roots of the

the ten scalars of the symmetric ten3gr, together with the . - .
ziomm potenialhy I Sec. V. we Sxamine wo tunca: 1) S0P, e chater vetors, sseries
tions of theS® reduction, in which only certain subsets of the : g P . 9

Lorm the weights of some representation un8é&(n,R). If

massless fields are retained, in order to make contact Witan enhancement of the alobal Symmetry is to oceur. it must
previous results in the literature. In Sec. V we consider the 9 y y '

“dual” of the S® reduction namely, the reduction instead on Pe that some or all of the dilaton vectaas “conspire” to
SP-3. Again, we find a consistent reductidmsatz in which become the additional positive roots of the gnhanced sym-
all the gauge fields 0B O(D — 2) are retained, together with metry algebra. However, tPIS cannot occur in general, be-
the 3(D—1)(D—2) scalars inT;; . A case of particular in- cause the lengths of vectaas coming from thep-form will
terest is theS’ reduction fromD = 10, since then the result- be incommensurate with the lengths of the vectprsoming
ing three-dimensional theory is the bosonic sector of &rom the metrict
gaugedS(Q(8) supergravity, of a type not previously con- A convenient way to characterize the lengths of the vari-
structed in the literature. In Sec. VI we construct the consiseus dilaton vectors was introduced[2¥]. Rather than using
tent Kaluza-KleinAnsatzfor the reduction of a theory of the quantity|c|? itself, it is convenient to introduce a con-
gravity, a dilaton and a 2-form field strength &A. In this
case theAnsatzincludes all three gauge fields &O(3),
together with. the six scalars if; . _ ) 2(m—1)(D—m—1)
Note that in two of the new cases that we consider here, c|?=6— :
namely theS? redDuce'fion of the theory with a 2-form field D-2
strength, and th&- "~ reduction of the theory with a 3-form . . . . '
field gtrength, the totality of massless fieldys in the Kaluza—WhereD is the spacetime dimension, anuis the degree of
Klein reduced lower-dimensional theories comprise the metthe field strength whose dilaton couplinge$ ¢. (Note that
ric, the Yang-Mills gauge ﬁe|d§\i(jl), and the scalarg;; . the gl_l the field strengths in thB=11 andD_= 10 super-
Thus these new examples of consistent sphere reductions JEavities haves=4 couplingg25].) The key point about this
akin to theS® reduction of gravity plus a self-dual 5-form, in Parametrization is thad is preserved under toroidal Kaluza-
that no additional massless fields are present that must alégein reduction. This makes it rather easy to see when the
be included in the reductioAnsatz By constrast, in the new POSSibility of an enhancement of the global symmetry can
S® reduction that we construct here, we must additionallyoccur. First, we not¢24] that the dilaton vectorb; associ-
include the 2-form potentiah,, in the Ansatz This is simi-  ated with the axions coming from the Kaluza-Klein reduc-
lar to the situation for th&* andS’ reductions, where, as we tion of the metricalwayshaves=4. It follows therefore that
discussed previously, additional massless fields are preseiftthe dilaton vectors; associated with axions coming from
and must be included, for consistency. the p-form field strength in the higher dimension are to have

stants, related to|c|? by

@

Il. POSSIBILITIES FOR SO(n+1) KALUZA-KLEIN

REDUCTIONS ON S" . . . o
“We first, of course, establish a canonical normalization for the

As we mentioned in the Introduction, a consistent Kaluza-dilaton kinetic terms, so that comparisons of the lengths are mean-
Klein reduction onS" that retains all the gauge fields of ingful.
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the same lengths as thg, then the coupling of the field =2 and p=3, so we need not consider them as distinct

strength must also havé=4.% If we are starting inD di-  cases. Fop=2 andp=3, the relation(4) gives

mensions with a theory with just gravity and thdorm field 2(D—1

strength, but no dilaton, this means thardimensions we p=2: a2=(—), (6)

havec=0, andm=p, and so to havéé=4 we must have D-2
2D—4=(p—1)(D—p-1). 2 b—3: az:%, @

It is easily verified that the only integer solutions are h hat if D di . ith th
(D,p)=(11,4), (11,7 and(10,5. Thus we see that if we start iD dimensions with the

The possibilities for achieving the necessary enhancemeljnagrangian(:g) with a 2-form or 3-form field strength, we

of the globalGL(n,R) symmetry can be broadened consid- cr?n achieve @=4 d“at"ff‘ (cjouplinghin any dimer;gidh, aw?d
erably if a dilatonic scalar is included in the original theory tNUS We can expect to find an enhancement ofGtign, i)

in D dimensions, since now there is the possibility of adjust-9'0P&l Symmetry after dimensional reduction f Indeed

ing its coupling to thep-form field strength so that the cor- this .is the case. , N

responding value ob is equal to 4. Thus we may consider st et us consider the cage-3, where we make @

the D-dimensional Lagrangian reduction of Eq.(3) with a given by Eq.(7). The global
symmetry is indeed enhanced, and the scalar manifold in

Lo=RA—13dBAdP— %e‘a‘%fr 'E(p)/\fi(p) , 3) (D—n) dimensions will bg27,28,22

th a ch h , O(n,n)
with a chosen so that D—n>3: }RXW, (8)
2(p—1)(D-p-1) _oD-
at=a- D2 : @ D-n=3 o> 20°2 ©)

O(D-2)x0O(D-2)

Note that we put hats on all the fields in HG), to indicate  Tpig p=3 case corresponds precisely to freuality sym-

that they are higher-dimensional quantities. metry of the toroidally-reduced bosonic string. Note that if
The first point to notice is that the requirement that thep _ n—=3 the usualT-duality groupO(D —3,D0—3) of the

constanta should be redlis a rather restrictive one, since it string theory reduced ofi" is further enhanced to the non-

implies perturbative U-duality group O(D—2,D—2). Using the
3-form field strength, we can then consider eitheGaor an
SP~3 Kaluza-Klein reduction.

) ) If we taken=3, we see that the the scalar coset manifold
Taken together with the fact that obviouglycannot exceed .51 4 T3 reduction will be

D, this implies that the only additional possibilities opened
up by the inclusion of the dilaton are fpr=2, 3, (D—2) or 0(3,3 SL(4,R)
(D—23). The last two here are just the Hodge dualspof RXO(S)XO(S) ~RX SOd) (10

p?—3Dp+3D—5=0. (5)

There will also be six gauge potentials coming from the

- - ; ; 3 e imnli
5Since all thea, themselves have equal length, and all the Kaluza-Klein reduction off®. This implies that thesO(4)
themselves have equal length, it follows that to geiraply-laced ~ Subgroup of theSL(4,R) global symmetry group can be
enhanced symmetry group we would need that the length aiithe ge_luge_d, with the six Ve‘?tor potentials becomlng the Yang-
= . Mills fields of SO(4). It is then natural to conjecture that
and the length of thé; should be equal. This turns out to be the hi d th be directly obtainabl Kal
only situation where relevant symmetry enhancements occur, withiﬁ IS gauge eory may be directly obtanable as a raluza-

. . 3 . .
the framework of the higher-dimensional Lagrangi&Bis Thus al- Klein reductlon ons”. It IS far frqm obwpus that su_ch a
though the cas®=6 with a 6=2 self-dual 3-form gives an en- reduction would be consistent, since unlike the toroidal re-

hancement tc(3,4) after aT® reduction toD=3 [22], andD  duction there is no obvious group-theoretic argument that
=5 with a 6= % 2-form gives an enhancement @, after aT2 ~ Would guarantee the consistency at the non-linear level.

reduction toD =3 [26,22, neither of these non-simply-laced cases
would seem to indicate the possibility of consist&htor S? reduc-

t'%ns- S _ . "If we were gauging only the left-actin§U(2) or only the right-

One might in principle consider also the possibility taatould  acting SU(2) of the SO(4)~SU(2), X SU(2)g isometry of the
be imaginary. This would be equivalent to having a ghost-like ki-3.sphergwhich is itself the group manifolU(2)], then the con-
netic term for the dilaton in th®-dimensional theory. This could  sjstency would be guaranteed, since the retained fields would then
not lead to any useful global symmetry enhancements from thell be singlets under thether SU2), butthis is no longer the case
point of view of sphere reductions that retain 8&(n+1) gauge when the gauge fields of the full isometry group are retained. In fact
fields. There might be possible implications for consistent reducwe shall discuss the truncation to a sin§@&(2) subgroup in sec-
tions on spaces with non-compact symmetry groups. tion 4.
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TABLE I. The possible cases for Kaluza-Kle@' reduction withSO(n+1) gauge fields. The last
column indicates what additional fields, beyond the metric, the gauge mﬂqg\nd the scalarg;;, are
massless, and must therefore be included, in a consistent trun¢sgi®mliscussion in Seq. |

p-form Dilaton Higher-dim. Lower-dim. Sphere Gauge group Extra fields
Fr2) Yes AnyD D-2 s? SO(3) None
Fs) Yes AnyD D-3 S8 SO(4) A
F3) Yes AnyD 3 sh-3 SO(D-2) None
Fa No 11 7 st SQ(5) Az
F(4) No 11 4 s’ S(XB) ¢[ijk|]+
F(S):* F(5) NO 10 5 SS Sq6) None

the next section, we shall explicitly show that the reductionWith a 2-form field strength we have in principle two possi-
on S, in which the full set ofSQ(4) gauge fields are re- bilities for sphere reductions, namely 84 or onSP~2. The
tained, is in fact consistent at the full non-linear level. latter would be somewhat degenerate, since the lower-
Now let us consider instead tA& ~ 2 reduction of Eq(3), dimensional theory would be iD=2, so we shall just con-
again withp=3. The reduced theory will now be in three sider theS? possibility here. If we tak@=2, the denomina-
dimensions, and the scalar coset manifold will be given bytor group in Eq.(12) is exactly what is needed to allow an
Eq. (9), provided that satisfies Eq(7). Note that the further SO(3) gauging. We may then conjecture that this gauged
symmetry enhancement of tHis— n=3 case occurs because theory should alternatively be directly obtainable as a con-
the complete field content of the resulting three-dimensionasistent Kaluza-Klein reduction o8, keeping all three of the
theory (except for the metriccan be described by scalars, SO(3) Yang-Mills gauge fields, together with six scalars
since in three dimensions one can dualize all the vector padescribed by the symmetric tensby . We shall in fact con-
tentials to scalars. The cog& can also be described ] struct this consistent reduction in Sec. VI.
We conclude this section with Table | that summarizes all
GL(D—2,R) the cases where consistent sphere reductions of a
WKV’ (1))  D-dimensional theory comprising gravity, pform field
strength andin some cas@sa dilatonic scalar, are possible.
In all cases, we are concerned with the situation where all the
Yang-Mills fields of theSO(n+ 1) isometry group of the
n-sphere can be included in the reductiinsatz

where V is an irreducible representation und&L(D
—2,R) of dimension3(D—2)(D—3); this is the same as
the dimension of the adjoint representationC(fD —2).

The scalars in the representatidhcan be dualized to
vector potential§,suggesting that th®(D — 2) denominator lll. CONSISTENT S® REDUCTION
group in Eq.(11) can be gauged. Then we may conjecture
that this gauged three-dimensional theory can alternatively We start from the bosonic string iD dimensions, with
be obtained as a reduction of the origifatdimensional the low-energy effective Lagrangian
theory on the sphers® 3. In Sec. V, we shall demonstrate
thqt there is indeed su_ch ai(_:onsistent reductiorS'?)ﬁi in Lo=Ril—15dpAdp— %efa;b; ,‘:(3)/““:(3), (13)
which all the gauge flelds!\(Jl) of O(D—2) are retained,
together with scalars described by the symmetric tefigar
wherei is a vector index oD(D —2).

Finally, let us consider the LagrangidB) with p=2,
where the dilaton coupling for the 2-form is given by K@).
The Lagrangian(3) is then in fact precisely th&' dimen-
sional reduction of pure gravity iB +1 dimensions. Conse-
guently, the scalar manifold ind(—n) dimensions after re-
ducing Eq.(3) on T" will be enhanced to

where the positive constaatis given by Eq.(7) so that the
global symmetry from &" reduction would beR <X O(n,n)
rather than merelsL(n,R), as discussed in Sec. Il. As we
argued there, we can now conjecture that it should be pos-
sible to perform a consistent Kaluza-Klein reduction ®h
keeping all theSQ(4) Yang-Mills fieldsAf},, together with

the scalar fields described by the symmetric tensgr,
wherei is a vector undeS0(4), andalso the 2-form poten-

tial Ay .
(2)
GL(n+1R) 12 We find that there is indeed afnsatzfor a consistent
SOn+1) ° Kaluza-Klein reduction or8®, given by

8The description(11) would arise naturally if one dualized the °Later, in Sec. 7, we shall include the cosmological type term
(D —3) vector potentials coming from the direct reduction of the _%mZ(D_ze)e(lIZ)acb that arises wheiD # 26, as a result of the

original potential/:\(z), but left all other vector potential&ncluding conformal anomaly. For now, we restrict attention to the purely
the Kaluza-Klein vectopsin their original undualized forms. classical Lagrangian for gravity coupled to a 3-form and a dilaton.
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dASZD: Yll(D_z)(AZ/(D_z)dSé_:g

. . 2 ., .
Run=3dmpInd+ 4| Fan— mF(ZS)gMN -
+g—2A—(D—4)/(D—2)T61DMiDMj),

In addition, we have the Bianchi identityf:(?,)zo. Taking
this first, we find upon substituting sy from Eq. (14) into

d|3(3)=0 that the lower-dimensional fieldl 3y must satisfy
the Bianchi identity
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All other terms arising frond* F(s) vanish identically(The

—3g AT IR R2ADLIT, ul), 14 rterms arising rhe

9 @ PrETi i) (4 calculation is quite involved, and the Schoutens identity
where E[i1i2i3i4Vi5]EO is useful)
o o o In order to substitute tha&nsatznto the field equation for
| I R — I — | A ~
pu'=1, A=Tyu'pl, U=2TyTjpu's = ATy, F(s), we must first calculate the Hodge dualfgk, given in
B Eq. (14). This is a straightforward, although somewhat in-
Y=det(T;), 15 volved calculation, and we find

and the indices,j, ... range of 4 values. Here, and in the
rest of the paper, a summation over repea&8€n+1) in-
dices is understood. The gauge-covariant exterior derivative
D is defined so that

/ Y2 1 - i j
e BIO=2)4% ':(3»):6_93 €Y ¥ F e/ \uw D ADu

/\D,U«l_gUGD_g'f‘g_lTiTl*DTjk
Du'=du'+gAl !, DT =dTy+gAl T+ 9AL Tk,
(16)

WhereA‘(jl) denotes th&O(4) gauge potentials coming from
the isometry group of the 3-sphere, and

T
N Du') - 2_92TilejI t Fi)

ADu*NA\DL'. (20)

17)  Substituting into Eq(18), with a given by Eq.(7), we (even-
tually) read off the lower-dimensional equations of motion

Thus the lower-dimensional fields appearing in the Kaluza-

Klein Ansatzcomprise the metrids3 s, the six gauge po- (= 1)PD(Ty ' T ** F ()= —2gT{* DTy,

tentialsAl}, of SO(4), the tenscalar fields described by the e y-lep  AEK

symmetric tensofl;; , and the 2-form potentiah,y, whose 25kl G @

(Chern-Simons modifiedield strength isF (3). The form of - ~

the Ansatzthat we have obtained here closely parallels the (—1)°D(T;™* DTyj) =202 2TiTjx—Tij Tl €p—3

structure found i 18] for the S° reduction of type IIB su-

Fioy=dAl) T gAL AT

pergravity.

In order to demonstrate the consistency of the Kaluza-
Klein reduction with the abovénsatz we substitute it into
the D-dimensional equations of motiththat follow from

—Tin T F5/\FB)
— 36297 2T Trk— (Tyi) 2]
X €p-3= Tim T * F(sy/\F3),

Eq. (13). These are

o R . d(Y *F ) =0. (21)
d*d¢=_%aeia¢F(3)/\*F(3), ®
We have introduced the unimodular matﬁbg , constructed
from T;; by extracting the determinant factof [see Eqg.

d(e 3% F 3)) =0,
(6 Fe) (15,

(18

Tij =Yl/4Tij . (22)

Owe shall not consider the reduction of tBedimensional Ein-

stein equation in detail in this paper, on account of its complexity; . . . .
this will be addressed in future work. In practice, in all cases that"92in, there are many other terms that arise from acting with
have been examined, the Einstein equation seems always to gitB€ exterior derivative that cancel amongst themselves, after

consistent results provided that the equations of motion for all thénaking use of the Schoutens identity. The consistency of the
other fields are consistent. Furthermore, the agreement of our reduteductionAnsatzmanifests itself in the remarkable fact that
tion Ansatzwith previously-established special cases provides fur-one reads off consistent lower-dimensional equations of mo-
ther supporting evidence for the consistency of the Einstein equaion in which all the dependence on the interl coordi-

tion. natesu' has cancelled.
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Next, we consider the equation of motion for the dilatonmay truncate thesQ(4) Yang-Mills gauge fields that arise

é. From Eq.(14) we find

d<}s=\/L(E(D—@Y—l*dv—yldm (23)
D-2* '

SinceA has dependence on t82 coordinatess' one of the
terms arising here will involve the quantity

Tiu'Dul. (24)

from the S® reduction to a set 08U(2) gauge fields, corre-
sponding either to the left-action, or to the right-action, of
SU(2) on theS3~SU(2) group manifold. This is achieved
by imposing a self-dual or anti-self-dual truncation on the
original SO(4) gauge potenualA(l),

Ai(jl): %eljldA(l) (30)

The choice of sign governs whether we are retaining the

It is therefore necessary to evaluate the Hodge dual of thigauge fields ofSU(2), or of SU(2)g in the truncation of

1-form; we find
*(Tyyu'Dul) =~

=TT p)w'2Dps A\ D',

Ti|Mi€D—3/\(ATi1|

1
€
2 11013l

(29

After some involved manipulations, we find that the

D-dimensional dilaton equation of motion in E4.8) implies
thatY satisfies

b- D 1 2
_( Ed(Y = dY)= 2g (2TIjTI] (Tii) )ED 3
—Y M Fe/\F
—SYTITT R RL ARG, .
(26)

The full set of ©—3)-dimensional equations of motion

can be derived from the Lagrangian

D-5 L
R¥1— ——Y 2 dYAdY— T, ™ DT AT ' DT,

Lp-3=R 16
—2Y R \Fe YT R /ARG,
_vH @27)
where the potentiaV/ is given by
V=302YM22T T - (Ti)d). (28

The 3-form field strengtlir5 is given by

k
Fa)y=dAg)+ & ija (Fy/\A— agAl(Jl)/\A(S/\A(l))( 29

which implies thatF 5 satisfies the Bianchi identit§19).

IV. TRUNCATIONS TO PREVIOUS RESULTS

In this section, we consider two truncations of tB&

SO(4)~SU(2).XSU(2)r. The two choices are equivalent,
up to convention choices, and we shall pick the plus sign in
Eq. (30) for definiteness. It is convenient to take thg, . . .
indices to range over the values 0,1,2,3, and to write the
remaining gauge potentials in terms of t&&J(2) triplet
A&), with

31 12
AL =AD=3AhL), A=Al =—3AY),

l
AD=ADH=1AY) - (31

These are the gauge fields $fJ(2), .

At the same time as we impose the self-dual truncation
(30) on the gauge potentials, we must also truncate the scalar
fields Tj;, in order to be consistent with the equations of
motion for the truncated gauge fields. In fact we should re-
tain just a single scalar degree of freedofnso thatT;;
becomes

Note that from Eq.(15) we shall now haveY=X*. It is
convenient also to give an explicit parametrization of the
coordinates, in terms of Euler angles 8h

p1t+iuy=sins gel(v= 972,
(33

o+ iung=coskgevr 42

In terms of these we can then define the left-invariant
1-forms o, on S, according to

o1t+io,=e (dg+isinfdeg), oz=dy+cosdde.

(34)

Kaluza-Klein reduction of the bosonic string that we con-

structed in the previous section. These satisfy th&U(2) algebrado, = — %%MU;;/\%-

, With these preliminaries, we can now present our results
A. Truncation from SO(4) to SU(2) for the reductionAnstazfor this SU(2) truncation of the
The first truncation turns the reduction into a “standard” original SO(4) Kaluza-Klein reduction. We find that the
one, for which the consistency becomes immediately undemetric, dilaton and 3-forrdnsazegiven in Eqs.(14) reduce
standable from group-theoretic arguments. Specifically, wéo
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dfsl2D:X6/(D—2)dSZD_3+%X—Z(D—5)/(D—2) Y=(X;X,)?, A=X1/~L§+X2;~L§,
_ a \2
><§a) (0,—9A(1)", (39 U= 22 (XZu2—AX;). (42)
e(0=2)26 _ yD-5 (36) After substituting the above truncation and reparametriza-

tion into the original Kaluza-KleiAnsdzein Sec. II, we find
. 1 1 N that the metric and dilatoAnsaze become
For=Fe ™ 22~ 155 sF 2

22 _ 2(D-2)| A 2/(D-2)
Nog= AN, = GA), (37) ds5=(X:Xz) (A ds -3

where 2
+972A7(D74)/(D72)E Xi—l
9(3)5%faﬁy(‘fa_QA&))/\(U,{;_9A€1))/\(07_9A(y1)) =t
38 —_— .
_ %9 ><(dn?+u?<d¢i—gA'(1)>2)>, (43)
is the volume form on the 3-sphere.
It is easy to verify that thiSU(2) truncation of the full A
SO(4) reductionAnsatzof Sec. Il is a consistent one. As we e P=226 = A ~1(X,X,)(P~4)72 (44)
remarked above, there is no longer anything “surprising”
about the consistency in this case, since the truncation has sehe Ansatzfor the 3-form fieldf:(3) in this U(1)? truncation
to zero all fields that transformed non-trivially under is most simply expressed in terms of the expression for the
SU(2)g. In other words, thesU(2), Ansatzin this section  §a) 0f|":(3)_ Making the truncation in Eq:20), we find
retains all the singlets und&U(2)g, while discarding all
the non-singlets. Such a truncation is necessarily consistent, 2
since non-linear products of the fields that are retained cane™ ¥~ 25¢*F( 3)= —292 (XPu?—AX)ep_3
never generate non-singlets un@®d(2)g. A related point
is that the fields that remain in the reductidnsatzparam-

2
eterizehomogeneousleformations of the 3-sphere. A par- i > X Ted X Ad(p?)
ticular case of thiSU(2) reduction has appeared previously 29 i=1
in the literature, in theS® reduction ofN=1 supergravity 1 2
fromD=10to D=7 [29]. “ o 2 X; 2d(w?) A\ (d e — 1))
B. Truncation from SO(4) to U(1)XU(1) /\* Fi(2)+g‘3Y‘l* Fa)- (45)

The second truncation that we shall consider here in-

volves retaining only th& (1) X U(1) subgroup of the origi- The Ansatzfor F (3) itself is also easily obtainable by impos-
nal SU(2)x SU(2) gauged fields of the fulsQ(4) reduc- ing theU(1)? truncation on the gener&O(4) Ansatz(14).

tion Ansatzof Sec. Il. It is convenient now to take ti80(4) Note that in theU(1)? truncation the question of the con-
indicesi,j, ... to range over the values 1,2,3,4. The trun-sistency of the reduction is still a non-trivial one, since the
cation amounts to settlng all gauge potentlatg) to zero  two scalarsX; andX, parametrize inhomogeneous deforma-
except forA(l) andA(l), for which we write tions of the 3-sphere. Of course since we have already ar-
gued that theSO(4) reduction in Sec. Il is consistent, the
A=A, Al=ARL.- (39  consistency for théJ(1)? truncation is a consequence.

_ A particular case of thi¢J(1)? truncation appeared pre-

It is also convenient now to parametrize the coordinates viously in the literaturg30], where it was obtained for the
on S’ as caseD =10 by taking a singular limit of th&* reduction of

o o eleven-dimensional supergravity that was constructdd|in

patipo=wui€9,  pating=u,e'2. (40

. ) ) V. SP~3 REDUCTION AND D=3, N=8 GAUGED
At the same time as making the truncation of the gauge SUPERGRAVITY
fields, consistency with their equations of motion requires
that we set certain of the scalar fields to zero, so that what As we discussed in Sec. ll, it is natural to conjecture that

remains is just two scalab$;, and X, as follows: the theory of gravity coupled to a dilaton and a 3-form, de-
scribed by Eq.(13) with a given by Eq.(7), should also
Tij=diag Xy, X1,X3,X5). (41) admit a consistent reduction to three dimensions on the
sphereSP~3, in which all the Yang-Mills gauge fields of
Note that we shall now have SO(D—2) are retained. Additionally, we should keep the
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1(D—1)(D—2) scalar fields described by the symmetric higher-dimensional starting point will be the bosonic sector

tensorT;;, wherei is a vector index oBQ(D—2). We find  of N=1 supergravity in ten dimensions. The reductionSén
that indeed such a consistent reduction is possible, and th#ten yields a three-dimensional theory that is the bosonic
the Kaluza-KleinAnsatzis given by sector of anSQ(8) gauged supergravity, withNN=8 (i.e.,
half of maxima) supersymmetry. As well as the 28 gauge
ds3=YYP-2)(AP-/O-2)gg fields, there are in total 36 scalars, described by the unimo-

dular symmetric tensorfij and the scalay. These transform
as a 35 and a 1 und&Q(8), respectively. Evidently, if we
reduced the fulN=1 theory inD= 10, including the fermi-
ons, we would obtailN=8 gaugedSQ(8) supergravity in
. , three dimensions. This appears to be the first example of
Fay= —gUes+g T, ™ DT A (1 Du) such a gauged supergravity iv=3. Previous examples of
1 gauged three-dimensional supergravities in the literature
_FT&lTﬁl* F'(Jz)/\DMk/\DM', (46) have been of the type constructed ﬂﬁl],_wnh SQ(p)
g X S0O(q) gauge fields and a pure cosmological constant term
) » ) .. implying the existence of an AdSyround-state solution. In
where the various quantities appearing here are again givelct there are no scalar fields, and hence no scalar potential,
in Egs. (15), (16), and (17), but now the indices,j, ... i, the theories constructed [81]. By contrast, the gauged
range over D —2) values. Thus the field content in Kaluza- gnergravity that we have obtained here has 36 scalars with
Klein reduced three-dimensional theory comprises the metrig, potential49). The theory does not admit an AgiSolu-

ds3, the 3(D—2)(D—3) gauge potential#\(}) of S(D  {ion, put it may allow domain-wall solutions that preserve
—2), and thej (D —1)(D —2) scalars described by the sym- haif of the supersymmetry.

metric tensorT;; . The calculation of the Hodge dual of the
3-form IE(3) is again a mechanical, although involved, calcu- VI. S2 REDUCTION
lation. We find that it is given by '

+g—2A—2/(D—2)Ti]1DMiDMj),

e (O—2)2¢ _ A-Ly12

. Here, we construct the Kaluza-Klefnsatzfor the reduc-
e BIO-24%E ) tion of Eq. (3) with p=2 anda given by Eq.(6). Thus our
starting point is

—(D-4)

g . : .
== & gUA ZM'lDM'2~--D,u'D—2 o . . - .

(D—=3)! "1 o2 Lp=R¥l—3*xdpN\dp—3e % F 5)\F(y), (50)
—(D=3)A"2T. . DT: ., Dui3- . -Duip-24i uX

( ) EURE s R where the positive constaatis given by Eq.(6). From Eq.

(D—3)(D—4) ;. . . _ (50) we derive the equations of motion
————F—F 12T, . Du'4Du'o-2y! |, (47

2 (2) "3l

d*dg=3(—1)Pae 2 F,/\F(,),

where we have suppressed the wedge symbols in products of

differential forms in order to economize on space. d(e*aZb; ﬁ(z)):o, (51)
It is again a straightforward, although lengthy, procedure

to substitute the abovAnsatzinto the D-dimensional equa-

tions of motion(18), and to verify that there is a consistent

reduction to equations of motion for the three-dimensional . 1

fields. We find that these equations can be derived from the x| Fyn— mF(ZZ)gMN . (52

following three-dimensional Lagrangian:

Run=Z2dm¢dnd+3e7 27

We find that there is a consistent reductidnsatzon S,

L3=R*1— Y~ 2 dYADY =T DT, given by

4D-2)
AT DTy — 1Y~ 2C-2F 37 1 pll, AFK — v+, dsy=YMP-2AVC-24s]
(48) +g 2A OO AT DL DY), (53)

whereY =det(T;;), andT;; is written in terms of the unimo- S
dular (D —2)x(D—2) matrixT;; asT;;=Y¥® 2T, . The eV -1 ?=A"1y(®-3/(B-1) (54
potentialV is given by

B 1 o1 A2,y k
V=1g2Y2O-20T, T~ (Ti)?). (49 Foy= 260 "Ua ,'u Dul\Dy
—29 A PDU ADT) Tyt 1™
An application of this dimensional reduction that is of par- -
ticular interest arises if we tak®=10, since then the — AT Tam). (55)
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Again, the various quantities appearing here are given iThis is an unusual type d8® reduction, in which the three
Egs.(15), (16) and(17), but with the indices, j, . .. ranging  SO(3) Yang-Mills fieldsA}, and the six scalar fields;;
over 3 values. The dual of the 2-form then turns out to beparametrize inhomogeneous deformations of the 3-sphere.
given by
o IOTTO=2% '2(2) VII. CONFORMAL ANOMALY TERMS

Until now we have focussed our attention on the purely

=—gUep_o+9 T, ™* DTN\ (1 Du) classical theories of gravity coupled to @form field
1 strength and a dilaton. One of the two cases that admits
— 2_21-&11-]_—'1* FI(JZ)/\DMK/\DMI_ (56) ~ consistent sphere reductions turned out to be wher8,
and in fact the Lagrangiafi3) is precisely the leading-order

expression for the low-energy limit of thB-dimensional

The field content of the Kaluza-Klein reduced theory com-posonic string. Of course the bosonic string suffers from a
prises the D—2)-dimensional metricds}_,, the three conformal anomaly if the dimensidd is not equal to 26. It
gauge potentiaIA'('l) of SO(3), and the sixscalar fieldsT;; . turns out that the effect of this anomaly is to generate an

Substituting theAnsatzinto the D-dimensional equations additional term in the effective actidB83], which vanishes at
of motion (51), we find that it yields a consistent Kaluza- D= 26, so that Eq(13) is replaced by
Klein S? reduction, with the P — 2)-dimensional fields sat- X
isfying equations of motion that follow from the Lagrangian Lp=RF1—3*dp/N\dp— e 3% F 5/\F s

D-4 __, . — 1m?(D—26)et2ad5], (61)
Lp_,=R*¥1— mY *dYANDY—3T;; DT
We shall refer to this extra contribution as a “cosmological
~ 4 o~ e e o term.” Note that if we were instead considering the theory of
1 1 2/, 1 1 ij kl ; k )
AT DTyi—3Y ﬁ-ik T *F(2)/\F(2) Vi, gravity, 3-form and dilaton as coming from the low-energy
(57 effective theory of the superstring, thB {- 26) factor would
B . . . . be replaced by —10). In all subsequent discussions in this
whereY—det(rij?, andT;; is written in terms of the_ UNIMO- " section, 26 can accordingly be replaced by 10 in the context
dular 3X3 matrix Tj; as Tij=Y1’3‘T'ij. The potentialV is  of the superstring.
given by It is of interest to see what happens to the previous
 eme = = Kaluza-Klein reductions o062 andSP ~ 2 after this extra term
V=30°Y"@T T — (Tii)9). (58 s included. We find that the previo® reductionAnsatz
) ) ) ) ) continues to give a consistent reduction, in which all the
In view of our earlier observation that th&-dimensional dependence on th&® coordinates cancels out when it is
Lagrangian(50), with the constant given by Eq.(6), can  sypstituted into thd-dimensional equations of motion fol-
itself be thought of as an ordinaB} Kaluza-Klein reduction lowing from Eq. (61). We find that the reduced
of pure gravity in © +1) dimensions, it follows that we can (p — 3)-dimensional theory is described by the same La-

also interpret our result as a consistent reduction Ofrangian(27), but now the potentiaV/ given in Eq.(28) is
(D +1)-dimensional pure gravity. The internal space is notreplaced by

simply S'x S?, however, since the 2-form fielf 5y in D
dimensions, which is the Kaluza-Klein vector of tB8& re- V:%QZYUZ(ZT-”?” —(T)?)+im2D-26)YY2 (62
duction from O+1) dimensions, is topologically non-
trivial. One can see from Ed55) that if, for example, the  The fact that theS® reduction continues to be a consistent
scalars were all taking trivial values, the 2-form fietg, one after the inclusion of the cosmological term in E&fl)
would be just the volume-form o8? (like in a Dirac mono-  could in fact have been foreseen by considering the group-
pole configuration Thus the reduction from{+ 1) dimen-  theory arguments that we developed in Sec. Il. In the absence
sions is actually on a manifold that is topologicaj. In  of the cosmological term, we observed that the global sym-
fact we can easily lift the metri@nsatzin Eq. (53) to give  metry group after a® reduction isRx0(3,3), which is
the Ansatzfor the reduction from D+ 1) dimensions, by large enough to contai®(3)xO(3) as a compact sub-
incorporating the standar® reduction step group, and hence to permit &0(4) gauging. The inclusion
i X of the cosmological term in Eq61) breaks theR factor in
dA52D+1=e2“¢dA52D+e‘Z“(D_Z)¢(dZ+ A(l))Z, (59)  the global symmetry, but th®(3,3) factor survives! and so
the cosmological term does not present any obstacle to the

whereF ,)=dA;,, and the fields on the right-hand side are SX(4) gauging inD —3 dimensions.
given in Egs.(53)—(55). Thus we find

dsd,,=Y?C V4], + A~y O DT DDyl YThis can be seen from the fact that the dilaton vector for the
. cosmological term after tHE® reduction is orthogonal to the dilaton
+AY_(D_S)/(D_l)(dZwL*A(l))z. (60)  vectors that form the positive roots 6f(3,3).
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It is interesting to note that iD>26 (or D>10 in the Kaluza-Klein S? reduction. It turns out that this is indeed
case of a supersymmetric stringhe potential62) admits a  possible, and consistency is achieved i the positive con-
symmetrical ground-state solution in which all the scalarstant given by
fields are constant. To see this, we note that for such a solu-
tion we must have - 2

"“o-n0-2" ©7

Vv Vv Vv ) ) . , ) )
—%68i6q—==0. (63)  The resulting Kaluza-Klein theory in0(—2) dimensions is

—~=0, —/—3 ij Okl "=
Y JTijj Ty described by the Lagrangidb?7), but with the potentia(58)
replaced by
(The trace subtraction in the second equation arises because
T;; has unit determinantThus the conditions for a solution V=302Y2R2T, T, — (Ti)?+3m?y?C-2. (68

with constant scalars imply
Again, one could have foreseen the continued consistency

of the S? reduction from the fact that if the theo6) is

~ =
V=0, Tij=aTudi, ©®4  educed instead on?, there is still a sufficient enhancement
- - of the global symmetry to permit aBO(3) gauging. Previ-
and hence Sincé'ij is unimodular we must haV@ij = 5” , 0u5|y, for Eq(50), the generid} L(Z,R) symmetry was en-
and hanced to taGL(3,R). Now, with the inclusion of the cos-
mological term in(66), the R factor in the GL(3,R) is
/D—26 broken, but thesL(3,R) factor remains, and so the compact
g=m g (65) SO(3) subgroup is still available for the gauging. We can

also understand this as follows. Recalling that the original

with Y arbitrary. Note in particular that the vanishing \of Lagrangian(50) can itself be viewed as a stand&treduc-

implies that the D —3)-dimensional Einstein equation has tion of pure gravity in D+1) dimensions, we now observe

no cosmological term, and so it admits Minkowski spacetimethat the enlarged Lagrangid66), with b given by Eq.(67),

. 1 . . .
as a ground-state solution. One can also find non-trivial sod nothing but theS' reduction of the D+1)-dimensional

lutions that are asymptotically flat. theory of pure gravity with a cosmological constant:

If we now consider instead tH&° ~3 reduction of the new
theory (61), we find that the previously consistent reduction
is spoiled by the presence of the additional cosmologica
term. In part|cuDIa_ré It turns out that there is a m|s-matchon T2 will give the same theory as the dimensional reduction
between the S dependence from the extra term fE 3 : icul h i

adey i , ] of Eg. (69) on T°, and so in particular there will be a
el *], in comparison to the previous terms, in the SL(3,R) global symmetry

D-dimensional equation of motion for the dilateh Actu- One can again look for solutions of the reduced theory in
ally, this is not too surprising. It can be understood from thewhich all the scalars are constant. The equations of motion
fact that the presence of the cosmological term in &4)  following from Eq. (68) then imply that
breaks the enhanced(D —2,D—2) global symmetry that
occurred previously under a dimensional reductior8n 3, ~ 2(D—5)/D— m
. T.=6. Y (D-5)/D 2:—.
and so there will no longer be &Q(D —2) compact sub- U g’(D—2)
group of the global symmetry group that could permit an
SO(D—2) gauging in three dimensions. This can be seerSubstituting these back into the potential, we find that at this
from the fact that the dilaton vector for the cosmologicalextremum it is given by
term in Eq.(61), after toroidal reduction o° 2, is not
orthogonal to the positive root vectors ©{D —2,D —2). D-5 m?
Finally, we may also consider the possible inclusion of an D-2/|g*D-5)
analogous cosmological term in the Lagrangi&@®) for
gravity, the dilaton and a 2-form field strength. In this casewhich correspondg¢for D=6) to a positive cosmological
there would not be any direct motivation from bosonic stringconstant in the D —2)-dimensional spacetimé¢Note that
theory for the inclusion of such a term, but it is neverthelessEq. (70) implies that the cosmological constant in th@ (
of interest to see what the effect would be. Thus we may+ 1)-dimensional pure gravity theory is also positiv&his
consider whether we may modify the Lagrangi&0) to allows, in particular, a ground-state solution of the original

Lp+1=Rps1*1—Fm?*1. (69

|t is then evident that the dimensional reduction of E&f)

2
(70)

1/(D—5)

2 : (71)

V=1im

LD: Ii;ﬂ— %;d(’\ﬁ/\d(’i)_ %eia(l); |E(2)/\|E(2)_ %mzeb('b;l,
(66) 2The cosmological constant inD(+1) dimensions breaks the
scale-covariance that a theory of gravity and antisymmetric tensors
where the dilaton coupling constahtin the cosmological has, and so one only ge®&l.(n,R), and notGL(n,R) from aT"
term is chosen so as to maintain the consistency of thesduction in this casésee[21]).
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D-dimensional theory of the formp_,xS?, whereMp_, that we have been using in order to determine when a con-
is an Einstein spacetime with positive cosmological constantsistent sphere reduction may be possible does not, of itself,
such as de Sitter space. Interpreted as a solution ofBhe (provide a guarantee of consisteriéyRather, it can be
+1)-dimensional pure Einstein theory with positive cosmo-viewed as providing a proof ahconsistencyn cases where
logical constant, it becomedl,_,x S3, since in this solu- the necessary enhancement of the global symmetry group in
tion the 2-forms* F(2) in D dimensions is a constant multiple the associated toroidal reduction does not occur. It is rather
of the volume-form ofS?, and thus thest in the reduction  Striking, however, that in all cases where a suitable suffi-

from (D+1) dimensions is the Hopf bundle ovet. ciently large global symmetry enhancement does occur, we
find that a consistent sphere reduction is possible.

An interesting illustration of this point is provided by the
reductions that we considered in Sec. VII, where an addi-
In this paper, we have investigated the consistency of théonal “cosmological term” was included in the higher-
Kaluza-Klein sphere reduction of the theory described by thélimensional theory. The argument based on global symmetry

Lagrangian(3), comprising gravity coupled to gform field ~ enhancement showed that t8¥ 3 reduction would no
strength and a dilaton iB dimensions. Specifically, we have longer be consistent, but that ti88 and S* reductions still
focused our attention on those cases where the redustion had the possibility of being consistent. And indeed this is just
satzat least includes all the Yang-Mills fields of tf&0O(n ~ what we found, when we substituted tA@saze into the
+1) gauge group. equations of motion of the higher-dimensional theories with
We have shown that by including the dilaton in the the cosmological terms included.
higher-dimensional theory, the possibilities for consistent Although we have argued that supersymmetry is in some
sphere reductions are extended somewhat, in comparison §¢nse not of itself the directly crucial ingredient in the ques-
the case where the higher-dimensional starting point comtion of consistency, it is, nevertheless, worthwhile to con-
prises only gravity and a-form field strength. Specifically, sider further the question of supersymmetry and consistent
if no dilaton is included the only possibilities for consistent Sphere reductions. As well as the examples of$hand S’
sphere reductions of the kind we are considering are thoseductions fromD =11, and theS® reduction fromD =10,
associated with th&* and S’ reductions ofD=11 super- We can now also consider those examples amongst the re-
gravity, and theS® reduction of type IIB supergravity. With ductions constructed in this paper that can be associated with
the dilaton included, we find that consist&itreductions are ~ supersymmetric theories. Thus, for instance, we can consider
possible for the case of a 2-form in the higher dimendion theS? reduction of type IIA supergravity, using the Ramond-
and that consister® and SP~3 reductions are possible for Ramond(R-R) 2-form, and theS® and S’ reductions of type
the case of a 3-form in the higher-dimension. These redud-Or type Il supergravity, using the Neveu-Schwarz—Neveu-
tions are possible starting from an arbitrary dimensian ~ Schwarz(NS-N§ (or R-R in the case of type [IB3-form.
provided that the strength of the dilaton coupling to the Constructing the Kaluza-Klein sphere reductiénsatz
2-form or 3-form field strength is chosen appropriately. ~ for the fermions in a supergravity theory is a notoriously
The previously-known consistent sphere reductions fronflifficult problem, and even when it is attempted the efforts
D=11 with a 4-form, andD =10 with a self-dual 5-form, are rarely extended to include the quartic fermion terms.
were associated with supersymmetric higher-dimensiondiiowever, we may construct a general argument to show that
theories. In the examples that we have obtained in this papePnce a consistent reduction has been constructed in the
supersymmetry is clearly not in general playing a role, sincd0sonic sector, the supersymmetry of the higher-dimensional
the higher-dimensional starting point can be a theory of gravtheory will then guarantee that a consistent reduction includ-
ity, a dilaton and a 2-form or 3-form in any arbitrary dimen- ing the fermions as well must be possible. The argument is
sion. It is probably more appropriate, therefore, to characteras follows. We know that a sphere reduction in whaih
ize the theories that admit consistent sphere reductions by tHiglds (massive as well as masslesse retained will neces-
fact that they have the unusual property of giving rise tosarily be consistent, and it will give rise to a supersymmetric
lower-dimensional theories with certain enhanced globalower-dimensional theory. Furthermore, we know that all the
symmetry groups upon toroidal reduction ®R. In particu- non-linear couplings between the various lower-dimensional
lar, a necessary condition for a Consista{ﬁphere reduction fields will be Organised, by virtue of the lower-dimensional
that retains all the Yang-Mills fields §O(n+1) is that the ~SuUpersymmetry, into supersymmetrically-covariant couplings
global symmetnyGL(n,RR) of a generic theory reduced @it of complete supermultiplets. Now, if we demonstrate in the
must be enhanced to a group whose compact subgroup colosonic sector Fhat there is a cpnsistent truncation to the
tainsSO(n+1). These symmetry enhancements occur 0n|ynassle$s seqtdr.e., to the b_osomc sector of the massless
in exceptional cases, when scalars coming from the toroiddpwer-dlmenSIODal Superm'ult|pDe'lthen this means that there
reduction of metric “conspire” with scalars coming from the @re no interaction terms in which powers of the massless
reduction of thep-form field strength to give an enhanced bosonic fielddi.e., conserved currents built from the mass-
global symmetry group. It so happens that this same feature
of symmetry enhancement is a central feature also in theories
such asD=11 and type IIB supergravity, and their toroidal 3ynjike the traditional group theory argument that proves conclu-
reductions. sively the consistency of a truncation in which all singlets under a
It should be emphasized that the group-theoretic argumerymmetry group are retained, and all non-singlets are truncated.

VIIl. CONCLUSIONS AND DISCUSSIONS
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less fields(see[32])] couple to linear powers of the massive consistent, as a consequence of our results for the bosonic
bosons that are being set to zero. But this in turn implies thagectors.
in the full theory there can be no interaction terms in which
supercurrents built from the massless multiplet couple to lin-
ear powers of the massive fields. Thus if one shows that it is
consistent to make a sphere reduction in which all the bosons
of the massless supermultiplet are retained, then this implies C.N.P. is grateful to the University of Pennsylvania for
that it must be consistent to make a sphere reduction of thieospitality during the course of this work. We are grateful to
supersymmetric theory in which the entire massless supeArta Sadrzadeh and Tuan Tran for extensive discussions.
multiplet is retained. The research of M.C. and H.L. was supported in part by
One can use this argument to show that 8feand S’  DOE grant DOE-FG02-95ER40893. The research of C.N.P.
reductions ofN=1 ten-dimensional supergravity, which are was supported in part by DOE grant DOE-FGO03-
special cases of our more general results in this paper, will bBBSER40917.
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