
PHYSICAL REVIEW D, VOLUME 62, 064028
Consistent Kaluza-Klein sphere reductions
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We study the circumstances under which a Kaluza-Klein reduction on ann-sphere, with a massless trunca-
tion that includes all the Yang-Mills fields ofSO(n11), can be consistent at the full non-linear level. We take
as the starting point a theory comprising ap-form field strength and~possibly! a dilaton, coupled to gravity in
the higher dimensionD. We show that aside from the previously studied cases with (D,p)5(11,4) and~10,5!
~associated with theS4 andS7 reductions ofD511 supergravity, and theS5 reduction of type IIB supergrav-
ity!, the only other possibilities that allow consistent reductions are forp52, reduced onS2, and forp53,
reduced onS3 or SD23. We construct the fully non-linear Kaluza-KleinAnsätzein all these cases. In particular,
we obtainD53, N58, SO(8) andD57, N52, SO(4) gauged supergravities fromS7 andS3 reductions of
N51 supergravity inD510.

PACS number~s!: 04.65.1e, 11.10.Kk
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I. INTRODUCTION

Much progress has been achieved recently in underst
ing the full non-linear structure of certain Kaluza-Kle
sphere reductions. To be specific, we have in mind the
markable cases where it is consistent to include low
dimensional fields in the reductionAnsatzthat parametrize
inhomogeneous deformations of the internal sphere me
Generically, one would expect that performing a truncat
of the complete Kaluza-Klein towers of massless and m
sive modes to the purely massless sector would give ris
inconsistencies beyond the linearized level, since curre
built from the massless fields would act as sources for
massive fields that have been set to zero. Indeed this is
actly what usually happens; one cannot make a consis
Kaluza-Kleinn-sphere reduction of a generic theory in whi
all the massless fields, including, in particular, the full set
SO(n11) gauge fields are retained. However, in cert
very special cases a consistent reduction of this kind is p
sible.

An important early example of this type was much stu
ied in the 1980s: namely, the seven-sphere compactifica
of eleven-dimensional supergravity. It was first shown at
level of linearized fluctuations@1# around the AdS43S7

Freund-Rubin@2# vacuum solution that the massless mod
described four-dimensionalN58 gaugedSO(8) supergrav-
ity @3#. Subsequently, it was shown that, despite all the
parent obstacles, the reduction to the masslessN58 multip-
let can be carried through as an exact embedding at the
non-linear level @4#, although the construction is an ex
tremely complex one. It has long been believed that con
tent reductions should also be possible in the case of thS5

compactification of type IIB supergravity, and theS4 com-
pactification of eleven-dimensional supergravity, to yield t
maximal gaugedSO(6) supergravity inD55, and the maxi-
mal gaugedSO(5) supergravity inD57, respectively. In-
deed, the consistentS4 reduction Ansatz from D511 has
recently been constructed@5,6#. No analogous constructio
0556-2821/2000/62~6!/064028~13!/$15.00 62 0640
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exists for the complete massless reduction onS5.
It is sometimes helpful to study sphere reductions

which only a subset of the complete set of massless field
retained, in such a way that one still has the non-triviality
the inhomogeneous sphere deformations, while at the s
time making the problem of obtaining an explicit reductio
Ansatzmore tractable and manageable. This can be es
cially useful if one actually wants to use theAnsatzfor the
purpose of lifting solutions of the lower-dimensional theo
back to the higher dimension, in which case full explic
reduction formulas are highly advantageous. In this sp
consistent reductions in the three cases mentioned ab
were constructed for truncations in which only the maxim
Abelian subgroupsU(1)4, U(1)3 and U(1)2 of the full
SO(8), SO(6) andSO(5) gauge groups were retained, t
gether with associated scalar fields@7#. The U(1)3 example
provided the first concrete evidence for the consistency
theS5 reduction of type IIB supergravity. The reductionAn-
sätzewere sufficiently explicit that they could be used for th
purpose of lifting certain AdS black-hole solutions back
the higher dimension@7#, where they become rotating D3
branes@8–10,7# and M-branes@11,7#.

Other consistent reductions involving subsets of the co
plete massless sector have subsequently been constru
including anS4 reduction to giveN52 gaugedSU(2) su-
pergravity in D57 @12#; an S5 reduction toN54 gauged
SU(2)3U(1) supergravity inD55 @13#; and anS7 reduc-
tion to N54 gaugedSO(4) supergravity inD54 @14#. In
addition, theN52 gaugedSU(2) supergravity inD56 was
obtainedvia a consistent reduction from massive type II
supergravity on a locallyS4 internal space@15#. This is ac-
tually the largest possible supersymmetry for a gaug
theory inD56, even though the maximum supersymme
for ungauged supergravity isN54.

Somtimes, it can also be useful to construct a Kalu
Klein sphere reduction in which a non-supersymmetric tru
cation of the massless supermultiplet is made. One exam
of this type involved truncating the maximal supergraviti
©2000 The American Physical Society28-1
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in D54, 5 and 7 to a subsector comprising just gravity a
a set of 7, 5 or 4 scalars respectively. These scalars co
spond to the diagonal subset of fields in the unimodular s
metric tensors Ti j describing the scalars in th
SL(8,R)/SO(8), SL(6,R)/SO(6) andSL(5,R)/SO(5) sca-
lar submanifolds of the full supergravities. In@16,17#, the
full non-linear reductionAnsätze for these embedding wer
constructed, and proved to be consistent.

Another example of a non-supersymmetric truncation w
constructed in@18#, where the full set of twenty scalarsTi j of
the cosetSL(6,R)/SO(6) were retained in anS5 reduction
from D510. Consistency now requires that one include a
the full set ofSO(6) Yang-Mills gauge fields. In fact only
the metric and self-dual 5-form of the type IIB supergrav
are involved in this reduction, and it can equivalently
viewed as a Kaluza-Klein reduction of a theory of pure gra
ity plus self-dual 5-form inD510, with all massless fields
retained inD55. ~The truncation of type IIB supergravity t
just gravity and the self-dual 5-form is itself a consistent o
in D510.) The self-duality of the 5-form is crucial for th
consistency of the reduction.

One should not conclude from the listing of examp
above that consistent Kaluza-Klein sphere reductions a
commonplace. In fact, if we restrict attention to cases wh
one starts in the higher dimension with just gravity and
p-form field strength, then it turns out that the only cases t
can give consistent reductions are related to the exam
mentioned above.1 The reason for this can be understood
follows. For reductions of the type we are considering, wh
the lower-dimensional theory obtained by theSn reduction
has anSO(n11) local gauge symmetry, it is essential th
the ungaugedtheory that would result from performing
reduction on then-torus rather than then-sphere should have
scalars described by a coset manifoldG/H such thatH at
least containsSO(n11). The reason for this is that in th
process of gauging the ungauged theory, a subgroupSO(n
11) of the global symmetryG must become local, and thi
subgroup must be contained withinH. Now if a generic
theory of gravity and antisymmetric tensors is reduced
Tn, it will give rise to a lower-dimensional theory with
GL(n,R) global symmetry@19–21#, for which the maximal
compact subgroup isSO(n). This is insufficient for allowing
an SO(n11) gauging. Note that in particular this argume
shows that it is not possible to perform a consistentn-sphere
reduction of a pure gravity theory, in which the Yang-Mil
fields of SO(n11) are retained.

In certain very special theories, theGL(n,R) global sym-
metry arising from aTn reduction is enhanced to a larg
symmetry, as a result of ‘‘conspiracies’’ between scal
coming from the Kaluza-Klein reduction of the metric and
the other higher-dimensional fields. However, as discusse
@21,22#, such cases are very few and far between. In part

1To be precise, we should emphasise that what we are discus
here is cases whereall of the SO(n11) Yang-Mills gauge fields
associated with the isometry group of then-sphere are retained in
the truncation, together with other associated massless scalars
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lar, if we consider aD-dimensional theory consisting o
gravity and a singlep-form field strength, an enhancement
the global symmetry can occuronly if ( D,p) is equal to
(11,4), (11,7) or (10,5). Since a 7-form inD511 is dual to
a 4-form this means that the only cases with symmetry
hancements are associated withD511 supergravity and type
IIB supergravity. The corresponding enhanced symmetrie
each case are toSL(8,R)/SO(8) in D54, SL(5,R)/SO(5)
in D57, and SL(6,R)/SO(6) in D55.2 These enhance
ments then allow theSO(8), SO(6) andSO(5) gaugings,
respectively.3

Note that whereas there is a consistentS5 reduction of
gravity with a self-dual 5-form in whichonly the metric, the
SO(6) Yang-Mills fieldsA(1)

i j and the 20 scalarsTi j are re-
tained, the situation is a little different in theS4 and S7

reductions fromD511. In addition to keeping the corre
sponding Yang-Mills fieldsA(1)

i j and scalarsTi j , the consis-
tency of the S4 reduction requires also keeping the fiv
3-formsA(3)

i of the seven-dimensional theory, whilst theS7

reduction instead requires also keeping the 35 pseudosc
f [ i jkl ] 1

@self-dual in theSO(8) indices#. These additional
fields are needed in the reductions because the Yang-M
fields act as sources for them@18#. In fact we can summarize
the situation in all three of these examples of theS4, S7 and
S5 reductions as follows. In all cases, the consistentn-sphere
reduction that includes all the Yang-Mills fields ofSO(n
11) requires one to includeall the massless fields in th
lower-dimensional theory. Thus in theS5 case, if we reduce
the theory of gravity and the self-dual 5-form then the m
ric, the SO(6) Yang-Mills fields and the scalarsTi j indeed
constitute the complete set of massless fields in five dim
sions. In theS4 reduction fromD511 the five 3-formsA(3)

i

are massless too, and indeed they must be included als
the consistent reduction. Likewise, in theS7 reduction from
D511 the 35 pseudoscalarsf [ i jkl ] 1

are also massless, an
indeed they must be included in the consistent reduction

Further possibilities for consistentn-sphere reductions in
which all theSO(n11) Yang-Mills fields are retained ca
arise if we consider a slightly enlarged higher-dimensio
theory, now with a dilatonic scalar as well as gravity and t
p-form field strength. Again, the key point is that an e
hancement of theGL(n,R) global symmetry that would oc
cur for the reduction of a generic theory onTn is needed, in
order that the scalar coset manifold in the lower dimens

ing

2Actually further conditions must be fulfilled in order for the sym
metry enhancements to take place. In the case ofD511 reduced to
D54 onT7, the enhancement ofGL(7,R) to SL(8,R) requires that
the 4-form have anFFA term in D511 with precisely the coeffi-
cient dictated by supersymmetry; this in fact means that the
hanced symmetry is even larger, namelyE7. For theD510 theory
reduced onT5, the enhancement fromGL(5,R) to SL(6,R) re-
quires that the 5-form be self-dual~or anti-self-dual!.

3The importance of enhancements of the global symmetry in
oidal reductions was also observed in@23#, although it was assumed
there that the phenomenon was much more widespread than i
tually the case.
8-2
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CONSISTENT KALUZA-KLEIN SPHERE REDUCTIONS PHYSICAL REVIEW D62 064028
should have a denominator group that is large enough
contain the desiredSO(n11) local symmetry group of the
theory reduced onSn. It turns out that by including the dila
tonic scalar in the higher dimension, the necessary symm
enhancements can be achieved when thep-form field
strength is either a 2-form, or a 3-form. This opens up
possibility of finding consistent Kaluza-Klein reductions o
S2, for the 2-form case, and onS3 or on SD23, for the
3-form case. These, together with the previousD511 and
D510 examples, would then constitute the complete list
possibilities for consistent Kaluza-Kleinn-sphere reductions
within the class of theories we are considering, in which
the Yang-Mills fields ofSO(n11) are retained.

In this paper, we construct the complete and explicit n
linear Kaluza-KleinAnsätzefor these three new possibilities
We begin in Sec. II with a detailed discussion of the glob
symmetry enhancements that can occur in the toroidal re
tions of theories with gravity, ap-form field strength and a
dilaton, in order to establish what are the possibilities
consistent sphere reduction. In Sec. III we construct theAn-
satzfor the consistent reduction of gravity plus a 3-form a
a dilaton onS3, keeping all the gauge fields ofSO(4) and
the ten scalars of the symmetric tensorTi j , together with the
2-form potentialA(2) . In Sec. IV, we examine two trunca
tions of theS3 reduction, in which only certain subsets of th
massless fields are retained, in order to make contact
previous results in the literature. In Sec. V we consider
‘‘dual’’ of the S3 reduction namely, the reduction instead
SD23. Again, we find a consistent reductionAnsatz, in which
all the gauge fields ofSO(D22) are retained, together wit
the 1

2 (D21)(D22) scalars inTi j . A case of particular in-
terest is theS7 reduction fromD510, since then the result
ing three-dimensional theory is the bosonic sector o
gaugedSO(8) supergravity, of a type not previously con
structed in the literature. In Sec. VI we construct the con
tent Kaluza-KleinAnsatzfor the reduction of a theory o
gravity, a dilaton and a 2-form field strength onS2. In this
case theAnsatz includes all three gauge fields ofSO(3),
together with the six scalars inTi j .

Note that in two of the new cases that we consider he
namely theS2 reduction of the theory with a 2-form field
strength, and theSD23 reduction of the theory with a 3-form
field strength, the totality of massless fields in the Kalu
Klein reduced lower-dimensional theories comprise the m
ric, the Yang-Mills gauge fieldsA(1)

i j , and the scalarsTi j .
Thus these new examples of consistent sphere reduction
akin to theS5 reduction of gravity plus a self-dual 5-form, i
that no additional massless fields are present that must
be included in the reductionAnsatz. By constrast, in the new
S3 reduction that we construct here, we must additiona
include the 2-form potentialA(2) in theAnsatz. This is simi-
lar to the situation for theS4 andS7 reductions, where, as w
discussed previously, additional massless fields are pre
and must be included, for consistency.

II. POSSIBILITIES FOR SO„n¿1… KALUZA-KLEIN
REDUCTIONS ON Sn

As we mentioned in the Introduction, a consistent Kalu
Klein reduction onSn that retains all the gauge fields o
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SO(n11) will be possible only if there is a suitable en
hancement of the genericGL(n,R) global symmetry that
arises instead in aTn reduction, so that the denominato
group of the generic scalar manifoldGL(n,R)/O(n) be-
comes large enough to containSO(n11). We also men-
tioned that there are only rather limited circumstances un
which these symmetry enhancements can occur.

The reason why the possibilities for symmetry enhan
ments are so restrictive is discussed extensively in@21,22#.
The scalars divide inton ‘‘dilatons,’’ fW coming from the
diagonal metric components of the internaln-torus, with the
rest being ‘‘axions’’x i coming from the off-diagonal metric
components and the reduction of the antisymmetric ten
Each dilaton has a kinetic term of the form2 1

2 ecW i•fW (]x i)
2,

wherecW i is the associated constant ‘‘dilaton vector’’ chara
terising the coupling of the dilatons to that particular axio

In the n-torus reduction of a theory ofD-dimensional
gravity plusp-form field strength with general values ofD
and p, the global symmetry will beGL(n,R). In fact the
dilaton vectorsbW i associated with the axions coming fro
the metric form the complete set of positive roots of t
SL(n,R) algebra@21,22#. The dilaton vectorsaW i associated
with the axions coming from thep-form field strength then
form the weights of some representation underSL(n,R). If
an enhancement of the global symmetry is to occur, it m
be that some or all of the dilaton vectorsaW i ‘‘conspire’’ to
become the additional positive roots of the enhanced s
metry algebra. However, this cannot occur in general,
cause the lengths of vectorsaW i coming from thep-form will
be incommensurate with the lengths of the vectorsbW i coming
from the metric.4

A convenient way to characterize the lengths of the va
ous dilaton vectors was introduced in@24#. Rather than using
the quantityucW u2 itself, it is convenient to introduce a con
stantd, related toucW u2 by

ucW u25d2
2~m21!~D2m21!

D22
, ~1!

whereD is the spacetime dimension, andm is the degree of
the field strength whose dilaton coupling isecW•fW . ~Note that
the all the field strengths in theD511 andD510 super-
gravities haved54 couplings@25#.! The key point about this
parametrization is thatd is preserved under toroidal Kaluza
Klein reduction. This makes it rather easy to see when
possibility of an enhancement of the global symmetry c
occur. First, we note@24# that the dilaton vectorsbW i associ-
ated with the axions coming from the Kaluza-Klein redu
tion of the metricalwayshaved54. It follows therefore that
if the dilaton vectorsaW i associated with axions coming from
thep-form field strength in the higher dimension are to ha

4We first, of course, establish a canonical normalization for
dilaton kinetic terms, so that comparisons of the lengths are me
ingful.
8-3
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M. CVETIČ, H. LÜ, AND C. N. POPE PHYSICAL REVIEW D62 064028
the same lengths as thebW i , then the coupling of the field
strength must also haved54.5 If we are starting inD di-
mensions with a theory with just gravity and thep-form field
strength, but no dilaton, this means that inD dimensions we
havecW50, andm5p, and so to haved54 we must have

2D245~p21!~D2p21!. ~2!

It is easily verified that the only integer solutions a
(D,p)5(11,4), ~11,7! and ~10,5!.

The possibilities for achieving the necessary enhancem
of the globalGL(n,R) symmetry can be broadened cons
erably if a dilatonic scalar is included in the original theo
in D dimensions, since now there is the possibility of adju
ing its coupling to thep-form field strength so that the cor
responding value ofd is equal to 4. Thus we may conside
the D-dimensional Lagrangian

LD5R̂*̂ 12 1
2 *̂ df̂`df̂2 1

2 e2af̂*̂ F̂ (p)`F̂ (p) , ~3!

with a chosen so that

a2542
2~p21!~D2p21!

D22
. ~4!

Note that we put hats on all the fields in Eq.~3!, to indicate
that they are higher-dimensional quantities.

The first point to notice is that the requirement that t
constanta should be real6 is a rather restrictive one, since
implies

p223Dp13D25>0. ~5!

Taken together with the fact that obviouslyp cannot exceed
D, this implies that the only additional possibilities open
up by the inclusion of the dilaton are forp52, 3, (D22) or
(D23). The last two here are just the Hodge duals op

5Since all theaW i themselves have equal length, and all thebW i

themselves have equal length, it follows that to get asimply-laced

enhanced symmetry group we would need that the length of thaW i

and the length of thebW i should be equal. This turns out to be th
only situation where relevant symmetry enhancements occur, w
the framework of the higher-dimensional Lagrangians~3!. Thus al-
though the caseD56 with a d52 self-dual 3-form gives an en
hancement toO(3,4) after aT3 reduction toD53 @22#, and D
55 with a d5

4
3 2-form gives an enhancement toG2 after a T2

reduction toD53 @26,22#, neither of these non-simply-laced cas
would seem to indicate the possibility of consistentS3 or S2 reduc-
tions.

6One might in principle consider also the possibility thata could
be imaginary. This would be equivalent to having a ghost-like
netic term for the dilaton in theD-dimensional theory. This could
not lead to any useful global symmetry enhancements from
point of view of sphere reductions that retain theSO(n11) gauge
fields. There might be possible implications for consistent red
tions on spaces with non-compact symmetry groups.
06402
nt
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52 and p53, so we need not consider them as distin
cases. Forp52 andp53, the relation~4! gives

p52: a25
2~D21!

D22
, ~6!

p53: a25
8

D22
. ~7!

Thus we see that if we start inD dimensions with the
Lagrangian~3! with a 2-form or 3-form field strength, we
can achieve ad54 dilaton coupling in any dimensionD, and
thus we can expect to find an enhancement of theGL(n,R)
global symmetry after dimensional reduction onTn. Indeed
this is the case.

First, let us consider the casep53, where we make aTn

reduction of Eq.~3! with a given by Eq. ~7!. The global
symmetry is indeed enhanced, and the scalar manifold
(D2n) dimensions will be@27,28,22#

D2n.3: R3
O~n,n!

O~n!3O~n!
, ~8!

D2n53:
O~D22,D22!

O~D22!3O~D22!
. ~9!

This p53 case corresponds precisely to theT-duality sym-
metry of the toroidally-reduced bosonic string. Note that
D2n53 the usualT-duality groupO(D23,D23) of the
string theory reduced onTn is further enhanced to the non
perturbative U-duality group O(D22,D22). Using the
3-form field strength, we can then consider either anS3 or an
SD23 Kaluza-Klein reduction.

If we taken53, we see that the the scalar coset manifo
from a T3 reduction will be

R3
O~3,3!

O~3!3O~3!
;R3

SL~4,R!

SO~4!
. ~10!

There will also be six gauge potentials coming from t
Kaluza-Klein reduction onT3. This implies that theSO(4)
subgroup of theSL(4,R) global symmetry group can b
gauged, with the six vector potentials becoming the Ya
Mills fields of SO(4). It is then natural to conjecture tha
this gauged theory may be directly obtainable as a Kalu
Klein reduction onS3. It is far from obvious that such a
reduction would be consistent, since unlike the toroidal
duction there is no obvious group-theoretic argument t
would guarantee the consistency at the non-linear level.7 In

in

-

e

-

7If we were gauging only the left-actingSU(2) or only the right-
acting SU(2) of the SO(4);SU(2)L3SU(2)R isometry of the
3-sphere@which is itself the group manifoldSU(2)], then the con-
sistency would be guaranteed, since the retained fields would
all be singlets under theother SU(2), butthis is no longer the case
when the gauge fields of the full isometry group are retained. In
we shall discuss the truncation to a singleSU(2) subgroup in sec-
tion 4.
8-4
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TABLE I. The possible cases for Kaluza-KleinSn reduction with SO(n11) gauge fields. The las
column indicates what additional fields, beyond the metric, the gauge fieldsA(1)

i j and the scalarsTi j , are
massless, and must therefore be included, in a consistent truncation~see discussion in Sec. I!.

p-form Dilaton Higher-dim. Lower-dim. Sphere Gauge group Extra field

F (2) Yes Any D D22 S2 SO(3) None
F (3) Yes Any D D23 S3 SO(4) A(2)

F (3) Yes Any D 3 SD23 SO(D22) None
F (4) No 11 7 S4 SO(5) A(3)

i

F (4) No 11 4 S7 SO(8) f [ i jkl ] 1

F (5)5* F (5) No 10 5 S5 SO(6) None
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the next section, we shall explicitly show that the reduct
on S3, in which the full set ofSO(4) gauge fields are re
tained, is in fact consistent at the full non-linear level.

Now let us consider instead theTD23 reduction of Eq.~3!,
again withp53. The reduced theory will now be in thre
dimensions, and the scalar coset manifold will be given
Eq. ~9!, provided thata satisfies Eq.~7!. Note that the further
symmetry enhancement of thisD2n53 case occurs becaus
the complete field content of the resulting three-dimensio
theory ~except for the metric! can be described by scalar
since in three dimensions one can dualize all the vector
tentials to scalars. The coset~9! can also be described as@21#

GL~D22,R!

O~D22!
›V, ~11!

where V is an irreducible representation underGL(D
22,R) of dimension 1

2 (D22)(D23); this is the same a
the dimension of the adjoint representation ofO(D22).

The scalars in the representationV can be dualized to
vector potentials,8 suggesting that theO(D22) denominator
group in Eq.~11! can be gauged. Then we may conjectu
that this gauged three-dimensional theory can alternativ
be obtained as a reduction of the originalD-dimensional
theory on the sphereSD23. In Sec. V, we shall demonstrat
that there is indeed such a consistent reduction onSD23, in
which all the gauge fieldsA(1)

i j of O(D22) are retained,
together with scalars described by the symmetric tensorTi j ,
wherei is a vector index ofO(D22).

Finally, let us consider the Lagrangian~3! with p52,
where the dilaton coupling for the 2-form is given by Eq.~6!.
The Lagrangian~3! is then in fact precisely theS1 dimen-
sional reduction of pure gravity inD11 dimensions. Conse
quently, the scalar manifold in (D2n) dimensions after re-
ducing Eq.~3! on Tn will be enhanced to

GL~n11,R!

SO~n11!
. ~12!

8The description~11! would arise naturally if one dualized th
(D23) vector potentials coming from the direct reduction of t

original potentialÂ(2) , but left all other vector potentials~including
the Kaluza-Klein vectors! in their original undualized forms.
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With a 2-form field strength we have in principle two poss
bilities for sphere reductions, namely onS2 or onSD22. The
latter would be somewhat degenerate, since the low
dimensional theory would be inD52, so we shall just con-
sider theS2 possibility here. If we taken52, the denomina-
tor group in Eq.~12! is exactly what is needed to allow a
SO(3) gauging. We may then conjecture that this gaug
theory should alternatively be directly obtainable as a c
sistent Kaluza-Klein reduction onS2, keeping all three of the
SO(3) Yang-Mills gauge fields, together with six scala
described by the symmetric tensorTi j . We shall in fact con-
struct this consistent reduction in Sec. VI.

We conclude this section with Table I that summarizes
the cases where consistent sphere reductions o
D-dimensional theory comprising gravity, ap-form field
strength and~in some cases! a dilatonic scalar, are possible
In all cases, we are concerned with the situation where all
Yang-Mills fields of theSO(n11) isometry group of the
n-sphere can be included in the reductionAnsatz.

III. CONSISTENT S3 REDUCTION

We start from the bosonic string inD dimensions, with
the low-energy effective Lagrangian9

LD5R̂*̂ 12 1
2 *̂ df̂`df̂2 1

2 e2af̂*̂ F̂ (3)`F̂ (3) , ~13!

where the positive constanta is given by Eq.~7! so that the
global symmetry from aTn reduction would beR3O(n,n)
rather than merelyGL(n,R), as discussed in Sec. II. As w
argued there, we can now conjecture that it should be p
sible to perform a consistent Kaluza-Klein reduction onS3,
keeping all theSO(4) Yang-Mills fieldsA(1)

i j , together with
the scalar fields described by the symmetric tensorTi j ,
wherei is a vector underSO(4), andalso the 2-form poten-
tial A(2) .

We find that there is indeed anAnsatzfor a consistent
Kaluza-Klein reduction onS3, given by

9Later, in Sec. 7, we shall include the cosmological type ter

2
1
2 m2(D226)e(1/2)af̂ that arises whenDÞ26, as a result of the

conformal anomaly. For now, we restrict attention to the pur
classical Lagrangian for gravity coupled to a 3-form and a dilat
8-5
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dŝD
2 5Y1/(D22)~D2/(D22)dsD23

2

1g22D2(D24)/(D22)Ti j
21Dm iDm j !,

eA(D22)/2f̂5D21Y(D24)/4,

F̂ (3)5F (3)1
1
6 e i 1i 2i 3i 4

~g22UD22Dm i 1

`Dm i 2`Dm i 3m i 423g22D22Dm i 1

`Dm i 2`DTi 3 jTi 4km
jmk

23g21D21F (2)
i 1i 2`Dm i 3Ti 4 jm

j !, ~14!

where

m im i51, D5Ti j m
im j , U52TikTjkm im j2DTii ,

Y5det~Ti j !, ~15!

and the indicesi , j , . . . range of 4 values. Here, and in th
rest of the paper, a summation over repeatedSO(n11) in-
dices is understood. The gauge-covariant exterior deriva
D is defined so that

Dm i5dm i1gA(1)
i j m j , DTi j 5dTi j 1gA(1)

ik Tk j1gA(1)
jk Tik ,

~16!

whereA(1)
i j denotes theSO(4) gauge potentials coming from

the isometry group of the 3-sphere, and

F (2)
i j 5dA(1)

i j 1gA(1)
ik `A(1)

k j . ~17!

Thus the lower-dimensional fields appearing in the Kalu
Klein Ansatzcomprise the metricdsD23

2 , the six gauge po-
tentialsA(1)

i j of SO(4), the tenscalar fields described by th
symmetric tensorTi j , and the 2-form potentialA(2) , whose
~Chern-Simons modified! field strength isF (3) . The form of
the Ansatzthat we have obtained here closely parallels
structure found in@18# for the S5 reduction of type IIB su-
pergravity.

In order to demonstrate the consistency of the Kalu
Klein reduction with the aboveAnsatz, we substitute it into
the D-dimensional equations of motion10 that follow from
Eq. ~13!. These are

d*̂ df̂52 1
2 ae2afF̂ (3)` *̂ F (3) ,

d~e2af*̂ F (3)!50, ~18!

10We shall not consider the reduction of theD-dimensional Ein-
stein equation in detail in this paper, on account of its complex
this will be addressed in future work. In practice, in all cases t
have been examined, the Einstein equation seems always to
consistent results provided that the equations of motion for all
other fields are consistent. Furthermore, the agreement of our re
tion Ansatzwith previously-established special cases provides
ther supporting evidence for the consistency of the Einstein eq
tion.
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R̂MN5 1
2 ]Mf]Nf1 1

4 S F̂MN
2 2

2

3~D22!
F̂ (3)

2 ĝMND .

In addition, we have the Bianchi identitydF̂(3)50. Taking
this first, we find upon substitutingF̂ (3) from Eq. ~14! into
dF̂(3)50 that the lower-dimensional fieldF (3) must satisfy
the Bianchi identity

dF(3)5
1
8 e i 1i 2i 3i 4

F (2)
i 1i 2`F (2)

i 3i 4 . ~19!

All other terms arising fromd*̂ F (3) vanish identically.~The
calculation is quite involved, and the Schoutens iden
e [ i 1i 2i 3i 4

Vi 5][0 is useful.!
In order to substitute theAnsatzinto the field equation for

F̂ (3) , we must first calculate the Hodge dual ofF̂ (3) given in
Eq. ~14!. This is a straightforward, although somewhat i
volved calculation, and we find

e2A8/(D22)f̂*̂ F (3)5
1

6g3 e i jkl Y
21* F (3)`m iDm j`Dmk

`Dm l2gUeD231g21Ti j
21* DTjk

`~mkDm i !2
1

2g2 Tik
21Tjl

21* F (2)
i j

`Dmk`Dm l . ~20!

Substituting into Eq.~18!, with a given by Eq.~7!, we ~even-
tually! read off the lower-dimensional equations of motion

~21!DD~Tik
21Tjl

21* F (2)
kl !522gTk[ i

21* DTj ]k

2 1
2 e i jkl Y

21* F (3)`F (2)
kl ,

~21!DD~ T̃ik
21* DT̃k j!52g2@2TikTjk2Ti j Tkk#eD23

2Tlm
21Tik

21* F (2)
lk `F (2)

m j

2 1
4 d i j „2g2@2TnkTnk2~Tkk!

2#

3eD232Tlm
21Tnk

21* F (2)
lk `F (2)

mn
…,

d~Y21* F (3)!50. ~21!

We have introduced the unimodular matrixT̃i j , constructed
from Ti j by extracting the determinant factorY @see Eq.
~15!#,

T̃i j 5Y1/4Ti j . ~22!

Again, there are many other terms that arise from acting w
the exterior derivative that cancel amongst themselves, a
making use of the Schoutens identity. The consistency of
reductionAnsatzmanifests itself in the remarkable fact th
one reads off consistent lower-dimensional equations of m
tion in which all the dependence on the internalS3 coordi-
natesm i has cancelled.
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Next, we consider the equation of motion for the dilat
f̂. From Eq.~14! we find

df̂5A 2

D22
„

1
4 ~D24!Y21* dY2D21dD…. ~23!

SinceD has dependence on theS3 coordinatesm i one of the
terms arising here will involve the quantity

Ti j m
iDm j . ~24!

It is therefore necessary to evaluate the Hodge dual of
1-form; we find

*̂ ~Ti j m
iDm j !52 1

2 e i 1i 2i 3i 4
Til m

ieD23`~DTi 1l

2Ti 1 jTklm
jmk!m i 2Dm i 3`Dm i 4. ~25!

After some involved manipulations, we find that th
D-dimensional dilaton equation of motion in Eq.~18! implies
that Y satisfies

D25

4
~21!Dd~Y21* dY!5 1

2 g2
„2Ti j Ti j 2~Tii !

2
…eD23

2Y21* F (3)`F (3)

2 1
4 Y21Tik

21Tjl
21* F (2)

i j `F (2)
kl .

~26!

The full set of (D23)-dimensional equations of motio
can be derived from the Lagrangian

LD235R* 12
D25

16
Y22* dY`dY2 1

4 T̃i j
21* DT̃jk`T̃kl

21DT̃li

2 1
2 Y21* F (3)`F (3)2

1
4 Y21/2T̃ik

21T̃j l
21* F (2)

i j `F (2)
kl

2V* 1, ~27!

where the potentialV is given by

V5 1
2 g2Y1/2

„2T̃i j T̃i j 2~ T̃ii !
2
…. ~28!

The 3-form field strengthF3 is given by

F (3)5dA(2)1
1
8 e i jkl ~F (2)

i j `A(1)
kl 2 1

3 gA(1)
i j `A(1)

km`A(1)
ml !,

~29!

which implies thatF (3) satisfies the Bianchi identity~19!.

IV. TRUNCATIONS TO PREVIOUS RESULTS

In this section, we consider two truncations of theS3

Kaluza-Klein reduction of the bosonic string that we co
structed in the previous section.

A. Truncation from SO„4… to SU„2…

The first truncation turns the reduction into a ‘‘standar
one, for which the consistency becomes immediately und
standable from group-theoretic arguments. Specifically,
06402
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may truncate theSO(4) Yang-Mills gauge fields that aris
from theS3 reduction to a set ofSU(2) gauge fields, corre-
sponding either to the left-action, or to the right-action,
SU(2) on theS3;SU(2) group manifold. This is achieved
by imposing a self-dual or anti-self-dual truncation on t
original SO(4) gauge potentialsA(1)

i j ,

A(1)
i j 56 1

2 e i jkl A(1)
kl . ~30!

The choice of sign governs whether we are retaining
gauge fields ofSU(2)L or of SU(2)R in the truncation of
SO(4);SU(2)L3SU(2)R . The two choices are equivalen
up to convention choices, and we shall pick the plus sign
Eq. ~30! for definiteness. It is convenient to take thei , j , . . .
indices to range over the values 0,1,2,3, and to write
remaining gauge potentials in terms of theSU(2) triplet
A(1)

a , with

A(1)
01 5A(1)

23 [ 1
2 A(1)

1 , A(1)
02 5A(1)

31 [2 1
2 A(1)

2 ,

A(1)
03 5A(1)

12 [ 1
2 A(1)

3 . ~31!

These are the gauge fields ofSU(2)L .
At the same time as we impose the self-dual truncat

~30! on the gauge potentials, we must also truncate the sc
fields Ti j , in order to be consistent with the equations
motion for the truncated gauge fields. In fact we should
tain just a single scalar degree of freedomX, so thatTi j
becomes

Ti j 5Xd i j . ~32!

Note that from Eq.~15! we shall now haveY5X4. It is
convenient also to give an explicit parametrization of them i

coordinates, in terms of Euler angles onS3:

m01 im35cos1
2 uei(c1f)/2, m11 im25sin 1

2 uei(c2f)/2.
~33!

In terms of these we can then define the left-invaria
1-formssa on S3, according to

s11 is25e2 ic~du1 i sinu df!, s35dc1cosu df.
~34!

These satisfy theSU(2) algebradsa52 1
2 eabgsb`sg .

With these preliminaries, we can now present our res
for the reductionAnstazfor this SU(2) truncation of the
original SO(4) Kaluza-Klein reduction. We find that th
metric, dilaton and 3-formAnsätzegiven in Eqs.~14! reduce
to
8-7
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dŝI D
2 5X6/(D22)dsD23

2 1 1
4 X22(D25)/(D22)

3(
a

~sa2gA(1)
a !2, ~35!

eA(D22)/2f̂5XD25, ~36!

F̂ (3)5F (3)2
1

4g2 V (3)2
1

12g
eabgF (2)

a

`~sb2gA(1)
b !`~sg2gA(1)

g !, ~37!

where

V (3)[
1
6 eabg~sa2gA(1)

a !`~sb2gA(1)
b !`~sg2gA(1)

g !

~38!

is the volume form on the 3-sphere.
It is easy to verify that thisSU(2) truncation of the full

SO(4) reductionAnsatzof Sec. II is a consistent one. As w
remarked above, there is no longer anything ‘‘surprisin
about the consistency in this case, since the truncation ha
to zero all fields that transformed non-trivially und
SU(2)R . In other words, theSU(2)L Ansatzin this section
retains all the singlets underSU(2)R , while discarding all
the non-singlets. Such a truncation is necessarily consis
since non-linear products of the fields that are retained
never generate non-singlets underSU(2)R . A related point
is that the fields that remain in the reductionAnsatzparam-
eterizehomogeneousdeformations of the 3-sphere. A pa
ticular case of thisSU(2) reduction has appeared previous
in the literature, in theS3 reduction ofN51 supergravity
from D510 to D57 @29#.

B. Truncation from SO„4… to U„1…ÃU„1…

The second truncation that we shall consider here
volves retaining only theU(1)3U(1) subgroup of the origi-
nal SU(2)3SU(2) gauged fields of the fullSO(4) reduc-
tion Ansatzof Sec. II. It is convenient now to take theSO(4)
indices i , j , . . . to range over the values 1,2,3,4. The tru
cation amounts to setting all gauge potentialsA(1)

i j to zero
except forA(1)

12 andA(1)
34 , for which we write

A(1)
12 [A(1)

1 , A(1)
34 [A(1)

2 . ~39!

It is also convenient now to parametrize the coordinatesm i

on S3 as

m11 im25m̃1eif1, m31 im45m̃2eif2. ~40!

At the same time as making the truncation of the gau
fields, consistency with their equations of motion requi
that we set certain of the scalar fields to zero, so that w
remains is just two scalarsX1 andX2 as follows:

Ti j 5diag~X1 ,X1 ,X2 ,X2!. ~41!

Note that we shall now have
06402
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Y5~X1X2!2, D5X1m̃1
21X2m̃2

2 ,

U52(
i 51

2

~Xi
2m̃ i

22DXi !. ~42!

After substituting the above truncation and reparametri
tion into the original Kaluza-KleinAnsätzein Sec. II, we find
that the metric and dilatonAnsätzebecome

dŝD
2 5~X1X2!2/(D22)S D2/(D22)dsD23

2

1g22D2(D24)/(D22)(
i 51

2

Xi
21

3„dm̃ i
21m̃ i

2~df i2gA(1)
i !2

…D , ~43!

eA(D22)/2f̂5D21~X1X2!(D24)/2. ~44!

TheAnsatzfor the 3-form fieldF̂ (3) in this U(1)2 truncation
is most simply expressed in terms of the expression for
dual of F̂ (3) . Making the truncation in Eq.~20!, we find

e2A8/(D22)f̂*̂ F̂ (3)522g(
i 51

2

~Xi
2m̃ i

22DXi !eD23

1
1

2g (
i 51

2

Xi
21* dXi`d~m̃ i

2!

2
1

2g2 (
i 51

2

Xi
22d~m̃ i

2!`~df i2gA(1)
i !

`* F (2)
i 1g23Y21* F (3) . ~45!

TheAnsatzfor F̂ (3) itself is also easily obtainable by impos
ing theU(1)2 truncation on the generalSO(4) Ansatz~14!.

Note that in theU(1)2 truncation the question of the con
sistency of the reduction is still a non-trivial one, since t
two scalarsX1 andX2 parametrize inhomogeneous deform
tions of the 3-sphere. Of course since we have already
gued that theSO(4) reduction in Sec. II is consistent, th
consistency for theU(1)2 truncation is a consequence.

A particular case of thisU(1)2 truncation appeared pre
viously in the literature@30#, where it was obtained for the
caseD510 by taking a singular limit of theS4 reduction of
eleven-dimensional supergravity that was constructed in@7#.

V. SDÀ3 REDUCTION AND DÄ3, NÄ8 GAUGED
SUPERGRAVITY

As we discussed in Sec. II, it is natural to conjecture t
the theory of gravity coupled to a dilaton and a 3-form, d
scribed by Eq.~13! with a given by Eq. ~7!, should also
admit a consistent reduction to three dimensions on
sphereSD23, in which all the Yang-Mills gauge fields o
SO(D22) are retained. Additionally, we should keep th
8-8
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1
2 (D21)(D22) scalar fields described by the symmet
tensorTi j , wherei is a vector index ofSO(D22). We find
that indeed such a consistent reduction is possible, and
the Kaluza-KleinAnsatzis given by

dŝD
2 5Y1/(D22)~D (D24)/(D22)ds3

2

1g22D22/(D22)Ti j
21Dm iDm j !,

e2A(D22)/2f̂5D21Y1/2,

F̂ (3)52gUe31g21Ti j
21* DTjk`~mkDm i !

2
1

2g2 Tik
21Tjl

21* F (2)
i j `Dmk`Dm l , ~46!

where the various quantities appearing here are again g
in Eqs. ~15!, ~16!, and ~17!, but now the indicesi , j , . . .
range over (D22) values. Thus the field content in Kaluz
Klein reduced three-dimensional theory comprises the me
ds3

2, the 1
2 (D22)(D23) gauge potentialsA(1)

i j of SO(D
22), and the1

2 (D21)(D22) scalars described by the sym
metric tensorTi j . The calculation of the Hodge dual of th
3-form F̂ (3) is again a mechanical, although involved, calc
lation. We find that it is given by

e2A8/(D22)f̂*̂ F̂ (3)

5
g2(D24)

~D23!!
e i 1••• i D22S gUD22m i 1Dm i 2

•••Dm i D22

2~D23!D22Ti 1 jDTi 2kDm i 3
•••Dm i D22m jmk

2
~D23!~D24!

2
F (2)

i 1i 2Ti 3 jDm i 4Dm i D22m j D , ~47!

where we have suppressed the wedge symbols in produc
differential forms in order to economize on space.

It is again a straightforward, although lengthy, proced
to substitute the aboveAnsatzinto theD-dimensional equa-
tions of motion~18!, and to verify that there is a consiste
reduction to equations of motion for the three-dimensio
fields. We find that these equations can be derived from
following three-dimensional Lagrangian:

L35R* 12
1

4~D22!
Y22* dY`dY2 1

4 T̃i j
21* DT̃jk

`T̃kl
21DT̃li 2

1
4 Y22/(D22)T̃ik

21T̃j l
21* F (2)

i j `F (2)
kl 2V* 1,

~48!

whereY5det(Ti j ), andTi j is written in terms of the unimo-
dular (D22)3(D22) matrix T̃i j asTi j 5Y1/(D22)T̃i j . The
potentialV is given by

V5 1
2 g2Y2/(D22)

„2T̃i j T̃i j 2~ T̃ii !
2
…. ~49!

An application of this dimensional reduction that is of pa
ticular interest arises if we takeD510, since then the
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higher-dimensional starting point will be the bosonic sec
of N51 supergravity in ten dimensions. The reduction onS7

then yields a three-dimensional theory that is the boso
sector of anSO(8) gauged supergravity, withN58 ~i.e.,
half of maximal! supersymmetry. As well as the 28 gaug
fields, there are in total 36 scalars, described by the uni
dular symmetric tensorT̃i j and the scalarY. These transform
as a 35 and a 1 underSO(8), respectively. Evidently, if we
reduced the fullN51 theory inD510, including the fermi-
ons, we would obtainN58 gaugedSO(8) supergravity in
three dimensions. This appears to be the first example
such a gauged supergravity inD53. Previous examples o
gauged three-dimensional supergravities in the literat
have been of the type constructed in@31#, with SO(p)
3SO(q) gauge fields and a pure cosmological constant te
implying the existence of an AdS3 ground-state solution. In
fact there are no scalar fields, and hence no scalar poten
in the theories constructed in@31#. By contrast, the gauged
supergravity that we have obtained here has 36 scalars
the potential~49!. The theory does not admit an AdS3 solu-
tion, but it may allow domain-wall solutions that preser
half of the supersymmetry.

VI. S2 REDUCTION

Here, we construct the Kaluza-KleinAnsatzfor the reduc-
tion of Eq. ~3! with p52 anda given by Eq.~6!. Thus our
starting point is

LD5R̂*̂ 12 1
2 *̂ df̂`df̂2 1

2 e2a*ˆ f*̂ F̂ (2)`F̂ (2) , ~50!

where the positive constanta is given by Eq.~6!. From Eq.
~50! we derive the equations of motion

d*̂ df̂5 1
2 ~21!Dae2af̂*̂ F̂ (2)`F̂ (2) ,

d~e2af̂*̂ F̂ (2)!50, ~51!

R̂MN5 1
2 ]Mf̂]Nf̂1 1

2 e2af̂

3S F̂MN
1 2

1

2~D22!
F̂ (2)

2 ĝMND . ~52!

We find that there is a consistent reductionAnsatzon S2,
given by

dŝD
2 5Y1/(D22)~D1/(D22)dsD22

2

1g22D2(D23)/(D22)Ti j
21Dm iDm j !, ~53!

eA
2(D22)

D21 f̂5D21Y(D23)/(D21), ~54!

F̂ (2)5
1
2 e i jk~g21UD22m iDm j`Dmk

22g21D22Dm i`DTjl Tkmm lmm

2D21F (2)
i j Tklm

l !. ~55!
8-9
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Again, the various quantities appearing here are given
Eqs.~15!, ~16! and~17!, but with the indicesi , j , . . . ranging
over 3 values. The dual of the 2-form then turns out to
given by

e2A2(D21)/(D22)f̂*̂ F̂ (2)

52gUeD221g21Ti j
21* DTjk`~mkDm i !

2
1

2g2 Tik
21Tjl

21* F (2)
i j `Dmk`Dm l . ~56!

The field content of the Kaluza-Klein reduced theory co
prises the (D22)-dimensional metricdsD22

2 , the three
gauge potentialsA(1)

i j of SO(3), and the sixscalar fieldsTi j .
Substituting theAnsatzinto theD-dimensional equations

of motion ~51!, we find that it yields a consistent Kaluza
Klein S2 reduction, with the (D22)-dimensional fields sat
isfying equations of motion that follow from the Lagrangia

LD225R* 12
D24

3~D21!
Y22* dY`dY2 1

4 T̃i j
21* DT̃jk

`T̃kl
21DT̃li 2

1
4 Y22/3T̃ik

21T̃j l
21* F (2)

i j `F (2)
kl 2V* 1,

~57!

whereY5det(Ti j ), andTi j is written in terms of the unimo-
dular 333 matrix T̃i j as Ti j 5Y1/3T̃i j . The potentialV is
given by

V5 1
2 g2Y2/3

„2T̃i j T̃i j 2~ T̃ii !
2
…. ~58!

In view of our earlier observation that theD-dimensional
Lagrangian~50!, with the constanta given by Eq.~6!, can
itself be thought of as an ordinaryS1 Kaluza-Klein reduction
of pure gravity in (D11) dimensions, it follows that we ca
also interpret our result as a consistent reduction
(D11)-dimensional pure gravity. The internal space is n
simply S13S2, however, since the 2-form fieldF (2) in D
dimensions, which is the Kaluza-Klein vector of theS1 re-
duction from (D11) dimensions, is topologically non
trivial. One can see from Eq.~55! that if, for example, the
scalars were all taking trivial values, the 2-form fieldF̂ (2)
would be just the volume-form onS2 ~like in a Dirac mono-
pole configuration!. Thus the reduction from (D11) dimen-
sions is actually on a manifold that is topologicallyS3. In
fact we can easily lift the metricAnsatzin Eq. ~53! to give
the Ansatzfor the reduction from (D11) dimensions, by
incorporating the standardS1 reduction step

dŝD11
2 5e2af̂dŝD

2 1e22a(D22)f̂~dz1Â(1)!
2, ~59!

whereF̂ (2)5dÂ(1) , and the fields on the right-hand side a
given in Eqs.~53!–~55!. Thus we find

dŝD11
2 5Y2/(D21)dsD22

2 1D21Y2/(D21)Ti j
21Dm iDm j

1DY2(D23)/(D21)~dz1 *̂ A(1)!
2. ~60!
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This is an unusual type ofS3 reduction, in which the three
SO(3) Yang-Mills fields A(1)

i j and the six scalar fieldsTi j

parametrize inhomogeneous deformations of the 3-spher

VII. CONFORMAL ANOMALY TERMS

Until now we have focussed our attention on the pur
classical theories of gravity coupled to ap-form field
strength and a dilaton. One of the two cases that adm
consistent sphere reductions turned out to be whenp53,
and in fact the Lagrangian~13! is precisely the leading-orde
expression for the low-energy limit of theD-dimensional
bosonic string. Of course the bosonic string suffers from
conformal anomaly if the dimensionD is not equal to 26. It
turns out that the effect of this anomaly is to generate
additional term in the effective action@33#, which vanishes at
D526, so that Eq.~13! is replaced by

LD5R̂*̂ 12 1
2 *̂ df̂`df̂2 1

2 e2af̂*̂ F̂ (3)`F̂ (3)

2 1
2 m2~D226!e(1/2)af̂*̂ 1. ~61!

We shall refer to this extra contribution as a ‘‘cosmologic
term.’’ Note that if we were instead considering the theory
gravity, 3-form and dilaton as coming from the low-ener
effective theory of the superstring, the (D226) factor would
be replaced by (D210). In all subsequent discussions in th
section, 26 can accordingly be replaced by 10 in the con
of the superstring.

It is of interest to see what happens to the previo
Kaluza-Klein reductions onS3 andSD23 after this extra term
is included. We find that the previousS3 reductionAnsatz
continues to give a consistent reduction, in which all t
dependence on theS3 coordinates cancels out when it
substituted into theD-dimensional equations of motion fol
lowing from Eq. ~61!. We find that the reduced
(D23)-dimensional theory is described by the same L
grangian~27!, but now the potentialV given in Eq.~28! is
replaced by

V5 1
2 g2Y1/2

„2T̃i j T̃i j 2~ T̃ii !
2
…1 1

2 m2~D226!Y1/2. ~62!

The fact that theS3 reduction continues to be a consiste
one after the inclusion of the cosmological term in Eq.~61!
could in fact have been foreseen by considering the gro
theory arguments that we developed in Sec. II. In the abse
of the cosmological term, we observed that the global sy
metry group after aT3 reduction isR3O(3,3), which is
large enough to containO(3)3O(3) as a compact sub
group, and hence to permit anSO(4) gauging. The inclusion
of the cosmological term in Eq.~61! breaks theR factor in
the global symmetry, but theO(3,3) factor survives,11 and so
the cosmological term does not present any obstacle to
SO(4) gauging inD23 dimensions.

11This can be seen from the fact that the dilaton vector for
cosmological term after theT3 reduction is orthogonal to the dilato
vectors that form the positive roots ofO(3,3).
8-10
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It is interesting to note that ifD.26 ~or D.10 in the
case of a supersymmetric string!, the potential~62! admits a
symmetrical ground-state solution in which all the sca
fields are constant. To see this, we note that for such a s
tion we must have

]V

]Y
50,

]V

]T̃i j

2 1
4 d i j dkl

]V

]T̃kl

50. ~63!

~The trace subtraction in the second equation arises bec
T̃i j has unit determinant.! Thus the conditions for a solutio
with constant scalars imply

V50, T̃i j 5
1
4 T̃kkd i j , ~64!

and hence sinceT̃i j is unimodular we must haveT̃i j 5d i j ,
and

g5mAD226

8
, ~65!

with Y arbitrary. Note in particular that the vanishing ofV
implies that the (D23)-dimensional Einstein equation ha
no cosmological term, and so it admits Minkowski spaceti
as a ground-state solution. One can also find non-trivial
lutions that are asymptotically flat.

If we now consider instead theSD23 reduction of the new
theory ~61!, we find that the previously consistent reducti
is spoiled by the presence of the additional cosmolog
term. In particular, it turns out that there is a mis-mat
between the SD23 dependence from the extra ter
e(1/2)af̂*̂ 1, in comparison to the previous terms, in th
D-dimensional equation of motion for the dilatonf̂. Actu-
ally, this is not too surprising. It can be understood from
fact that the presence of the cosmological term in Eq.~61!
breaks the enhancedO(D22,D22) global symmetry that
occurred previously under a dimensional reduction onTD23,
and so there will no longer be anSO(D22) compact sub-
group of the global symmetry group that could permit
SO(D22) gauging in three dimensions. This can be se
from the fact that the dilaton vector for the cosmologic
term in Eq. ~61!, after toroidal reduction onTD23, is not
orthogonal to the positive root vectors ofO(D22,D22).

Finally, we may also consider the possible inclusion of
analogous cosmological term in the Lagrangian~50! for
gravity, the dilaton and a 2-form field strength. In this ca
there would not be any direct motivation from bosonic stri
theory for the inclusion of such a term, but it is neverthele
of interest to see what the effect would be. Thus we m
consider whether we may modify the Lagrangian~50! to

LD5R̂*̂ 12 1
2 *̂ df̂`df̂2 1

2 e2af̂*̂ F̂ (2)`F̂ (2)2
1
2 m2ebf̂*̂ 1,

~66!

where the dilaton coupling constantb in the cosmological
term is chosen so as to maintain the consistency of
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Kaluza-Klein S2 reduction. It turns out that this is indee
possible, and consistency is achieved ifb is the positive con-
stant given by

b25
2

~D21!~D22!
. ~67!

The resulting Kaluza-Klein theory in (D22) dimensions is
described by the Lagrangian~57!, but with the potential~58!
replaced by

V5 1
2 g2Y2/3

„2T̃i j T̃i j 2~ T̃ii !
2
…1 1

2 m2Y2/(D22). ~68!

Again, one could have foreseen the continued consiste
of the S2 reduction from the fact that if the theory~66! is
reduced instead onT2, there is still a sufficient enhanceme
of the global symmetry to permit anSO(3) gauging. Previ-
ously, for Eq.~50!, the genericGL(2,R) symmetry was en-
hanced to toGL(3,R). Now, with the inclusion of the cos
mological term in ~66!, the R factor in the GL(3,R) is
broken, but theSL(3,R) factor remains, and so the compa
SO(3) subgroup is still available for the gauging. We c
also understand this as follows. Recalling that the origi
Lagrangian~50! can itself be viewed as a standardS1 reduc-
tion of pure gravity in (D11) dimensions, we now observ
that the enlarged Lagrangian~66!, with b given by Eq.~67!,
is nothing but theS1 reduction of the (D11)-dimensional
theory of pure gravity with a cosmological constant:

LD115R̂D11*̂ 12 1
2 m2*̂ 1. ~69!

It is then evident that the dimensional reduction of Eq.~66!
on T2 will give the same theory as the dimensional reduct
of Eq. ~69! on T3, and so in particular there will be a
SL(3,R) global symmetry.12

One can again look for solutions of the reduced theory
which all the scalars are constant. The equations of mo
following from Eq. ~68! then imply that

T̃i j 5d i j , Y2(D25)/D225
m2

g2~D22!
. ~70!

Substituting these back into the potential, we find that at t
extremum it is given by

V5 1
2 m2S D25

D22D F m2

g2~D25!G
1/(D25)

, ~71!

which corresponds~for D>6) to a positive cosmologica
constant in the (D22)-dimensional spacetime.@Note that
Eq. ~70! implies that the cosmological constant in the (D
11)-dimensional pure gravity theory is also positive.# This
allows, in particular, a ground-state solution of the origin

12The cosmological constant in (D11) dimensions breaks the
scale-covariance that a theory of gravity and antisymmetric ten
has, and so one only getsSL(n,R), and notGL(n,R) from a Tn

reduction in this case~see@21#!.
8-11
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D-dimensional theory of the formMD223S2, whereMD22
is an Einstein spacetime with positive cosmological const
such as de Sitter space. Interpreted as a solution of theD
11)-dimensional pure Einstein theory with positive cosm
logical constant, it becomesMD223S3, since in this solu-
tion the 2-form*̂ F (2) in D dimensions is a constant multipl
of the volume-form ofS2, and thus theS1 in the reduction
from (D11) dimensions is the Hopf bundle overS2.

VIII. CONCLUSIONS AND DISCUSSIONS

In this paper, we have investigated the consistency of
Kaluza-Klein sphere reduction of the theory described by
Lagrangian~3!, comprising gravity coupled to ap-form field
strength and a dilaton inD dimensions. Specifically, we hav
focused our attention on those cases where the reductionAn-
satzat least includes all the Yang-Mills fields of theSO(n
11) gauge group.

We have shown that by including the dilaton in th
higher-dimensional theory, the possibilities for consist
sphere reductions are extended somewhat, in compariso
the case where the higher-dimensional starting point c
prises only gravity and ap-form field strength. Specifically
if no dilaton is included the only possibilities for consiste
sphere reductions of the kind we are considering are th
associated with theS4 and S7 reductions ofD511 super-
gravity, and theS5 reduction of type IIB supergravity. With
the dilaton included, we find that consistentS2 reductions are
possible for the case of a 2-form in the higher dimensionD,
and that consistentS3 andSD23 reductions are possible fo
the case of a 3-form in the higher-dimension. These red
tions are possible starting from an arbitrary dimensionD,
provided that the strength of the dilaton coupling to t
2-form or 3-form field strength is chosen appropriately.

The previously-known consistent sphere reductions fr
D511 with a 4-form, andD510 with a self-dual 5-form,
were associated with supersymmetric higher-dimensio
theories. In the examples that we have obtained in this pa
supersymmetry is clearly not in general playing a role, sin
the higher-dimensional starting point can be a theory of gr
ity, a dilaton and a 2-form or 3-form in any arbitrary dime
sion. It is probably more appropriate, therefore, to charac
ize the theories that admit consistent sphere reductions by
fact that they have the unusual property of giving rise
lower-dimensional theories with certain enhanced glo
symmetry groups upon toroidal reduction onTn. In particu-
lar, a necessary condition for a consistentn-sphere reduction
that retains all the Yang-Mills fields ofSO(n11) is that the
global symmetryGL(n,R) of a generic theory reduced onTn

must be enhanced to a group whose compact subgroup
tainsSO(n11). These symmetry enhancements occur o
in exceptional cases, when scalars coming from the toro
reduction of metric ‘‘conspire’’ with scalars coming from th
reduction of thep-form field strength to give an enhance
global symmetry group. It so happens that this same fea
of symmetry enhancement is a central feature also in theo
such asD511 and type IIB supergravity, and their toroid
reductions.

It should be emphasized that the group-theoretic argum
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that we have been using in order to determine when a c
sistent sphere reduction may be possible does not, of it
provide a guarantee of consistency.13 Rather, it can be
viewed as providing a proof ofinconsistencyin cases where
the necessary enhancement of the global symmetry grou
the associated toroidal reduction does not occur. It is ra
striking, however, that in all cases where a suitable su
ciently large global symmetry enhancement does occur,
find that a consistent sphere reduction is possible.

An interesting illustration of this point is provided by th
reductions that we considered in Sec. VII, where an ad
tional ‘‘cosmological term’’ was included in the higher
dimensional theory. The argument based on global symm
enhancement showed that theSD23 reduction would no
longer be consistent, but that theS3 and S2 reductions still
had the possibility of being consistent. And indeed this is j
what we found, when we substituted theAnsätze into the
equations of motion of the higher-dimensional theories w
the cosmological terms included.

Although we have argued that supersymmetry is in so
sense not of itself the directly crucial ingredient in the qu
tion of consistency, it is, nevertheless, worthwhile to co
sider further the question of supersymmetry and consis
sphere reductions. As well as the examples of theS4 andS7

reductions fromD511, and theS5 reduction fromD510,
we can now also consider those examples amongst the
ductions constructed in this paper that can be associated
supersymmetric theories. Thus, for instance, we can cons
theS2 reduction of type IIA supergravity, using the Ramon
Ramond~R-R! 2-form, and theS3 andS7 reductions of type
I or type II supergravity, using the Neveu-Schwarz–Neve
Schwarz~NS-NS! ~or R-R in the case of type IIB! 3-form.

Constructing the Kaluza-Klein sphere reductionAnsatz
for the fermions in a supergravity theory is a notorious
difficult problem, and even when it is attempted the effo
are rarely extended to include the quartic fermion term
However, we may construct a general argument to show
once a consistent reduction has been constructed in
bosonic sector, the supersymmetry of the higher-dimensio
theory will then guarantee that a consistent reduction incl
ing the fermions as well must be possible. The argumen
as follows. We know that a sphere reduction in whichall
fields ~massive as well as massless! are retained will neces
sarily be consistent, and it will give rise to a supersymme
lower-dimensional theory. Furthermore, we know that all t
non-linear couplings between the various lower-dimensio
fields will be organised, by virtue of the lower-dimension
supersymmetry, into supersymmetrically-covariant couplin
of complete supermultiplets. Now, if we demonstrate in t
bosonic sector that there is a consistent truncation to
massless sector~i.e., to the bosonic sector of the massle
lower-dimensional supermultiplet!, then this means that ther
are no interaction terms in which powers of the massl
bosonic fields@i.e., conserved currents built from the mas

13Unlike the traditional group theory argument that proves conc
sively the consistency of a truncation in which all singlets unde
symmetry group are retained, and all non-singlets are truncate
8-12
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less fields~see@32#!# couple to linear powers of the massiv
bosons that are being set to zero. But this in turn implies
in the full theory there can be no interaction terms in wh
supercurrents built from the massless multiplet couple to
ear powers of the massive fields. Thus if one shows that
consistent to make a sphere reduction in which all the bos
of the massless supermultiplet are retained, then this imp
that it must be consistent to make a sphere reduction of
supersymmetric theory in which the entire massless su
multiplet is retained.

One can use this argument to show that theS3 and S7

reductions ofN51 ten-dimensional supergravity, which a
special cases of our more general results in this paper, wi
ty
u

e

sis

cl

. D
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consistent, as a consequence of our results for the bos
sectors.
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