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Brane world cosmology: Gauge-invariant formalism for perturbation
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Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 8 May 2000; published 23 August 2000!

In the present paper the gauge-invariant formalism is developed for perturbations of the brane world model
in which our universe is realized as a boundary of a higher dimensional spacetime. For the background model
in which the bulk spacetime is (n1m) dimensional and has the spatial symmetry corresponding to the
isometry group of ann-dimensional maximally symmetric space, gauge-invariant equations are derived for
perturbations of the bulk space-time. Further, for the case corresponding to the brane world model in which
m52 and the brane is a boundary invariant under the spatial symmetry in the unperturbed background,
relations between the gauge-invariant variables describing the bulk perturbations and those for brane pertur-
bations are derived from Israel’s junction condition under the assumption ofZ2 symmetry. In particular, for the
case in which the bulk spacetime is a constant-curvature spacetime, it is shown that the bulk perturbation
equations reduce to a single hyperbolic master equation for a master variable, and that the physical condition
on the gauge-invariant variable describing the intrinsic stress perturbation of the brane yields a boundary
condition for the master equation through the junction condition. On the basis of this formalism, it is pointed
out that it seems to be difficult to suppress brane perturbations corresponding to massive excitations for a brane
motion giving a realistic expanding universe model.

PACS number~s!: 04.50.1h, 11.25.Mj, 12.10.2g, 98.80.Cq
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I. INTRODUCTION

Motivated byM theory@1,2#, anti–de Sitter~AdS! confor-
mal field theory ~CFT! correspondence in string theorie
@3,4#, and the hierarchy problem in particle theory@5–8#,
brane world models in which our universe is realized a
boundary of a higher-dimensional spacetime have been
tively studied recently@9–38#. In particular, for the case in
which the bulk spacetime is five dimensional, anti–de Si
spacetime and the brane is realized as a flat four-dimensi
spacetime, the gravitational interaction between matter in
brane is well described by the standard one on scales m
larger than the scale corresponding to the brane tension@12–
15#.

Further, as an extension of the analysis to a dynam
situation, the embedding of Robertson-Walker universe m
els into five-dimensional anti–de Sitter and anti–de Sitt
Schwarzschild spacetimes has been discussed by m
people@19–30#. In such high-symmetry cases, although t
evolution equation for the cosmic scale factor is modifi
from the standard one, our universe is still a dynamica
closed system, and the difference in the evolution equa
can be neglected when the energy density of the univ
becomes much smaller than the brane tension. Thus
brane world model gives a new world model consistent w
present day observations. However, if one goes beyond
lowest-level approximation, it is not clear whether the bra
world model is consistent with all available observations
cause our universe is not dynamically closed in this mo
@10#.

One of the simplest ways to analyze this problem is
investigate the behavior of perturbations of the brane wo
model. Since perturbations of the brane are inevitably as
ciated with perturbations in the geometry of the bulk spa
time, such investigation will make clear whether or not t
open nature of the universe dynamics is controllable. It w
0556-2821/2000/62~6!/064022~19!/$15.00 62 0640
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also make possible an observational test of the mode
terms of the anisotropy of the cosmic microwave bac
ground.

As the starting point of investigations in this line, in th
present paper, we develop a gauge-invariant formalism
perturbations of the brane world model. The basic appro
is the same as that originally developed for four-dimensio
spacetime by Gerlach and Sengupta@39–41# and utilized by
some people in analysis of the interaction between a dom
wall and gravitational waves in four-dimensional spacetim
@42–44#.

The formalism consists of two parts. The first is a gaug
invariant formalism for perturbations in the geometry of t
bulk spacetime. This problem has already been investiga
by some people for the standard case in which the b
spacetime is vacuum and maximally symmetric@45#. In the
present paper, taking account of the developing nature of
brane world model, we extend the formalism to the case
which the bulk spacetime is (m1n) dimensional and its un-
perturbed geometry has only the isometry corresponding
the maximally symmetric space of dimensionn (n>1). This
symmetry is utilized to expand perturbations in terms of
harmonic functions onn-dimensional maximally symmetric
space and define gauge-invariant variables.

The second part establishes relations between the ga
invariant variables describing perturbations of the brane
those for the bulk perturbations. In this part we assume
m52 and the (n11)-dimensional brane is invariant unde
the isometry group of the bulk in the unperturbed mod
Thus the brane represents an expanding Robertson-Wa
universe in general.

The paper is organized as follows. In the next section
first classify perturbations into tensor, vector, and sca
types in terms of the tensorial behavior with respect to
maximally symmetricn-dimensional spacetime. Then fo
each type we define the gauge-invariant variables descri
©2000 The American Physical Society22-1



te
a

n
th
ill
tio
d
ic
t

he
u

tio
a
th
le
an
d

io
io
s

m

tr

nt

y

in

he

xi-

, and
unc-

be

HIDEO KODAMA, AKIHIRO ISHIBASHI, AND OSAMU SETO PHYSICAL REVIEW D 62 064022
perturbations of the bulk geometry and express the Eins
equations in terms of them. In Sec. III, after introducing
gauge-invariant variable describing the motion of the bra
we express Israel’s junction condition corresponding to
Z2 symmetry in terms of it and the bulk variables. We w
show that this gives expressions for the intrinsic perturba
variables, for the brane in terms of the bulk variables, an
boundary condition on the latter in terms of the intrins
stress perturbations of the brane. In Sec. IV we specialize
formalism to the standard brane world model in which t
bulk spacetime is vacuum. We reduce the perturbation eq
tions to a single hyperbolic equation for a master variableV
in a two-dimensional spacetime and express the junc
conditions in terms of the master variable. We will show th
the condition that the anisotropic stress perturbation of
brane should vanish yields the Neumann and Dirich
boundary conditions on the master variable for the tensor
vector perturbations, respectively, while the boundary con
tion for the scalar perturbation is obtained from the condit
on the entropy perturbation of the brane. The last condit
becomes nonlocal with respect to time except for the case
which the brane is vacuum orp52r. Section V is devoted
to summary and discussion.

II. BULK PERTURBATION EQUATIONS

A. Background spacetime

In this section we consider perturbations of spaceti
structure on (m1n)-dimensional spacetimeM, which is lo-
cally written as a product

M m1n5N m3K n{~ya,xi !5~zM !. ~1!

Its unperturbed background geometry is given by the me

ds̄25ḡMN dzM dzN5gab~y!dya dyb1r 2~y!dsn
2 , ~2!

where the metric

dsn
25g i j ~x!dxi dxj ~3!

is that with a constant sectional curvatureK on K n. We
denote the covariant derivatives, the connection coefficie
and the curvature tensors for the three metricsds̄2,
gab dya dyb, anddsn

2 as

ds̄2⇒¹̄M ,ḠNL
M ,R̄MNLS, ~4!

gab~y!dya dyb⇒Da , mGbc
a ~y!, mRabcd~y!, ~5!

dsn
2⇒D̂ i ,Ĝ jk

i ~x!,R̂i jkl ~x!5K~g ikg j l 2g i l g jk!.
~6!

The expressions forḠNL
M and R̄MNLS in terms of the corre-

sponding quantities for the metricsgab(y)dya dyb and dsn
2

are given in Appendix A.
From the symmetry structure ofḠMN the energy-

momentum tensorT̄MN for the background bulk geometr
has the structure
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T̄ai50, T̄j
i 5 P̄d j

i . ~7!

Hence the Einstein equations for the bulk spacetime,

ḠMN1LḡMN5k2T̄MN , ~8!

are reduced in the unperturbed background to

Ḡab1Lgab5k2T̄ab , ~9!

Ḡi
i5n~k2P̄2L!. ~10!

B. Gauge transformation of perturbations

For the infinitesimal gauge transformation represented
terms of the coordinates asd̄zM5jM, the metric perturbation
hMN5dḡMN transforms as

d̄hMN52L” jgMN52¹̄MjN2¹̄NjM . ~11!

By decomposing the connection this yields

d̄hab52Dajb2Dbja , ~12!

d̄hai52r 2DaS j i

r 2D 2D̂ ija , ~13!

d̄hi j 52D̂ ij j2D̂ jj i22rD ar jag i j . ~14!

Similarly, the gauge transformation of the perturbation of t
energy-momentum tensord̄(dT̄)MN ,

d̄~dT̄!MN52L” jT̄MN52jL¹̄LT̄MN2T̄ML¹̄NjL2T̄NL¹̄MjL,
~15!

is written as

d̄~dT̄!ab52jcDcT̄ab2T̄acDbjc2T̄bcDajc, ~16!

d̄~dT̄!ai52T̄abD̂ ij
b2r 2P̄Da~r 22j i !, ~17!

d̄~dT̄! i j 52jaDa~r 2P̄!g i j 2 P̄~D̂ ij j1D̂ jj i !. ~18!

C. Gauge-invariant perturbation equations

In general, each tensor with rank at most 2 on the ma
mally symmetric spaceK n is uniquely decomposed into
components of the three types, scalar, vector, and tensor
each component can be expanded in terms of harmonic f
tions of the same type@46#.

1. Tensor perturbation

First we consider the tensor perturbation, which can
expanded in terms of the harmonic tensorsTi j ,

~D̂1k2!Ti j 50, ~19!

with the properties
2-2
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Ti
i50, D̂ jTi

j50. ~20!

In the present paper we omit the index labeling the harm
ics as well as the summation symbol with respect to
index, because expansion coefficients corresponding to
ferent eigenvalues decouple on the maximally symme
space.

Here note that the eigenvaluek2 is always non-negative

under a boundary condition making the operatorD̂ self-
adjoint in theL2 space. In particular,k250 appears only for
the flat space (K50) since the corresponding eigentenso
satisfy D̂kTi j 50, which yields 05D̂ i D̂kTi j 5nKTjk . Thus
the eigentensors fork250 are constant tensors. In the fram
work of the expansion in theL2 sense, such eigentenso
should be discarded. Thus we assumek2.0 in the following
unless otherwise stated.

For the tensor perturbation the metric perturbation is
panded as

hab50, hai50, hi j 52r 2HTTi j . ~21!

Since the infinitesimal gauge transformationj5(ja,j i) has
no tensor component, it follows thatHT is gauge invariant.
Similarly, dT̄MN is expanded as

dT̄ab50, dT̄i
a50, dT̄j

i 5tTTj
i , ~22!

where tT is the gauge-invariant variable representing
tensor-type anisotropic stress perturbation.

Inserting these expansions into the expression fordR̄i j ,
we obtain the following gauge-invariant perturbation equ
tion:

2hHT2
n

r
Dr •DHT1

k212K

r 2
HT5k2tT , ~23!

whereh5DaDa is the d’Alembertian on them-dimensional
spaceN m.

2. Vector perturbation

Divergence-free vector fields can be expanded in term
the vector harmonicVi defined by

~D̂1k2!Vi50, ~24!

D̂ iV
i50. ~25!

From this we can define the vector-type harmonic tensor

Vi j 52
1

2k
~D̂ iVj1D̂ jVi !, ~26!

which has the properties

@D̂1k22~n11!K#Vi j 50, ~27!

Vi
i50, D̂ jVi

j5
k22~n21!K

2k
Vi , ~28!
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As in the case of tensor harmonics, the eigenvaluek2 is
always non-negative andk250 occurs only forK50, for
which the harmonic vectors become constant vectors. T
for the same reason as in the tensor harmonics, we ass
k2.0 in the following. One subtle point of the vector ha
monics is thatk2.0 does not implyk22(n11)K.0 for
K.0. Hence, fork2,(n11)K and K.0, the vector-type
tensor harmonics defined by Eq. Eq.~26! should vanish,
which implies thatVi is a Killing vector onSn. In this case it
follows from Eq. Eq. ~28! that the eigenvalue should b
given byk25(n21)K.

The vector perturbation of the metric is expanded in ter
of the vector harmonics as

hab50, hai5r f aVi , hi j 52r 2HTVi j , ~29!

and the vector perturbation of the energy-momentum ten
as

dT̄ab50, dT̄i
a5r taVi , dT̄j

i 5tTVj
i . ~30!

For the reason stated above,HT and tT are not defined for
the modek25(n21)K with K.0.

Since the infinitesimal gauge transformationj has only
the vector component

ja50, j i5rLVi , ~31!

the expansion coefficients of the perturbation transform a

d̄ f a52rD aS L

r D , d̄HT5
k

r
L, d̄ta50, d̄tT50.

~32!

Hence, except the modek25(n21)K for K.0, the vector
perturbation is described by the three gauge-invariant v
ablesta , tT , and

Fa5 f a1
r

k
DaHT . ~33!

On the other hand, for the modek25(n21)K with K.0,
only the combination

Fab
(1)5rD aS f b

r D2rD bS f a

r D ~34!

is gauge invariant.
From the componentsdḠi

a anddḠj
i of the Einstein equa-

tions we obtain the following gauge-invariant perturbati
equations except the modek25(n21)K with K.0:
2-3
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1

r n11
DbH r n12FDbS Fa

r D2DaS Fb

r D G J
2

k22~n21!K

r 2
Fa522k2ta , ~35!

k

r n
Da~r n21Fa!52k2tT . ~36!

On the other hand, for the modek25(n21)K with K.0,
the second equation does not appear and the first equati
written as

1

r n11
Db~r n11Fab

(1)!522k2ta. ~37!

3. Scalar perturbation

From the scalar harmonic functions

~D̂1k2!S50, ~38!

we can construct the scalar-type harmonic vectorsSi as

Si52
1

k
D̂iS, ~39!

@D̂1k22~n21!K#Si50, ~40!

D̂ iS
i5kS, ~41!

and the scalar-type harmonic tensorsSi j as

Si j 5
1

k2
D̂ i D̂ jS1

1

n
g i j S, ~42!

Si
i50, D̂ jSi

j5
n21

n

k22nK

k
Si ,

~43!

~D̂1k222nK!Si j 50. ~44!

In contrast to the vector and tensor harmonics, a cons
function becomes the normalizablek50 mode forK.0, for
which Si and Si j vanish identically. SinceSi[0 implies S
5const, no degeneracy occurs for the scalar-type harm
vectors except for this constant mode, andk2.(n21)K if
k2.0. On the other hand,Si j vanishes identically fork2

5nK. For k2.0 this occurs only forK.0. Since the spec
trum of k2 is given byk25 l ( l 1n21)K with non-negative
integer l, it corresponds to thel 51 harmonics. For othe
modesk2.2nK.

A scalar perturbation of the metric is expanded in terms
the scalar harmonics as

hab5 f abS, hai5r f aSi , hi j 52r 2~HLg i j S1HTSi j !,
~45!
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dT̄ab5tabS, dT̄i
a5r taSi , dT̄j

i 5d P̄d j
i S1tTSj

i .
~46!

In these expansions terms corresponding toHT and tT for
k25nK.0 and those corresponding tof a , HT , ta , andtT
for k250 do not exist.

For k2(k22nK)5” 0, under the infinitesimal gauge tran
formation

ja5TaS, j i5rLSi , ~47!

these expansion coefficients transform as

d̄ f ab52DaTb2DbTa , ~48!

d̄ f a52rD aS L

r D1
k

r
Ta , ~49!

d̄Xa5Ta , ~50!

d̄HL52
k

nr
L2

Dar

r
Ta , ~51!

d̄HT5
k

r
L, ~52!

d̄tab52TcDcT̄ab2T̄acDbTc2T̄bcDaTc, ~53!

d̄ta5
k

r
~ T̄abT

b2 P̄Ta!, ~54!

d̄~d P̄!52TaDaP̄, ~55!

d̄tT50, ~56!

whereXa is defined as

Xa5
r

k S f a1
r

k
DaHTD . ~57!

Hence, in addition totT we can construct five independe
gauge-invariant quantities as

F5HL1
1

n
HT1

1

r
DarXa , ~58!

Fab5 f ab1DaXb1DbXa , ~59!

Sab5tab1T̄b
cDaXc1T̄a

cDbXc1XcDcT̄ab , ~60!

Sa5ta2
k

r
~ T̄a

bXb2 P̄Xa!, ~61!

S5d P̄1XaDaP̄. ~62!

On the other hand, for the modesk2(k22nK)50, these be-
come gauge dependent if we define them by setting un
fined variables to zero.
2-4
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From the componentsdḠab , dḠi
a , dḠi

i , and the traceless part ofdGj
i of the Einstein equations, we obtain the followin

four gauge-invariant perturbation equations for modesk2(k22nK)5” 0:

2hFab1DaDcFb
c1DbDcFa

c1n
Dcr

r
~2DcFab1DaFcb1DbFca!1 mRa

cFcb1 mRb
cFca22 mRacbdF

cd

1S k2

r 2
2R̄12L D Fab2DaDbFc

c22nS DaDbF1
1

r
DarD bF1

1

r
DbrD aF D2FDcDdFcd1

2n

r
DcrD dFcd

1S 2 mRcd1
2n

r
DcDdr 1

n~n21!

r 2
DcrD dr D Fcd22nhF2

2n~n11!

r
Dr •DF

12~n21!
k22nK

r 2
F2hFc

c2
n

r
Dr •DFc

c1
k2

r 2
Fc

cGgab52k2Sab , ~63!

k

r F2
1

r n22
Db~r n22Fa

b!1rD aS 1

r
Fb

bD12~n21!DaFG52k2Sa , ~64!

2
1

2
DaDbFab2

n21

r
DarD bFab1S 1

2
mRab2

~n21!~n22!

2r 2
DarD br 2~n21!

DaDbr

r D Fab

1
1

2
hFc

c1
n21

2r
Dr •DFc

c2
n21

2n

k2

r 2
Fc

c1~n21!hF1
n~n21!

r
Dr •DF

2
~n21!~n22!

n

k22nK

r 2
F5k2S, ~65!

2
k2

2r 2
@2~n22!F1Fa

a#5k2tT . ~66!
ug
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he
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For the exceptional casek25nK.0 Eq. ~66! does not exist,
and for the casek250 Eqs.~64! and~66! do not appear. The
other equations still hold although each variable is ga
dependent.

Here, note that from the Bianchi identities not all of the
equations are independent, and some combinations of t
yield the energy-momentum conservation law for the b
matter perturbation. For example, if we eliminateDbFa

b and
Fa

a in Eq. ~65! using Eqs.~64! and ~66!, we obtain

1

r n11
Da~r n11Sa!2

k

r
S1

n21

n

k22nK

kr
tT

1
k

2r
~ T̄abFab2 P̄Fa

a!50. ~67!

This is just the equationd(¹̄MT̄i
M)50. Similarly, applying

the same procedure to the divergence of Eq.~63!, we obtain

the equationd(¹̄MT̄a
M)50, which is expressed as
06402
e
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1

r n
Db@r n~Sa

b2T̄a
cFc

b!#1
k

r
Sa2n

Dar

r
S1T̄a

bDbF

2 P̄DaF1
1

2
~ T̄a

bDbFc
c2T̄bcDaFbc!50. ~68!

Thus, naively speaking, onlym(m21)/2 components of Eq.
~63! are independent under Eqs.~64! and~66!, provided that
the bulk energy-momentum conservation laws~67! and ~68!
are satisfied. However, it is in general difficult to extract su
a component explicitly.

III. JUNCTION CONDITION

In the brane world model the bulk spacetimeM has one
or two boundaries, and we live in a boundaryS. Hence the
intrinsic geometry ofS is determined by the continuity o
the bulk metricḡMN and is described by the induced metr
gmn . The intrinsic metricgmn determined in this way, how-
ever, is dependent on the location of the boundaryS in the
bulk spacetime even if the geometry of the bulk spacetim
given. Furthermore, in the spacetime with boundaries,
2-5
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bulk geometry is not uniquely determined by an initial co
dition unless some appropriate boundary condition is
posed atS. Thus, in order for the brane world model to b
well formulated, we must give some additional prescripti
to determine the motion of branes and the boundary co
tion at the branes for the bulk geometry.

In the brane world models proposed so far, this presc
tion is obtained by assuming that the bulk spacetime w
boundaries is obtained from a spacetimeM̃ with Z2 symme-
try by identifying points connected by the correspondingZ2
transformation. The boundaries correspond to fixed point
the transformation in the original covering spacetimeM̃.
This implies that the hypersurface inM̃ corresponding to a
boundaryS is in general a singular surface in the sense t
the extrinsic curvaturesKmn of S on its two sides have the
same absolute value but their signs are different. Such a
gular spacetime is obtained when the surface has an intr
energy-momentum with finite surface densityTmn .

As is shown by Israel@47#, this energy-momentum sur
face density is related to the difference of the extrinsic c
vature on the two sides of the singular surfaceS. If we
defineKmn in terms of the unit normalnM to S as

Kmn52¹̄mnn , ~69!

and denote its value on the side in the direction ofnM as
K1 mn and that on the other side asK2 mn , this relation is
written as

K1 n
m2K2 n

m5k2S Tn
m2

1

n
Tdn

mD , ~70!

where the dimension ofS is n11. In the brane world model
if we choose the normal vector so that it is directed tow
the inside of the bulk spacetime,K1 n

m52K2 n
m5Kn

m .
Hence the junction condition can be rewritten as

k2Tn
m52~Kn

m2Kdn
m!. ~71!

Thus, when the intrinsic dynamics of matter in the brane
given, the motion of brane is constrained by this juncti
condition.

In this section we express the perturbation of the ab
junction condition in terms of gauge-invariant variables. W
consider only the case in which the unperturbed geometr
the brane is spatially homogeneous and isotropic. This
plies the casem52 for the bulk spacetime, i.e.,M5N 2

3K n locally, and the brane is represented by a manifold

S5R3K n{~t,xi !5~xm!, ~72!

whereK n corresponds to the maximally symmetric space
the unperturbed background.

A. Constraints

The junction condition~71! together with the Hamiltonian
constraint and the momentum constraint for the bulk spa
06402
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time gives relations between quantities intrinsic to the bra
and the bulk energy-momentum density. First, from the m
mentum constraint

¹n~Km
n 2Kdm

n !52k2T̄m' , ~73!

where¹ is the covariant derivative with respect to the i
duced metricgmn on S, and' denotes the component alon
n, we obtain

¹nTm
n 522T̄m' . ~74!

Thus when the bulk spacetime is vacuum, the intrin
energy-momentum tensor is conserved.

Secondly, from the Hamiltonian constraint

K22Kn
mKm

n 2R52k2T̄''22L, ~75!

whereR is the Ricci scalar ofS, we obtain

2R2
k4

4 S Tn
mTm

n 2
1

n
T2D52k2T̄''22L. ~76!

This implies that the expansion law of the brane universe
different from the one without the extra dimension for whi
the relation

~n21!R522k2T ~77!

holds if the cosmological constant is included inTmn .

B. Unperturbed brane motion

In the unperturbed background the brane motion is
scribed by the dependence of theya coordinates on the
proper timet of S, i.e., the set of functionsya(t). We define
the unit timelike vectorua by ua5 ẏa. Here and from now on
the overdot denotes differentiation with respect to the pro
time t. The unit normal toS in the unperturbed backgroun
is uniquely determined byu as

na52eabu
b, ua52eabn

b. ~78!

The extrinsic curvature is calculated as

Ktt5nbuaDaub, Kt i50, K j
i 52

D'r

r
d j

i , ~79!

and the unperturbed energy-momentum tensor of the bran
written as

Ttt5r, Tt i50, Tj
i 5pd j

i . ~80!

Hence the junction condition is expressed as

D'r

r
52

k2

2n
r, ~81!

~n21!
D'r

r
2Kt

t5
k2

2
p. ~82!
2-6
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The first of these equations implies that the energy densit
our universe is determined by the brane motion. If the eq
tion of state of the cosmic matter is given, these equati
determine the brane motion becauseKt

t represents the acce
eration of the brane. Further, by differentiating the first eq
tion by t and eliminatingKt

t , we obtain

ṙ1n~r1p!
ȧ

a
52uaT̄a' . ~83!

This equation coincides with Eq.~74! obtained from the mo-
mentum constraint. Herea denotes the value ofr at the brane
and represents the cosmic scale factor of the Robert
Walker universe on the brane whose metric is written as

ds25gmn dxm dxn52dt21a2~t!dsn
2 . ~84!

C. Perturbation of the junction condition

The extrinsic curvature of the brane depends on the c
figuration of the brane as well as on the bulk geometry. If
denote the deviation of the brane configuration from
background one as

dzM5ZM~t,x!5Zi
M1Z'nM, ~85!

whereZi
M is the component ofZM parallel to the brane, the

perturbation of the extrinsic curvature is in general expres
as

dKmn5~L” Zi
K !mn1¹m¹nZ'1~R̄'m'n2Km

l Kln!Z'

1nadḠmn
a 1

1

2
habn

anbKmn . ~86!

The perturbation of the intrinsic metric of the brane a
depends both on the perturbation of the bulk metric and
the brane configuration. To be explicit, these relations
expressed as

dgtt5habu
aub22Żt12Kt

tZ' , ~87!

dgt i5haiu
a2D̂ iZ

t1a2~Zi /a2! ., ~88!

dgi j 5hi j 1D̂ iZj1D̂ jZi12a2g i j

Dar

r
Za. ~89!

To proceed further, we must treat the tensor, the vector,
the scalar perturbations separately.

1. Tensor perturbation

For the tensor perturbation the perturbation of the intrin
metric of the brane is expanded in terms of the tensor h
monics as

dgtt50, dgt i50, dgi j 52a2hTTi j . ~90!

SinceZM50 for the tensor perturbation,hT is simply related
to the bulk perturbation ashT5HT .
06402
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The perturbation of the energy-momentum tensor intrin
to the brane is also expressed by a single expansion co
cient representing the anisotropic stress perturbation of
brane as

dTt
t50, dTi

t50, dTj
i 5pTTj

i . ~91!

On the other hand, the harmonic expansion of Eq.~86! yields

dKt
t50, dKi

t50, dK j
i 52D'HTTj

i . ~92!

Hence the junction condition~71! reduces to the single equa
tion

D'HT52
k2

2
pT . ~93!

In general, the anisotropic stress perturbation is not
independent dynamical variable and is expressed by o
dynamical variables when the model is specified. In parti
lar, in the linear perturbation framework, it is natural to a
sume thatpT50 for the tensor perturbation. In this case E
~93! gives a Neumann-type boundary condition for the wa
equation ofHT obtained in Sec. II C 1. Thus we obtain
well-posed system describing the evolution of perturbatio

2. Vector perturbation

For the vector perturbation the perturbation of the bra
configuration is expressed in the harmonic expansion as

Zt50, Z'50, Zi5aZVi . ~94!

On the other hand the intrinsic metric perturbation is e
pressed as

dgtt50, dgt i52abVi , dgi j 52a2hTVi j . ~95!

Hence we obtain the relations

b52 f i2aS Z

aD .

, ~96!

hT5HT2
k

a
Z. ~97!

If we construct the standard gauge-invariant variables
the intrinsic perturbation from these metric perturbation va
ables and the matter perturbation variables defined by

dTt
t50, dTi

t5a~r1p!~v2b!Vi , dTj
i 5pTVj

i , ~98!

we obtain

sg5
a

k
ḣT2b5F i , ~99!

V5v2b5v2
a

k
ḣT1F i . ~100!
2-7
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Note thatZ disappears in these expressions because it co
sponds to an intrinsic diffeomorphism of the brane. On
other hand, in the present case the perturbation of the ex
sic curvature is expressed as

dKt
t50, dKi

t5
a2

2
eabDaS Fb

r DVi , dK j
i 52

k

a
F'Vj

i .

~101!

Inserting these equations into Eq.~71!, we obtain the follow-
ing two equations:

k2~r1p!V5r eabDaS Fb

r D , ~102!

k2pT522
k

a
F' . ~103!

The first of these gives the expression for the intrinsic p
turbation variable in terms of the bulk perturbation variab
The second can be regarded as the boundary condition o
bulk perturbation equations in Sec. II C 2. It will be show
later that it gives a Dirichlet-type boundary condition wh
the bulk spacetime is vacuum.

3. Scalar perturbation

For the scalar perturbation for which

Zt5ZtS, Z'5Z'S, Zi5aZSi , ~104!

the harmonic expansion coefficients for the intrinsic me
perturbation defined by

dgtt522aS, dgt i52abSi ,

dgi j 52a2~hLSg i j 1hTSi j ! ~105!

are related to those for the bulk metric perturbation as

a52
1

2
F ii1Ẏt2Kt

tY' , ~106!

b52
k

a
Yt1

a

k
ḣT , ~107!

hL5HL1
k

na
Z1

ȧ

a
Zt1

D'r

r
Z' , ~108!

hT5HT2
k

a
Z, ~109!

where

Yt5Zt2Xt, Y'5Z'2X' . ~110!

Hence the intrinsic gauge-invariant variables construc
from these are related to the bulk gauge-invariant variab
as
06402
e-
e
in-

r-
.
the

c

d
s

F5hL1
1

n
hT2

ȧ

k
sg5F1

D'r

r
Y' , ~111!

C5a2
1

k
~asg! .52

1

2
F ii2Kt

tY' , ~112!

where

sg5
a

k
ḣT2b. ~113!

In addition to these, we can construct gauge-invari
variables from the harmonic expansion of the intrinsic ma
perturbation

dTt
t52drS, dTi

t5a~r1p!~v2b!Si ,

dTj
i 5dpSd j

i 1pTSj
i ~114!

as

V5v2
a

k
ḣT , ~115!

rD5dr2
a

k
ṙ~v2b!, ~116!

G5dp2cs
2dr. ~117!

Among these equations the last represents the amplitud
entropy perturbation of the matter.

The perturbation of the extrinsic curvature is now e
pressed in terms of the gauge-invariant variables as

dKt
t5F2

1

2
Ḟ'i1

1

2
naDbFab2

1

2
D'Fa

a1
1

2
Kt

t F ii

1K̇t
tYt2Ÿ'1S 1

2
2R1Ktt

2 DY'GS, ~118!

dKi
t5kF1

2
F'i2S Kt

t1
D'r

r DYt1aS Y'

a D .GSi , ~119!

dK j
i 5H 2D'F2

ȧ

a
F'i1

D'r

2r
F''2S D'r

r D .

Yt2
ȧ

a
Ẏ'

2F k2

na2
1

nanbDaDbr

r
2S D'r

r D 2GY'J Sd j
i

1
k2

a2
Y'Sj

i . ~120!

Hence the junction condition~71! yields the following four
relations among the gauge-invariant variables for the b
and the brane:
2-8
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D'F1
ȧ

a
F'i2

D'r

2r
F''1

ȧ

a
Ẏ'

1F k2

na2
1

nanbDaDbr

r
2S D'r

r D 2GY'

52
k2

2n S rD1
a

k
ṙVD , ~121!

2
1

2
Ḟ'i1

1

2
naDbFab2

1

2
D'Fa

a1
1

2
Kt

t F ii2Ÿ'

1S 1

2
2R1Ktt

2 DY'

52
k2

2 FG1S n21

n
1cs

2D S rD1
a

k
ṙVD G , ~122!

1

2
F'i1aS Y'

a D .

5
k2

2

a

k
~r1p!V, ~123!

2
k2

a2
Y'5k2pT . ~124!

These conditions have some features that are not sh
by the vector and tensor perturbations. First, although
variablesZt andZ disappear as in the other types of pertu
bation,Y'5Z'2X' remains in the final expressions. This
becauseY' defines the gauge-invariant amplitude of the p
turbation of the brane motion, unlikeZt andZ, which corre-
spond to intrinsic diffeomorphism of the brane. Second
from the last equation one finds that a condition on the
isotropic stress perturbation does not give any boundary c
dition on the bulk perturbation. Instead, it constrains the p
turbation, which cannot be simply attributed either to t
intrinsic structure of the brane or to the bulk.

Then where does the boundary condition come from?
can find an answer to this question by closely inspecting
structure of the above equations. First, note that the ga
invariants representing the perturbation of the intrinsic
ometry of the brane are determined by the bulk variab
through Eqs.~111! and ~112!. Meanwhile, Eqs.~121! and
~123! yield the expressions of the gauge-invariantsD andV
for the intrinsic matter in terms of the bulk variables. Inse
ing these expressions into Eq.~122!, we obtain an expressio
for the amplitude of the entropy perturbationG in terms of
the bulk variables. LikepT , G is not a dynamical variable
and should be expressed in terms ofD, V, and other intrinsic
dynamical perturbation variables whose dynamics is de
mined when a model of the intrinsic matter is given. Hen
we should regard Eq.~122! or an equation derived from i
by eliminating the independent dynamical variable as
boundary condition on the bulk perturbation. This means t
the boundary condition is dependent on the type of intrin
matter perturbation, e.g., adiabatic or isocurvature. In
next section we will show that this boundary condition b
06402
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comes nonlocal with respect to the time coordinate
the brane.

IV. MASTER VARIABLE

As was shown in Sec. II, the metric perturbation in t
bulk spacetime for the tensor perturbation is described by
single gauge-invariant variableHT , and it obeys a simple
wave equation. Further, the junction condition gives a sim
boundary condition on it. In contrast, for the vector and t
scalar perturbations, the bulk perturbation is described
multicomponent variables and their equations have struct
too complicated to be solved. Fortunately, in the case
which the unperturbed background of the bulk spacetime
vacuum~and the two-dimensional orbit spaceN 2 is maxi-
mally symmetric for the scalar perturbation!, we can find a
single master variable for the bulk perturbation and red
the perturbation equation to a single wave equation. In
section we analyze the structure of the junction condition
terms of that master variable.

A. Vacuum background

We consider the case in whichm52 in the notation of
Sec. II A andT̄MN50. Hence the bulk spacetime is (n12)
dimensional and has the isometry group corresponding to
n-dimensional maximally symmetric space in the unp
turbed background. In this case, from the generaliz
Birkhoff theorem, the geometry of the background spaceti
is given by either of the following two families of solutions
~1! Pure product type (Dr 50):

dS2~An/2L!3Sn@An~n21!/2L#, L.0, ~125!

AdS2~An/2uLu!3Hn@An~n21!/2uLu#, L,0, ~126!

En11,1, L50. ~127!

~2! Schwarzschild type (Dr 5” 0):

ds̄252U~r !dt21
dr2

U~r !
1r 2dsn

2 , ~128!

U~r !5K2
2M

r n21
2lr 2, ~129!

l5
2L

n~n11!
. ~130!

The derivation of the solutions of the first family and the
physical meaning were given by Nariai@48,49#. For the sec-
ond family the following simple formulas hold:

2R52l1
2n~n21!M

r n11
, ~131!

hr

r
522l1

2~n21!M

r n11
, ~132!

K2~Dr !2

r 2
5l1

2M

r n11
. ~133!
2-9
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In particular, when the mass parameterM vanishes, the quan
tities on the left-hand side of these equations become c
stant, and the spacetime coincides withdSn12, AdSn12, and
En11,1 for L.0, ,0, and50, respectively.

The background configuration of the brane in t
Schwarzschild-type background geometry is determined
solving Eqs.~81! and~82! with Eq. ~133!. In particular, from
Eq. ~83!, the same energy equation as in the no-ex
dimension case holds for the energy density of the brane

ṙ52n~r1p!
ȧ

a
. ~134!

In contrast, from Eqs.~81! and ~133!, the decomposition
(Dr )252ȧ21(D'r )2 yields

S ȧ

a
D 2

5S k2

2n
r D 2

2
K

a2
1l1

2M

an11
, ~135!

which is different from the standard expansion equation e
in the caseM50 in the point thatr is replaced byr2. These
equations form a closed system and determiner and a as
functions of the intrinsic proper timet. When these func-
tions are given, the embedding of the brane@ t(t),r (t)# is
determined byr (t)5a(t) and a solution of the equation

S dt

dt D 2

5
ȧ21U~a!

U~a!2
. ~136!

In contrast to the Schwarzschild case, the backgro
brane configuration becomes quite special for the pure p
uct type background spacetime. In fact, sincer 5const in this
case, it follows from Eqs.~81! and~82! thatr should vanish
andKt

t is proportional top. Since it is natural to assumep
50 for r50, the latter condition implies that the backgrou
brane motion is represented by a geodesic in the t
dimensional constant-curvature spaceN.

B. Expression in terms of a master variable

1. Tensor perturbation

For the tensor perturbation the system is already descr
by a single variable. For completeness we recapitulate
equations for the tensor perturbation in the vacuum case.
need no further symmetry assumption on the unpertur
bulk geometry.

The perturbation equation for the bulk is given by t
homogeneous wave equation

2hHT2
n

r
Dr •DHT1

k212K

r 2
HT50. ~137!

The junction condition gives the boundary condition

D'HT52
k2

2
pT . ~138!
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2. Vector perturbation

For the vector perturbation on the vacuum bulk spacet
tT vanishes. Hence fork2.(n21)K, taking account of the
fact that the orbit spaceN is two dimensional, Eq.~36! im-
plies thatFa is written in terms of a functionV as

Fa5
1

r n21
eabDbV. ~139!

Hence the perturbation Eq.~35! for Fa is expressed in terms
of V as

DaF r n12DbS DbV

r n D 2@k22~n21!K#VG50. ~140!

The bulk perturbation equation is thus reduced to the sin
equation for the master variableV given by

hV2
n

r
Dr •DV2

k22~n21!K

r 2
V5

C

r 2
, ~141!

whereC is an integration constant, which can be set to z
by redefinition ofV.

On the other hand, for the modek25(n21)K.0, the
gauge-invariantFab

(1) has a single independent compone
and is expressed as

Fab
(1)5eabV

(1). ~142!

In terms ofV (1) Eq. ~37! is expressed as

eabD
b~r n11V (1)!50. ~143!

This equation is easily solved to yield

Fab
(1)5eab

C

r n11
, ~144!

whereC is an integration constant.
For k2.(n21)K, the junction conditions~102! and~103!

are expressed in terms ofV as

k2pT522
k

an
V̇, ~145!

k2~r1p!V5
1

an11
@k22~n21!K#V, ~146!

sg5
1

an21
D'V. ~147!

The first equation gives a Dirichlet-type boundary conditi
on V. The other two equations give expressions for the
trinsic gauge-invariant variablesV and sg in terms of V.
Thus the initial value problem is well posed for this syste

The situation for the exceptional modek25(n21)K.0
is slightly different. For this mode we do not have the equ
2-10
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tion for pT . However, this does not cause trouble beca
Fab

(1) is explicitly given. The junction condition determine
the only nontrivial gauge invariant intrinsic to the brane,V,
as

k2an11~r1p!V5C. ~148!

Here note that the momentum constraint~74! reduces to the
conservation ofTmn in the present case and its perturbati
gives

1

an11
@an11~r1p!V# .5

k22~n21!K

2ak
pT . ~149!

It is easily checked that this equation is consistent with
above junction conditions. Thus the evolution ofV is intrin-
sically determined and coincides with the no-ext
dimension case. In contrast, the evolution ofsg is deter-
mined only by solving the master equation, in contrast to
no-extra-dimension case in whichsg is related toV as @46#

2k82a2~r1p!V52@k22~n21!K#sg , ~150!

wherek82 denotes the gravitational constant on the bran

3. Scalar perturbation

As shown in Sec. II C 3, for the scalar perturbation on
vacuum background, Eq.~65! is automatically satisfied if
Eqs. ~63!, ~64!, and ~66! hold. Among the latter, Eqs.~64!
and ~66! are written as

Fa
a522~n22!F, ~151!

Db~r n22Fa
b!52Da~r n22F !. ~152!

Here note that for the exceptional modesk250 and k2

5nK.0 we do not have one or both of them. However,
can still assume that these equations hold by regarding m
ing equations as gauge conditions to fix the residual ga
freedom.

As was shown by Mukohyama, in the case that the tw
dimensional orbit spaceN is a constant-curvature space, t
general solutions to these equations are written in terms
master variableV as

F̃5r n22F5
1

2n
~h12l!V, ~153!

F̃ab5r n22Fab5DaDbV2S n21

n
h1

n22

n
l DVgab .

~154!

~See Appendix C for a simpler proof.!
On the other hand, for the background geometry~128!

with M50, Eq. ~63! is reduced to the equation
06402
e

e
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e

e
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e
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a

2hFab2
n

r
Dr •DFab1S k2

r 2
22l D Fab

1
Dcr

r F2~DaFcb1DbFca!

1~n22!S Dar

r
Fcb1

Dbr

r
FcaD G

54S Dbr

r
DaF1

Dar

r
DbF1~n22!

DarD br

r 2
F D .

~155!

In terms of the master variableV, this equation is written as

~DaDb1lgab!E~V!50, ~156!

where

E~V![r 2FhV2
n

r
Dr •DV2S k22nK

r 2
1~n22!l D VG .

~157!

As is shown in Appendix D, the general solution of E
~156! is written as

E~V!5C0g0~ t,r !1C1g1~ t,r !1C2r , ~158!

whereC0 , C1, andC2 are arbitrary constants. On the oth
hand, it is easy to see that the freedom in the definition oV
is expressed in terms of a solution to (DaDb1lgab)v50 as
V→V1v. Since v is again written asv5C08g0(t,r )
1C18g1(t,r )1C28r with arbitrary constantsC08;C28 , the
value ofE(V) changes by the redefinition as

E~v!5H 2~k22nK!~C08g01C18g1!2k2C28r , KÞ0,

2k2~C08g01C18g1!2~k2C2822nlC08!r , K50.
~159!

From this we immediately see thatC0;C2 can be put to
zero by an appropriate redefinition ofV for k2(k22nK)
Þ0. On the other hand, onlyC0 andC1 can be set to zero fo
k250 andK5” 0, while only C2 can be put to zero fork2

5nK.0. In these cases, however, there still remains a
sidual gauge freedom inF andFab . As is shown in Appen-
dix E, any solutionV to the homogeneous equationE(V)
50 can be set to zero by this residual gauge transformat
while the constants above that cannot be removed by
redefinition are just the gauge-invariants for the exceptio
modes. Thus the gauge-equivalent classes of the solution
the perturbed solutions form a one-dimensional space par
etrized by C2 for the modek250 and K.0 and a two-
dimensional space parametrized byC0 andC1 for the mode
k25nK.0.

From now on we consider only modes withk2(k22nK)
Þ0. From the above argument, the master equation for th
modes is always written as
2-11
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hV2
n

r
Dr •DV2S k22nK

r 2
1~n22!l D V50. ~160!

In terms of the master variable, the junction conditio
~121!–~124! are written as

rD'S V

r D52
k2

k22nK
anrD2

k2

k2
anpT , ~161!

~D'V! .1Kt
tV̇5k2

an21

k
~r1p!V2

k2

k2
an21~apT! .,

~162!

1

a
~aV! .5

k

a
C1

k

a

G1cs
2rD

r1p

2
n21

n

k22nK

ak

pT

r1p
, ~163!

2
k2

a2
Y'5k2pT , ~164!

where

F5
1

2an22 F2
ȧ

a
V̇1

D'r

r
D'V1S k22nK

na2
1l D VG

1
D'r

r
Y' , ~165!

C52
1

2an22 F V̈1S Kt
t1~n21!

D'r

r DD'V2~n21!
ȧ

a
V̇

1S n21

n

k22nK

a2
1~n22!l D VG2Kt

tY' . ~166!

Here, note that Eq.~163! is identical to the space compone
of the perturbation of the intrinsic conservation law of t
energy-momentum tensor¹mTn

m50. Further, the corre-
sponding time component, which is written as

1

an
~anrD! .52

k

a
~r1p!F12n

a2

k2 S ȧ

a
D .GV

2n~r1p!S Ḟ2
ȧ

a
C D

2~n21!
k22nK

k2

ȧ

a
pT , ~167!

is obtained from the above junction conditions, as it sho
be.

As was discussed in Sec. III C 3, Eqs.~161! and~162! are
the equations determining the intrinsic gauge invariantsD
and V. Hence Eq.~163!, or the equation for the intrinsic
06402
s

d

entropy perturbationG, should be regarded as a bounda
condition on the master variable. ForpT50, this expression
is given by

F rD'S V

r D G ..

1~21ncs
2!

ȧ

a F rD'S V

r D G .

1F2n~11w!~2n221nw!S D'r

r D 2

1cs
2 k22nK

a2 G
3F rD'S V

r D G2~n21!~11w!
k2

a2

D'r

r
V

5k2an22G, ~168!

wherew5p/r. From this equation we immediately see th
except for the special case in whichp52r, the junction
condition yields a boundary condition that is nonlocal
time.

In contrast, for the casep52r, the junction condition
yields a closed evolution equation forrD'(V/r ) or rD. To
be precise,dr anddp becomes gauge invariant. Further, a
though V is ill-defined, the combination (r1p)V5(r1p)
3(v2b)5dTi

t/(aSi) is well-defined and can have a nonv
nishing value. If we take these facts into account, the bou
ary condition forr1p50 is given by the equation obtaine
from ~168! by the replacementscs

250, w521, andG5dp.
Even in this case, the gauge invariantsF and C repre-

senting the intrinsic perturbations of the spatial curvature
the gravitational potential of the brane are determined o
by solving the wave equation forV under given initial data
and a boundary condition. This is because we lack the r
tions that make the equations for intrinsic quantities closed
the no-extra-dimension case@46#,

k82rD5~n21!a22~k22nK!F, ~169!

~n22!F1C52k82a2k22pT . ~170!

Thus it may be difficult to find a natural initial condition fo
which the evolution law for the intrinsic perturbation b
comes similar to the standard one.

V. DISCUSSION

In the present paper we have developed a gauge-inva
formalism for the perturbation of the brane world model f
which the background configuration has a spatial symme
corresponding to a maximally symmetric space with a
mensionn lower than the dimensionn1m of the bulk space-
time. The formalism consisted of two parts. The first p
gave a system of gauge-invariant equations for the pertu
tion of the bulk spacetime geometry. With applications
wider situations in mind, we derived the equations for g
neric values ofn and m and for generic bulk matter. The
give an extension of the formalism developed for then52
andm52 case by Gerlach and Sengupta@39#.

The second part was concerned with a situation specifi
2-12
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the brane world model in whichm52 and gave gauge
invariant equations for the junction condition correspond
to theZ2 symmetry along a brane with codimension 1. As
immediate consequence, we have shown that, when
stress perturbation intrinsic to the brane is specified or
pressed in terms of other intrinsic quantities, the junct
condition yields a boundary condition at the brane~s! on the
evolution equation for the bulk perturbation.

In order to investigate the structure of the equations
more detail, we have introduced a master variableV for the
bulk perturbation and reduced the bulk perturbation eq
tions to a single wave equation forV in the case in which the
bulk spacetime is vacuum. This reduction was already d
by Mukohyama@45# in the case in which the backgroun
geometry of the bulk spacetime is maximally symmetr
Since we were able to introduce the master potential for
scalar perturbation only in the case in which the tw
dimensional orbit space has a constant curvature, the m
equation we obtained is the same as that derived by Mu
hyama. However, the master equation for the vector and
sor perturbations is more general and holds also in the
in which the background geometry is of the Schwarzsch
black hole type. We have also given a proof different fro
that given by Mukohyama for the existence of the mas
potential for the scalar perturbation.

We have also investigated the structure of the junct
condition in terms of the master variable. In particular,
have shown that the boundary condition on the master
tential obtained from the junction condition has a differe
structure depending on the type of perturbation: for the t
sor and vector perturbations, the condition that the an
tropic stress perturbation vanishes yields a Neumann-
and a Dirichlet-type boundary condition, respectively, wh
the boundary condition for the scalar perturbation is given
a condition on the intrinsic entropy perturbation and is no
local in time in general.

Here, note that, although the master variable is used in
essential way in the analysis of the scalar perturbation,
introduction of the master variable is not the only way
make the problem tractable. For example, Fourier expan
of the original gauge-invariant variables in terms of tim
may also be used to make the equations simpler. If it wo
well, we can also treat the scalar perturbation in
Schwarzschild black hole type background.

Although the main purpose of the present paper is to
velop a formalism, we briefly discuss here a possible con
quence of the formalism for the brane world scenario. In
original Randall-Sundrum model, in which the brane is re
ized as a flat subspace in a five-dimensional anti–de S
spacetime, the bulk graviton modes which behave as mas
particles inside the brane decouple from the massless m
In our formalism this phenomenon is understood in the f
lowing way.

Since n53, K50, andM50 in this case, in the units
l521, the gravitational wave in the bulk spacetime is d
scribed byHT satisfying the wave equation

2] t
2HT52

1

r
] r~r ] rHT!1k2HT . ~171!
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Since the brane is static and located atr 51, the boundary
condition is given by] rHT50. Under the Fourier expansio
with respect to the timet, the modeHT}e2 ivt is a solution
to the equation

y3
d

dy S 1

y3

dHT

dy D 1m2HT50, ~172!

wherey51/r (1<y,`) andm25v22k2. If we require that
the mode is normalizable in the generalized sense with
spect to the natural metricdr r}dy/y3, which makes the
right-hand side of the above wave equation self-adjoint,
spectrum ofm2 consists of two parts. One is the point spe
trum m250 for which HT is constant. The other is the con
tinuous spectrumm2.0 for which HT is proportional to
y2Z2(my) whereZ2 is a Bessel function of degree 2. Thu
the general solution is written as

HT5RS Ce2 ikt1E
0

`

dm2 y2@A~m!J2~my!

1B~m!N2~my!#e2 ivtD . ~173!

The important point here is that the boundary condition
simply written as a relation betweenA and B. Hence the
massless mode for whichA5B50 decouples from massiv
modes. If we apply the same argument to a dynamical c
in which the brane is nonstatic and represents an expan
universe, the situation changes significantly. In this case
boundary conditionD'HT50 is expressed as a relatio
amongA, B, andC. Hence all modes contain massive com
ponents.

Of course, since the expansion rate of the present univ
is small, one might expect that there is a mode in which
amplitude of the massive component is negligible. Howev
such a mode contains massive components with large am
tudes in the early phase of the universe due to rapid cos
expansion. Hence, if the initial condition of the universe
imposed in the early universe as in the argument of quan
generation of perturbations, it is in general expected that
present day universe contains a non-negligible amoun
massive gravitons. The situation is quite similar to quant
particle creation due to cosmic expansion. Whether t
problem is a crucial defect of the brane world model
rather provides a new model of dark matter is a very int
esting problem.
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APPENDIX A: BACKGROUND QUANTITIES

1. Connection coefficients

Ḡbc
a 5 mGbc

a ~y!, Ḡ i j
a 52rD arg i j ,

Ḡa j
i 5

Dar

r
d j

i , Ḡ jk
i 5Ĝ jk

i ~x!. ~A1!

2. Curvature tensors

R̄a
bcd5

mRa
bcd , ~A2!

R̄i
a jb52

DaDbr

r
d j

i , ~A3!

R̄i
jkl5@K2~Dr !2#~dk

i g j l 2d l
ig jk!. ~A4!

3. Ricci tensors

R̄ab5 mRab2
n

r
DaDbr , ~A5!

R̄ai50, ~A6!

R̄j
i 5S 2

hr

r
1~n21!

K2~Dr !2

r 2 D d j
i , ~A7!

R̄5 mR22n
hr

r
1n~n21!

K2~Dr !2

r 2
. ~A8!
06402
4. Einstein tensors

Ḡab5 mGab2
n

r
DaDbr 2S n~n21!

2

K2~Dr !2

r 2
2

n

r
hr D gab,

~A9!

Ḡj
i 5S2

1

2
mR2

~n21!~n22!

2

K2~Dr !2

r 2
1

n21

r
hr D d j

i ,

~A10!

Ḡai50. ~A11!

APPENDIX B: PERTURBATIONS OF THE RICCI
TENSORS OF THE BULK

In general the perturbation of the Ricci tensor is expres
in terms ofhMN5dḡMN as

2dR̄MN52¹̄L¹̄LhMN2¹̄M¹̄Nh1¹̄M¹̄LhN
L 1¹̄N¹̄LhM

L

1R̄MLhN
L 1R̄NLhM

L 22R̄MLNSh
LS, ~B1!

dR̄52hMNR̄MN1¹̄M¹̄NhMN2¹̄M¹̄Mh. ~B2!

By decomposing the connection¹ into D and D̂, we ob-
tain
2dR̄ab52hhab1DaDchb
c1DbDcha

c1n
Dcr

r
~2Dchab1Dahcb1Dbhca!1 mRa

chcb

1 mRb
chca22 mRacbdh

cd2
1

r 2
D̂hab1

1

r 2
~DaD̂ihbi1DbD̂ihai!2

Dbr

r 3
Dahi j g

i j 2
Dar

r 3
Dbhi j g

i j

1
4

r 4
DarD brhi j g

i j 2DaDbh, ~B3!

2dR̄ai5D̂ iDbha
b1

n22

r
DbrD̂ ihab2r hS 1

r
haiD2

n

r
DbrD bhai2DarD bS 1

r
hi

bD1
n11

r
DbrD ahbi

1rD aDbS 1

r
hi

bD1S ~n11!
~Dr !2

r 2
1~n21!

K2~Dr !2

r 2
2

hr

r D hia1
1

r 2
DbrD arhbi

1~n11!rD aS 1

r 2
Dbr D hbi2

n12

r
DaDbrhib1 mRa

bhbi2
1

r 2
D̂hai1

1

r 2
D̂ i D̂

jha j1rD aS 1

r 3
D̂ jhji D

1
1

r 3
DarD̂ jhji 2

1

r 3
DarD̂ ihjkg jk2rD aS 1

r
D̂ ihD , ~B4!
2-14
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2dR̄i j 5@2rD arD bha
b12~n21!DarD brhab12rD aDbrhab#g i j 1rD̂ iDaS 1

r
hj

aD1rD̂ jDaS 1

r
hi

aD
1~n21!

Dar

r
~D̂ iha j1D̂ jhai!12

Dar

r
D̂khkag i j 2r 2hS 1

r 2
hi j D 2n

Dar

r
Dahi j

1
1

r 2
~D̂ i D̂

khk j1D̂ j D̂
khki!2

1

r 2
D̂hi j 12S ~n21!

K

r 2
12

~Dr !2

r 2
2

hr

r D hi j

22~gklhklg i j 2hi j !
K2~Dr !2

r 2
22

~Dr !2

r 2
g i j g

klhkl2D̂ i D̂ jh2rD arD ahg i j , ~B5!

dR̄5DaDbhab1
2n

r
DarD bhab1S 2 mRab1

2n

r
DaDbr 1

n~n21!

r 2
DarD br D hab1

2

r 2
DaD̂ihi

a

12~n21!
Dar

r 3
D̂ ihai1

1

r 4
D̂ i D̂ jhi j 2

Dar

r 3
Dahi j g

i j 2
1

r 2 S ~n21!
K

r 2
22

~Dr !2

r 2 D hi j g
i j

2hh2n
Dar

r
Dah2

1

r 2
D̂h. ~B6!
e

e
e
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APPENDIX C: SCALAR MASTER VARIABLE

In this Appendix we show by a method different from th
proof given in@45# that Fab andF satisfying Eqs.~151! and
~152! are written in terms of the master variableV as in Eqs.
~153! and ~154! if the two-dimensional orbit space with th
metric gab is a spaceN with a constant sectional curvatur
l.

First, let Wab be a symmetric, traceless, and divergen
less tensor field onN. Let ja be a~timelike! Killing vector,
which exists becauseN is maximally symmetric. If we put
Wa5Wabj

b, from the divergenceless condition and the Ki
ing equation, we obtain

DaWa5WabD
ajb50. ~C1!

In the same way, we obtain the conservation law for
combinationWabe

bcjc as

Da~Wabe
bcjc!5Wb

aebcDajc

52Wabe
bcea

cS 1

2
ee fDej f D

5Wc
cS 1

2
ee fDej f D •50. ~C2!

Here, from the traceless condition, this vector is related
Wa as

Wabe
bcjc52eabWbce

ceee fj
f52eabW

b. ~C3!

Hence Eq.~C2! is written as

eabDaWb50, ~C4!
06402
-

e

o

which implies thatWa is written as a gradient of a functio
W:

Wa5DaW. ~C5!

Equation~C1! yields the Laplace equation

hW50. ~C6!

Since the vector defined byha5eabj
b is orthogonal toja

and has the normhaha52jaja, the metricgab is written as

gab5
1

U
~2jajb1hahb!, ~C7!

whereU52jaja. Utilizing this and the traceless condition
we obtain

Wab5Wacda
c

52
1

U
~Wajb1eacW

chb!

52
1

U
~Wajb1Wbja2gabWcj

c!. ~C8!

It is easily checked that the right-hand side of this equatio
a symmetric, traceless, and divergenceless tensor if Eqs.~C5!
and ~C6! are satisfied.

In order to apply this formula to our problem, let us in
troduce the traceless tensorZab as

r n22Fab5Zab2~n22!r n22Fgab . ~C9!

This tensor is not divergenceless:
2-15
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DbZa
b5nDa~r n22F !. ~C10!

In order to define a divergenceless tensor, let us introdu
variableV as

2nrn22F5~h12l!V, ~C11!

and defineWab as

Wab5Zab2S DaDbV2
1

2
hVgabD . ~C12!

It is easy to check thatWab is a symmetric, traceless, an
divergenceless tensor ifl is constant; hence it is written in
terms of a potentialW as in Eq.~C8!.

Here, note that in the definition ofV there exists a free
dom of replacementV→V1f wheref is a solution of the
hyperbolic equation

~h12l!f50. ~C13!

By this replacementWab changes as

Wab→Wab8 5Wab2~DaDbf1lfgab!. ~C14!

Sincef is constrained by the hyperbolic equation, we c
choose the initial condition off and] tf on an initial surface
t5const so thatWrr8 5Wtr8 50, wheret andr are the coordi-
nates used in Eq.~128!. This condition is written in terms o
the potential W8 for Wab8 as ] tW85] rW850. For any
boundary condition onW8 that is linear and gives a well
posed initial value problem, the solution satisfying this init
condition is W85const, which implies thatWab8 50. Thus
Fab andF are expressed as in Eqs.~153! and ~154!.

APPENDIX D: GENERAL SOLUTION
OF EQUATION „156…

In this Appendix we give the general solution to Eq.~156!
on a two-dimensional maximally symmetric space. We wo
in the coordinates (t,r ) used in Eq.~128!. Since the genera
solution for the casel50 is obviously given byE5C0
1C1t1C2r with arbitrary constantsC0;C2, we assume
lÞ0 below.

First, note that in the (t,r ) coordinates the nonvanishin
Christoffel symbols are given by

G tr
t 5

U8

2U
, G tt

r 5
1

2
UU8, G rr

r 52
U8

2U
. ~D1!

From this equation the (tr ) component of Eq.~156! is writ-
ten as

05DtDrE5U1/2] r~U21/2] tE!, ~D2!

which yields

E5 f 1~ t !U1/21 f 2~r !. ~D3!

Inserting this expression into the (tt) component of Eq.
~156!, we obtain
06402
a

n

l

k

05~DtDt1lgtt!E5U1/2F f̈ 12S lU1
~U8!2

4 D f 1G
2US 1

2
U8 f 281l f 2D , ~D4!

where the overdot and the prime denote differentiation w
respect tot and r, respectively. SincelU1(U8)2/45lK is
constant, this equation is equivalent to the following tw
ordinary differential equations:

f̈ 12lK f 15c, ~D5!

2r f 281 f 25
c

lU1/2
, ~D6!

wherec is a separation constant. The general solution of
first equation is given by

f 1~ t !5H 1

2
ct21c1t1c0 , K50

2
c

lK
1c0eAlKt1c1e2AlKt, K5” 0.

~D7!

On the other hand, the general solution for the equation
f 2 is given by

f 2~r !55 c2r 1
c

2~2l!3/2r
, K50

c2r 1
c

lK
U1/2, K5” 0.

~D8!

Hence, after redefinitions of constants, the general s
tion including the casel50 is expressed as

E5C0g0~ t,r !1C1g1~ t,r !1C2r , ~D9!

where

g0~r !55
1, l50,K5” 0

l2t2r 1
1

r
, l5” 0,K50

eAlKtU1/2, lK5” 0,

~D10!

g1~r !5H t, lK50

e2AlKtU1/2, lK5” 0.
~D11!

It is easy to check that this satisfies the remaining (rr ) com-
ponent of Eq.~156!:

05~DrDr1lgrr !E5S ] r
21

U8

2U
] r1

l

U DE. ~D12!
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APPENDIX E: EXCEPTIONAL MODES FOR SCALAR
PERTURBATION WITH KÌ0

In this Appendix we show that the gauge-equivale
classes of the solutions to the perturbed Einstein equat
are parametrized by a finite number of parameters for
exceptional modesk2(k22nK)50 (K.0) of the bulk sca-
lar perturbation on a maximally symmetric background.

First, let us consider the modek250. For this modeSi
and Si j vanish, andf a and HT are undefined. Further, th
gauge transformation is parametrized only byTa . Hence,
setting the undefined variables to zero,F andFab are written
as F5HL and Fab5 f ab , which transform under the gaug
transformation as

d̄F52
Dar

r
Ta, d̄Fab52DaTa2DbTa . ~E1!

For the same reason, Eqs.~64! and ~66!, or equivalently,
Eqs.~151! and~152!, do not exist for the modek250. How-
ever, we can recover these equations by regarding them
the gauge-fixing conditions. Then the residual gauge fr
dom is represented byTa satisfying the following two con-
ditions:

05 d̄@ F̃a
a12~n22!F̃#522DaT̃a, ~E2!

05 d̄~DbF̃a
b22DaF̃ !

52hT̃a1
n22

r
Dr •DT̃a1

2

r
DbrD aT̃b

2S ~n22!
K

r 2
1~2n21!l D T̃a

2
n

r 2
DarD brT̃b1DaDbT̃b

1
n22

r
DarD bT̃b, ~E3!

where

F̃5r n22F, F̃ab5r n22Fab , T̃a5r n22Ta . ~E4!

Equation~E2! implies thatT̃a is represented by a scala
function T as

T̃a5eabDbT, ~E5!

because the orbit spaceN is two dimensional. Inserting this
expression into Eq.~E3!, we obtain

eabDb@r 2hT2nrDr •DT12~n21!KT#50. ~E6!

Hence, by replacingT by T1const, we obtain

r 2hT2nrDr •DT12~n21!KT50. ~E7!
06402
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Since Eqs.~151! and ~152! hold under the above gaug
conditions, any solution of the perturbed Einstein equatio
is parametrized byV satisfying (DaDb1lgab)E(V)50 as
for the generic mode. Let the set of solutionsV to this equa-
tion beSV . Then we have an onto mapF1 from SV to the
space of solutions to the perturbed Einstein equations.
kernel of this map is spanned by the solutions of (DaDb
1lgab)V50. On the other hand,F and Fab obtained by
settingF5 d̄F andFab5 d̄Fab in Eq. ~E1! with Ta satisfying
the above gauge-fixing condition is also a solution to
perturbed Einstein equations belonging to the trivial gau
equivalent class. This correspondence defines a mapF2
from the spaceSG of solutionsT to Eq. ~E7!. Then the set
Sinv of gauge-equivalent classes to the perturbed Eins
equations is represented asSS /F1

21F2SG .
Here, note thatSS /kerF1 is parametrized by the solutio

to the equationE(V)5C2r , and hence by the initial data
(V,V̇) on the initial surface and the constantC2. Similarly,
SG is parametrized by the initial data (T,Ṫ) for Eq. ~E7!.
Therefore, by representing the conditionF1(V)5F2(T) as
a relation between these initial data~andC2), we can deter-
mine Sinv .

Now let us undertake this program. First, by redefinin
2T asT, the conditionF1(V)5F2(T) is expressed as

~DaDb1lgab!V5eacDbDcT1ebcDaDcT

2
n22

r
~Dar ebc1Dbr eac!D

cT

1
2~n21!

r
ecdD

crD dTgab . ~E8!

In the (t,r ) coordinates used in Eq.~128!, with the help of
the equations forV andT, the trace and (t,r )-component of
this equation are written as

US V

r D 8
1

C2

nr
5

2

r
Ṫ, ~E9!

U1/2~U21/2V̇!852UT91S U822~n21!
U

r DT8

12~n21!
K

r 2
T. ~E10!

These equations have a solution for (T,Ṫ) when data (V,V̇)
are given.

On the other hand, the (r ,r ) component is expressed as

UV91
1

2
UV81lV52U1/2~U21/2Ṫ!81

2

r
Ṫ, ~E11!

and gives a constraint onC2. In fact, inserting the expressio
for Ṫ obtained from the trace, we obtain the conditionC2

50. This implies that the setF1
21F2SG coincides with the

set of solutions to the homogeneous equationE(V)50.
Thus C2 is a gauge invariant and parametrizes the sp
Sinv .
2-17
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Next we examine the modek25nK. The argument is al-
most the same as in the above case. Now the harmonic s
and the harmonic vector are nontrivial but the harmonic t
sor Si j vanishes. Hence onlyHT is undefined, andXa is
defined asXa5r f a /k. The gauge transformations ofF and
Fab are given by

d̄F52
r

k FDr •DS L

r D1
K

r 2
LG , ~E12!

d̄Fab52
1

k H DaF r 2DbS L

r D G1DbF r 2DaS L

r D G J . ~E13!

In the present case only Eq.~151! is lacking. Hence we
regard this as the gauge-fixing condition. Then the resid
gauge freedom is parametrized byL satisfying the wave
equation

hL̃2
n

r
Dr •L̃1S nl12~n21!

K

r 2D L̃50, ~E14!

whereL̃5r n21L. After the redefinition22L̃/k→L̃, the con-
dition F1(V)5F3(L) is represented as

~DaDb1lgab!V5DaDbL̃2
n21

r
~DarD bL̃1DbrD aL̃ !

1
n~n21!

r 2
DarD brL̃ 1Fn21

r
Dr •DL̃

1S n2l2~n21!2
K

r 2D L̃Ggab . ~E15!
Oz

B

il,
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HereF3 represents the map from the spaceSL of solutionsL
to the set of solutions to the perturbed Einstein equation

The trace and the (t,r ) component of this equation ar
written as

UV81lrV1
1

nr
~C0g01C1g1!

5UL̃81S nlr 2~n21!
K

r D L̃, ~E16!

U1/2~U1/2V̇!85U1/2r n21S L̇̃

U1/2r n21D 8

, ~E17!

which have a solution for (L,L̇) for any data (V,V̇). On the
other hand, the (r ,r ) component

UV92lrV81lV5UL̃92S lr 1
n21

r
U D L̃8

1S ~n21!
K

r 2
1nl D L̃ ~E18!

gives the constraintC05C150. ThusF1
21F3ST coincides

with the space of solutions to the homogeneous equa
E(V)50, and the spaceSinv of the gauge-equivalent classe
of solutions is parametrized by the two gauge-invariant c
stantsC0 andC1.
ys.

ys.
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