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Brane world cosmology: Gauge-invariant formalism for perturbation
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In the present paper the gauge-invariant formalism is developed for perturbations of the brane world model
in which our universe is realized as a boundary of a higher dimensional spacetime. For the background model
in which the bulk spacetime isn(+-m) dimensional and has the spatial symmetry corresponding to the
isometry group of am-dimensional maximally symmetric space, gauge-invariant equations are derived for
perturbations of the bulk space-time. Further, for the case corresponding to the brane world model in which
m=2 and the brane is a boundary invariant under the spatial symmetry in the unperturbed background,
relations between the gauge-invariant variables describing the bulk perturbations and those for brane pertur-
bations are derived from Israel’s junction condition under the assumptidn fmmetry. In particular, for the
case in which the bulk spacetime is a constant-curvature spacetime, it is shown that the bulk perturbation
equations reduce to a single hyperbolic master equation for a master variable, and that the physical condition
on the gauge-invariant variable describing the intrinsic stress perturbation of the brane yields a boundary
condition for the master equation through the junction condition. On the basis of this formalism, it is pointed
out that it seems to be difficult to suppress brane perturbations corresponding to massive excitations for a brane
motion giving a realistic expanding universe model.

PACS numbes): 04.50:+h, 11.25.Mj, 12.10-g, 98.80.Cq

[. INTRODUCTION also make possible an observational test of the model in
terms of the anisotropy of the cosmic microwave back-
Motivated byM theory[1,2], anti—de SittefAdS) confor-  ground.
mal field theory (CFT) correspondence in string theories  As the starting point of investigations in this line, in the
[3,4], and the hierarchy problem in particle thed—8|, present paper, we develop a gauge-invariant formalism for
brane world models in which our universe is realized as gerturbations of the brane world model. The basic approach
boundary of a higher-dimensional spacetime have been aés the same as that originally developed for four-dimensional
tively studied recently9-38|. In particular, for the case in spacetime by Gerlach and Senguf88—41 and utilized by
which the bulk spacetime is five dimensional, anti—de Sitteisome people in analysis of the interaction between a domain
spacetime and the brane is realized as a flat four-dimensionualall and gravitational waves in four-dimensional spacetimes
spacetime, the gravitational interaction between matter in the42—44.
brane is well described by the standard one on scales much The formalism consists of two parts. The first is a gauge-
larger than the scale corresponding to the brane tefig®na  invariant formalism for perturbations in the geometry of the
15]. bulk spacetime. This problem has already been investigated
Further, as an extension of the analysis to a dynamicaby some people for the standard case in which the bulk
situation, the embedding of Robertson-Walker universe modspacetime is vacuum and maximally symmef#g]. In the
els into five-dimensional anti—de Sitter and anti—de Sitter{present paper, taking account of the developing nature of the
Schwarzschild spacetimes has been discussed by maiyane world model, we extend the formalism to the case in
people[19-30. In such high-symmetry cases, although thewhich the bulk spacetime is1(+n) dimensional and its un-
evolution equation for the cosmic scale factor is modifiedperturbed geometry has only the isometry corresponding to
from the standard one, our universe is still a dynamicallythe maximally symmetric space of dimensiorfn=1). This
closed system, and the difference in the evolution equatiosymmetry is utilized to expand perturbations in terms of the
can be neglected when the energy density of the universearmonic functions om-dimensional maximally symmetric
becomes much smaller than the brane tension. Thus th&pace and define gauge-invariant variables.
brane world model gives a new world model consistent with The second part establishes relations between the gauge-
present day observations. However, if one goes beyond thigvariant variables describing perturbations of the brane and
lowest-level approximation, it is not clear whether the branehose for the bulk perturbations. In this part we assume that
world model is consistent with all available observations beim=2 and the (+ 1)-dimensional brane is invariant under
cause our universe is not dynamically closed in this modethe isometry group of the bulk in the unperturbed model.
[10]. Thus the brane represents an expanding Robertson-Walker
One of the simplest ways to analyze this problem is touniverse in general.
investigate the behavior of perturbations of the brane world The paper is organized as follows. In the next section we
model. Since perturbations of the brane are inevitably assdirst classify perturbations into tensor, vector, and scalar
ciated with perturbations in the geometry of the bulk spacetypes in terms of the tensorial behavior with respect to the
time, such investigation will make clear whether or not themaximally symmetricn-dimensional spacetime. Then for
open nature of the universe dynamics is controllable. It willeach type we define the gauge-invariant variables describing
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perturbations of the bulk geometry and express the Einstein T.=0
equations in terms of them. In Sec. lll, after introducing a a
gauge-invariant variable describing the motion of the braneqence the Einstein equations for the bulk spacetime,
we express Israel’s junction condition corresponding to the

7, symmetry in terms of it and the bulk variables. We will GuntAgun= K2Tun, (8)
show that this gives expressions for the intrinsic perturbation

variables, for the brane in terms of the bulk variables, and are reduced in the unperturbed background to
boundary condition on the latter in terms of the intrinsic

=Ps;. )

stress perturbations of the brane. In Sec. IV we specialize the Eab+ Agap= Kz?ab, 9
formalism to the standard brane world model in which the -
bulk spacetime is vacuum. We reduce the perturbation equa- E: =n(«k’P—A). (10)

tions to a single hyperbolic equation for a master varidble

in a two-dimensional spacetime and express the junction
conditions in terms of the master variable. We will show that
the condition that the anisotropic stress perturbation of the For the infinitesimal gauge transformation represented in
brane should vanish yields the Neumann and Dirichleterms of the coordinates @™ = &M, the metric perturbation
boundary conditions on the master variable for the tensorang = — 5q. = transforms as

vector perturbations, respectively, while the boundary condi-

tion for the scalar perturbation is obtained from the condition b -V v

on the entropy peFr)turbation of the brane. The last condition Own £eun Vién= Vidu o
becomes nonlocal with respect to time except for the cases By decomposing the connection this yields

which the brane is vacuum @r= —p. Section V is devoted

B. Gauge transformation of perturbations

to summary and discussion. Shap=—Daéy—Dpéa, (12
II. BULK PERTURBATION EQUATIONS _ 5 & R
. ohgi=—r°Dy ") —Djéa, (13
A. Background spacetime r

In this section we consider perturbations of spacetime — . . A
structure on f+ n)-dimensional spacetimé1, which is lo- ohij=—D;§—D;§—2rD% &y - (14
Il itt duct . . .
cally written as & produc Similarly, the gauge transformation of the perturbation of the
M™M= NTX "> (y2,x)=(Z"). (1)  energy-momentum tens@(ST)yy ,
Its unperturbed background geometry is given by the metrlcg(éT)MN: — L Tyn= _SLVLTMN_TMLVNgL_TNLVMiLi

ds?=gyndZ" dZV=gap(y)dy2dyP+ri(y)do?, (2)

) is written as
where the metric
) ) ST — Py T T c_T c
do-ﬁz-yij(x)dxl dx (3) 0(6T)ap=— & DcTap— TacDpé" —ThcDaé™, (16)
is that with a constant sectional curvatugeon X". We 8(8T)ai= — TapDiE—r2PD4(r 2¢), 17
denote the covariant derivatives, the connection coefficients, o _ .
and the curvature tensors for the three metrits’, 8(8T)ij=—E2Da(r?P) y;; — P(Di £+ D;jé)). (18

Japdy?dy?, anddo? as
C. Gauge-invariant perturbation equations

<?2_.v M p
ds”= V. I'ne-Runs: “) In general, each tensor with rank at most 2 on the maxi-
A b ma m mally symmetric spaceC" is uniquely decomposed into
Jap(y)dy*dy"=Da, "I'pe(y), "Rapcd¥), ®) components of the three types, scalar, vector, and tensor, and
s A - each component can be expanded in terms of harmonic func-
do=D;, I'ji(X), Rijt (X) = K(yik vj = i vjk) - © tions of the same typp46].
6

_ _ 1. Tensor perturbation
The expressions foF,’L"L and Ry s in terms of the corre-
sponding quantities for the metrigg,(y)dy?dy® and dcrﬁ
are given in Appendix A.
From the symmetry structure oy the energy- (A+ k?)T;;=0, (19)

momentum tensoil, for the background bulk geometry
has the structure with the properties

First we consider the tensor perturbation, which can be
expanded in terms of the harmonic tenss,
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Jl} -0, 511\,{- -0 (20) and expands a vector-type perturbation of a second-rank ten-
sor.

In the present paper we omit the index labeling the harmon- AS in the case of tensor harmonics, the eigenvédtiés

ics as well as the summation symbol with respect to thedlways non-negative ank’=0 occurs only fork=0, for

index, because expansion coefficients corresponding to difvhich the harmonic vectors become constant vectors. Thus,

ferent eigenvalues decouple on the maximally symmetridor the same reason as in the tensor harmonics, we assume

space. k?>0 in the following. One subtle point of the vector har-
Here note that the eigenvallke® is always non-negative Monics is thaﬂ<2>g) does not implyk?—(n+1)K>0 for

under a boundary condition making the operaforself- K~ 0. Hence, fork®<(n+1)K andK=>0, the vector-type

adjoint in theL? space. In particulak?=0 appears only for tensor harmonics defined by Eq. EQ6) should vanish,

the flat space K =0) since the corresponding eigentensorsWhiCh implies thatV' is a Killing vector onS". In this case it

A _ _ A . follows from Eq. Eq.(28) that the eigenvalue should be
satisfy Dy Tj;=0, which yields 0=D'DTj;=nKTj.. Thus given byk?=(n—1)K.
the eigentensors fmz_: 0 are coznstant tensors. In the frame- " ¢ yector perturbation of the metric is expanded in terms
work of the expansion in th&“ sense, such eigentensors ¢ the vector harmonics as

should be discarded. Thus we assukfiz 0 in the following
unless otherwise stated. ’ .
For the tensor perturbation the metric perturbation is ex- hap=0, hai=rfaVi, hi=2r"HsVy, (29
panded as
and the vector perturbation of the energy-momentum tensor

hab:Ol hai=0, hij=2r2HTTij . (21) as

Since the infinitesimal gauge transformatiés (£2,&') has o - A
no tensor component, it follows that; is gauge invariant. 8Tp=0, STi=rrV;, 5T}:TT\’} . (30)
Similarly, 6Ty is expanded as
— — — ; For the reason stated abowé; and 7 are not defined for
oTap=0, oTi=0, oTj=7/Tj, (22 the modek?=(n— 1)K with K=0.
Since the infinitesimal gauge transformatiérhas only

wher is the gauge-invariant variable representing th
ere mr 1S gaug ble rep 9 ethe vector component

tensor-type anisotropic stress perturbation.

Inserting these expansions into the expression&ﬁr , .
we obtain the following gauge-invariant perturbation equa- £,=0, &=rLYV;, (31
tion:

24 2K the expansion coefficients of the perturbation transform as

s Hr=xrr, (29
r

n
—OHq— —Dr-DHy+

r _ L\ — kK _ _
Sfa=—1Da| £|. SHr=rL, 67,=0, érr=0.

where(d=D?2D, is the d’Alembertian on therdimensional r (32
spaceN™.
2. Vector perturbation Hence, except the modé=(n—1)K for K>0, the vector

Divergence-free vector fields can be expanded in terms gberturbation is described by the three gauge-invariant vari-

the vector harmonid/; defined by ablesr,, 77, and
(A+k?)V,=0, (24 r
_ F.=f,+ EDaHT. (33
D;V'=0. (25

From this we can define the vector-type harmonic tensor a©n the other hand, for the modé=(n—1)K with K>0,
only the combination

: 1 A
Fglb)=rDa(—) —rDb<—a> (34)
which has the properties r r
[A+K2—(n+ 1)K]Vi;=0, (27)  is gauge invariant.
(- 1K From the component8G{ and §G; of the Einstein equa-
. . —(n— i i i i i i
vi=o, DJ‘WZ y (29) tions we obtain the following gauge-invariant perturbation

2k o equations except the mod&®=(n—1)K with K>0:
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and a scalar perturbation of the energy-momentum tensor as
o oo 7
Frt r]oEr STap=TapS,  OTe=r735,, 6Ti=6Ps\S+ S,
, (46)
k:=(n—1)K )
- 2 a= — 2K Ty, B9 In these expansions terms correspondinddtoand 7 for
k?=nK>0 and those corresponding tq, Hy, 7,, and 71
i for k=0 do not exist.
C DL (IR = — 2 (36) For'kz(kz— nK)+#0, under the infinitesimal gauge trans-
. formation
On the other hand, for the modé=(n—1)K with K>0, E=Ta5, &=rLS;, (47)
the second equation does not appear and the first equation js i .
written as these expansion coefficients transform as
Sfap=—DaTp—DpTa, (48)
D IR = — 2 (37) B Lk
6fa=—rDy, T +FTa, (49)
3. Scalar perturbation
From the scalar harmonic functions OXa=Ta, (50)
~ a
(A+K?)S=0, (39) S <, b 51)
L onr roa
we can construct the scalar-type harmonic vectpras
— k
1. SH=-L, (52
5=-Ds, (39) T
. 07a6=—T°DTap~ TacDs T~ TpcDa T, (53
[A+k?®—(n—1)K]S;=0, (40)
_ k — _
~ S b_
DS =k, (41) 0T r (TapT°—PTy), (54)
and the scalar-type harmonic tens6gsas 5(5P)=—T3D,P, (55)
1. . 1 o
5;=—DiD;5+ = y;5, (42) orr=0, (56)
k2 n . ,
whereX, is defined as
i Ay N-1k-nK r r
5i=0, DiSi=—— — 5 xa:E(faJrEDaHT). (57)
(43)
R Hence, in addition tory we can construct five independent
(A+Kk*=2nK)S;;=0. (44)  gauge-invariant quantities as
In contrast to the vector and tensor harmonics, a constant _ 1 1 a
function becomes the normalizatie=0 mode fork >0, for F=Hut [ Hrt 7D X, (58)
which 5; and 5;; vanish identically. Since;;=0 implies S
=const, no degeneracy occurs for the scalar-type harmonic Fab=fapT DaXp+DpXa, (59
vectors except for this constant mode, dfd>(n— 1)K if _ _ _
k?>0. On the other hands; vanishes identically foik? S ap= TapT TEDaXc+ TeDpXc+ XD Tap, (60)
=nK. Fork?>0 this occurs only fok>0. Since the spec- ‘
trum of k? is given byk?=1(1+n—1)K with non-negative L= S
integer|, it corresponds to thé=1 harmonics. For other >a=7a r(Taxb PXa), (62)
modesk?>2nK. B B
A scalar perturbation of the metric is expanded in terms of 3 =56P+X?D,P. (62

the scalar harmonics as
On the other hand, for the modk$(k?—nK)=0, these be-

hap="fapS,  hai=rf.S, hij=2r2(HLyijS+ H1Sij), come gauge dependent if we define them by setting unde-
(45 fined variables to zero.
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From the componentsG,;,, 6G?, 5G|, and the traceless
four gauge-invariant perturbation equations for mokfg&?—n

D
r

~OF a5+ DaDFE+ DD FS+n

PHYSICAL REVIEW D62 064022

part 6[5; of the Einstein equations, we obtain the following
K)+#0:

(_DcFab+DaFcb+Dcha)+ ngFcb+ ngFca_2 mRacbdFCd

G- 1 1 2n
+ r—Z—R+2A Fab—DanFﬁ—Zn(DanF+FDarDbF+FDeraF)— D D4Fc+ TDCdech
4, 2n q n(n—1) q 2n(n+1)
+| — ™R® +TDCD r+———DD" |Fcq—2n0F - Dr-DF
r
2_ n k2
+2(n—1)———F-D0F¢— -Dr-DF¢+ —F¢ Jab=2K%S ap, (63)
r r
k . n—-2b 1 b 2
- _r”*ZDb(r Fa)+1Da| ~Fp| +2(n—1)D,F | =243y, (64)
1 n—1 1 n—1)(n—2 apby
—EDanFab—TDarDbFab—i— E”‘R”—%Dambr—(n—l) Fab
v iope o ores T R b, o nyors MY by or
2HFet 5 DrbFem 5y pFRetin=h) . or
(n—1)(n—2) k*-—nK 5
— o 2 =KX, (65)
k2
—?[Z(H—Z)F-FFZ]:KZTT. (66)
|
For the exceptional cas€=nK>0 Eq.(66) does not exist, 1 . K D.r
and for the cask?=0 Eqs.(64) and(66) do not appear. The —nDb[r”(Eg—TgF’C’)]+ FEa—nTaE +TPDF
other equations still hold although each variable is gauge
dependent. o 1
Here, note that from the Bianchi identities not all of these —PD,F+ E(TngFg—TbCDanC):O. (68)

equations are independent, and some combinations of them

yield the energy-momentum conservation law for the bulkThys, naively speaking, onip(m—1)/2 components of Eq.

matter perturbation. For example, if we eIiminaEtgF?1 and
F& in Eq. (65) using Eqgs.(64) and (66), we obtain

n—1 k?-nK

n kr

k
Da(rnJrlEa)_ F2+

pree} T

k — _
+ E(TabFab— PF2)=0. (67)

This is just the equatiod(VyT™)=0. Similarly, applying
the same procedure to the divergence of @), we obtain
the equatiorﬁ(VMTQA)=0, which is expressed as

(63) are independent under Eq84) and(66), provided that
the bulk energy-momentum conservation |a§%) and (68)

are satisfied. However, it is in general difficult to extract such
a component explicitly.

IIl. JUNCTION CONDITION

In the brane world model the bulk spacetinhé has one
or two boundaries, and we live in a bound&y Hence the
intrinsic geometry of¥, is determined by the continuity of

the bulk metricgy,n and is described by the induced metric
gu»- The intrinsic metricg,,, determined in this way, how-
ever, is dependent on the location of the boundarin the
bulk spacetime even if the geometry of the bulk spacetime is
given. Furthermore, in the spacetime with boundaries, the
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bulk geometry is not uniquely determined by an initial con-time gives relations between quantities intrinsic to the brane
dition unless some appropriate boundary condition is im-and the bulk energy-momentum density. First, from the mo-
posed af.. Thus, in order for the brane world model to be mentum constraint
well formulated, we must give some additional prescription _
to determine the motion of branes and the boundary condi- V(K. —K&)==k"T,,, (73
tion at the branes for the bulk geometry.

In the brane world models proposed so far, this prescripWhereV is the covariant derivative with respect to the in-
tion is obtained by assuming that the bulk spacetime wittduced metrig,, on, andL denotes the component along

boundaries is obtained from a spacetifewith 7, symme- " We obtain
try by identifying points connected by the correspondif;g
transformation. The boundaries correspond to fixed points of

the transformation in the original Eovering spacetivﬁe. Thus when the bulk spacetime is vacuum, the intrinsic
This implies that the hypersurface i corresponding to & energy-momentum tensor is conserved.

boundary2 is in general a singular surface in the sense that Secondly, from the Hamiltonian constraint
the extrinsic curvaturek ,, of % on its two sides have the

V,T0=-2T,, . (74)

same absolute value but their signs are different. Such a sin- K2— KEK? —R= 2K2ii —2A, (75)
gular spacetime is obtained when the surface has an intrinsic
energy-momentum with finite surface density,, . whereR is the Ricci scalar ob,, we obtain

As is shown by Israe]47], this energy-momentum sur-
face density is related to the difference of the extrinsic cur-
vature on the two sides of the singular surfaxe If we
defineK ,, in terms of the unit normah,, to = as

K4 v 1 2 2T
“R- | TUTL - ST =247 20 (79

This implies that the expansion law of the brane universe is
(69) different from the one without the extra dimension for which
the relation

K,,=—V,n

and denote its value on the side in the directionntf as
K, ., and that on the other side & this relation is
written as

(n—1)R=—2«°T (77

pvs
holds if the cosmological constant is includedTip, .

, (70) B. Unperturbed brane motion

1
K+ ’:,L_K, ’;:Kz T’LVL— ﬁTﬁfj‘
In the unperturbed background the brane motion is de-

where the dimension & isn+ 1. In the brane world model, Scribed by the dependence of th€ coordinates on the
if we choose the normal vector so that it is directed towardProper timer of X, i.e., the set of functiong®(7). We define
the inside of the bulk spacetimeK, “=—K_ #=K#. the unittimelike vectou® by u®=y?. Here and from now on

Hence the junction condition can be rewritten as the overdot denotes differentiation with respect to the proper
time 7. The unit normal t& in the unperturbed background
KZT’;:Z(K’j— K6). (7D is uniquely determined by as

_ b _ b
Thus, when the intrinsic dynamics of matter in the brane is Na=~€apl”, Ua €apl”. (78)

given, the motion of brane is constrained by this junction
condition.

In this section we express the perturbation of the above . D.r
junction condition in terms of gauge-invariant variables. We K,,=npu®Dau?, K,;=0, Ki=——-45 6 (79
consider only the case in which the unperturbed geometry of r
tp?iisbrt?wgeclzszzi“g ”?‘/o:]ct)rrlne O%ﬁﬂf ostgsacaeq%qzot{gzl/(l:.:'lj'\?lzs 'M2nd the unperturbed energy-momentum tensor of the brane is

X K" locally, and the brane is represented by a manifold written as

The extrinsic curvature is calculated as

S=RXK"s (7,X)=(x), (72) T=p, T4=0, Tj=pg. (80)

) _ _ Hence the junction condition is expressed as
where" corresponds to the maximally symmetric space in

the unperturbed background. D,r 2
=—— (81
r 2n?
A. Constraints
The junction conditior{71) together with the Hamiltonian (n—1) D.r KT:K_Z 82)
constraint and the momentum constraint for the bulk space- r P
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The first of these equations implies that the energy density of The perturbation of the energy-momentum tensor intrinsic
our universe is determined by the brane motion. If the equato the brane is also expressed by a single expansion coeffi-
tion of state of the cosmic matter is given, these equationsient representing the anisotropic stress perturbation of the
determine the brane motion becauserepresents the accel- brane as

eration of the brane. Further, by differentiating the first equa- _ _

tion by 7 and eliminatingk ”, we obtain 6T;=0, 6T/=0, oTj=m(T;. (91)

) a o On the other hand, the harmonic expansion of([B6) yields
p+n(p+ p)5=2uaTal. (83 _ _
6K7=0, 6K=0, &K;j=—D H.T;. (92

This equation coincides with E¢74) obtained from the mo-
mentum constraint. Her@denotes the value ofat the brane .
and represents the cosmic scale factor of the Robertsofin

Walker universe on the brane whose metric is written as 2

K
D,Hi=— —
d?=g,, dx* dx’=—dr?+a?(r)da?. (84) T2

Hence the junction conditiofv1) reduces to the single equa-

In general, the anisotropic stress perturbation is not an
independent dynamical variable and is expressed by other
The extrinsic curvature of the brane depends on the cordynamical variables when the model is specified. In particu-
figuration of the brane as well as on the bulk geometry. If welar, in the linear perturbation framework, it is natural to as-
denote the deviation of the brane configuration from thesume thatr+=0 for the tensor perturbation. In this case Eq.
background one as (93) gives a Neumann-type boundary condition for the wave
Mo M " equation ofH; obtained in Sec. Il C 1. Thus we obtain a
67" =Z" (T, X)=Z+Z,n", (85  well-posed system describing the evolution of perturbations.

C. Perturbation of the junction condition

whereZ|’|"' is the component oz™ parallel to the brane, the 2. Vector perturbation
perturbation of the extrinsic curvature is in general expressed

as For the vector perturbation the perturbation of the brane

configuration is expressed in the harmonic expansion as
5K,LLV= (£ZHK)[LV+ VMVVZL + (RL,U,LV_ Ki\LK)\V)ZL

Z'=0, Z,=0, Z=aZV,. (94)
— 1 L . L
+na51“fly+—habnanb|<w_ (86)  On the other hand the intrinsic metric perturbation is ex-
2 pressed as
The perturbation of the intrinsic metric of the brane also 80,,=0, 8g,=—apV,, oy =2a2hT\fij . (95

depends both on the perturbation of the bulk metric and on
the brane configuration. To be explicit, these relations argyance we obtain the relations
expressed as

89,,=hapu?uP—227+2K’Z, |, (87 B=—f—a 5 (96)
89,1=haud—D;Z7+a?(Z;/a?), (88) K
hT:HT_ —Z. (97)
R R D,r a
8g;j = hyj +DiZ;+D,Z+ 2a%y;; ——Z*% (89)

If we construct the standard gauge-invariant variables for

the intrinsic perturbation from these metric perturbation vari-

To proceed further, we must treat the tensor, the vector, angbles and the matter perturbation variables defined by
the scalar perturbations separately.

T= T— —B)V. [
1. Tensor perturbation oT;=0, dTi=a(p+p)(v—p)Vi, dTj=mrV;, (99
For the tensor perturbation the perturbation of the intrinsiaye obtain
metric of the brane is expanded in terms of the tensor har-
monics as

a.
, agzihT—,BzF” , (99
597'7': 0, 5g7’i:01 59” =2a hTTij . (90)
SincezM=0 for the tensor perturbatioh; is simply related P _a
to the bulk perturbation als;=H+. V=v=B=v = htFy. (100
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Note thatZ disappears in these expressions because it corre-

1 a D,r
sponds to an intrinsic diffeomorphism of the brane. On the d=h +—-h— K%~ F+ ;Yi , (111
other hand, in the present case the perturbation of the extrin- n r
sic curvature is expressed as 1 1
7- . aZ 5 Fb ) i Kk . \I’:a’—E(aO'g)'Z—EFHH—KZYL, (112)
oK7=0, 6K =€ D, s Vi, 5Kj=—5|:ﬂj-
(101)  where
Inserting these equations into E@1), we obtain the follow- a.
ing two equations: og=3hr= B (113
K2(p+p)V=rEabDa(E), (102 In addition to these, we can construct gauge-invariant
r variables from the harmonic expansion of the intrinsic matter
perturbation
k
2 —_9_
Kimr=—2_F, . (103 STT=—5pS, &Ti=a(p+p)(v—pB)S,
The first of these gives the expression for the intrinsic per- 51-}: 5p55}+ WTSij (114
turbation variable in terms of the bulk perturbation variable.
The second can be regarded as the boundary condition on thg
bulk perturbation equations in Sec. Il C 2. It will be shown
later that it gives a Dirichlet-type boundary condition when a.
the bulk spacetime is vacuum. V=v—ihr, (119
3. Scalar perturbation a
For the scalar perturbation for which pA=6p— Eb(v - B), (116
Z27=77S, Z,=7,5, Z;=alZ5, (104
s ' ' I'=6p—c2dp. (117)
the harmonic expansion coefficients for the intrinsic metric
perturbation defined by Among these equations the last represents the amplitude of
entropy perturbation of the matter.
69,,=—2aS, 69,=—aBs, The perturbation of the extrinsic curvature is now ex-
pressed in terms of the gauge-invariant variables as
8g;; = 2a*(h Sy;; +hS) (109 )
are related to those for the bulk metric perturbation as 5K;:[ —5Ft inanFab— 5DLFa+ SKIFy,
1 . . . . 1 5
a:—EFH‘H_YT_KTYL ’ (106) +K;YT_YJ-+ §2R+KTT YJ— S’ (118)
LSS ]2 L Dur) (YL
B=—ZY +hr. (107 7=k 5F = | Ki+ ——=|Y™+a| —| |5, (119
k_ a D,r a D,r D,r\ a
=H +—=Z+ 72"+ — [ _Z = 2y N
ho=Ht g2t g2 =20 (108 5K}_[ D F—gFut 5 Pl )Y a’t
k 2 anb 2
hr=H7—-Z, (109 I LSRG Ui (S TUS I IV P
a na2 r r L J
where k2
Y'=Z2"-X", Y, =Z, —X,. (110 a

Hence the intrinsic gauge-invariant variables constructeddence the junction conditiof71) yields the following four
from these are related to the bulk gauge-invariant variableselations among the gauge-invariant variables for the bulk
as and the brane:
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K2 a.
Z—% pA+ EpV , (121
1. 1 SO S B
_EFL”—FEnanF _EDLFa+§KTF\|\|_YL
1
- §2R+KET Y,
K? - 5 a.
iy +|——+cs pA+EpV , (122
1 Y, |\ «k%a
SFutal o =5 getpV, (123
k2
2; Y, =k’mr (124
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comes nonlocal with respect to the time coordinate of
the brane.

IV. MASTER VARIABLE

As was shown in Sec. Il, the metric perturbation in the
bulk spacetime for the tensor perturbation is described by the
single gauge-invariant variabld;, and it obeys a simple
wave equation. Further, the junction condition gives a simple
boundary condition on it. In contrast, for the vector and the
scalar perturbations, the bulk perturbation is described by
multicomponent variables and their equations have structures
too complicated to be solved. Fortunately, in the case in
which the unperturbed background of the bulk spacetime is
vacuum(and the two-dimensional orbit spagé? is maxi-
mally symmetric for the scalar perturbatjorwe can find a
single master variable for the bulk perturbation and reduce
the perturbation equation to a single wave equation. In this
section we analyze the structure of the junction condition in
terms of that master variable.

A. Vacuum background

We consider the case in whigh=2 in the notation of
Sec. Il A andT,y=0. Hence the bulk spacetime ia+{ 2)
dimensional and has the isometry group corresponding to the
n-dimensional maximally symmetric space in the unper-
turbed background. In this case, from the generalized
Birkhoff theorem, the geometry of the background spacetime

These conditions have some features that are not sharéglgiven by either of the following two families of solutions.
by the vector and tensor perturbations. First, although thél) Pure product typelr=0):

variablesZ™ andZ disappear as in the other types of pertur-
bation,Y, =Z, — X, remains in the final expressions. This is
becauser | defines the gauge-invariant amplitude of the per-
turbation of the brane motion, unlik&” andZ, which corre-
spond to intrinsic diffeomorphism of the brane. Secondly,
from the last equation one finds that a condition on the an-

dS(Yn/2A) xS [Vn(n—1)/2A], A>0, (125
AdS(Yn2|A)XH T Yn(n—1)/2]A|], A<O0, (126

ENTLL A=0. (127

isotropic stress perturbation does not give any boundary cort2) Schwarzschild type@r #0):

dition on the bulk perturbation. Instead, it constrains the per-
turbation, which cannot be simply attributed either to the
intrinsic structure of the brane or to the bulk.

Then where does the boundary condition come from? We
can find an answer to this question by closely inspecting the
structure of the above equations. First, note that the gauge
invariants representing the perturbation of the intrinsic ge-
ometry of the brane are determined by the bulk variables
through Egs.(111) and (112. Meanwhile, Eqgs.(121) and
(123 vyield the expressions of the gauge-invariaftandV

A= n(n+1)°

— dr?
= — 2 2 2
ds’=—-U(r)dt*+ GRM do?, (128
2M
U(r)=K— ———xr?, (129
rn—l

(130

for the intrinsic matter in terms of the bulk variables. Insert-The derivation of the solutions of the first family and their
ing these expressions into §422), we obtain an expression physical meaning were given by Nar{&8,49. For the sec-
for the amplitude of the entropy perturbatidhin terms of  ond family the following simple formulas hold:

the bulk variables. Likert, ' is not a dynamical variable
and should be expressed in terms\qfV, and other intrinsic
dynamical perturbation variables whose dynamics is deter-
mined when a model of the intrinsic matter is given. Hence
we should regard Eq122) or an equation derived from it
by eliminating the independent dynamical variable as the
boundary condition on the bulk perturbation. This means that
the boundary condition is dependent on the type of intrinsic
matter perturbation, e.g., adiabatic or isocurvature. In the
next section we will show that this boundary condition be-
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In particular, when the mass parameétéranishes, the quan- 2. Vector perturbation

tities on the left-hand side of these equ+a2tions bfzcome CON- For the vector perturbation on the vacuum bulk spacetime
stant, and the spacetime coincides vtf'**, AdS™%, and  __\anishes. Hence fdk?>(n— 1)K, taking account of the

1,1 — £
E"" " for A>0, <0, and=0, respectively. , fact that the orbit space/ is two dimensional, Eq(36) im-
The background configuration of the brane in theplies thatF, is written in terms of a functio) as
Schwarzschild-type background geometry is determined by

solving Egs(81) and(82) with Eq.(133). In particular, from 1
Eqg. (83), the same energy equation as in the no-extra- Fo=—or €D, Q. (139
dimension case holds for the energy density of the brane, r
a Hence the perturbation E(B5) for F, is expressed in terms
p=—n(p+p). (134 ~offas
L. al ,nt2 DbQ 2
In contrast, from Eqs(81) and (133, the decomposition D r"°Dy e —[k“=(n—1)K]Q|=0. (140

(Dr)2=—a?+(D,r)? yields
a|® [«
a/ “\2n”
which is different from the standard expansion equation even
in the caseM =0 in the point thap is replaced by?. These ) ) ) )
equations form a closed system and determinanda as  WhereC is an integration constant, which can be set to zero
functions of the intrinsic proper time. When these func- by redefinition of(}.

tions are given, the embedding of the brdnér),r(r)] is On the other hand, for the modé=(n—1)K>0, the

determined by (7)=a(7) and a solution of the equation ~ gauge-invariant={}) has a single independent component
and is expressed as

The bulk perturbation equation is thus reduced to the single

2 K 2M equation for the master variab{e given by
——+tN+—— (139
a

n k?>—(n—1)K C
O0Q--Dr-DQ———Q0=—, (141
r r2 r2

2 L2
(ﬂ _a+u@ (136 FO= e, 00, (142
dr U(a)?
In terms of QM) Eq. (37) is expressed as
In contrast to the Schwarzschild case, the background byt 1y (1)
brane configuration becomes quite special for the pure prod- €apD°(r" ") =0. (143

uct type background spacetime. In fact, sineeconst in this

case, it follows from Eqs81) and(82) thatp should vanish This equation is easily solved to yield

andK? is proportional top. Since it is natural to assunge C
=0 for p=0, the latter condition implies that the background Félb)= €ab— 7 (144
brane motion is represented by a geodesic in the two- rnt

dimensional constant-curvature spade ) ) ,
whereC is an integration constant.

B E ion in t ¢ ‘ iabl Fork?>(n—1)K, the junction condition$102) and(103)
. EXpression In terms of a master variable are expressed in terms 6f as
1. Tensor perturbation

For the tensor perturbation the system is already described k2= — ZLQ, (145)

by a single variable. For completeness we recapitulate the a"

equations for the tensor perturbation in the vacuum case. We

need no further symmetry assumption on the unperturbed 1

bulk geometry. k¥ (p+p)V=—=[k*—(n—1)K]Q, (146
The perturbation equation for the bulk is given by the a

homogeneous wave equation

oo=——D, Q. (147)
K2+ 2K 9 gn-1

—DHT—?Dr-DHTJr 5
r The first equation gives a Dirichlet-type boundary condition
i i . ) . on Q. The other two equations give expressions for the in-
The junction condition gives the boundary condition trinsic gauge-invariant variableg and o, in terms of Q.
Thus the initial value problem is well posed for this system.
The situation for the exceptional mo#é=(n—1)K>0

is slightly different. For this mode we do not have the equa-

2

K
DJ_HT:__

5 (138

064022-10
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tion for 7. However, this does not cause trouble because

2
Fglb) is explicitly given. The junction condition determines —0OFp— EDr'DFab+ k—2—2)\) Fab
the only nontrivial gauge invariant intrinsic to the braivg, ' r
as DSr
+ [Z(DaFcb"' Dcha)
k’a" Y (p+p)V=C. (148
D,r Dyr
Here note that the momentum constraird) reduces to the +(”_2)( r Fept TFca)
conservation ofl ,, in the present case and its perturbation
gives Dyr Dr D,rDyr
=4| ——D.F+ ——DpF+(n-2)— F).
r
"1 vy =S DK 149 (155
e PV = . (149

In terms of the master variable, this equation is written as
It is easily checked that this equation is consistent with the
above junction conditions. Thus the evolution\6fs intrin- (DaDp+ANgap)E(2)=0, (156)
sically determined and coincides with the no-extra-
dimension case. In contrast, the evolution «f is deter-
mined only by solving the master equation, in contrast to the
no-extra-dimension case in whiehy, is related toV as[46] E(Q)=r2

where

2

n K
DQ—FDLDQ— +(n—2))\>0

r2
2k'2a%(p+p)V=—[k*—(n—1)K]oy, (150 (157)

where'? denotes the gravitational constant on the brane.  As is shown in Appendix D, the general solution of Eq.
(156) is written as

3. Scalar perturbation

As shown in Sec. Il C 3, for the scalar perturbation on the E(2)=Cogo(t,1) +Ca0a(t,1) + Cor, (158

vacuum background, Eq65) is automatically satisfied if
Egs. (63), (64), and (66) hold. Among the latter, Eqg64)
and (66) are written as

whereC,, C4, andC, are arbitrary constants. On the other
hand, it is easy to see that the freedom in the definitiof2 of
is expressed in terms of a solution © D, +Ag,,) =0 as
QO—Q+w. Since w is again written asw=C{g(t,r)
+C194(t,r)+Cyr with arbitrary constantsC{~Cj5, the
value of E({2) changes by the redefinition as

Fa=—-2(n—2)F, (151)

Dy(r" 2F2)=2D,(r""?F). (152
—(k>—nK)(C{go+C1g1) —K?C)r, K+0,
Here note that for the exceptional modk$=0 and k? EBlw)= —K2(C}go+Clg1) — (K2CL—2nAC))r, K=0.
=nK>0 we do not have one or both of them. However, we (159
can still assume that these equations hold by regarding miss-
ing equations as gauge conditions to fix the residual gauge From this we immediately see th&,~C, can be put to
freedom. zero by an appropriate redefinition 6f for k?(k?—nK)

As was shown by Mukohyama, in the case that the two-<+0. On the other hand, onlg, andC, can be set to zero for
dimensional orbit spac/is a constant-curvature space, thek?=0 andK 0, while only C, can be put to zero fok?
general solutions to these equations are written in terms of & nK>0. In these cases, however, there still remains a re-
master variabl€) as sidual gauge freedom iR andF,,. As is shown in Appen-

dix E, any solution() to the homogeneous equati&{())
- 1 =0 can be set to zero by this residual gauge transformation,
F=f”_2F=%(D+2)\)Q, (153 while the constants above that cannot be removed by the
redefinition are just the gauge-invariants for the exceptional
n-1 I modes. Thus the gauge-equivalent classes of the solutions to
T _.n-2 _ N n—e the perturbed solutions form a one-dimensional space param-
Fap=r""Fap=DaDp(2 ( n Ot X>anb' etrized byC, for the modek?=0 andK>0 and a two-
(154  dimensional space parametrized ®y andC, for the mode

k?=nK>0.
(See Appendix C for a simpler proof. From now on we consider only modes wif(k?—nK)
On the other hand, for the background geomét28 #0. From the above argument, the master equation for these
with M =0, Eq.(63) is reduced to the equation modes is always written as

064022-11
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2

n K
DQ—FDr-DQ—( 5 +(n—2))\)Q=O. (160
r

In terms of the master variable, the junction conditions

(12D)—(124) are written as

D (Q) < ana (161)
rD,|—|=— a"pA— —awr,
Hr k_nk PT et
) n—1 2
(DL Q) +KIOQ=k*— (p+p)V—Fa”*1(awT)',
(162)
1 v k\P k [+c2pA
a®VmY e e
n—1k?>-nK 163
n ak p+p’ (163
k2
25Y, =k, (164
where
1 a. Dr k2—nK
= |-—Q+—D, 0+ A0
2a"2| a na
D,r
Y (165
v Q+|K? 12 p 0 1 éQ
= oan-2 +| K+ (n—1) r 1 (n )5
n—1k*>-nK
+| ———5—+(-2r|Q|-KIY,. (166)
a

Here, note that Eq163) is identical to the space component

PHYSICAL REVIEW D 62 064022

entropy perturbatiod”, should be regarded as a boundary
condition on the master variable. Fer=0, this expression
is given by

rD, r +(2+”Cs)g rD, r
D,r\? _k*-nK
+| —n(1+w)(2n—2+nw) +Cg 5
a
Q k?D,r
XD | —||=(n—=1)(1+w)— QO
r a2
= k2" T, (168

wherew=p/p. From this equation we immediately see that,
except for the special case in whigh= —p, the junction
condition yields a boundary condition that is nonlocal in
time.

In contrast, for the casp= —p, the junction condition
yields a closed evolution equation fob, (2/r) or pA. To
be precisegp and §p becomes gauge invariant. Further, al-
thoughV is ill-defined, the combinationg+ p)V=(p+p)
X(v—B)=6T{/(as5) is well-defined and can have a nonva-
nishing value. If we take these facts into account, the bound-
ary condition forp+ p=0 is given by the equation obtained
from (168 by the replacementézo, w=—1, andl'= &p.

Even in this case, the gauge invariadisand W repre-
senting the intrinsic perturbations of the spatial curvature and
the gravitational potential of the brane are determined only
by solving the wave equation fd2 under given initial data
and a boundary condition. This is because we lack the rela-
tions that make the equations for intrinsic quantities closed in
the no-extra-dimension ca$é6],

k'?2pA=(n—1)a ?(k>—nK)®, (169

(N—2)®+¥ = —x'2a%k 27y, (170

of the perturbation of the intrinsic conservation law of the Thus it may be difficult to find a natural initial condition for
energy-momentum tenso¥ ,T#=0. Further, the corre- which the evolution law for the intrinsic perturbation be-

sponding time component, which is written as

\Y

L a’la
nk2a

1 k
—(@pd)y==—(p+p)
a

k’-nK a
ke oa

—(n—1) (167)

comes similar to the standard one.

V. DISCUSSION

In the present paper we have developed a gauge-invariant
formalism for the perturbation of the brane world model for
which the background configuration has a spatial symmetry
corresponding to a maximally symmetric space with a di-
mensiom lower than the dimension+m of the bulk space-
time. The formalism consisted of two parts. The first part
gave a system of gauge-invariant equations for the perturba-
tion of the bulk spacetime geometry. With applications to

is obtained from the above junction conditions, as it shouldwvider situations in mind, we derived the equations for ge-

be.

As was discussed in Sec. lll C 3, Eq&61) and(162) are

neric values ofn and m and for generic bulk matter. They
give an extension of the formalism developed for the?2

the equations determining the intrinsic gauge invariahits andm=2 case by Gerlach and Sengup39].

and V. Hence Eq.(163), or the equation for the intrinsic

The second part was concerned with a situation specific to

064022-12
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the brane world model in whiclm=2 and gave gauge- Since the brane is static and locatedr atl, the boundary
invariant equations for the junction condition correspondingcondition is given by, H+=0. Under the Fourier expansion
to theZ, symmetry along a brane with codimension 1. As anwith respect to the tim¢ the modeHxe '“! is a solution
immediate consequence, we have shown that, when th® the equation

stress perturbation intrinsic to the brane is specified or ex-

pressed in terms of other intrinsic quantities, the junction d/1dH
condition yields a boundary condition at the bréghen the y3—<—3 — |+ u?H.=0, (172
evolution equation for the bulk perturbation. dyly? dy

In order to investigate the structure of the equations in
more detail, we have introduced a master varidbléor the  wherey=1/r(1<y<®) andu?= w?—k?. If we require that
bulk perturbation and reduced the bulk perturbation equathe mode is normalizable in the generalized sense with re-
tions to a single wave equation for in the case in which the spect to the natural metridr rocdy/y®, which makes the
bulk spacetime is vacuum. This reduction was already donfight-hand side of the above wave equation self-adjoint, the
by Mukohyama[45] in the case in which the background spectrum ofu? consists of two parts. One is the point spec-
geometry of the bulk spacetime is maximally symmetric.trum x2=0 for which H is constant. The other is the con-
Since we were able to introduce the master potential for th@nyous spectrumu®>0 for which Hy is proportional to
scalar perturbation only in the case in which the tWo-y27,(uy) whereZ, is a Bessel function of degree 2. Thus
dimensional orbit space has a constant curvature, the mastge general solution is written as
equation we obtained is the same as that derived by Muko-
hyama. However, the master equation for the vector and ten- -
sor perturbations is more general and holds also in the case HT:{)&( Ce*‘k‘+J’ du? Y[ A()Io(wy)
in which the background geometry is of the Schwarzschild 0
black hole type. We have also given a proof different from
that given by Mukohyama for the existence of the master +B(M)N2(My)]e‘iwt)_ 73
potential for the scalar perturbation.

We have also investigated the structure of the junction
condition in terms of the master variable. In particular, we The important point here is that the boundary condition is
have shown that the boundary condition on the master poasimply written as a relation betweeh and B. Hence the
tential obtained from the junction condition has a differentmassless mode for which=B=0 decouples from massive
structure depending on the type of perturbation: for the tenmodes. If we apply the same argument to a dynamical case
sor and vector perturbations, the condition that the anisoin which the brane is nonstatic and represents an expanding
tropic stress perturbation vanishes yields a Neumann-typeniverse, the situation changes significantly. In this case the
and a Dirichlet-type boundary condition, respectively, whileboundary conditionD, Hr=0 is expressed as a relation
the boundary condition for the scalar perturbation is given byamongA, B, andC. Hence all modes contain massive com-
a condition on the intrinsic entropy perturbation and is non-ponents.
local in time in general. Of course, since the expansion rate of the present universe

Here, note that, although the master variable is used in aig small, one might expect that there is a mode in which the
essential way in the analysis of the scalar perturbation, thamplitude of the massive component is negligible. However,
introduction of the master variable is not the only way tosuch a mode contains massive components with large ampli-
make the problem tractable. For example, Fourier expansiofudes in the early phase of the universe due to rapid cosmic
of the original gauge-invariant variables in terms of timeexpansion. Hence, if the initial condition of the universe is
may also be used to make the equations simpler. If it works$mposed in the early universe as in the argument of quantum
well, we can also treat the scalar perturbation in thegeneration of perturbations, it is in general expected that the
Schwarzschild black hole type background. present day universe contains a non-negligible amount of

Although the main purpose of the present paper is to demassive gravitons. The situation is quite similar to quantum
velop a formalism, we briefly discuss here a possible conseparticle creation due to cosmic expansion. Whether this
quence of the formalism for the brane world scenario. In theproblem is a crucial defect of the brane world model or
original Randall-Sundrum model, in which the brane is real-rather provides a new model of dark matter is a very inter-
ized as a flat subspace in a five-dimensional anti—de Sittegsting problem.
spacetime, the bulk graviton modes which behave as massive
particles inside the brane decouple from the massless mode.

In our formalism this phenomenon is understood in the fol-
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APPENDIX A: BACKGROUND QUANTITIES

1. Connection coefficients

la)lc: m gc(y)! Fﬁ: —rD% Yij »

= Pl o
Fa==9, Tp=Ti®x. (A1)
2. Curvature tensors
R?ca= "R, (A2)
— D Dbr .
Rajp=— ar 5, (A3)
Rij=[K=(Dr)2]( 87— 8 ¥jx)- (A4)
3. Ricci tensors
— n
Rap= mRab_ FDanr- (A5)
R,i=0, (A6)
_(Dr)z
R=[-—+(n-1) . 8, (A7)
r
= Cr K—(Dr)?
="R-2n—+n(n—1) (A8)
r r2
D¢r

25Ryp=—hgp+ DD chS+DyDchS+n .

PHYSICAL REVIEW D 62 064022

4. Einstein tensors

— n n(n—1) K—(Dr)?> n
Gab= "Gap— FDanr_ 2 2 - FDr Jab
(A9)
_ 1 (n—1)(n—2) K—(Dr)? n-1 .
[ _ i
GJ_ 2mR 2 r2 + DI’ 5]’
(A10)
G,=0 (A11)

APPENDIX B: PERTURBATIONS OF THE RICCI
TENSORS OF THE BULK

In general the perturbation of the Ricci tensor is expressed

in terms ofhyy= gy as

25§MN: _€L€LhMN_€M€Nh+€M€Lhkl+€N€Lhk/l

+EMLhIN+§NLhk/I_2§MLNShLSv (B1)

SR=—hy RN+ VMY NR,  — VMV, h. (B2)

By decomposing the connectiov into D and D, we ob-
tain

(_ Dchab+ Dahcb+ Dbhca) + ngth

mpRC m ca_ L7 1 A Ai Dor ij Dar ij
+ "Rphca—2 "Racpdh _r_ZAhab+r_2(DaD hpi+DpD hai)_r_3Dahij7 _r_sDbhij')’

4 .
+ r_4DarDbrhij ’y” - Danh,

(B3)
— . b N—2 - 1 n_, 1,0 n+t1 |
25Rai=DiDbha+ _r D rDihab_rD ?hai _FD rDbhai_DarDb ?hl +_r D rDahbi
1, (Dr)? K—(Dr)?2 Or 1,
+rDDp| =hy | +| (n+1) +(n—=1)——————|hjz+ =D°rDrhy;
r r? r? r r?
1, n+2 S PR 1.
+(n+1)rDa —2D r hbi__DaD rhib+mRahbi_—Ahai+—DiD]haj+rDa —DJh‘i
r r r? r? 3!
1 A 1 A " 1.
+—3DarD'hji——3DarDihjky' —I'Da —Dlh ’ (B4)
r r r
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~ 1
+rDjDa(Fhia)

_ . 1
26R;;=[2rD3Dph2+2(n—1)D3Drh,+2rD 3D rh,p] v, +rDiDa(Fhf‘

ar D 1 D
+(n_1) (D haJ+D ha|)+2 D hka’y” D r_zh” _nTDahij
1 . B o 1. K (Dr)®> Or
r_2(D hkj+DjD hki)—r—zAhij+2 (n—l)r—2+2 r2 —T ij
Kl K—(Dr)? _(Dr)? I AR a
—2(¥"higyij—hij) > 2= %ijY ha—DiDjh—=rD%Dahy;, (B5)
r r
— 2n 2n n(n—1 2 -
5R:Danhab+TDarDbhab+ — MRaby — . D3DPr + (—Z)DarDbr hapt —DaD'hf
r r

D3 1. .. D3r o1 K (Dr)? .
+2(n_1 ai _4 Djhij_r_sDahij'yJ_r_z (n—l)r—2—2r—2 hij’yl
ar 1.
—Oh—n——Dzh— — Ah. (B6)
r
|
APPENDIX C: SCALAR MASTER VARIABLE which implies thatw, is written as a gradient of a function
In this Appendix we show by a method different from the W
proof given in[45] thatF,, andF satisfying Eqs(151) and W,=D,W. (C5)

(152 are written in terms of the master varialfleas in Egs.

(153 and (154 if the two-dimensional orbit space with the Equation(C1) yields the Laplace equation

metric g,p, IS @ spaceV with a constant sectional curvature

\. Ow=0. (Co)
First, letW,, be a symmetric, traceless, and divergence-

less tensor field oV. Let £2 be a(timelike) Killing vector,

which exists becausa/ is maximally symmetric. If we put

W,=W,,£, from the divergenceless condition and the Kill- 1

ing equation, we obtain gab:U(_§a§b+ DaTlb), (C?)

Since the vector defined by, = e,,° is orthogonal tat?
and has the normy, 7%= — £,£2, the metricg,, is written as

D W2=W,,D3¢P=0. (Cy o , B
whereU = — £,£2. Utilizing this and the traceless condition,

In the same way, we obtain the conservation law for thewe obtain

combinationW, e, as .
Wap=Wacd,

Da(WabEbcgc) :WﬁebcDafc 1
1 - U(Wa§b+ €acWp)
== Wabebceac( 5 eefDe§f>

1 : - U(Wagb""wbga_gabwcgc)- (CS)
=W§(geefDe§f) =0. (C2
It is easily checked that the right-hand side of this equation is
Here, from the traceless condition, this vector is related t@ Ssymmetric, traceless, and divergenceless tensor if(Egs.

W, as and(C6) are satisfied.
In order to apply this formula to our problem, let us in-
Wap€Céc= — €2PWp €€ rE = — €4, WP. (C3)  troduce the traceless tensoy, as
Hence Eq/(C2) is written as I 2F p=Zap— (N—2)r"2Fg,p. (C9
€D ,W,=0, (C4  This tensor is not divergenceless:
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DpZ2=nD,(r""?F). (C10
a

e (U")?
0=(DD{+N\g)E=UYq f1— | AU+ 7 fi
In order to define a divergenceless tensor, let us introduce a

variableQ) as 1
—U| U T+, (D4)
2nr" T 2F=(0+2\)Q, (C11

and definew,, as where the overdot and the prime denote differentiation with

respect tat andr, respectively. SincaU+(U’)%/4=\K is
1 constant, this equation is equivalent to the following two

Wap=Zap—| DaDpQ— EDQQab : (C12 ordinary differential equations:
It is easy to check thaiV,, is a symmetric, traceless, and f,—\Kf,=c, (D5)

divergenceless tensor ¥ is constant; hence it is written in
terms of a potentialV as in Eq.(C8).

Here, note that in the definition d® there exists a free- o=
dom of replacemenf—Q+ ¢ where ¢ is a solution of the 202\ uw
hyperbolic equation

(D6)

wherec is a separation constant. The general solution of the

(L+2))¢=0. (C13 first equation is given by
By this replacementV,,, changes as 1
! Sct?+ct+ K=0
Wap—Wio=Wap— (DaDpb+ A bGap).  (C14 2Ct el o,
: . . _ _ fa(t)= (D7)
Since ¢ is constrained by the hyperbolic equation, we can _ L+C e\m+c e~ WKt K#0.
choose the initial condition ap andd,¢ on an initial surface AK ’

t=const so thaW,, =W, =0, wheret andr are the coordi-

nates used in Eq128). This condition is written in terms of On the other hand, the general solution for the equation for
the potential W’ for W), as 9W'=9,W'=0. For any f, is given by

boundary condition oW’ that is linear and gives a well-

posed initial value problem, the solution satisfying this initial c
condltlon is W' =const, which implies thaw,,=0. Thus Cz“Fm: =
ap andF are expressed as in Eq453) and (154). fo(r)= (D8)
c
Col + — U2, K#0.

APPENDIX D: GENERAL SOLUTION AK
OF EQUATION (156)
Hence, after redefinitions of constants, the general solu-

In this Appendix we give the general solution to EG56) tion including the casa =0 is expressed as

on a two-dimensional maximally symmetric space. We work
in the coordinatest(r) used in Eq(128). Since the general

solution for the case\=0 is obviously given byE=C, E=CoQo(t,r)+C19:1(t,r) +Cor, (D9)
+C4t+Cyr with arbitrary constant€C,~C,, we assume
A#0 below. where
First, note that in thet(r) coordinates the nonvanishing
Christoffel symbols are given by 1, A=0K#0
1
u’ 1 U’ ={ Nt’r+—, A#0K=0
FLZEU' FaZEUU,, FL:“EU. (D1 9o(r) AT r’ (D10)

eMylZ  \K+#0
From this equation thet{) component of Eq(156) is writ-
ten as

t, AK=0
r D11
0=D,D,E=U?%,(U"Y2,E), (D2) 9x(r)= [e WKty2 - \K#0. (b1
which yields It is easy to check that this satisfies the remainirg com-

E=f,(t)UY2+f,(r). (D3) ponent of Eq.(156):

!

Inserting this expression into thet] component of Eq.

A
(156), we obtain a,+ U) E. (D12

U
0=(D,D,+\g, )E= ( + 355
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APPENDIX E: EXCEPTIONAL MODES FOR SCALAR
PERTURBATION WITH K>0

In this Appendix we show that the gauge-equivalent
classes of the solutions to the perturbed Einstein equatio
are parametrized by a finite number of parameters for th

exceptional modek?(k?—nK)=0 (K>0) of the bulk sca-
lar perturbation on a maximally symmetric background.

First, let us consider the mode€=0. For this modes,
and 5;; vanish, andf, and Hy are undefined. Further, the
gauge transformation is parametrized only By. Hence,
setting the undefined variables to zefoandF ,,, are written
asF=H, andF,,=f,,, which transform under the gauge
transformation as

SFap=—D,Ta—DpTa.  (ED

For the same reason, Eq$4) and (66), or equivalently,
Egs.(151) and(152), do not exist for the modk?=0. How-

PHYSICAL REVIEW D62 064022

Since Egs(151) and (152 hold under the above gauge
conditions, any solution of the perturbed Einstein equations
is parametrized by) satisfying ©,D,+Ng.p)E(Q)=0 as
for the generic mode. Let the set of solutidRgo this equa-

rl}s’on be S, . Then we have an onto map; from S, to the

Space of solutions to the perturbed Einstein equations. The
kernel of this map is spanned by the solutions Bf,D,
+N0ap)(2=0. On the other hand; and F,;, obtained by
settingF = 6F andF,,= 6F 5, in Eq. (E1) with T, satisfying
the above gauge-fixing condition is also a solution to the
perturbed Einstein equations belonging to the trivial gauge-
equivalent class. This correspondence defines a fap
from the spaceSg of solutionsT to Eq. (E7). Then the set
Sinv Of gauge-equivalent classes to the perturbed Einstein
equations is represented 8s/®; '®,S;.

Here, note thals /ker®d, is parametrized by the solution
to the equationE(2)=C,r, and hence by the initial data

(Q,Q) on the initial surface and the consta®4. Similarly,
Sg is parametrized by the initial datal(T) for Eq. (E7).

ever, we can recover these equations by regarding them aherefore, by representing the conditidn (Q)=®,(T) as
the gauge-fixing conditions. Then the residual gauge freea relation between these initial dd@ndC,), we can deter-

dom is represented by, satisfying the following two con-
ditions:

0=4[F3+2(n-2)F]=-2D,T?, (E2)
0=8(D,F2—2D,F)
~ h—=2 ~ 2 N
=—0OTa+ ——Dr-DT,+ -D°rD, T,
K ~
—|(n=2)5+@2n-D\ |T,
r
n ~ ~
— DDy T°+D,DyT"
r
n—2 ~
+——D*DyI", (E3)
where
F=r""?F, Fap=r""2Fa, T,=r"?T,. (E9

Equation(E2) implies thatT? is represented by a scalar
functionT as
Ta= €D, T, (E5)

because the orbit spagé is two dimensional. Inserting this
expression into Eq(E3), we obtain

€D [r’0T—nrDr-DT+2(n—1)KT]=0. (E6)
Hence, by replacing by T+ const, we obtain
r’OT—nrDr-DT+2(n—1)KT=0. (E7)

mine Sy -
Now let us undertake this program. First, by redefining
—T asT, the condition® () =®,(T) is expressed as

(Dan+ )\gab)Q = EaCDbDCT+ EbCDaDCT
n-2 c
- T(Dar Ebc+ Dbr EaC)D T

2(n—1)

+ €.DrDTg,,. (EY)
In the (t,r) coordinates used in Eq128), with the help of
the equations fof) andT, the trace andt(r)-component of
this equation are written as

Q) C, 2.

U r +—==-T, (E9)

Ul/2(u*1/2£-‘2)r=2UTH+

nrr

u
U’—2(n—1)T)T’

K
+2(n—-1)T. (E10
r

These equations have a solution far, ) when data ,Q)
are given.
On the other hand, the {r) component is expressed as

1 . 2.
uQ”+ EUQ’+)\Q=2U1’2(U’1’2T)’+ =T, (E1D

and gives a constraint dD,. In fact, inserting the expression
for T obtained from the trace, we obtain the conditiCp

=0. This implies that the sab; *®,Sg coincides with the
set of solutions to the homogeneous equatiBf())=0.
Thus C, is a gauge invariant and parametrizes the space
Sinv-
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Next we examine the mod€=nK. The argument is al- Here® represents the map from the spaeof solutionsL
most the same as in the above case. Now the harmonic scalar the set of solutions to the perturbed Einstein equations.
and the harmonic vector are nontrivial but the harmonic ten- The trace and thet(r) component of this equation are
sor 5;; vanishes. Hence only; is undefined, andX, is  written as
defined asX,=rf,/k. The gauge transformations &fand
Fap are given by

1
=" i|PrDlT Tt (E12 <
=UL'+ n)xr—(n—l)—)L, (E16
_ 1 L L '
5Fab:_E Da r Db ? +Db r Da ? . (E13)
. . : L
In the present case only E(L51) is lacking. Hence we U1’2(U1’ZQ)’=U1’2r”1(m> : (E17)
regard this as the gauge-fixing condition. Then the residual U~

gauge freedom is parametrized ly satisfying the wave
equation

~ N -~ K\~
DL—FDr-L+(n)\+2(n—1)—2)L:O, (E14)
r

wherel =r"~1L. After the redefinition— 2L/k—L, the con-
dition ®,(Q)=d4(L) is represented as

~ h—1 ~ ~
(DaDp+ANQap) Q=D DyL— T(DarDbLJr DyrD,L)

n(n—1) ~
+(—2DarDbrL+
r

n—1 ~
TDr-DL

+(n2)\_(n_1)2r52 E]gab. (E15

which have a solution forl(,L) for any dataO,Q). On the
other hand, ther(,r) component

UQ"—ArQ' +2Q=UL"—

n—-1 \.
M+TU)L’

+ L (E18

K
(n—l)—2+n)\
r

gives the constrain€,=C;=0. Thus<D1’1<D3ST coincides
with the space of solutions to the homogeneous equation
E(Q)=0, and the spac§;,, of the gauge-equivalent classes
of solutions is parametrized by the two gauge-invariant con-
stantsCy and C;.
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