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Global embeddings of scalar-tensor theories in 2¿1 dimensions

Soon-Tae Hong,* Won Tae Kim,† Yong-Wan Kim,‡ and Young-Jai Park§

Department of Physics and Basic Science Research Institute, Sogang University, C. P. O. Box 1142, Seoul 100-611, Kor
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We obtain~313!- or ~312!-dimensional global flat embeddings of four uncharged and charged scalar-tensor
theories with the parametersB or L in 211 dimensions, which are the nontrivially modified versions of the
Bañados-Teitelboim-Zanelli~BTZ! black holes. The limiting casesB50 or L50 exactly are reduced to the
global embedding Minkowski space solution of the BTZ black holes.

PACS number~s!: 04.70.Dy, 04.20.Jb, 04.62.1v
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I. INTRODUCTION

After Unruh’s work@1#, it has been known that a therm
Hawking effect on a curved manifold@2# can be looked at as
an Unruh effect in a higher flat dimensional spacetime. A
cording to the global embedding Minkowski space~GEMS!
approach@3#, several authors@4,5# recently have shown tha
this approach could yield a unified derivation of temperat
for various curved manifolds such as the rotating Ban˜ados-
Teitelboim-Zanelli~BTZ! model, @6–8#, the Schwarzschild
@9# together with its anti–de Sitter~AdS! extension, the
Reissner-Nordstro¨m ~RN! @10,11#, and the RN-AdS@12#.

On the other hand, since the pioneering work in 1992,
~211!-dimensional BTZ black hole@6# has become a usefu
model for realistic black hole physics@7#. Moreover, signifi-
cant interest in this model has recently increased with
novel discovery that the thermodynamics of higher dim
sional black holes can often be interpreted in terms of
BTZ solution @13#. It is therefore interesting to study th
geometry of~211!-dimensional black holes and their the
modynamics through further investigation. Very recently
have analyzed the Hawking and Unruh effects of the~211!-
dimensional black holes in terms of the GEMS approa
@14#. As a result, we have obtained the novel global hig
dimensional flat embeddings of the~211!-dimensional
static, rotating, and charged de Sitter black holes, which
the counterpart of the usual BTZ black holes as well as
charged static BTZ one.

In this paper we will futher analyze the~211!-
dimensional scalar-tensor~ST! theories@15# as an alternative
theory of gravity in three space-time dimensions in terms
the GEMS approach. As you may know three dimensio
vacuum general relativity~GR! admits no black hole bu
rather a trivial locally flat~globally conical! solution. One
has to either couple matter to GR, or consider alterna
vacuum~or nonvacuum! gravitational theories in order to ge
black hole solutions. Motivated by this, we will consider t
GEMS of the new black hole solutions in GR coupled to t
vacuum ST theories@16#, which are modifications of the
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BTZ black hole by an asymptotically constant scalar.
In Sec. II, we will consider the novel GEMS of the tw

uncharged~211!-dimensional ST theories, which have th
usual BTZ black hole as a substructure. In Sec. III, we w
also generalize these ST theories to the charged cases.

II. GEMS OF UNCHARGED SCALAR-TENSOR THEORIES

In three dimensions, the ST black holes have been
tained in Ref.@15#. The most general action coupled to
scalar can be written as@17#

S5E d3xA2g@C~f!R2v~f!~¹f!21V~f!#, ~1!

where R is the scalar curvature, andV(f) is a potential
function for f. C(f) and v(f) are collectively known as
the coupling functions.

On the other hand, the field equations for the action@Eq.
~1!# with C(f)5f, which is a choice for the ST theorie
without loss of generality, can be obtained by varying Eq.~1!
with respect to the metric and scalar fields, respectively
follows:

fRmn5v¹mf¹nf2gmnV1gmn¹2f1¹m¹nf, ~2!

2v¹2f1
dV

df
1

dv

df
~¹f!21R50. ~3!

The special cases to Eq.~1! in three dimensions were prev
ously considered by a number of authors. The first exam
is the static BTZ black hole solution ofC(f)51, v(f)
50, andV(f)52L @6#. The second example corresponds
the sameC(f) as above, but with a nontrivialf, v(f)
54, andV(f)52Lebf, for which the static black hole so
lutions have been previously derived in Ref.@16#. These ex-
amples have the conditionC(f)51, for which the metric
coupling to matter is the Einstein metric. In the ST theori
this is no longer true for the nontrivial case ofC(f)Þ1, and
the gravitational force is governed by a mixture of the met
and scalar fields.

We now look for the GEMS of the ST gravity theorie
described by field equations~2! and~3!, which have already
been analyzed by Chan@18#.
©2000 The American Physical Society21-1
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A. Case I: fÄr Õ„rÀ3BÕ2…

Let us consider the action and the choice of a scalar fi

L5fR2
2

12f
~¹f!212~323f1f2!Lf

1
8M

27B2 ~12f!3,

f5
r

r 2
3B

2

, ~4!

whose solution is given as

ds25N2dt22N22dr22r 2du2, ~5!

N~r !52M1
MB

r
1

r 2

l 2
, ~6!

wherel 25L21 andM is the positive mass parameter calc
lated using the quasilocal mass@6,11,19#. Here one notes tha
the metric looks like the Schwarzschild-AdS metric. IfL
50, the metric is exactly the same form as the fo
dimensional Schwarzschild case.

To study the metric, Eq.~5! it is convenient to define the
radial coordinater asr[1/x. Then, the lapse function Eq.~6!
can be rewritten as

N5
M

x2 S 1

Ml 2
2yB~x!D ,

yB~x!52Bx31x2. ~7!

Note that the parameterB may have either positive or nega
tive values. The positions of event horizons obtained fr
N50 can be now read off in Fig. 1 from cross section

FIG. 1. Graph ofyB(x)52Bx31x2: For a given constan
1/Ml 2, it shows that there exist event horizons along the abscisx
on a constantB plane.
06402
ld

-

l

curve formed by the surfaceyB(x)1 and a (x,B) plane asso-
ciated with a given value 1/Ml 2. Moreover, the slope of the
curveyB(x) at intersections along the abscissa on a cons
B plane gives the surface gravity of the horizon, which
kH[ 1

2 dN/druN505M (dyB /dx). The positiveB region of
the graph contains a curve of maximum value 4/27B2 along
the ordinate B. Thus, when satisfied with (1/Ml 2)
<(4/27B2), there exist two intersections, the outer and inn
event horizons,r 1 and r 2 , respectively. An extremal black
hole appears at the pointx52/3B coinciding withr 1 andr 2

@16#. On the other hand, for negativeB there is only one
event horizon for any choice of 1/Ml 2.

Now, let us consider the GEMS approach to embed t
curved space time into a higher dimensional flat one.
restrict ourselves to the region ofr .r 1 according to the
usual GEMS embedding@3,4,14#.

First, for the case of positiveB the GEMS embedding is
obtained by comparing the three metric in Eq.~6! with ds2

5hab dza dzb, where (a,b50,•••,5) andhab5diag(1,2,
2,2,1,1). Now, let us find the2r 2du2 term in the three
metric by introducing two coordinatesz3,z4 in Eq. ~13! ~see
below!, giving 2(dz3)21(dz4)252r 2du21( l 2/r 1

2 )dr2.
Then, in order to obtain theN2 dt2 term, we make an ansat
of two coordinates (z0,z1) in Eq. ~13! which, together with
the above (z3,z4), yields

~dz0!22~dz1!22~dz3!21~dz4!2

5N2dt22S kH
22

S 2
MB

2r 2
1

r

l 2D 2

S 2M1
MB

r
1

r 2

l 2 D 2
l 2

r 1
2 D dr2

2r 2 du2, ~8!

where the Hawking-Bekenstein horizon surface gravity
given by

kH5
r 1

l 2
2

Br1

2l 2~r 12B!
. ~9!

Since the combination ofN22 dr2 anddr2 terms in Eq.~8!
can be separated into a positive definite part and a nega
one as follows:

1In Fig. 1 the parameterB is regarded as a continuous variable a
the limit of x→0 corresponds tor→`. By choosing a plane with
constantB, one can easily see that a curve is defined on the (x,yB)
plane. Note that for a fixed negativeB there exists only one inter
section ofx associated with the value 1/Ml 2.
1-2
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S kH
21

lN1
1/2~B!

2r 1
2 r 3/2~r 12B!@r 1r ~r 1r 1!2B~r 21r 1r 1r 1

2 !#1/2D 2

2S kH
21

lN2
1/2~B!

2r 1
2 r 3/2~r 12B!@r 1r ~r 1r 1!2B~r 21r 1r 1r 1

2 !#1/2D 2

[~dz2!22~dz5!2, ~10!

where

N1~B!5
B2r 1

5

l 4
@r 1

3 ~r 21r 1r 1r 1
2 !19r 4~r 1r 1!121r 1

2 r 3#,

N2~B!5
Br1

4

l 4
@~8r 1

2 114B2!r 1
2 r 31B2r 1

3 ~r 21r 1r 1r 1
2 !1~4r 1

2 15B2!r 4~r 1r 1!#, ~11!

we can obtain the flat global embeddings of the corresponding curved three metric as

ds25~dz0!22~dz1!22~dz2!22~dz3!21~dz4!21~dz5!25N2 dt22N22 dr22r 2 du2. ~12!

As a result, the desired coordinate transformations to the~313!-dimensional AdS GEMS are obtained forr>r 1 as

z05kH
21S 2M1

MB

r
1

r 2

l 2 D 1/2

sinhkHt,

z15kH
21S 2M1

MB

r
1

r 2

l 2 D 1/2

coshkHt,

z25kH
21E dr

lN1
1/2~B!

2r 1
2 r 3/2~r 12B!@r 1r ~r 1r 1!2B~r 21r 1r 1r 1

2 !#1/2
,

z35
l

r 1
r sinh

r 1

l
u,

z45
l

r 1
r cosh

r 1

l
u,

z55kH
21E dr

lN2
1/2~B!

2r 1
2 r 3/2~r 12B!@r 1r ~r 1r 1!2B~r 21r 1r 1r 1

2 !#1/2
. ~13!
t
n

also
In static detectors (u, r 5const) described by a fixed poin
in the (z2, z3, z4, z5) hyperplane, one can have consta
three acceleration

a5

r

l 2
2

MB

2r 2

S 2M1
MB

r
1

r 2

l 2D 1/2, ~14!

and constant accelerated motion in the (z0,z1) plane with the
Hawking temperature
06402
t

2pT5a65

r 1

l 2
2

MB

2r 1
2

S 2M1
MB

r
1

r 2

l 2D 1/2. ~15!

Here one notes that the above Hawking temperature is
given by the relation@2,20#

T5
1

2p

kH

g00
1/2

. ~16!

One can easily check that, in the limit ofB50 where the
spacelikez2 and timelikez5 coordinates in Eq.~13! vanish,
1-3
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the above~313!-dimensional coordinate transformations a
exactly reduced to the~212!-dimensional GEMS of the
usual BTZ case@4,14#.

We now see how the scalar-tensor solution, which i
modified version of the BTZ, yields a finite Unruh area d
to the periodic identification ofu mod 2p. The Rindler ho-
rizon condition (z1)22(z0)250 implies r 5r 1 and the em-
bedding constraints yieldz25 f 1(r ), z55 f 2(r ), and (z4)2

2(z3)25 l 2, where f 1(r ) and f 2(r ) can be read from Eq
~13!. The area of the Rindler horizon is now described a

E dz2 dz3 dz4 dz5d~z22 f 1~r !!d~z52 f 2~r !!d~@~z4!2

2~z3!2#1/22 l !,
e

tr
ow
p
vi
h

er
lik

or

la

06402
a

which, after performing trivial integrations overz2 and z5,
yields the desired entropy of the scalar-tensor theory as

E
2 l sinh(pr 1 / l )

l sinh(pr 1 / l )

dz3E
0

[(z3)21 l 2] 1/2

dz4d~@~z4!22~z3!2#1/22 l !

5E
2 l sinh(pr 1 / l )

l sinh(pr 1 / l )

dz3
l

@ l 21~z3!2#1/2
52pr 1~B!, ~17!

which reproduces the entropy 2pr H of the uncharged BTZ
case in the limitB50.

Next, for the case ofB,0, sinceN2(B) is an odd func-
tion of B, the combination ofN22 dr2 anddr2 terms in Eq.
~8! can be written by introducing only one extra space2 di-
mensionz82 as follows:
2S kH
21 l ~N22N1!1/2~B!

2r 1
2 r 3/2~r 12B!@r 1r ~r 1r 1!2B~r 21r 1r 1r 1

2 !#1/2D 2

[2~dz82!2. ~18!

Then, we can obtain the following flat embedding of the corresponding curved three metric as

ds25~dz0!22~dz1!22~dz82!22~dz3!21~dz4!25N2 dt22N22 dr22r 2 du2. ~19!

As a result, the desired coordinate transformations to the~312!-dimensional GEMS are forr .r 1

z825kH
21E dr

l ~N22N1!1/2~B!

2r 1
2 r 3/2~r 12B!@r 1r ~r 1r 1!2B~r 21r 1r 1r 1

2 !#1/2
, ~20!
as a
while (z0,z1,z3,z4) are of those forms in Eq.~13!. Similar to
the previousB.0 case, one can easily obtain the desir
entropy of the ST theory as 2pr (B), where r is only one
event horizon in this case.

It seems appropriate to comment on the minimal ex
dimensions needed for a desired GEMS. As you may kn
spaces of constant curvature can be embedded into flat s
with only single extra dimension. This is seen in our pre
ous work@14# for the static and rotating BTZ cases, whic
are embedded in the~212!-dimensional spaces. On the oth
hand, since the scalar-tensor solution is Schwarzschild-
@4,12#, we have introduced~112! or ~111! extra dimensions
for the desired GEMS with the positive or negativeB, re-
spectively. In Sec. II B, we will also obtain similar results f
the charged scalar-tensor theories.

B. Case II: fÄr 2Õ„r 2À2L …

Next, another choice of an asymptotically constant sca
yields

L5fR2
4f21

2f~12f!
~¹f!21

M

2L
16S 2L2

M

2L Df

118S 2L1
M

4L Df212S 4L2
M

L Df3,
d

a
,

ace
-

e

r

f5
r 2

r 222L
, ~21!

to yield the solution

ds25N2 dt22N22 dr22r 2 du2,

N~r !52M1
ML

r 2
1

r 2

l 2
, ~22!

where l 25L21. The metric has a curvature singularity atr
50, and the scalar and its potential both diverge atr 252L
with L.0. Note that only the case ofL.0 is physically
meaningful since we require it to have the positiver.

2By a simple test withB,0, we can show that Eq.~18! is really
a monotonic decreasing function, and thus can be defined
spacelike variable.
1-4
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Now, defining the radial coordinater asr 51/x as in Sec.
II A, the lapse function can be rewritten as

N5
M

x2 S 1

Ml 2
2yL~x!D , ~23!

yL~x!52Lx41x2. ~24!

As shown in Fig. 2, for a specific value of 1/Ml 2, there exist
two event horizons,r 1 and r 2 , on a (x,yL) plane with a
constantL, if satisfied (1/Ml 2)<(1/4L). Here, the maximum
value of 1/4L is obtained atx5(1/A2L) (r 5A2L). More-
over, the extremal limit is 4L5Ml 2 at x51/A2L (r
5A2L) coinciding with r 1 and r 2 . In this limit, the third
term in the Lagrangian becomes 2L, while fourth, fifth, and
sixth terms all vanish. Here note that, in the limitL
5(J2/4M ), the solution seems to be related to a rotatio
BTZ black hole. However, since the three metric, Eq.~22!,
does not contain a shift function, our ST theory does
allow such a rotating BTZ solution.

After similar algebraic manipulation for the region ofr
.r 1 by following the previous steps described in Sec. II
we obtain the desired coordinate transformations to
~313!-dimensional AdS GEMS, ds25(dz0)22(dz1)2

2(dz2)22(dz3)21(dz4)21(dz5)2, which are obtained for
r>r 1 :

z05kH
21S 2M1

ML

r 2
1

r 2

l 2 D 1/2

sinhkHt,

z15kH
21S 2M1

ML

r 2
1

r 2

l 2 D 1/2

coshkHt,

z25kH
21E dr

lN3
1/2~L !

r 1
2 r 2~r 1

2 2L !@r 1
2 r 22L~r 21r 1

2 !#1/2
,

~25!

z35
l

r 1
r sinh

r 1

l
u,

FIG. 2. Graph of yL(x)52Lx41x2: For a given constan
1/Ml 2, it shows that there exist event horizons along the abscisx
on a constantL plane.
06402
g

t

,
e

z45
l

r 1
r cosh

r 1

l
u,

z55kH
21E dr

lN4
1/2~L !

r 1
2 r 2~r 1

2 2L !@r 1
2 r 22L~r 21r 1

2 !#1/2
,

where the Hawking-Bekenstein horizon surface gravity
given by

kH5
r 1

l 2
2

Lr 1

l 2~r 1
2 2L !

, ~26!

and

N3~L !5
L2r 1

6

l 4
@r 1

2 ~r 41r 1
2 r 21r 1

4 !15r 4~r 21r 1
2 !13r 1

2 r 4#,

N4~L !5
Lr 1

4

l 4
@~r 1

4 13L2!r 1
2 r 41L2r 1

2 ~r 41r 1
2 r 21r 1

4 !

1~2r 1
4 13L2!r 4~r 21r 1

2 !#. ~27!

In static detectors (u, r 5const) described by a fixed poin
in the (z2, z3, z4, z5) hyperplane, one can have consta
three acceleration

a5

r

l 2
2

ML

r 3

S 2M1
ML

r 2
1

r 2

l 2 D 1/2, ~28!

and constant accelerated motion in the (z0,z1) plane with the
Hawking temperature

2pT5a65

r 1

l 2
2

ML

r 1
3

S 2M1
ML

r 2
1

r 2

l 2 D 1/2. ~29!

Here one notes that the above Hawking temperature is
given by the relation~16!.

Similar to the previous case, in the limit ofL50, where
the spacelikez2 and timelikez5 coordinates in Eq.~25! van-
ish, the ~313!-dimensional coordinate transformations a
exactly reduced to the~212!-dimensional GEMS of the
usual BTZ case@4,14#. We also obtain the entropy 2pr 1(L)
of the scalar-tensor theory withf5r 2/(r 222L), which re-
produces the uncharged static BTZ entropy 2pr H @4,14# in
the L50 limit.
1-5
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III. GEMS OF CHARGED SCALAR-TENSOR THEORIES

A. Case I: fÄr Õ„rÀ3BÕ2…

Now consider the charged scalar-tensor theory for
modified BTZ black hole where the three metric, Eq.~5!, is
described by the charged lapse

N~r !52M1
MB

r
1

r 2

l 2
22Q2 ln r . ~30!

Here we only consider the case in which the parameterB is
positive because the analysis for the case ofB,0 is highly
nontrivial due to the addition of the charged term in contr
to the uncharged cases.

The coordinate transformations to the~313!-dimensional
AdS GEMS ds25(dz0)22(dz1)22(dz2)22(dz3)2

1(dz4)21(dz5)2 are obtained forr>r 1 :

z05kH
21S 2M1

MB

r
1

r 2

l 2
22Q2 lnD 1/2

sinhkHt,

z15kH
21S 2M1

MB

r
1

r 2

l 2
22Q2 ln r D 1/2

coshkHt,

z25kH
21E dr

lN1
1/2~B,Q!

2r 1
3/2r 3/2~r 12B!D1

1/2~B,Q!
, ~31!

z35
l

r 1
r sinh

r 1

l
u,

z45
l

r 1
r cosh

r 1

l
u,

z55kH
21E dr

lN2
1/2~B,Q!

2r 1
3/2r 3/2~r 12B!D1

1/2~B,Q!
,

where the Hawking-Bekenstein horizon surface gravity
given by

kH5
r 1

l 2
2

Br1
2 22BQ2l 2 ln r 1

2l 2r 1~r 12B!
2

Q2

r 1
, ~32!

and

N1~B,Q!54Q4r 1
3 r 2~r 1r 1!@r 1

2 1r 2~2 f 11!#

1
B2r 1

5

l 4
@r 1

3 ~r 21r 1r 1r 1
2 !19r 4~r 1r 1!

121r 1
2 r 3#1c12BQ21c16BQ61c24B

2Q4

1c32B
3Q21c36B

3Q6,
06402
e
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N2~B,Q!5
4Q2r 1

3 r 4

l 2
~r 1r 1!S 2r 1

2 1
r 1

4 1Q4l 4

r 1
2

f D
1

Br1
4

l 4
@~8r 1

2 114B2!r 1
2 r 31B2r 1

3 ~r 21r 1r

1r 1
2 !1~4r 1

2 15B2!r 4~r 1r 1!#1c14BQ4

1c22B
2Q21c26B

2Q61c34B
3Q4, ~33!

D1~B,Q!5r 1
2 r ~r 1r 1!2Br1~r 21r 1r 1r 1

2 !

2Q2l 2~r 1r 1!@r f 2B~ ln r 111!g#,

and the coefficients are given by

c125
4r 1r

l 2
@r 1

3 ~2r 21r 1
2 12r 2 ln r 1!~r 21r 1r 1r 1

2 !

1r 1
3 r 3~r 1r 1!~3 f 15!1r 1

4 r 2~r 1r 1!

3~ ln r 111!g#,

c1454r 1
2 r @r 2~r 21r 1r 1r 1

2 !~2 ln r 113!12r 1
3 ~r

1r 1!ln r 11r 1
2 r ~r 13r 1!1r 3~r 1r 1!

3~2 ln r 115! f 12r 1r 2~r 1r 1!~ ln r 111!g#,

c1654l 2r 3~r 1r 1!~ ln r 111!~2r f 1r 1g!,

c225
r 1

3

l 2
@20r 3~r 21r 1r 1r 1

2 !~ ln r 111!18r 1
2 r 3 ln r 1

14r 1
2 ~r 21r 1r 1r 1

2 !~2r 1r 1 ln r 1!13r 4~r

1r 1!~3 f 14!112r 1r 3~r 1r 1!~ ln r 111!g#,

c2454r 1@r 3~r 21r 1r 1r 1
2 !~ ln r 111!213r 1

4 r ln r 1

1r 1
2 ~r 21r 1r 1r 1

2 !~r 1r 1 ln r 1!ln r 1~r 1r 1!

3~ ln r 111!~3r 4f 12r 413r 1
2 r 2!1r 1r 3~r 1r 1!

3~ ln r 111!~2 ln r 115!g#,

c2654l 2r 3
r 1r 1

r 1
~ ln r 111!2~r f 12r 1g!,

c325
r 1

2

l 2
@4r ~r 1

2 13r 2!~r 21r 1r 1r 1
2 !~ ln r 111!

14r 1
2 ~2r 31r 1

3 !ln r 119r 1r 3~r 1r 1!

3~ ln r 111!g#,

c3454r 3~r 21r 1r 1r 1
2 !~ ln r 111!214r 1

4 ~r 1r 1!

3~ ln r 1!218r 1
4 r ln r 114r 1r 2~r 1r 1!

3~ ln r 111!2~r 113rg !,
1-6
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c3654l 2r 3
r 1r 1

r 1
~ ln r 111!3g,

f ~r ,r 1!5
2r 1

2 ln~r /r 1!

r 22r 1
2

, ~34!

g~r ,r 1!5
2r 1~r ln r 2r 1 ln r 1!

~r 22r 1
2 !~ ln r 111!

.

Here bothf (r ,r 1) andg(r ,r 1) approach unities asr goes to
r 1 , due to L’Hospital’s rule.

In static detectors (u, r 5const) described by a fixed poin
in the (z2, z3, z4, z5) hyperplane, one can have consta
three acceleration

a5

r

l 2
2

MB

2r 2
2

Q2

r

S 2M1
MB

r
1

r 2

l 2
22Q2 ln r D 1/2, ~35!

and constant accelerated motion in the (z0,z1) plane with the
Hawking temperature

2pT5a65

r 1

l 2
2

MB

2r 1
2

2
Q2

r 1

S 2M1
MB

r
1

r 2

l 2
22Q2 ln r D 1/2. ~36!

On the other hand, the above Hawking temperature is
given by relation~16!. Note that one can easily check tha
since in the uncharged limitQ50, N1(B,Q), andN2(B,Q)
in Eq. ~33! are exactly reduced to theN1(B) andN2(B) in
Eq. ~11!, respectively, the~313!-dimensional coordinate
transformations Eq.~31! are also exactly reduced to the u
charged case, Eq.~13!, having the same~313!-dimensional
GEMS structure in contrast to the usual BTZ case@14#. Since
in this case the metric is Schwarzschild-like, the GEM
structure coinsides with that of the~311!-dimensional
Schwarzschild black hole, which needs~111! additional ex-
tra dimensions to yield the~412! GEMS structure@4,12#.
Furthermore, in theB50 limit, the transformations, Eq.~31!,
are exactly reduced to the charged BTZ case@14#, which still
has the~313!-dimensional GEMS structure.

B. Case II: fÄr 2Õ„r 2À2L …

Now consider the charged scalar-tensor theory withL
.0 for the modified BTZ black hole where the three metr
Eq. ~22!, is described by the charged lapse function:

N~r !52M1
ML

r 2
1

r 2

l 2
22Q2 ln r . ~37!
06402
t

so

,

The coordinate transformations to the~313!-dimensional
AdS GEMS, ds25(dz0)22(dz1)22(dz2)22(dz3)2

1(dz4)21(dz5)2 are obtained forr>r 1 :

z05kH
21S 2M1

ML

r 2
1

r 2

l 2
22Q2 ln r D 1/2

sinhkHt,

z15kH
21S 2M1

ML

r 2
1

r 2

l 2
22Q2 ln r D 1/2

coshkHt,

z25kH
21E dr

lN3
1/2~L,Q!

r 1
2 r 2~r 1

2 2L !D2
1/2~L,Q!

, ~38!

z35
l

r 1
r sinh

r 1

l
u,

z45
l

r 1
r cosh

r 1

l
u,

z55kH
21E dr

lN4
1/2~L,Q!

r 1
2 r 2~r 1

2 2L !D2
1/2~L,Q!

,

where the Hawking-Bekenstein horizon surface gravity
given by

kH5
r 1

l 2
2

Lr 1
2 22LQ2l 2 ln r 1

l 2r 1~r 1
2 2L !

2
Q2

r 1
, ~39!

and

N3~L,Q!5Q4r 1
6 r 4@r 1

2 1r 2~2 f 11!#1
L2r 1

6

l 4
@r 1

2 ~r 41r 1
2 r 2

1r 1
4 !15r 4~r 21r 1

2 !13r 1
2 r 4#1d12LQ2

1d16LQ61d24L
2Q41d32L

3Q21d36L
3Q6,

N4~L,Q!5
Q2r 1

6 r 6

l 2 S 2r 1
2 1

r 1
4 1Q4l 4

r 1
2

f D 1
Lr 1

4

l 4
@~r 1

4

13L2!r 1
2 r 41L2r 1

2 ~r 41r 2r 1
2 1r 1

4 !1~2r 1
4

13L2!r 4~r 21r 1
2 !#1d14LQ41d22L2Q2

1d26L2Q61d34L3Q4, ~40!

D2~L,Q!5r 1
2 r 22L~r 21r 1

2 !2Q2l 2@r 2f 2L~2 ln r 1

11!g#,

and the coefficients are given by

d125
r 1

4 r 2

l 2
@2r 1

2 r 2~r 21r 1
2 !~2 ln r 111!12r 1

2 ~r 41r 1
2 r 2

1r 1
4 !14r 1

2 r 4~ f 11!1r 1
4 r 2~2 ln r 111!g#,
1-7
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d145r 1
4 r 2@4~r 41r 1

2 r 21r 1
4 !ln r 11r 2~3r 214r 1

2 !

12r 4~2 ln r 113! f 12r 1
2 r 2~2 ln r 111!g#,

d165 l 2r 1
2 r 4@2r 2f 1r 1

2 ~2 ln r 111!g#,

d225
2r 1

4

l 2
@2~r 41r 1

2 r 21r 1
4 !~r 21r 1

2 ln r 1!13r 4~r 21r 1
2 !

3~2 ln r 111!#,
~41!

d245r 1
2 @r 2~r 41r 1

2 r 21r 1
4 !~2 lnr 1 11!214r 1

4 ~r 2

1r 1
2 ln r 1!ln r 112r 6~2 ln r 111!~2 f 11!

12r 1
2 r 4~2 ln r 111!~2 ln r 113!g#,

d265 l 2r 4~2ln r 111!2~r 2f 12r 1
2 g!,

d325
r 1

2 r 2

l 2
@~r 1

4 1r 1
2 r 21r 4!18r 2~r 21r 1

2 !ln r 1

12r 2~2r 21r 1
2 !#,

d3454~r 41r 1
2 r 21r 1

4 !~r 21r 1
2 ln r 1!ln r 11r 1

2 r 4~2 ln r 1

11!21r 6@4~ ln r 1!211#14r 1
2 r 4~2 ln r 111!2g,

d365 l 2r 4~2 ln r 111!3g.

In static detectors (u, r 5const) described by a fixed poin
in the (z2, z3, z4, z5) hyperplane, one can have consta
three acceleration

a5

r

l 2
2

ML

r 3
2

Q2

r

S 2M1
ML

r 2
1

r 2

l 2
22Q2 ln r D 1/2, ~42!

and constant accelerated motion in the (z0,z1) plane with the
06402
t

Hawking temperature

2pT5a65

r 1

l 2
2

ML

r 1
3

2
Q2

r 1

S 2M1
ML

r 2
1

r 2

l 2
22Q2 ln r D 1/2. ~43!

Similar to the previous case, one can also check that, sinc
the uncharged limit ofQ50, N3(L,Q), and N4(L,Q) are
exactly reduced to theN1(L) and N2(L), respectively, the
coordinate transformations Eq.~31! are also exactly reduce
to the uncharged case Eq.~13! having the same~313!-
dimensional GEMS structure in contrast to the usual B
case@14#. Furthermore, in theL50 limit, the transforma-
tions Eq.~31! are exactly reduced to the charged BTZ ca
@14#, which still has the~313!-dimensional GEMS structure

IV. CONCLUSIONS

In conclusion, we have newly analyzed the~211!-
dimensional four uncharged and two charged ST theo
with the parametersB or L through the GEMS approach
which are the modified versions of the usual BTZ bla
holes. First, we have obtained the~313!- or ~312!-
dimensional GEMS of the uncharged ST theories in
~211! dimensions depending on the positive or negat
signs ofB, respectively. Second, we have generalized th
embeddings to the charged ST theories with the defini
positive B. Third, we have also obtained the~313!-
dimensional GEMS of the uncharged and charged ST th
ries with the definitely positive parameterL. Since in the
uncharged limitQ50, the ~313!-dimensional coordinate
transformations of the charged ST theories are exactly
duced to the uncharged case having the same~313!-
dimensional GEMS structure in contrast to the usual B
case@14#. Since in the case withf5r /(r 23B/2) the metric
is Schwarzschild-like, the GEMS structure coinsides w
that of the ~311!-dimensional Schwarzschild black hole
which needs~111! additional extra dimensions to yield th
~412!-dimensional GEMS structure. Furthermore, in theB
50 or L50 limit, the coordinate transformations are exac
reduced to the charged BTZ case, which still has the~313!-
dimensional GEMS structure.
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