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Global embeddings of scalar-tensor theories in 21 dimensions
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We obtain(3+3)- or (3+2)-dimensional global flat embeddings of four uncharged and charged scalar-tensor
theories with the parameteBor L in 2+1 dimensions, which are the nontrivially modified versions of the
Barmados-Teitelboim-ZanelliBTZ) black holes. The limiting caseB=0 or L=0 exactly are reduced to the
global embedding Minkowski space solution of the BTZ black holes.

PACS numbes): 04.70.Dy, 04.20.Jb, 04.62v

[. INTRODUCTION BTZ black hole by an asymptotically constant scalar.

In Sec. I, we will consider the novel GEMS of the two
uncharged(2+1)-dimensional ST theories, which have the
usual BTZ black hole as a substructure. In Sec. Ill, we will
“also generalize these ST theories to the charged cases.

After Unruh’s work[1], it has been known that a thermal
Hawking effect on a curved manifo[@] can be looked at as
an Unruh effect in a higher flat dimensional spacetime. Ac
cording to the global embedding Minkowski spa&EMS
approacH 3], several authorf4,5] recently have shown that
this approach could yield a unified derivation of temperature“' GEMS OF UNCHARGED SCALAR-TENSOR THEORIES

for various curved manifolds such as the rotating']'aﬁﬂms- In three dimensions, the ST black holes have been ob-
Teitelboim-Zanelli(BTZ) model,[6-8], the Schwarzschild tained in Ref.[15]. The most general action coupled to a
[9] together with its anti—de SittefAdS) extension, the scalar can be written 447]
Reissner-Nordstra (RN) [10,11], and the RN-Adg12].

On the other hand, since the pioneering work in 1992, the 3 )
(2+1)-dimensional BTZ black holg6] has become a useful S:f d*x\=g[C()R- () (V)2 +V($)], (1)

model for realistic black hole physi¢Z]. Moreover, signifi-

cant interest in this model has recently increased with th@uhere R is the scalar curvature, and(¢) is a potential
novel discovery that the thermodynamics of higher dimenfunction for ¢. C(¢) and w(¢) are collectively known as
sional black holes can often be interpreted in terms of thehe coupling functions.

BTZ solution [13]. It is therefore interesting to study the  On the other hand, the field equations for the acfigq.
geometry of(2+1)-dimensional black holes and their ther- (1)] with C(¢)= ¢, which is a choice for the ST theories
modynamics through further investigation. Very recently wewithout loss of generality, can be obtained by varying 9.

have analyzed the Hawking and Unruh effects of @®e1)-  with respect to the metric and scalar fields, respectively, as
dimensional black holes in terms of the GEMS approacholiows:

[14]. As a result, we have obtained the novel global higher

dimensional flat embeddings of th&+1)-dimensional — _ 2

static, rotating, and charged de Sitter black holes, which are PRu =0V OV, 00V + 0,V G+ VT (2)

the counterpart of the usual BTZ black holes as well as the v d

charged static BTZ one. 20V2h+ — + —2 (V )2+ R=0. 3)

In this paper we will futher analyze th&2+1)- d¢ d¢

dimensional scalar-tens¢8T) theoried 15] as an alternative

theory of gravity in three space-time dimensions in terms ofThe special cases to Ef}l) in three dimensions were previ-

the GEMS approach. As you may know three dimensionabusly considered by a number of authors. The first example

vacuum general relativitfGR) admits no black hole but is the static BTZ black hole solution d@(¢)=1, w(¢)

rather a trivial locally flat(globally conical solution. One =0, andV(¢)=2A [6]. The second example corresponds to

has to either couple matter to GR, or consider alternativéhe sameC(¢) as above, but with a nontriviap, w(¢)

vacuum(or nonvacuumagravitational theories in order to get =4, andV(¢)=2Ae?, for which the static black hole so-

black hole solutions. Motivated by this, we will consider the lutions have been previously derived in Rgf6]. These ex-

GEMS of the new black hole solutions in GR coupled to theamples have the conditio@(¢)=1, for which the metric

vacuum ST theorie$16], which are modifications of the coupling to matter is the Einstein metric. In the ST theories,
this is no longer true for the nontrivial case©{¢)# 1, and
the gravitational force is governed by a mixture of the metric

*Email address: sthong@ccs.sogang.ac.kr and scalar fields.

"Email address: wtkim@ccs.sogang.ac.kr We now look for the GEMS of the ST gravity theories
*Email address: ywkim65@netian.com described by field equatior8) and(3), which have already
$Email address: yjpark@ccs.sogang.ac.kr been analyzed by Chdas].
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curve formed by the surfacgs(x)! and a &,B) plane asso-
ciated with a given value MI12. Moreover, the slope of the
curveyg(x) at intersections along the abscissa on a constant
B plane gives the surface gravity of the horizon, which is
ky=3dN/dr|y—o=M(dyg/dx). The positiveB region of
the graph contains a curve of maximum value &2along
the ordinate B. Thus, when satisfied with (W12)
<(4/278%?), there exist two intersections, the outer and inner
event horizonst , andr_, respectively. An extremal black
hole appears at the poirt= 2/3B coinciding withr . andr _
[16]. On the other hand, for negativ@ there is only one
event horizon for any choice of W12,

Now, let us consider the GEMS approach to embed this

FIG. 1. Graph ofyg(x)=—Bx3+x% For a given constant
1/M12, it shows that there exist event horizons along the absgissa

on a constanB plane. curved space time into a higher dimensional flat one. We
restrict ourselves to the region of>r, according to the
A. Case I ¢= r/(r—3B/2) usual GEMS embeddin@,4,l4|.

Let us consider the action and the choice of a scalar field First, for the case of positive the GEMS embedding is
obtained by comparing the three metric in E6) with ds?

=5 dZ*dZ°, where @,b=0,- - -,5) and 5,,=diag(+,—,
2 —,—,+,+). Now, let us find the-r?d#? term in the three
L=¢R— m(v $)°+2(3-3¢+ A metric by introducing two coordinates,z* in Eq. (13) (see
below), giving —(dz®)?+(dz*)?=—r2d6?+(1%/r2)dr2.
PPN Then, in order to obtain thH? dt? term, we make an ansatz
o2 (1=¢)% of two coordinates 2°,z%) in Eq. (13) which, together with
the above £3,2%), yields

b= —"7q, (4)
3B (d2%)2— (dZY)2— (d2%)%+ (dZ)?
2
MB )\’
whose solution is given as o2 2 12
:NZdtZ_ k;2 -~ dr2

d=N2dt?— N~ 2dr?—r2d ¢, (5) _M+$+:_2 s
MB r? —r2de?, 8
N(r)=—|v|+7+|—2, (6) ®

where the Hawking-Bekenstein horizon surface gravity is

2_ 71 . . _
wherel“= A"+ andM is the positive mass parameter calcu given by

lated using the quasilocal md$511,19. Here one notes that

the metric looks like the Schwarzschild-AdS metric. Af

=0, the metric is exactly the same form as the four-

dimensional Schwarzschild case. oot Br. )
To study the metric, Eq5) it is convenient to define the Ho 2 21%(r . — B)

radial coordinate asr=1/x. Then, the lapse function E¢(f)

can be rewritten as

Since the combination df~?dr? anddr? terms in Eq.(8)

M[ 1 can be separated into a positive definite part and a negative
=2 W_yB(X) , one as follows:
yg(X)=—Bx3+x2. (7)

UIn Fig. 1 the parameteB is regarded as a continuous variable and
the limit of x—0 corresponds to—o°. By choosing a plane with
Note that the paramet®& may have either positive or nega- constants, one can easily see that a curve is defined on thgg]
tive values. The positions of event horizons obtained fronplane. Note that for a fixed negatiBthere exists only one inter-

N=0 can be now read off in Fig. 1 from cross sectionalsection ofx associated with the valueNi?.
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2
- INT%(B)
N 2r2r¥(r, —B)[rir(r+r,)—B(r2+r r+r2)]42
INYZ(B) 2
—| kgt =(dZ%)%~(d2)?, (10
( N 2r2r32(r —B)[ror(r+r,)—B(r2+r r+r2)¥2
where
2.5
Ny(B)= |4+[ri(r2+r+r+ri)+9r4(r+r+)+21!ir3],
r4
No(B)= ——[(8r2 +14B2)r2r3+ B3 (r2+r,r+r2)+(4r2 +5B2)r(r+r.)], (12)

|4

we can obtain the flat global embeddings of the corresponding curved three metric as

ds?=(d2)?—(dZ})?— (dZ)?—(dZ)?+ (dZ")?+ (d2°)?>=N?dt?—~ N~ ?dr2—r? d . (12
As a result, the desired coordinate transformations ta3ke3)-dimensional AdS GEMS are obtained foer . as
2 1/2
=k, —M+ - 7 sinhkyt,
MB  r2\"?
2=kt _M+T+|_2 coshkt,
) INT%(B)
2r2r32(r = B)[ror(r+r)—B(r?+r r+r2)J*?
3 | Cory
z°=—r sinh— @,
ry |

| r,
z*=—r cosh— 4,
r. |

z5=k;1f dr—— 2 — (13

2r2r32(r , —B)[r r(r+r)—B(r?+r,r+r2)]

|

In static detectors, r = const) described by a fixed point r MB
. +
in the (22, z°, z* Z°) hyperplane, one can have constant -
three acceleration 12 2r?

2nT=ag= L (15
12 2r2

(14) Here one notes that the above Hawking temperature is also
given by the relatiori2,20]

-M+—+—

MB 2\
r |2)

1 ky

- 2"
27 g

(16)

and constant accelerated motion in ti28,¢) plane with the  One can easily check that, in the limit 8 =0 where the
Hawking temperature spacelikez? and timelikez® coordinates in Eq(13) vanish,
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the above3+3)-dimensional coordinate transformations arewhich, after performing trivial integrations ovef and z°,
exactly reduced to th€2+2)-dimensional GEMS of the vyields the desired entropy of the scalar-tensor theory as
usual BTZ cas¢4,14). | sinh(arr» /1) .
. o e [(23)2+13

We now see how the scalar-tensor solution, which is a f d23J dZ8([ (22— (23)2]Y2-1)
modified version of the BTZ, yields a finite Unruh area due J -1 sinh(r, /1) 0
to the periodic identification o mod 2. The Rindler ho- '
rizon condition ¢*)?—(z°)?=0 impliesr=r, and the em- _ f' sinherr . 1) I —27r.(B) 17
bedding constraints yiel@?=f,(r), z°=f,(r), and @*)? —Isinhr, ) [124(23)2]12 e
—(2%)%=12, wheref,(r) and f,(r) can be read from Eq.

(13). The area of the Rindler horizon is now described as Which reproduces the entropyr2y of the uncharged BTZ
case in the limiB=0.

Next, for the case oB<0, sinceN,(B) is an odd func-
J dZdZ2dZ*d228(2%—f4(r)) 8(2°— (1)) 8([(z*)? tion of B, the combination oN~2dr? anddr? terms in Eq.
(8) can be written by introducing only one extra spade
—(2%)21Y2-1, mensionz’? as follows:
I(N,—Ny) Y4B 2
_ k;l . ( 2 l) ( ) - E—(dz’z)z_ (18)
2203 r, —B)[ror(r+r)—B(r2+r r+r2)]¥2

Then, we can obtain the following flat embedding of the corresponding curved three metric as
ds?=(dZ%)?—(dZ")?—(dZ'?)%— (dZ%)°+ (dZ*)?=N?dt?>~N " 2dr>—r2d6?. (19
As a result, the desired coordinate transformations tq3ke2)-dimensional GEMS are far>r ..

I(N,—N;)Y3B
ZIZZkglf dl’ T ( 2 1) ( )2 . —,
2rr9r . —=B)[ryr(r+ry)—B(re+ror+r9)]

(20

while (2°,2%,2%,2%) are of those forms in Eq13). Similar to r2

the previousB>0 case, one can easily obtain the desired h= PEET (21)
entropy of the ST theory as7# (B), wherer is only one
event horizon in this case.

It seems appropriate to comment on the minimal extrat
dimensions needed for a desired GEMS. As you may know,
spaces of constant curvature can be embedded into flat space
with only single extra dimension. This is seen in our previ-
ous work[14] for the static and rotating BTZ cases, which
are embedded in th@+2)-dimensional spaces. On the other
hand, since the scalar-tensor solution is Schwarzschild-like
[4,12], we have introducedl+2) or (1+1) extra dimensions ML r?
for the desired GEMS with the positive or negatiBe re- N(r)=-M+—+ 2 (22
spectively. In Sec. Il B, we will also obtain similar results for '
the charged scalar-tensor theories.

o0 yield the solution

ds?=N2dt?>~N"2dr2—r2de?,

B. Case II: p=r2(r2—2L) wherel?=A "1, The metric has a curvature singularityrat

. _ =0, and the scalar and its potential both diverge?at 2L
Next, another choice of an asymptotically constant scalaj i, | ~0. Note that only the case df>0 is physically

yields meaningful since we require it to have the positive
P e L Py
=¢ 2¢(1—¢)( ¢ 3L )¢
2By a simple test witlBB<0, we can show that Eq18) is really
+18 — A+ M ¢2+2 4A—M ¢3 a monotonic decreasing function, and thus can be defined as a
4L L ' spacelike variable.
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I r.
z*=—r cosh— 6,
r. I

12
z5=k’1f dr N4 L)
H r2r2(r2 —L)[r2r2—L(r2+r2)v?

where the Hawking-Bekenstein horizon surface gravity is
given by

4,2 ; Ny Lr,
FIG. 2. Graph ofy, (x)=—Lx"+x: For a given constant W=~ 5
1/MI12, it shows that there exist event horizons along the absgissa | I“(ri—L)

on a constant plane.

(26)

and
Now, defining the radial coordinateasr = 1/x as in Sec.
Il A, the lapse function can be rewritten as -
r
Ml 1 Na(L)= |4+[ri(r4+rir2+ri)+5r4(r2+ri)+3rir4],
=—|—=-y.(¥) ], 23
| >) (29)
4
M
yL(X)=—Lx*+x2. (24) N4(L)=I—4[(ri+3L2)r2+r4+Lzri(r4+rir2+ri)
As shown in Fig. 2, for a specific value ofMI?, there exist +(2rt +3L)r4(r2+r2)]. 27

two event horizonsy . andr_, on a i,y ) plane with a
constant, if satisfied (1M12)<(1/4L). Here, the maximum
value of 1/4 is obtained at=(1/y2L) (r=+/2L). More-
over, the extremal limit is B=MI? at x=1/2L (r
=/2L) coinciding withr, andr_. In this limit, the third
term in the Lagrangian becomesg 2while fourth, fifth, and

In static detectors{, r = const) described by a fixed point
in the (%, z°, z*, 2°) hyperplane, one can have constant
three acceleration

sixth terms all vanish. Here note that, in the limit L_&

=(J?/4M), the solution seems to be related to a rotationg 12 3

BTZ black hole. However, since the three metric, E2p), a= S 1 (28
does not contain a shift function, our ST theory does not ~M+ &Jr r

allow such a rotating BTZ solution.

After similar algebraic manipulation for the region of
>r, by following the previous steps described in Sec. Il A,
we obtain the desired coordinate transformations to th
(3+3)-dimensional AdS GEMS, ds?=(dZ%)?—(dz})?
—(dZ%)%2—(dZ%)%+(d2*)?+(d2%)?, which are obtained for

and constant accelerated motion in tz8 ¢) plane with the
?—|awking temperature

r=r,: r. ML
r2\ 12 27T=ag= ? (29)
=k | =M+ —+—| sinhkgt, ¢ ML r2) "
2o M+ —+—
2 2
r I
ML r2 1/2
7= k,]l —M+ —t= coshkyt, Here one notes that the above Hawking temperature is also
r | given by the relatior(16).

Similar to the previous case, in the limit =0, where

INZZ(L) the spacelike? and timelikez® coordinates in Eq(25) van-
Z2=ky*| dr , ish, the (3+3)-dimensional coordinate transformations are
r2r2(r2 —L)[r2r2—L(r2+r2)]*? : :
+ + + + exactly reduced to thd2+2)-dimensional GEMS of the

29 ysual BTZ cas@4,14]. We also obtain the entropys , (L)
of the scalar-tensor theory witlh=r2/(r2—2L), which re-
produces the uncharged static BTZ entropyrg [4,14] in
theL=0 limit.

I r.
z8=—r sinh— ¢,
r, I

064021-5
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I1l. GEMS OF CHARGED SCALAR-TENSOR THEORIES
A. Case I: ¢=r/(r—3B/2)

Now consider the charged scalar-tensor theory for the
modified BTZ black hole where the three metric, E5), is
described by the charged lapse

2

MB r
N(r)=—M+T+|—2—2Q2Inr. (30)

Here we only consider the case in which the paramBtir
positive because the analysis for the cas®af0 is highly
nontrivial due to the addition of the charged term in contrast
to the uncharged cases.

The coordinate transformations to tf&+3)-dimensional
AdS GEMS  ds?’=(dZ2)?—(dz')%—(dZ%)?—(dP)?
+(dZ*)?+ (d2°)? are obtained for=r, :

2

o MB r , 1
z°=Kky _M+T+|_2_2Q In| sinhkyt,

2

1/2
1_p-1 MB T 2
z =Ky _M+T+|_2_2Q Inr| coshkyt,

Zz:k,lf or INT*(B,Q)
") 2r¥%3r, -B)DYAB,Q)’

(31

| r.
23:r—r sinh—

61
+ |

| r.
z*=—r cosh— 4,
ry I

zS:k—lf ar IN3*(B,Q)
") 7 2r¥333r, ~B)DY%B,Q)’

where the Hawking-Bekenstein horizon surface gravity is
given by

r, Br2-2BQ%?%Inr, Q2

"2 21%r (r.—B)

(32

r.’
and

N1(B,Q)=4Q*3r2(r+r )[r2 +r?(2f+1)]

2.5
B

+ (3 (r24r r+r2)+9r4(r+r,)

|4
+21r2r3]+ ¢ ,BQ?+¢;BQ%+¢,,B%Q*

+C3,B3Q%+ c56B3Q°,

064021-6
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4Q2r3 r4 r4 +Q4|4
No(B,Q)= ———(r+r,)| 2rf + ——5—f
I re
ri

J’_

m [(8r2 +14B%)r2r3+B2%r3 (r2+r,r

+r2)+(4r2 +5B)r4(r+r,)]+c;,BQ*
+CB%Q%+ c,gB%Q%+c5,B3Q%, (33
D.(B,Q)=r2r(r+r,)—Br (r+r r+r?)

_QZIZ(r+r+)[rf —B(lnr++1)g]7

and the coefficients are given by

r.r
clzzl—z[ri(2r2+ri+2r2 Inr )(r2+r,r+r2)

+r3r3(r+r ) (3f+5)+rir2(r+r,)
X(Inr,+1)g],
Coa=4r2r[r2(r2+r r+r2)(2Inr, +3)+2r3(r
Frodnr,+r2r(r+3r)+r3(r+r,)
X(2Inr +5)f+2r r?(r+r,)(Inr,+1)g],
Cie=412r3(r+r )(Inr,+1)(2rf+r,Q),
g
c22=|—2[20r3(r2+r+r+ri)(ln ro+1)+8ririinr,
HAr2(r24r r+r2)2r+r o Inr,)+3r4(r
+r ) (3f+4)+12r . r3(r+r,)(Inr . +1)g],
Cog=4r  [r3(r?+r r+r2)(Inr, +1)%+3r%rinr,
Fr2(r24rr+rd)(r+ry Inr)inr (r+ry)
X(Inr,+1)(Bréf+2r*+3r2r2) +r r3(r+r,)

X(Inr +1)(2Inr, +5)g],

r
Coe=41%r3 (Inr +1)%(rf+2r.g),

ry
s 2 | ar2y(p2 2
032—|—2[4r(r++3r Yre+ror+ri)(Inr +1)
+4r22r3+r3)Inr, +9r r3(r+r,)
X(Inry+1)g],
Cas=4r3(r2+r r+r2)(Inr, +1)2+4r4(r+r,)
X(Inr )2+8rrinr, +4r r3(r+r,)

X(Inr,+1)%(r, +3rg),
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r+r
035=4I2r3r—+(ln r.+1)>%g,
+

2r2 In(r/r,)

2

f(r,ry)=

: (39

2r (rinr=r Inry)
(r2=r2)(Inr,+1)

a(r,ry)=

Here bothf(r,r ) andg(r,r,) approach unities asgoes to
r., due to L'Hospital’s rule.

In static detectorsd, r = const) described by a fixed point
in the (22, Z°
three acceleration

r MB Q?
22
. MB 2 vz 9
—M+—+——2Q2Inr)
r |2

and constant accelerated motion in tiz8 ¢') plane with the
Hawking temperature

On the other hand, the above Hawking temperature is also
given by relation(16). Note that one can easily check that,

since in the uncharged lim®=0, N;(B,Q), andN,(B,Q)
in Eq. (33) are exactly reduced to the;(B) andN,(B) in
Eq. (11), respectively, the(3+3)-dimensional coordinate

transformations Eq31) are also exactly reduced to the un-

charged case, E¢13), having the samé3+3)-dimensional
GEMS structure in contrast to the usual BTZ chk4l. Since

in this case the metric is Schwarzschild-like, the GEMS

structure coinsides with that of thé3+1)-dimensional
Schwarzschild black hole, which needst1) additional ex-
tra dimensions to yield thé4+2) GEMS structure4,12).

Furthermore, in th8=0 limit, the transformations, E¢31),

are exactly reduced to the charged BTZ cfdisd, which still

has the(3+3)-dimensional GEMS structure.

B. Case II: ¢=r?/(r?—2L)
Now consider the charged scalar-tensor theory with

>0 for the modified BTZ black hole where the three metric,

Eq. (22), is described by the charged lapse function:

2

ML r
N(r)=—M+—2+|—2—2Q2Inr. (37)
r

, Z*, Z°% hyperplane, one can have constant

PHYSICAL REVIEW D 62 064021

The coordinate transformations to tf&+3)-dimensional
AdS  GEMS, ds?=(d2’)%—(dz})?—(dZ?)?—(d7)?
+(dZz*)?+ (d2°)? are obtained for=r_ :

2

1/2
0 -1 r 2 .
z°=ky —M+—2+|—2—2Q Inr| sinhkgyt,
r

ML r2 1/2
—M+—+—=-2Q%Inr| coshkyt,
r I

INYAL,Q)
222 —L)DYAL.Q)

(39)

r
o

| r
Z*=—r cosh—- 9,
r. I
INJAL,Q)
r2r3(r2 —L)DYAL,Q)’

z5=k;1f dr

where the Hawking-Bekenstein horizon surface gravity is

given by

r, Lr2—2LQ%%Inr, Q

H= 5 —
2 1%r (r2—L)

(39

r.’
and

2.6
Na(L,Q)= Q4 rir2 +r%(2f+1)]+ |4+ [r2(r4+r2r2

1) +5r4(r2+r2)+3r2r*]+dLQ?

+ 016l Q%+ dp . 2Q% + d3, 3Q2+ dggl 3Q6,
Q%rSr8 Lr4
2+ fl+ " [(r

N4(L,Q)=—|2 2re
+3LAr2r+L2r2 (r*+r2r2 +rd)+(2rt

rd +Q4*
2

+

+3Lr4(r2+r2)]+d,LQ*+d,, L2Q?

+dpsL2Q8+d3, L3Q%, (40)

Dy(L,Q)=r2r2—L(r?+r2)— QA r?f—L(21Inr,
+1)g],

and the coefficients are given by

4 .2
+

di,= [2r2r2(r?+r2)(2Inr  +1)+2r% (r*+r2r?

|2

+r)y+ar2rd(f+ 1) +rr32Inr, +1)g],

064021-7
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di=rr2[a(r*+r2r2+rd)inr  +r2(3r2+4r?)

+2r%2Inr, +3)f+2r2r32Inr . +1)g],

dig=1%r2r2r2%f+r2(2Inr, +1)g],

2r4
dyp= I—;[Z(r4+rir2+ri)(r2+ri Inr,)+3r4r2+r?)

X(2Inr +1)],
(41)
dpg=r2[r2(r*+r2r2+r4)(21nr, +1)%+4r(r?

+r2inr)inr,+2r82Inr, +1)(2f+1)

+2r2r421Inr +1)(2Inr.+3)g],
dye=12r*(2Inr . +1)2(r?2f+2r2g),

r2r2

d32=|+—2[(rf';+r2+r2+r4)+8r2(r2+ri)lnr+
2op2. 2
+2r9(2re+r9)],

Ao =4(r*+r2r24+r4)(r2+r2 Inr )Inr  +r2ré21Inr

+1)24+r%4(Inr )2+ 1]+4r2r%2Inr, +1)?g,

dye=1%r%(2Inr . +1)3g.

In static detectorsd, r = const) described by a fixed point
, Z*, Z°% hyperplane, one can have constant
three acceleration

in the (22, Z°

r ML Q?

?oe T

_ [ T 2
M + 2 + 2 20Q%Inr
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Hawking temperature

r. ML Q?
2 3 s

2nT=ag= . (43
ML 2 112

r
-M+—+——2Q%Inr
rz2 12

Similar to the previous case, one can also check that, since in
the uncharged limit 0ofQ=0, N5(L,Q), and N4(L,Q) are
exactly reduced to th&l;(L) and N,(L), respectively, the
coordinate transformations E(B1) are also exactly reduced

to the uncharged case E(L3) having the samg3+3)-
dimensional GEMS structure in contrast to the usual BTZ
case[14]. Furthermore, in thee=0 limit, the transforma-
tions Eq.(31) are exactly reduced to the charged BTZ case
[14], which still has thg3+3)-dimensional GEMS structure.

IV. CONCLUSIONS

In conclusion, we have newly analyzed th@+1)-
dimensional four uncharged and two charged ST theories
with the parameter8 or L through the GEMS approach,
which are the modified versions of the usual BTZ black
holes. First, we have obtained thg+3)- or (3+2)-
dimensional GEMS of the uncharged ST theories in the
(2+1) dimensions depending on the positive or negative
signs of B, respectively. Second, we have generalized these
embeddings to the charged ST theories with the definitely
positive B. Third, we have also obtained thé&3+3)-
dimensional GEMS of the uncharged and charged ST theo-
ries with the definitely positive parametér Since in the
uncharged limitQ=0, the (3+3)-dimensional coordinate
transformations of the charged ST theories are exactly re-
duced to the uncharged case having the sa@we3)-
dimensional GEMS structure in contrast to the usual BTZ
case[14]. Since in the case witih=r/(r —3B/2) the metric
is Schwarzschild-like, the GEMS structure coinsides with
that of the (3+1)-dimensional Schwarzschild black hole,
which needq1+1) additional extra dimensions to yield the
(4+2)-dimensional GEMS structure. Furthermore, in e
=0 orL=0 limit, the coordinate transformations are exactly
reduced to the charged BTZ case, which still has(81e3)-
dimensional GEMS structure.
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