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Gravitational waves from long-duration simulations of the dynamical bar instability

Kimberly C. B. New*
Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104

Joan M. Centrella
Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104

Joel E. Tohline
Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803

~Received 30 November 1999; published 21 August 2000!

Compact astrophysical objects that rotate rapidly may encounter the dynamical ‘‘bar instability.’’ The
bar-like deformation induced by this rotational instability causes the object to become a potentially strong
source of gravitational radiation. We have carried out a set of long-duration simulations of the bar instability
with two Eulerian hydrodynamics codes. Our results indicate that the remnant of this instability is a persistent
bar-like structure that emits a long-lived gravitational radiation signal.

PACS number~s!: 04.30.Db, 04.40.Dg, 95.30.Lz, 97.60.2s
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I. INTRODUCTION

The direct detection of gravitational radiation prese
one of the greatest scientific challenges of our day. W
interferometers such as the Laser Interferometric Grav
tional Wave Observatory~LIGO!, VIRGO, GEO, and
TAMA @1# expected to be operating in the next few yea
and a new generation of spherical resonant mass dete
under study@2,3#, the calculation of the signals expecte
from various astrophysical sources has a high priority. A
curate calculations of the wave forms are needed to en
both the detection and identification of sources@4#. In par-
ticular, short duration bursts are expected to be more diffi
to detect than longer-lived signals.

One interesting class of sources includes rapidly rota
compact objects that develop the rotationally-induced ‘‘b
instability.’’ This instability derives its name from the ba
like deformation it induces. The resultant object is pote
tially a strong source of gravitational radiation because of
highly nonaxisymmetric structure. Examples of compact
trophysical objects that may rotate rapidly enough to enco
ter this instability include stellar cores that have expend
their nuclear fuel and are prevented from undergoing furt
collapse by centrifugal forces@5–10#; a neutron star spun u
by accretion from a binary companion@11,12#; and the rem-
nant of a compact binary merger@13,14#.

Such global rotational instabilities in fluids arise fro
nonaxisymmetric modese6 imw, wherem52 is known as the
‘‘bar mode.’’ It is convenient to parametrize them by

b5Trot /uWu, ~1!

whereTrot is the rotational kinetic energy andW is the gravi-
tational potential energy@15–17#. In this paper, we focus on
the dynamicalbar instability, which is driven by Newtonian
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hydrodynamics and gravity, and is expected to be the fas
growing mode. It operates for fairly large values of the s
bility parameterb.bd and develops on a timescale on th
order of the rotation period of the object. For the unifor
density, incompressible, uniformly rotating Maclaurin sph
roids, bd'0.27. In the case of differentially rotating fluid
with a polytropic equation of state, them52 dynamical sta-
bility limit bd'0.27 has been numerically determined to
valid for initial angular momentum distributions that a
similar to those of Maclaurin spheroids@16–19#; see also
@20,21#. ~We note that whenb is greater than some critica
valuebs,bd , asecularinstability can arise from dissipative
processes such as gravitational radiation reaction and vis
ity. When this instability arises, it develops on the timesc
of the relevant dissipative mechanism, which can be sev
rotation periods or longer@12#. In recent years, much work
has also been carried out on various other modes in rota
relativistic stars as detectable sources of gravitational ra
tion; see@22# for a review and references.!

The first numerical simulations of the dynamical bar i
stability were carried out by Tohline, Durisen, and McCo
lough ~TDM; @23#! in the context of star formation. Using
polytropic equation of state,

P5KrG5Kr111/N, ~2!

with polytropic indexN51.5, they evolved differentially ro-
tating axisymmetric models with a 3D Eulerian hydrodyna
ics code, or hydrocode, in Newtonian gravity. In all mode
with initial b>0.30, them52 mode grew to nonlinear am
plitudes and a two-armed spiral pattern was produced
mass and angular momentum were shed from the ends o
bar. Numerous other simulations have confirmed this ba
scenario for the evolution of the bar mode into the nonlin
regime; see Sec. II for references and further discussion

More recently, these techniques have been extended to
context of rapidly rotating, compact objects in the Newtoni
regime, with the gravitational waves calculated in the qu
rupole limit. This is a reasonable first approximation for
©2000 The American Physical Society19-1
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NEW, CENTRELLA, AND TOHLINE PHYSICAL REVIEW D62 064019
object, such as a centrifugally-hung stellar core with a d
sity intermediate between that of white dwarfs and neut
stars, with initial massM51.4M( and radiusR*100 km,
and henceGM/Rc2&0.02. Centrella and collaborators us
both smooth particle hydrodynamics~SPH! and Eulerian fi-
nite difference hydrodynamics to evolve the bar instability
a model withN51.5 @24,25#. In all of their runs the gravi-
tational wave signal was a relatively short duration burst la
ing for several bar rotation periods, and the system evol
to a nearly axisymmetric central core surrounded by a fl
tened, disk-like halo. New@26# carried out a similar study
with an improved version of Tohline’s Eulerian code@27#.
Her simulation employed a symmetry condition that on
permitted the growth of even modesm; see Sec. II. This
simulation produced a final state with a persistent bar-
core, which yielded a gravitational wave signal of mu
longer duration than that found by Centrella and collabo
tors.

Given the requirements of reliable wave forms for t
detection and identification of sources, it is important to
solve this issue of the late-time gravitational wave sig
from the dynamical bar instability. To this end, we ha
carried out a set of long-duration runs using the two Euler
codes employed by New and by Centrella in their ear
work, and have made a detailed study of the resulting m
els. In Sec. II we review previous numerical studies of
dynamical bar instability, highlighting the various assum
tions and restrictions used by different authors. The num
cal techniques we used are discussed in Sec. III. In Sec
we present our simulations and analyze the results. A dis
sion of these results follows in Sec. V. Finally, the Append
contains additional information about the two hydrocod
used in this work.

II. PREVIOUS NUMERICAL STUDIES

As mentioned above, the work of TDM@23# set the stage
for subsequent numerical calculations of the dynamical
instability. Their initial models consisted of differentially ro
tating, axisymmetric equilibrium spheroids with a Maclaur
rotation law for the angular momentum distribution. The M
claurin law produces rigid rotation when it is applied to
incompressible (N50) fluid; when it is used in a polytrope
it produces differential rotation@15#. After small amplitude
random perturbations were applied to the density, e
model was evolved into the nonlinear regime using a
Eulerian hydrocode with Newtonian gravity. This hydroco
solved the mass continuity and Euler equations in cylindr
coordinates (Ã,z,w); the resulting evolutions were adiabat
and maintained the same polytropic equation of state,
~2!.

TDM used equatorial symmetry and ‘‘p-symmetry’’ in
their simulations. Equatorial symmetry is a reflection sy
metry through the equatorial planez50. The p-symmetry
condition imposes periodic boundary conditions at anglew
5p andw52p; thus, physical variables are the same in t
interval 0<w,p as they are inp<w,2p. It is computa-
tionally advantageous to impose an equatorial- and
p-symmetry condition on such a simulation because, by
06401
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ing so, half as many computational grid zones are require
order to achieve a given spatial resolution in the verti
and/or azimuthal coordinate directions, respectively. It w
also physically reasonable for TDM to adopt both of the
symmetry conditions because the eigenfunction~a pure,m
52 barmode! to which their models were expected to b
initially unstable had both equatorial andp-symmetry
@23,28#. As we discuss more fully below, ultimately on
would like to remove these computational constraints in
der to test whether or not the physical outcome is sensitiv
them.

The first work to address the late-time development of
bar instability was published by Durisen, Gingold, Tohlin
and Boss@29#, who ran simulations withb50.33 andb
50.38 for N51.5 polytropes. They used three different 3
hydrocodes: Tohline’s Eulerian code as used in TDM, a
other Eulerian code developed in spherical coordinates
Boss, and an SPH code developed by Gingold. Boss’s c
also enforced equatorial- andp-symmetries but, being grid
less, Gingold’s SPH code imposed neither of these sym
tries. However, the SPH simulations were limited to a ve
small number of particles,Np52000. The results produce
by these three separate simulation codes were qualitati
similar. For example, at early times all simulations show
evidence of the development of a bar-like pattern instabil
consistent with the results of TDM and the predictions
linear perturbative analysis@15,23,28,21#. Perturbative
analysis says this instability is the result of the growth o
coherent bar-like wave that propagates around the sys
with a well-defined pattern speed, while material moves d
ferentially through that pattern. At subsequent times in
simulations, the barmode distortion developed into a tw
armed, trailing spiral pattern as described by TDM; when
spiral pattern reached a nonlinear amplitude, some relativ
high specific angular momentum material was expelled
the equatorial plane of each system; and the primary st
ture that remained at the end of each simulation was a
namically stable, centrally condensed object exhibiting
value ofb,bd . But there were significant quantitative di
ferences among the various evolutions presented by Dur
et al. For example, the simulations produced central re
nants that had different total masses and exhibited diffe
degrees of nonaxisymmetric distortion. This disagreem
signified, in part, that the simulation techniques being u
were rather primitive and, in part, that the available comp
ing resources did not permit the simulations to be carried
with adequate spatial resolution.

Williams and Tohline subsequently carried out an inve
tigation of the dynamical barmode instability in models wi
different polytropic indices. Using the TDM code wit
p-symmetry and an improved azimuthal grid resolution, th
first considered models with initialb50.31 and N
50.8,1.0,1.3,1.5, and 1.8, and focused their analysis on
measurement of barmode growth rates and pattern spee
the linear-amplitude growth regime@28#. The runs withN
50.8 andN51.8 were then extended to later times throu
the development of nonlinear-amplitude nonaxisymme
structures and yielded a rotating triaxial central remnant@30#.
Williams and Tohline noted that such a configuration wou
9-2



ar

GRAVITATIONAL WAVES FROM LONG-DURATION . . . PHYSICAL REVIEW D62 064019
TABLE I. Properties of long-duration simulations of the bar mode instability.tbar maxis the time at which
the bar reaches its maximum elongation andtfinal is the end of the simulation. The length of time the b
persists isDtbar. In this table, time is measured in units oftc , where 1tc 5 1 central initial rotation period
~cirp!.

Ref. N b Code p-symm tbar max tfinal Dtbar Remarks

@29# 1.5 0.33 Eulerian yes 2.5tc 9.5 tc .7.0 tc central bar attfinal

@29# 1.5 0.33 SPH no 2.0tc 9.5 tc .7.5 tc central bar attfinal

@30# 1.8 0.31 Eulerian yes 11.3tc 19.4 tc .8.1 tc central bar attfinal

@25# 1.5 0.30 Eulerian no 10tc 15.5 tc ;5.5 tc no bar attfinal

@25# 1.5 0.30 SPH no 8.2tc 16 tc ;7.8 tc no bar attfinal

@33# 1.5 0.30 SPH no 5.7tc 15.9 tc ;7.9 tc bar gone byt;13.6tc

@26# 1.5 0.30 Eulerian yes 6.8tc 24.3 tc .17.5 tc central bar attfinal

@20# 1.5 0.327 Eulerian no 6.8tc 12.3 tc .5.5 tc central bar attfinal

@34# 1.5 0.304 Eulerian no 10.1tc 14.4 tc .4.3 tc central bar attfinal

@34# 1.5 0.327 Eulerian no n/a 11.2tc n/a central bar attfinal
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be of interest when viewed in the context of compact ste
objects because ‘‘its existence would presumably be disc
ible from the spectrum of any emitted gravity wave rad
tion,’’ but they did not derive such a spectrum from the
models.

Houser, Centrella, and Smith@24,25# were the next to
carry out 3D simulations of the dynamical bar instability f
the caseN51.5 and initialb'0.30, this time in the contex
of rapidly rotating stellar cores. Using both an SPH and
Eulerian code, they considered the matter to be a per
fluid with equation of state

P5~G21!re, ~3!

wheree is the specific internal energy, and solved an eq
tion for the internal energy. Using artificial viscosity, the
could account for the energy generation by shocks that
curs when the spiral arms form and deflect the streamline
the supersonically moving fluid. Routines were added to c
culate the gravitational wave forms and luminosities in
quadrupole approximation. The SPH code~developed from
TREESPH; see@31#! imposed no symmetry restrictions an
was run with up toNp532,914 particles. Their Euleria
code, written in cylindrical coordinates, imposed symme
through the equatorial plane but notp-symmetry@32#. Over-
all, their simulations produced nearly axisymmetric cent
remnants at late times.

Houser and Centrella@33# carried out additional SPH
simulations withN51.5,1.0, and 0.5, and initialb'0.30
using improved initial models withNp'16,000 particles. As
before, theN51.5 case resulted in an almost axisymmet
central remnant and a correspondingly short burst of gr
tational radiation. The runs withN51.0 andN50.5 under-
went additional episodes of spiral arm ejection, with t
number of episodes increasing asN decreased; such behavio
was also observed by Williams and Tohline@30#. This re-
sulted in longer-lived nonaxisymmetric structure in the ce
tral remnants, accompanied by longer duration gravitatio
wave forms as the models grew stiffer~i.e., asN was de-
creased!. Note that the relatively small number of particle
present in the SPH simulations of Centrella and collabo
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tors, accompanied by the velocity dispersion in their init
models, may make it difficult for models with softer equ
tions of state~larger N) to maintain long-lived nonaxisym
metric structures.

New @26# used an improved version of Tohline’s cod
@27# to study theN51.5, b50.30 case. This code solves a
energy equation and incorporates artificial viscosity
handle the shocks. She added a routine to calculate the g
tational radiation in the quadrupole limit. Her simulatio
which imposed both equatorial andp-symmetries, produced
a persistent bar structure and a long-duration gravitatio
wave form.

All of the studies mentioned above in this section star
from initially axisymmetric models with the same radial di
tribution of specific angular momentum as in a Maclau
spheroid. Pickett, Durisen, and Davis@20# studied the insta-
bilities that result in anN51.5 polytrope, when the angula
momentum distribution is varied. They used a~different! up-
dated version of Tohline’s code with neither equatorial pla
symmetry nor p-symmetry imposed; all their evolution
were adiabatic. Using the Maclaurin rotation law, th
evolved a model with initialb50.327 to late times, and
obtained a bar-shaped central remnant.

Recently Imamura, Durisen, and Pickett@34# have per-
formed additional adiabatic simulations of dynamical ins
bilities in N51.5 and 2.5 polytropes with the Maclaurin ro
tation law, using the same hydrodynamics code used in@20#.
They focused on comparing the early phases of nonlin
mode growth in their runs with the predictions of qua
linear approximations. Their high resolution simulations
N51.5 polytropes withb50.304 and 0.327 both resulted i
bar-like endstates.

The properties and outcomes of the long duration
mode runs withN51.5 andN51.8 are summarized in Tabl
I for convenience. All of the times reported in Table I a
given in units oftc , wheretc is defined as one central initia
rotation period~cirp!. When surveying the information cata
logued in Table I, one should keep in mind that the identifi
‘‘final’’ state has been reported at different evolutiona
times in the various references. As this table emphasi
9-3
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NEW, CENTRELLA, AND TOHLINE PHYSICAL REVIEW D62 064019
over the fifteen years that have passed since the orig
Durisen et al. comparison paper@29#, there remain signifi-
cant quantitative differences among the results of vari
published simulations of the bar mode instability. In partic
lar, as indicated by our comments under the ‘‘remarks’’ c
umn, these previous simulations do not clearly indic
whether or not the end product of the evolution should b
central, steady-state structure that has a bar-like geome

III. NUMERICAL TECHNIQUES

A. Initial axisymmetric equilibria

The new simulations of the dynamical bar instability pr
sented here begin with rotating spheroidal models above
Maclaurin stability limit,b.bd , constructed in hydrostatic
equilibrium. For fluids rotating about thez axis with angular
velocity V5V(Ã), whereÃ is the distance from the rota
tion axis, the equations of motion reduce to the equation
hydrostatic equilibrium,

1

r
¹P1¹F1h0

2¹C50, ~4!

where C(Ã)521/h0
2*V2(Ã)Ã dÃ is the centrifugal po-

tential andh0 is a constant. The gravitational potentialF is a
solution to Poisson’s equation,

¹2F54pGr. ~5!

The initial models for the runs discussed in this pap
were constructed using Hachisu’s self-consistent fi
~HSCF;@35#; see also@26#! technique, which is a grid-base
iterative method. To facilitate treatment of the boundary c
ditions, it uses the integral form of the hydrostatic equil
rium condition, Eq.~4!. This gives

H1F1h0
2C5C, ~6!

whereH[*r21dP is the enthalpy of the fluid andC is a
constant determined by the boundary conditions. The mo
are computed on a uniformly-spaced (Ã,z) grid. The
method requires an equation of stateP5P(r). For the poly-
tropic relation in Eq.~2!, the enthalpy takes the form

H5~11N!Kr1/N. ~7!

For purposes of comparison with earlier work, we follo
Bodenheimer and Ostriker@36# and adopt a specific angula
momentum profile that is the same function of cylindric
mass as a Maclaurin spheroid, namely,

V~Ã!5h0@12„12m~Ã!/M …

2/3#Ã22, ~8!

whereM is the total mass of the system,m(Ã) is the mass
interior to cylindrical radiusÃ, the constanth0[5J/2M , and
J is the total angular momentum. Hence, the centrifugal
tential is

C~Ã!52E @12„12m~Ã!/M …

2/3#2Ã23dÃ. ~9!
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Because the angular velocity is assumed initially to be on
function of Ã, Lichtenstein’s theorem implies that the co
figuration will have reflection symmetry through the equa
rial plane@15#.

The HSCF method requires that two boundary pointsA
and B, on the surface of the model be selected@35#. For
spheroids, pointA is set alongÃ at the equatorial radius
Ã(A)5ÃE, and pointB is set on thez-axis at the polar
radius,z(B)5zP. The axis ratiozP/ÃE is given as an input
parameter; varying it produces equilibrium models with d
ferent values ofb. PointsA and B set the boundary condi
tions for the solution of Eq.~6!. Sincer, P, and thereforeH
vanish on the surface of the polytropic fluid, we have

H~A!505C2F~A!2h0
2C~A!, ~10a!

H~B!505C2F~B!2h0
2C~B!. ~10b!

OnceF andC are known, Eqs.~10! can be solved for the
constantsC andh0

2.
The HSCF iteration process begins with an initial gue

for r(Ã,z), which also specifies the mass enclosed with
each cylindrical radiusm(Ã). Givenr, the gravitational po-
tentialF(Ã,z) is determined by solving Poisson’s equatio
Eq. ~5!; see Ref.@37# for details. Givenm(Ã), the centrifu-
gal potentialC(Ã) is determined using Eq.~9!. Then,C and
h0

2 are found from the boundary conditions, Eqs.~10!, and
the enthalpyH is computed from Eq.~6!. Finally, a new
density distribution is calculated fromH by inverting Eq.~7!;
this is used as input for the next iteration cycle. The proc
is repeated until fractional changes inC andh0

2 and the maxi-
mum fractional change inH between two successive itera
tion steps are less than some threshold~in this work, 1028).
The virial error VE provides a measure of how well th
energy is balanced, and thus is indicative of the quality of
resulting equilibrium configuration. It is defined by@35#

VE52T1W13E PdV, ~11!

whereT is the total kinetic energy, andV is the volume of
the model. TheVEs for the models used here are;1023.

B. 3D hydrodynamics codes

The simulations presented in this paper were carried
using two hydrocodes that employ Eulerian finit
differencing techniques to solve the equations of hydro
namics coupled to Newtonian gravity. TheD ~Drexel! hy-
drocode is the same one that was used by Smith, Houser
Centrella@25# in their studies of the bar instability, wherea
theL ~LSU! hydrocode is the one that was used by New a
Tohline @26,38#. In this section we briefly describe thes
codes, highlighting differences between them that we beli
to be most relevant to the analysis and discussion of
results. Further details on theD and L hydrocodes may be
found in the Appendix.

Both 3D hydrocodes are written on uniform grids in c
lindrical coordinates (Ã,z,w). TheD code assumes equato
9-4
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GRAVITATIONAL WAVES FROM LONG-DURATION . . . PHYSICAL REVIEW D62 064019
rial plane symmetry. TheL hydrocode allows the use of bot
equatorial andp-symmetries, as discussed in Sec. II. Bo
codes handle the transport terms using similar monoto
advection schemes that are second-order accurate in s
and impose the same outflow boundary conditions on
edges of the grid. TheD and L codes both solve energ
equations, using the perfect fluid relation of Eq.~3! to calcu-
late the gas pressure and artificial viscosity to handle sho
Finally, both codes solve Poisson’s equation, Eq.~5!, for the
Newtonian gravitational potentialF with boundary condi-
tions on the edges of the grid specified in terms of spher
harmonics.

Eulerian codes typically require that the mass density
grid zone never be zero, and thus fill the ‘‘vacuum’’ regio
with a fluid having some small density,r low . To facilitate
the comparison of results in this paper, both codes imp
essentially the same conditions in the ‘‘vacuum’’ region
The density is set tor5r low if the density drops belowr low
in a zone. The specific internal energy is similarly limited
e>e low , where Eqs.~2! and ~3! give e low5Kr low

G21/(G21)
andK is the polytropic constant of the initial model. In ad
dition, the velocities in the low density zones must be limit
to prevent them from becoming too large and thereby req
ing very small time steps through the Courant criterion@39#.
The velocities are limited whenr<r l im5103r low . Specifi-
cally, in cells wherer<r l im , vÃ andvz are set to the value
0.5cs,max, if they exceedcs,max. Here,cs,max is the globally
maximum sound speed. Additionally,vw is set to zero in
cells wherer<r l im and vw /Ã.V l im . Here, V l im5V0/4,
whereV0 is the central rotation speed of the initial mode

The codes do have a number of differences. The m
important of these is that, as discussed in the Appendix,
hydrodynamical equations in theL code are written in flux-
conservative form whereas in theD code they are not. The
accuracy of theL code is second-order in both space a

FIG. 1. Density contours of the initial model with resolutio
NÃ5Nz5128 are shown in thex2z plane. The maximum density
is located at the center and is normalized to unity. The den
contours are at levels of 0.5, 0.05, 0.005, and 0.0005.
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time @60–62#. However, while theD code is spatially
second-order accurate, the accuracy of its time evolu
scheme is between first and second orders@52,39#. Finally,
theD code was written in Fortran 77 and optimized to run
Cray vector computers such as the C90 and T90 in sin
processor mode. These machines use 64-bit words in si
precision, which allows the use of very low densities in t
vacuum region, typicallyr low510210. The L code was de-
veloped for the parallel MasPar MP-1 computer, and w
written in MasPar Fortran, which is MasPar’s version of Fo
tran 90. The MasPar computers use 32-bit words in sin
precision, and theL code usesr low51027 in the vacuum
regions.

IV. ANALYSIS OF RESULTS

A. Properties of the models

The initial axisymmetric equilibrium models used for th
simulations presented in this paper were computed with
HSCF method@35# as described in Sec. III A. Specifying a
axis ratiozP/ÃE50.208, polytropic indexN51.5, and the
Maclaurin rotation law, Eq.~9!, yields a model withb
50.298.bd . Models with two different resolutions wer
constructed for this work. The lower resolution model w
computed on a grid withNÃ564 radial andNz564 axial
zones; its equatorial radius extends out to zonej 526 and its
polar radius to zonek57. The higher resolution model wa
computed on a grid withNÃ5Nz5128; its equatorial radius
extending out to zonej 550 and its polar radius to zonek
512. ~Note thatÃ50 in radial zonej 52 andz50 in ver-
tical zonek52.! The computations of both models require
21 iterations. The 64364 model had a virial errorVE
52.6931023, as defined in Eq.~11!; for the 1283128

ty

FIG. 2. The normalized angular velocityV(Ã)/VC and equato-
rial plane densityr(z50)/rC in the initial model given in Fig. 1 are
shown. Here,VC andrC are, respectively, the angular velocity an
density at the center of the model.
9-5
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TABLE II. Basic properties of the models run on theD andL codes are shown. Note that model L2 w
actually run withp-symmetry, giving aneffectiveresolution of 128 zones in the angular direction.r low is the
minimum density in the ‘‘vacuum’’ regions; see Sec. III B. The last column shows the loss of total an
momentumJ at the time thatb reaches its first local minimum and the bar reaches it maximum elongatio
each model; cf. Fig. 6.Jo is the initial total angular momentum in the model.

Model Code Grid size p-symmetry r low Persistent uJbar max2Jou/Jo

NÃ3Nz3Nw bar

D1 D 64364364 no 10210 no 2.631022

D2 D 643643128 no 10210 no 5.131022

L1 L 643643128 no 1027 no 5.031023

L2 L 64364364 yes 1027 yes 5.031023

L3 L 12831283128 no 1027 yes 5.231023
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model,VE57.5231024. Density contours of this model in
the x2z plane are shown in Fig. 1 and plots of the angu
velocity V(Ã) @cf. Eq.~8!# and equatorial plane density pro
file r(Ã,0) are given in Fig. 2. We have normalized th
equatorial radius and central density to unity,ÃE51 and
rC51.

To prepare the initial data for evolution with a hydrocod
the 2D model is swept around in the azimuthal direction
create a 3D axisymmetric model. Random perturbations
then imposed on the density to trigger the instability wh
the evolutions are run. Following TDM@23#, we set

r~Ã,z,w!5rEQ@11a0f ~Ã,z,w!#, ~12!

where rEQ is the density calculated with the HSCF cod
a051022, and21< f <11 is a random number.

The perturbed initial models were then evolved with t
hydrocode. Note that the models were initially centered
the origin. All calculations used equatorial plane symme
Two simulations were performed with theD code. Model D1
hadNÃ5Nz5Nw564 zones while model D2 had twice th
angular resolution, Nw5128; neither model used
p-symmetry. Models D1 and D2 both used the densityr low
510210 in the ‘‘vacuum’’ regions. Three simulations wer
performed with theL code. Model L1 was run withou
p-symmetry and used the same resolution as model D2
comparison, model L2 was run withp-symmetry andNw

564 and thus had the same angular zone sizeDw as model
L1. Finally, model L3 was run withoutp-symmetry and
used twice the radial and axial resolution,NÃ5Nz5Nw

5128. The models run with theL code all usedr low
51027. Some basic properties of these models are sum
rized in the first five columns of Table II for convenience

B. Dynamical evolutions

All the models give similar results for the initial growth o
the instability and its development into the nonlinear regim
An initially axisymmetric system develops bar-shaped str
ture as them52 mode grows to nonlinear amplitude~cf.
Sec. IV C,@34#!. A pattern of trailing spiral arms is forme
as mass and angular momentum are shed from the end
the rotating bar. After the bar reaches its maximum elon
tion, it recontracts somewhat towards a more axisymme
06401
r
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n

,

n
.

or
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.
-
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-

ic

shape. All the runs displayed these basic characteris
which are illustrated in Fig. 3 using data from model L
Time is measured in units oftD , where

FIG. 3. The development of the bar mode into the nonlin
regime is shown using 2D density contours in the equatorial pl
for model L3. The maximum~central! density has been normalize
to unity at the initial time, and the contour levels are at 0.5, 0.
0.005, and 0.005. The model rotates in the counterclockwise di
tion.
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tD[S RE
3

GMD 1/2

~13!

is the dynamical time for asphereof massM having the
same radius as the initial equatorial radius of the model,RE
5ÃE.

Significant differences in the models arise in the n
stage of the evolution, shown in Figs. 4 and 5. Since
models go unstable at slightly different times, they encoun
the various phases of the instability at somewhat differ
intervals; the frames in these figures are labeled with the t
measured from the initial moment in each model. Fram
~a–c! of Fig. 4 show that the central regions of model D
appear to undergo a very slight re-expansion to a weak
After another;122 bar rotation periods this weak bar di
appears, leaving behind a nearly axisymmetric remnant
is somewhat displaced from the center of the grid. In mo
D2 the central bar re-expands more strongly, although no
the extent of its previous maximum elongation. After anoth

FIG. 4. Density contours in the equatorial plane for the la
stages of models D1~a–c! and D2 ~d–f! are shown. The contou
levels are the same as in Fig. 3, and time is measured from
initial moments in the respective simulations.
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;122 bar rotation periods, the model evolves toward
nearly axisymmetric remnant, which is offset from the cen
of the grid; see frames~d–f! of Fig. 4. Similar behavior is
seen in model L1, although the second bar elongation ph
is stronger and lasts somewhat longer; representative de
contours are shown in frames~a–c! of Fig. 5. The higher
resolution model L3, shown in frames~d–f! of Fig. 5, also
re-expanded to a fairly strong bar, which underwent two
ditional episodes of contraction and expansion. The remn
in model L3 remained bar-like in shape for.4 bar rotation
periods, but eventually it also decayed and settled int
nearly axisymmetric remnant as it moved off the center
the grid. In contrast, model L2~which was run with
p-symmetry! retained a fairly strong bar for many (.8) bar
rotation periods. This model was run for a longer time th
any of the others and experienced;5 episodes of contrac
tion and expansion. At the end of the simulation, model
still had a strong bar centered on the origin; see frames~g–i!
of Fig. 5.

As is illustrated in Fig. 6, for all five model evolution
each episode of expansion and contraction of the bar is
rored in the time-evolution of the stability parameterb
5Trot /uWu. As the bar develops and expands,b drops and
reaches a local minimum when the bar is at its maxim
elongation. Thenb rises to a local maximum as the centr
regions recontract. This behavior occurs becauseTrot}Iv2

}J2/I . Hence, as the bar elongates its moment of inertiI
increases which, assuming its angular momentum is appr
mately conserved, reduces the rotational kinetic energyTrot .
Each subsequent episode of bar re-expansion can als
associated with a local minimum in the global parameterb.

As has been illustrated by Figs. 4 and 5, in each simu
tion except model L2, the ‘‘final’’ remnant appears to ha
moved off of the center of the grid. In each case this d
placement is associated with measurable motion of
center-of-mass of the system~such center-of-mass motio
was also seen in some of the simulations in@34#!. Figure 7
shows the position of the system center-of-massRCM

5@XCM
2 1YCM

2 #1/2 as a function of time for each of the fou
affected models.~Note thatZCM50 at all times in all of our
simulations since they all employ equatorial plane symm
try.! In runs D1 and D2, the center-of-mass begins to mo
rather abruptly at a timet/tD;20, then after moving to a
location log(RCM);20.5 ~D1! and;20.7 ~D2!, the center-
of-mass motion slows considerably. Because both mod
have radial zones of sizeDÃ;0.04, this location corre-
sponds to approximately 8 and 5 radial grid zones, resp
tively, or in terms of the initial equatorial radius of th
model,; 1

3 ÃE and; 1
5 ÃE, respectively. For models L1 an

L3, the center-of-mass motion does not appear to level
as seen in Fig. 7~b!. Notice that the center-of-mass move
farthest from the center of the grid in model L1, which h
the same resolution as D2, and that the onset of this mo
is significantly delayed when the radial resolution is doub
in model L3.

Since these simulations all have Newtonian gravitatio
fields and the systems are assumed to be isolated from
external environment, in each case the center-of-massshould
remain fixed at the origin if the total mass of the syste

r

he
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FIG. 5. Same as Fig. 4 for models L1~a–c!, L3 ~d–f!, and L2~g–i!.
n
n
an
i

r

ough
ed

th
-

s a

of
remains confined within the boundaries of the computatio
grid ~i.e., if the system remains isolated from its enviro
ment! and if the equations governing the dynamics of
isolated system are being properly integrated forward
time. Although some (,5%) mass~and associated linea
and angular momentum! does flow radially off the grid, this

FIG. 6. Plots of the stability parameterb are shown for models
D1 ~dotted line! and D2 ~solid line! in frame ~a! and models L1
~dotted line!, L3 ~solid line! and L2 ~dashed-dotted line! in frame
~b!.
06401
al
-

n

mass loss does not appear to be large or asymmetric en
to account for the center-of-mass motion. We have verifi
this by running a simulation~not presented in detail in this
manuscript! with the same resolution as model L1 but wi
an expanded grid (NÃ5Nz5128). The center of mass mo

FIG. 7. The position of the system center of mass is shown a
function of time.~a! Models D1~dotted line! and D2~solid line! ~b!
Models L1 ~dotted line! and L3 ~solid line!. Note that the use of
p-symmetry in model L2 prohibits the development of center
mass motion.
9-8



no
he
-

ris
-

t
n
u

s
m
th
ra
al

th
on
te

o
p

ta
-

m
o

l
t o

rm

r

f

o
n

ta
us
nd

li-

.

he
he

,

(0
t

hen
ays
ting
nifi-

s
ius

re

es
all

m
–5.

is

the
s in

. II

s
on
y

GRAVITATIONAL WAVES FROM LONG-DURATION . . . PHYSICAL REVIEW D62 064019
tion of the model evolved on the expanded grid was
significantly different from that present in the run on t
smaller grid (NÃ5Nz564); the mass lost from the ex
panded grid was less than 1%.

Instead, we suspect that the center of mass motion a
from numerical errors. In ‘‘flux-conservative’’ finite
differencing schemes, such as the one employed here in
L code~see the Appendix!, the advection term is handled i
such a way that, for example, momentum and mass are g
anteed to be globally conservedif the dynamical equation
contain no source or sink terms. However, such algorith
are not explicitly designed to preserve the position of
center-of-mass of the system and source terms due to g
ents in the pressure and gravitational potential do natur
arise @see, for example, the right-hand sides of Eqs.~A2!–
~A4!#. So discrepancies that inevitably will arise between
finite-difference representation of the dynamical equati
and their exact differential counterparts can lead to cen
of-mass motion that is unphysical.~An exception to this is
the case wherep-symmetry is explicitly enforced. With
p-symmetry imposed, odd azimuthal modes cannot gr
and, in particular, no center-of-mass motion can develo!
Once such motion begins in either theD or L code, it evi-
dently has a tendency to amplify rather than to damp.

It is also instructive to examine the conservation of to
angular momentumJ. All models show some degree of an
gular momentum loss as the bar expands into the ‘‘vacuu
regions of the grid. To quantify this, we consider the loss
J in each model at the time thatb reaches its first loca
minimum, and thus at the time the bar reaches its poin
maximum expansion; see, for example, Fig. 6.~Shortly after
this time, the models typically lose mass as the spiral a
expand and material flows off the grid.! In general, Table II
shows that models run with theD code lose more angula
momentum during this stage than those run with theL code.
Additional tests with theD code showed that this loss o
angular momentum increases asr low increases@25#. Overall,
we attribute the better angular momentum conservation
tained with theL code to the fact that it is written in a
explicitly flux-conservative form whereas theD code is not;
see the Appendix.

C. Analysis of Fourier components

We can quantify the development of the dynamical ins
bility shown in the previous section by examining vario
Fourier components in the density distribution. To this e
the density in a ring of fixedÃ andz can be written using the
complex azimuthal Fourier decomposition

r~Ã,z,w!5 (
m52`

1`

Cm~Ã,z!eimw, ~14!

where the amplitudesCm of the various componentsm are
defined by@23,40#

Cm~Ã,z!5
1

2pE0

2p

r~Ã,z,w!e2 imwdw. ~15!
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We shall also find it useful to define the normalized amp
tude

uAmu5uCmu/uC0u, ~16!

where C0(Ã,z)5 r̄(Ã,z) is the mean density in the ring
The phase angle of themth component is defined by

fm~Ã,z!5tan21@ Im~Am!/Re~Am!#. ~17!

When nonaxisymmetric structure propagating in t
w-direction develops into a global mode we can write t
phase angle as

fm5smt, ~18!

wheresm is called the eigenfrequency of themth mode. The
pattern speed is then

Wm~Ã,z!5
1

m

df

dt
5

sm

m
~19!

and the pattern period isTm52p/Wm @28,20#. For the m
52 mode,s2 is twice the angular velocity of the bar and
hence, the rotation period of the bar isT254p/s2.

In practice, we implement Eq.~15! in the codes by sum-
ming up the contributions over the azimuthal coordinate
<w,2p) in rings of width DÃ centered on the origin a
various values ofÃ in the equatorial planez50. By exam-
ining the amplitudes of the Fourier componentsuAmu at vari-
ous distances from the rotation axis, we can determine w
global modes arise in the models. Since the rings are alw
centered on the origin, care must be taken when interpre
the results once the center-of-mass motion becomes sig
cant.

Figure 8 shows the growth of the amplitudesuAmu for the
first four Fourier components,m51,2,3,4. These amplitude
were calculated in the equatorial plane in a ring of rad
Ã50.354, which corresponds to radial zonej 510, for mod-
els D1, D2, L1, and L2. For model L3, the amplitudes we
calculated in a ring of radiusÃ50.344, which is radial zone
j 518. Similar plots were obtained for rings at other valu
of Ã within the central regions, indicating that these are
global modes.

Notice that the exponential growth of them52 bar mode
~thick solid line! dominates all evolutions, as expected fro
visual inspection of the density contours shown in Figs. 3
In addition, all models show a clearm54 mode~thin solid
line! that begins growing exponentially once the bar mode
well into its exponential growth regime. Them52 andm
54 modes both reach their peak amplitudes at about
same time in all runs. The odd modes appear at later time
all models except L2, in whichp-symmetry was imposed
~which prevents the development of odd modes; see Sec!.
The m51, or translational, mode~dotted line! begins grow-
ing after them54 mode. Comparing Figs. 7 and 8 show
that the m51 mode grows as the center of mass moti
increases, as expected. Them53, or pear, mode is shown b
the dashed line. In models L1 and L3, them53 mode is the
9-9
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NEW, CENTRELLA, AND TOHLINE PHYSICAL REVIEW D62 064019
last one to grow. In models D1 and D2, them53 mode
grows at early times, but then lags behind them51 mode.

As mentioned in Sec. II, analysis of Maclaurin sphero
suggests that models near the dynamical stability limit
only unstable to them52 mode~higher order, even harmon
ics of them52 mode may arise in the subsequent evolutio!.
Models near this stability limit are not physically susceptib
to the growth of odd modes. This has been confirmed ag
recently by the perturbative analysis of Toman et al.~TIPD;
@21#!. In fact, TIPD demonstrate thatN51.5 polytropes with
the Maclaurin rotation law@Eq. ~9!# are only unstable to the
m53 mode whenb is *0.32. In general all our models~for
which b50.298, initially! conform to this expectation, with
the odd modes~which here are numerical artifacts! growing
earlier in the models with lower resolution. In the L3 sim
lation, which has the highest resolution, them51 and m
53 modes develop at late times and are cleanly separ
from them52 andm54 modes.

The growth rated lnuAmu/dt for them52 andm54 modes
can be determined by fitting a straight line through the d

FIG. 8. The growth of the amplitudesuAmu for m51 ~dotted
line!, m52 ~thick solid line!, m53 ~dashed line!, andm54 ~thin
solid line! is shown. The amplitudes were calculated in the equa
rial plane in a ring with radiusÃ50.354 for runs D1, D2, L1, and
L2, and radiusÃ50.344 for run L3.
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points in Fig. 8 during the time intervals in which lnuAmu is
growing linearly with time. We find that all models hav
approximately the same growth rate for these modes, as
in Table III. To find sm for these modes we plot cosfm
versus time and use a trigonometric fitting routine to getfm ;
cf. @23#. The function cosfm was used becausefm itself is
multi-valued due to the tan21 in Eq. ~17!. The fit was per-
formed over the same time interval, chosen ‘‘by eye,’’ us
to calculate the corresponding mode growth rate. Table
shows that models D1 and D2 have smaller eigenfrequen
and pattern speeds than those run on theL code. However, in
all models we find that the pattern speeds for them52 and
m54 modes are nearly the same,W2;W4. This confirms
that them54 mode is a harmonic of the bar mode and not
independent mode, as mentioned above and first pointed
by Williams and Tohline@28#.

It is interesting to compare the data from our runs with t
results of TIPD, who used a perturbative, linearized Euler
scheme to calculate mode growth rates and eigenfrequen
of differentially rotating polytropes. As discussed by TIP
this method produces much more precise results than tr
tional Lagrangian normal mode analysis@41# ~including the
tensor virial approach@42#, which has been demonstrated
be inappropriate for differentially rotating polytropes!. TIPD
calculated the bar mode growth rate and eigenfrequency
an axisymmetricN51.5 polytrope with the Maclaurin rota
tion law, Eq.~9!, andb50.300 using their perturbative Eu
lerian method. They foundd lnuA2u/dt50.532tD

21 and s2

51.99tD
21 , where we have converted from their units. TIP

state that the uncertainties in their results are on the orde
a few percent~excluding any systematic errors that may
present!. Comparison with the data in Table III shows th
the numerical models all have growth rates in good agr
ment with that of TIPD. The eigenfrequenciess2 for the
models run with theL code are also in very good agreeme
with the TIPD results, while those for D1 and D2 are;25%
smaller. The reason for the discrepancies in the eigen
quencies of theD code runs is unknown.

D. Gravitational radiation

We use the quadrupole approximation, which is valid
nearly Newtonian sources@43#, to calculate the gravitationa
radiation produced in our models. Since the gravitatio

-

TABLE III. The growth rates, eigenfrequencies, and patte
speeds for them52 andm54 modes are given for all runs. Notic
that the pattern speedsW2;W4 for all models, indicating that the
m54 mode is a harmonic of the bar mode.

Model d lnuA2u/dt d lnuA4u/dt s2 s4 W2 W4

@ tD
21# @ tD

21# @ tD
21# @ tD

21# @ tD
21# @ tD

21#

D1 0.54 0.98 1.5 3.2 0.75 0.80
D2 0.55 1.1 1.5 3.0 0.75 0.75
L1 0.55 0.94 2.0 3.9 1.0 0.98
L2 0.55 1.0 2.0 4.0 1.0 1.0
L3 0.55 1.1 2.0 4.0 1.0 1.0
9-10
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GRAVITATIONAL WAVES FROM LONG-DURATION . . . PHYSICAL REVIEW D62 064019
field in both codes is strictly Newtonian, we compute on
the gravitational radiation produced and do not include
effects of radiation reaction. The reduced or traceless qu
rupole moment of the source is

Ii i j 5E r ~xixj2
1
3 d i j r

2!d3r , ~20!

where i , j 51,2,3 are spatial indices andr 5(x21y21z2)1/2

is the distance to the source. For an observer located on
axis atu50,w50 of a spherical coordinate system with i
origin located at the center of mass of the source, the am
tude of the gravitational waves for the two polarization sta
becomes simply@25,44#

h15
G

c4

1

r
~ Ïi xx2 Ïi yy!, ~21!

FIG. 9. The gravitational wave formh1 for an observer located
on the axis atu50, w50 of a spherical coordinate system center
on the source is shown as a function of time for all models. T
quantity plotted is actuallyr h1 , where r is the distance to the
source. The quantitiesh1 and r have been normalized to
(GM/c2Re)

2 andRe , respectively.
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h35
G

c4

2

r
Ïi xy , ~22!

where an overdot indicates a time derivatived/dt.
A straightforward application of Eqs.~20!,~21! in an Eu-

lerian code involves calculatingIi i j directly by summing
over the grid, and then taking the time derivatives nume
cally. However, such successive application of numeri
time derivatives generally introduces spurious noise into
wave forms, especially when the time step is allowed
change from cycle to cycle. To reduce this problem, we h
used the partially integrated versions of the standard qua
pole formula developed by Finn and Evans@45#. TheD code
uses the first moment of momentum formula, QF1, wh

allows the calculation of İi i j directly from quantities avail-
able in the code@32#. This gives

İi i j 52E r@v ( ixj )2
1
3 d i j ~vW •xW !#d3r , ~23!

where

v ( ixj )5
1

2
~v ixj1v j xi !. ~24!

Of course, another time derivative is still required to obta

Ïi i j . When this is taken numerically, the resulting wave fo
amplitudesh1 and h3 can still be dominated by noise. T

cure this problem, we passÏi i j through a filter to smooth it
before calculating the wave forms; see Ref.@32# for details.

The L code does not use numerical time derivatives

compute Ïi i j . Instead, the equations of motion are used

conjunction with Eq.~23! to compute Ïi i j directly from quan-
tities available in the code. This gives

Ïi lm5E rF2v lvm2
2

3
rv iv id lm2xm¹ lF2

2

3
xi¹ iFd lm

1~A.V. terms!Gd3x. ~25!

Here, the summation convention is implied on repeated
and down indices and the ‘‘A. V. terms’’ contain contribu
tions to the stress tensor from the artificial viscosity; s

Refs.@45# and@26# for details. The expression forÏi lm in Eq.
~25! yields smooth wave forms which do not require filte

ing. Note that both theL and D codes computeÏi i j with
respect to the origin of the coordinate system. Hence w
the center-of-mass motion becomes significant, the w
forms computed are no longer precisely correct. Howev
the center-of-mass motion itself is a numerical artifact; th
upon its development the simulation as a whole becom
physically unreliable.

Figure 9 shows the gravitational wave formh1 given in
Eq. ~21! as a function of time for all models. At early time
the wave forms are all similar, as the initial expansion of t
bar gives rise to gravitational radiation. Comparing Fig.

e
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NEW, CENTRELLA, AND TOHLINE PHYSICAL REVIEW D62 064019
with Fig. 6, we see that the maximum amplitude ofh1 oc-
curs at the same time as the first local minimum inb, which
marks the maximum expansion of the bar. The amplitude
h1 then dips as the central bar recontracts andb rises again
to a local maximum. When the bar re-expands, the amplit
of h1 rises again; cf. Figs. 4 and 5. In models D1, D2, a
L1, the central remnant soon becomes nearly axisymme
and h1 decays rapidly. In L3, the bar persists for.4 bar
rotation periods and undergoes two additional episode
expansion and contraction, producing a longer-lived grav
tional wave signal. Model L2 maintains a strong bar w
multiple expansions and contractions, and thus a str
gravitational wave signal, throughout its evolution.

In Fig. 10 we plot the quantity

hnorm5~h1
2 1h3

2 !1/2. ~26!

Note that the absolute scale of thet axis in this figure is not
labeled because the curves for the three runs have
shifted horizontally in order to line up their initial peaks. A
models show a strong initial peak inhnorm that coincides with
the maximum expansion of the bar. The secondary peak
hnorm correspond to the secondary expansions of the bar
the additional local minima inb shown in Fig. 6. A plot of
hnorm is instructive because its time variation is not comp
cated by the periodic rotation of the bar. Thushnorm(t) re-
flects how the ‘‘mean’’ properties of the system~e.g., the
moment of inertia! change with time. Thehnorm curve should
be perfectly flat once~andif! the remnant settles down into
steady-state structure; any slight downward slope will p
vide a measure of long-term secular changes.

Ultimately, every hydrodynamics code should produ
the same, correct, plot ofhnorm(t) for this simulation. That is,

FIG. 10. The quantityr hnorm5r (h1
2 1h3

2 )1/2 is shown as a
function of time for all models. The normalization is the same as
Fig. 9. The absolute scale of the time axis is not labeled as the
and D2 curves have been horizontally shifted in order to align th
initial peaks with that of the L2 curve.
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the amplitude and frequencies present inhnorm(t) should be
quantitatively reproducible. Figure 10 thus shows to wh
degree our~three best! simulations are converging toward th
same answer and thereby begins to establish the nature o
‘‘correct’’ result.

V. DISCUSSION AND CONCLUSIONS

We have carried out simulations of dynamical instabil
in a rapidly rotatingN51.5 polytrope using two differen
Eulerian hydrocodes and several different resolutions. T
rapidly rotating polytropic initial models used were co
structed with the Maclaurin rotation law and had a ratio
kinetic to gravitational energyb;0.3. All models evolved
by both codes agree on the following basic properties of
early nonlinear development of the instability.~i! The m
52 mode dominates the evolutions, producing a central
tating bar which sheds mass and angular momentum a
ends to produce a spiral arm pattern. Once the bar reache
point of maximum elongation, it contracts and then r
expands.~ii ! The m54 mode is the next one to reach no
linear amplitudes.~iii ! The growth rates for them52 and
m54 modes are d lnuA2u/dt'0.55tD

21 and d lnuA4u/dt
'1.0tD

21 , respectively. The pattern speedsW2;W4, indicat-
ing that them54 mode is a harmonic of the bar mode.~iv!
The instability produces a gravitational wave signal w
maximum amplitude@RE(c2/GM)2#r h'0.6 for an observer
on the axis atu50, w50 of a spherical coordinate syste
centered on the source.

The models also exhibit some differences. In particu
simulations run with theD code have smaller values of th
eigenfrequenciess2 and s4, show weaker secondary bar
and lose more angular momentum during the initial bar
pansion than those run with theL code. It appears that mos
of these differences can be attributed to the lower order t
differencing and the lack of consistent flux-conservative d
ferencing in theD code.

Overall the simulations presented here, and those car
out by previous authors, agree on the qualitative nature
many quantitative aspects of the initial development of
bar structure. However, as detailed in Sec. I and Sec. II, s
agreement has not been universally present among sim
tions that follow the long duration evolution of this instab
ity. Such lengthy evolutions are nontrivial for hydrodynam
ics codes as they may allow any numerical inaccurac
present to grow to the point where they significantly infl
ence the simulations. As described below, the late growth
odd modes in our bar mode evolutions is an example of
numerical difficulties that can arise in extended simulatio

Linear analysis indicates that theN51.5, b50.3 models
used in our simulations are initially unstable to them52 bar
mode only, and not to any odd modes@21# ~even harmonics
of them52 mode may subsequently develop!. Thus the odd
modes that develop in all but one~L2! of the simulations
presented here are numerical artifacts arising from shortc
ings in the finite-difference techniques utilized in theD and
L hydrocodes~see Sec. IV B and also@46#!.

Once these artificial odd modes reach nonlinear am
tudes, the physical reliability of the simulations is degrad

n
3
ir
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In particular, the growth of them51 mode is tied to the
development of center-of-mass motion in the simulations
ran withoutp-symmetry. As the center-of-mass moves aw
from the origin of the cylindrical grid, the finite-differencin
of the curvilinear form of the hydrodynamics equations b
comes asymmetric. This causes the accuracy of the evolu
to deteriorate. The growth of the center-of-mass motion
pears directly related to the decay of the bar-like structure
the system; the bar decays when the center-of-mass mo
becomes significant.

Because the center-of-mass motion is unphysical, we
lieve the decay of the bar structure is unphysical as w
This conclusion is substantiated by run L3, which had tw
the radial~and axial! resolution of run L1. The onset of th
spurious center of mass motion was significantly delayed
L3 and the central remnant maintained its bar-like struct
for a correspondingly longer time. The growth of odd mod
was also delayed. Thus as the resolution is increased, t
code evolutions converge towards the predictions of lin
analysis.~Unfortunately, we could not repeat this experime
with the D code due to a lack of computational resources!

Thus it is our belief that a simulation of this instabilit
that did not develop the nonphysical center of mass mo
~e.g., one performed with very fine radial resolution!, would
produce a long-lived nonaxisymmetric structure. Recall t
this is the result of the model L2 simulation, which was r
with p-symmetry. That symmetry condition prevents t
growth of odd modes and thus prohibits the developmen
center of mass motion. Hence, overall L2 is the most ph
cally relevant of the simulations presented here.

We believe our results demonstrate that the physic
accurate outcome of the rotational instability in the obj
studied here, is a persistent bar with an accompanying lo
lived gravitational wave signal. This dynamically stable co
figuration can be viewed as a compressible analog of a
mann ellipsoid; efforts to understand the detailed structu
properties of such configurations are underway@46#. The
nonaxisymmetric structure of the remnant will decay on
secular timescale due to viscous dissipation and/or grav
tional radiation emission. The gravitational radiation time
cale is likely to be shorter than the viscous timescale
sufficiently compact objects@47,48#. Note thatb will also
decrease as a result of this secular evolution. The system
continue to evolve until it reaches a configuration that
secularly stable.

A number of factors including the presence of an en
lope surrounding the rotating object, the variation of the
tation law and the equation of state, and the influence
general relativity could potentially affect the outcome of t
instability. Such effects should be the subject of future stu

ACKNOWLEDGMENTS

We thank L. Lowe for her considerable help with da
analysis and producing the figures for this paper. J.M.C. a
thanks L. Lowe, H. Luo, and C. Hempel for assistance w
the D hydrocode. We appreciate stimulating conversatio
with John Cazes, Patrick Motl, and Brian Pickett. This wo
was supported in part by NSF grants PHY-9208914 a
06401
e
y

-
on
-
f

on

e-
ll.
e

in
e
s

L
r

t

n

t

f
i-

ly
t
g-
-
e-
al

a
a-
-
r

ill
s

-
-
f

.

o
h
s

d

PHY-9722109 at Drexel, and NASA grant NAG5-8497 a
NSF grant AST-9528424 at LSU. This research was a
supported in part by grant number PHU6PHP from the Pi
burgh Supercomputing Center~PSC!, which is supported by
several federal agencies, the Commonwealth of Pennsylv
and private industry; and by NSF cooperative agreem
ACI-9619020 through computing resources provided by
National Partnership for Advanced Computational Infr
structure~NPACI! at the San Diego Supercomputer Cen
~SDSC!. The numerical simulations using theD code were
run at SDSC and PSC, and those using theL code were run
at NASA’s HPCC/GSFC. This work performed under au
pices of the U.S. Department of Energy by Los Alamos N
tional Laboratory under contract W-7405-ENG-36.

APPENDIX A:

TheD andL codes solve the equations of hydrodynami
which govern the structure and evolution of a fluid, in cyli
drical coordinates. These equations include the contin
equation

]r

]t
1¹•~rvW !50; ~A1!

the three components of Euler’s equation,

]S
]t

1¹•~SvW !52
]P

]Ã
2r

]F

]Ã
1

A 2

rÃ3
, ~A2!

]T
]t

1¹•~TvW !52
]P

]z
2r

]F

]z
, ~A3!

]A
]t

1¹•~AvW !52
]P

]w
2r

]F

]w
, ~A4!

and Poisson’s equation, Eq.~5!. Here,vW is the fluid velocity
with components (vÃ ,vz ,vw) in the (Ã,z,w) directions.
The quantitiesS5rvÃ , T5rvz , A5rÃvw are the radial,
vertical, and angular momentum densities, respectively.

The codes solve slightly different forms of the ener
equation. TheD code evolves the specific internal energye:

]~re!

]t
52

1

Ã

]~ÃrevÃ!

]Ã
2

]~revz!

]z
2

1

Ã

]~revw!

]w

2PS 1

Ã

]~ÃvÃ!

]Ã
1

]vz

]z
1

1

Ã

]vw

]w D . ~A5!

The L code evolves the internal energy densitye:

]e1/G

]t
1¹•~e1/GvW !50. ~A6!

In both codes, the pressureP is obtained from the perfec
fluid equation of state, Eq.~3!.

Both theD andL codes use artificial viscosity to smoot
out sharp discontinuities that may arise if shocks are pre
in a simulation. See@26,32,39# for details.
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The following subsections contain further details abo
the D andL hydrocodes.

1. The D hydrocode

The D hydrocode was developed by Clancy, Smith, a
Centrella@49,50,32#. It is written in cylindrical coordinates
(Ã,z,w) with reflection symmetry through the equatori
planez50. The original version allowed nonuniform radi
and axial grids and was used to carry out the Eulerian run
Ref. @25#; for the simulations described in this paper, t
code was restricted to uniform grids. This code was writ
in Fortran 77 and optimized for Cray vector computers
currently runs on the Cray T90.

The actual form of the hydrodynamics equations~A1!–
~A4! used in theD code is given in Ref.@32#, with the
exception that Eq.~A4! takes the form

]~rJ!

]t
52

1

Ã

]~rJvÃÃ!

]Ã
2

]~rJvz!

]z
2

1

Ã

]~rJvw!

]w

2
]P

]w
2r

]F

]w
, ~A7!

whereJ5Ãvw is the specific angular momentum. Note th
the equations theD code solves are not written in flux
conservative form. In the discrete form of these equatio
the scalar quantitiesr, e, F, andP are defined at cell center
and at integral time steps. TheD code actually evolves the
velocities, which are defined on the faces between cells
at half-integral time steps, located halfway between the in
gral time steps. The velocities are face-centered in the c
dinate along which they are directed; for example,vz is de-
fined at the center of the grid zone faces normal to thez-axis
@32#.

The D code uses operator splitting to evolve the discr
versions of the hydrodynamical equations, Eqs.~A1!–~A5!,
forward in time @39,51#. The accuracy of this time integra
tion method is between first and second orders.

The source step is carried out first. This begins by hold
r constant and updating the velocities due to the pres
gradient, gravitational force, and centrifugal force terms
Eqs. ~A2!–~A4! using centered differences; note that in t
source step we advance the azimuthal velocity componenvw

instead of the specific angular momentumJ in Eq. ~A7!.
Using these updated values, the artificial viscosity terms
applied to advance the velocities ande. These new values ar
then used to update the energy due to the compression
‘‘PdV’’ terms.

We next carry out the transport step to evolver, re, vÃ ,
vz , andJ due to the advection of fluid from one cell to th
next. The transport step consists of three advection swe
one in each of the three coordinate directions. We us
monotonic advection scheme developed by LeBlanc@49,39#
that is second-order accurate in space to calculate the fl
in each direction. On each cycle, we vary the order in wh
the advection sweeps are carried out to avoid setting u
preference for any one direction; the order changes on e
06401
t
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successive cycle as all six permutations are exhausted
each sweep, the same mass flux used to advect the dens
Eq. ~A1! is employed to advectvÃ , vz , andJ in Eqs.~A2!–
~A4! @52–54#. During the transport step, the density is he
constant; thus,](rvÃ)/]t is written asr]vÃ /]t in Eq. ~A2!,
and similarly for Eqs.~A3!–~A5!. After updating the advec-
tion terms on each cycle, a momentum conservation is
plied with the new density to update the velocities. The eq
tion of state, Eq.~3!, is then used to calculate a new value
the pressure.

Once the hydrodynamical equations have been advan
the Newtonian gravitational potentialF is calculated by
solving Poisson’s equation, Eq.~5!, using the updated den
sity. The boundary conditions at the edge of the grid
specified using a spherical multipole expansion. The discr
zation yields a large, sparse, banded matrix equation wh
we solve using a preconditioned conjugate gradient met
with diagonal scaling@55,56#.

2. The L hydrocode

The L hydrocode was originally developed by Tohlin
@37,57#, and has been refined and updated with collabora
and students. The modern version of the code is fully sec
order accurate in both space and time@27,58#. The parallel
version of the code that we use here was originally dev
oped for the MasPar MP-1 computer and was written in M
Par Fortran, which is MasPar’s version of Fortran 90; s
@26#. TheL code uses uniformly spaced grids in cylindric
coordinates (Ã,z,w). The code allows the use of reflectio
symmetry through the equatorial planez50 and
p-symmetry in the azimuthal direction; cf. Sec. II.

The fluid equations, Eqs.~A1!–~A4! and~A6!, are written
in flux-conservative form@54#. When they are discretized o
the uniform cylindrical grid, the densityr, the angular mo-
mentum densityA, and the gravitational potentialF are de-
fined at cell centers. The radial and vertical velociti
(vÃ ,vz) and momentum densities (S,T) are defined at cell
vertices or nodes. The source terms on the right-hand s
of Eqs.~A2!–~A4! are approximated using standard secon
order centered differences. The flux or divergence terms
written as a summation over the six faces of a cylindri
grid zone@27#,

¹•~XvW !5
1

V (
i 51

6

~Xv ! iAi . ~A8!

Here V is the volume of the cylindrical grid cell,Ai is the
area of a particular face, and (Xv) i is the product of the
quantity XP(r,S,T,A,e1/G) and the corresponding velocit
component at the facei ~i.e., v is the velocity normal to the
i th face!. These terms are updated using a monotonic in
polation scheme developed by van Leer@59# that is second-
order accurate in space.

When the system is evolved forward in time, the physi
variablesXP(r,S,T,A,e1/G) are updated by applying th
source terms and the flux terms in different steps. Seco
9-14
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order accuracy in time is obtained via a Lax-Wendr
scheme that uses velocity values in the flux terms~A8! that
are centered at timet1Dt/2 @60,61#. To accomplish this, the
source terms are applied for a half time stepDt/2 and the
updated valuesX8 are saved. The flux terms are then appli
for Dt/2 with the updated valuesX to obtain velocities at
e

ite

ty
,

c
el

tud

,

J.

n

06401
f time t1Dt/2. With these new velocities, fluxing is pe
formed for a full time step on the saved quantitiesX8. An
additional half time step of sourcing is then performed.

Poisson’s equation, Eq.~5!, is solved for the gravitationa
potentialF using the ADI method@62#, after the fluxes have
been applied for the whole time stepDt.
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