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Gravitational waves from long-duration simulations of the dynamical bar instability
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Compact astrophysical objects that rotate rapidly may encounter the dynamical “bar instability.” The
bar-like deformation induced by this rotational instability causes the object to become a potentially strong
source of gravitational radiation. We have carried out a set of long-duration simulations of the bar instability
with two Eulerian hydrodynamics codes. Our results indicate that the remnant of this instability is a persistent
bar-like structure that emits a long-lived gravitational radiation signal.

PACS numbgs): 04.30.Db, 04.40.Dg, 95.30.Lz, 97.6%s

[. INTRODUCTION hydrodynamics and gravity, and is expected to be the fastest
growing mode. It operates for fairly large values of the sta-
The direct detection of gravitational radiation presentsbility parameter3> B4 and develops on a timescale on the
one of the greatest scientific challenges of our day. Wittorder of the rotation period of the object. For the uniform
interferometers such as the Laser Interferometric Gravitadensity, incompressible, uniformly rotating Maclaurin sphe-
tional Wave Observatory(LIGO), VIRGO, GEO, and roids, B4~0.27. In the case of differentially rotating fluids
TAMA [1] expected to be operating in the next few years,with a polytropic equation of state, tte=2 dynamical sta-
and a new generation of spherical resonant mass detectdrdity limit B4~0.27 has been numerically determined to be
under study[2,3], the calculation of the signals expected valid for initial angular momentum distributions that are
from various astrophysical sources has a high priority. Acsimilar to those of Maclaurin spheroid46-19; see also
curate calculations of the wave forms are needed to enab[@0,21]. (We note that wherB is greater than some critical
both the detection and identification of sour¢d$ In par-  valueB.< B4, asecularinstability can arise from dissipative
ticular, short duration bursts are expected to be more difficulprocesses such as gravitational radiation reaction and viscos-
to detect than longer-lived signals. ity. When this instability arises, it develops on the timescale
One interesting class of sources includes rapidly rotatingf the relevant dissipative mechanism, which can be several
compact objects that develop the rotationally-induced “bamotation periods or longel2]. In recent years, much work
instability.” This instability derives its name from the bar- has also been carried out on various other modes in rotating
like deformation it induces. The resultant object is poten-elativistic stars as detectable sources of gravitational radia-
tially a strong source of gravitational radiation because of ittion; see[22] for a review and references.
highly nonaxisymmetric structure. Examples of compact as- The first numerical simulations of the dynamical bar in-
trophysical objects that may rotate rapidly enough to encounstability were carried out by Tohline, Durisen, and McCol-
ter this instability include stellar cores that have expendedough (TDM; [23]) in the context of star formation. Using a
their nuclear fuel and are prevented from undergoing furthepolytropic equation of state,
collapse by centrifugal forcd®&—10]; a neutron star spun up
by accretion from a binary compani¢hl,12; and the rem- P=Kpl'=Kpt*N (2)
nant of a compact binary merggt3,14.

Suc_h global_ rotationzilminstabilities in _fluids arise from with polytropic indexN= 1.5, they evolved differentially ro-
nonaxisymmetric modes™ "¢, wherem=2 is known as the  tating axisymmetric models with a 3D Eulerian hydrodynam-

“bar mode.” It is convenient to parametrize them by ics code, or hydrocode, in Newtonian gravity. In all models
with initial 8=0.30, them=2 mode grew to nonlinear am-
B=Tot!|W], (1) plitudes and a two-armed spiral pattern was produced as

mass and angular momentum were shed from the ends of the
whereT, is the rotational kinetic energy al is the gravi-  bar. Numerous other simulations have confirmed this basic
tational potential energhl5—-17. In this paper, we focus on scenario for the evolution of the bar mode into the nonlinear
the dynamicalbar instability, which is driven by Newtonian regime; see Sec. Il for references and further discussion.
More recently, these techniques have been extended to the
context of rapidly rotating, compact objects in the Newtonian
*Currently at Los Alamos National Laboratory, Los Alamos, NM regime, with the gravitational waves calculated in the quad-
87545. rupole limit. This is a reasonable first approximation for an
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object, such as a centrifugally-hung stellar core with a dening so, half as many computational grid zones are required in
sity intermediate between that of white dwarfs and neutrororder to achieve a given spatial resolution in the vertical
stars, with initial massM =1.4M and radiusR=100 km, and/or azimuthal coordinate directions, respectively. It was
and henceG M/Rc¢?=<0.02. Centrella and collaborators used also physically reasonable for TDM to adopt both of these
both smooth particle hydrodynami¢SPH and Eulerian fi-  symmetry conditions because the eigenfunctiarpure,m
nite difference hydrodynamics to evolve the bar instability in=2 barmodég to which their models were expected to be
a model withN=1.5[24,25. In all of their runs the gravi- initially unstable had both equatorial ang-symmetry
tational wave signal was a relatively short duration burst lastf23,28. As we discuss more fully below, ultimately one
ing for several bar rotation periods, and the system evolvedould like to remove these computational constraints in or-
to a nearly axisymmetric central core surrounded by a flatder to test whether or not the physical outcome is sensitive to
tened, disk-like halo. NeW26] carried out a similar study, them.
with an improved version of Tohline’s Eulerian cofi27]. The first work to address the late-time development of the
Her simulation employed a symmetry condition that onlypar instability was published by Durisen, Gingold, Tohline,
permitted the growth of even modes; see Sec. Il. This and Boss[29], who ran simulations with3=0.33 andg
simulation produced a final state with a persistent bar-like=0.38 forN=1.5 polytropes. They used three different 3D
core, which yielded a gravitational wave signal of muchhydrocodes: Tohline’s Eulerian code as used in TDM, an-
longer duration than that found by Centrella and collaboraother Eulerian code developed in spherical coordinates by
tors. Boss, and an SPH code developed by Gingold. Boss’s code
Given the requirements of reliable wave forms for theglso enforced equatorial- ane-symmetries but, being grid-
detection and identification of sources, it is important to re-ess, Gingold’s SPH code imposed neither of these symme-
solve this issue of the late-time gravitational wave signakries. However, the SPH simulations were limited to a very
from the dynamical bar instability. To this end, we havesmall number of particlesN,=2000. The results produced
carried out a set of long-duration runs using the two Euleriarpy these three separate simulation codes were qualitatively
codes employed by New and by Centrella in their earliersimilar. For example, at early times all simulations showed
work, and have made a detailed study of the resulting modevidence of the development of a bar-like pattern instability,
els. In Sec. Il we review previous numerical studies of theconsistent with the results of TDM and the predictions of
dynamical bar instability, highlighting the various assump-jinear perturbative analysis[15,23,28,2] Perturbative
tions and restrictions used by different authors. The numerignalysis says this instability is the result of the growth of a
cal techniques we used are discussed in Sec. Ill. In Sec. I¥oherent bar-like wave that propagates around the system
we present our simulations and analyze the results. A discusyith a well-defined pattern speed, while material moves dif-
sion of these results follows in Sec. V. Finally, the AppendiXferentially through that pattern. At subsequent times in the
contains additional information about the two hydrocodessimulations, the barmode distortion developed into a two-

used in this work. armed, trailing spiral pattern as described by TDM; when the
spiral pattern reached a nonlinear amplitude, some relatively
Il. PREVIOUS NUMERICAL STUDIES high specific angular momentum material was expelled in

the equatorial plane of each system; and the primary struc-

As mentioned above, the work of TDM3] set the stage ture that remained at the end of each simulation was a dy-
for subsequent numerical calculations of the dynamical banamically stable, centrally condensed object exhibiting a
instability. Their initial models consisted of differentially ro- value of 3<B4. But there were significant quantitative dif-
tating, axisymmetric equilibrium spheroids with a Maclaurin ferences among the various evolutions presented by Durisen
rotation law for the angular momentum distribution. The Ma-et al. For example, the simulations produced central rem-
claurin law produces rigid rotation when it is applied to annants that had different total masses and exhibited different
incompressible l=0) fluid; when it is used in a polytrope, degrees of nonaxisymmetric distortion. This disagreement
it produces differential rotatiohl5]. After small amplitude signified, in part, that the simulation techniques being used
random perturbations were applied to the density, eackvere rather primitive and, in part, that the available comput-
model was evolved into the nonlinear regime using a 3Ding resources did not permit the simulations to be carried out
Eulerian hydrocode with Newtonian gravity. This hydrocodewith adequate spatial resolution.
solved the mass continuity and Euler equations in cylindrical Williams and Tohline subsequently carried out an inves-
coordinates {,z, ¢); the resulting evolutions were adiabatic tigation of the dynamical barmode instability in models with
and maintained the same polytropic equation of state, Eqdifferent polytropic indices. Using the TDM code with
(2). -symmetry and an improved azimuthal grid resolution, they

TDM used equatorial symmetry and=*symmetry” in  first considered models with initial3=0.31 and N
their simulations. Equatorial symmetry is a reflection sym-=0.8,1.0,1.3,1.5, and 1.8, and focused their analysis on the
metry through the equatorial plare=0. The w-symmetry  measurement of barmode growth rates and pattern speeds in
condition imposes periodic boundary conditions at angles the linear-amplitude growth regime8]. The runs withN
= and ¢ = 21r; thus, physical variables are the same in the=0.8 andN=1.8 were then extended to later times through
interval O< o< as they are inm<¢<27. It is computa- the development of nonlinear-amplitude nonaxisymmetric
tionally advantageous to impose an equatorial- and/ostructures and yielded a rotating triaxial central remhaet.
-symmetry condition on such a simulation because, by doWilliams and Tohline noted that such a configuration would
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TABLE I. Properties of long-duration simulations of the bar mode instabiijfy IS the time at which
the bar reaches its maximum elongation apg, is the end of the simulation. The length of time the bar
persists isAty,,. In this table, time is measured in unitstef where 1t. = 1 central initial rotation period

(cirp).

Ref. N B Code  7-symm  tpamax  tiinal Aty Remarks
[29] 15 0.33 Eulerian yes 28 9.51, >7.0t, central bar atj,,
[29] 15 0.33 SPH no 2.0, 9.51, >7.5t, central bar atj,,
[30] 1.8 0.31 Eulerian yes 118  19.4t, >8.1t, central bar atg,,
[25] 15 0.30 Eulerian no 16, 155t ~5.5t1, no bar attfy
[25] 15 0.30 SPH no 8.2 16t, ~7.81; no bar attfy
[33] 1.5 0.30 SPH no 5.7, 159t. ~7.9t. bar gone byt~13.6t,
[26] 1.5 0.30 Eulerian yes 68 24.3t, >17.5t, central bar atgpy
[20] 1.5 0.327 Eulerian no 6.8 12.3t. >5.5t, central bar atgpy
[34] 15 0.304 Eulerian no 108, 14.4t. >4.3t, central bar atg,,
[34] 1.5 0.327 Eulerian no n/a 1112 n/a central bar at;,

be of interest when viewed in the context of compact stellators, accompanied by the velocity dispersion in their initial

objects because “its existence would presumably be discernrmodels, may make it difficult for models with softer equa-

ible from the spectrum of any emitted gravity wave radia-tions of state(larger N) to maintain long-lived nonaxisym-

tion,” but they did not derive such a spectrum from their metric structures.

models. New [26] used an improved version of Tohline’s code
Houser, Centrella, and Smitf24,25 were the next to  [27]to study theN=1.5, 8=0.30 case. This code solves an

carry out 3D simulations of the dynamical bar instability for gnergy equation and incorporates artificial viscosity to

the caseN=1.5 and initial3~0.30, this time in the context pangle the shocks. She added a routine to calculate the gravi-
of rapidly rotating stellar cores. Using both an SPH and anaigng radiation in the quadrupole limit. Her simulation,

Eulerian code, they considered the matter to be a perfe%hiCh imposed both equatorial anttsymmetries, produced

fluid with equation of state a persistent bar structure and a long-duration gravitational
P=(I'—1)pe, (3 ~wave form. . . o .

All of the studies mentioned above in this section started
wheree is the specific internal energy, and solved an equafrom initially axisymmetric models with the same radial dis-
tion for the internal energy. Using artificial viscosity, they tribution of specific angular momentum as in a Maclaurin
could account for the energy generation by shocks that ocspheroid. Pickett, Durisen, and Day0] studied the insta-
curs when the spiral arms form and deflect the streamlines dfilities that result in arN=1.5 polytrope, when the angular
the supersonically moving fluid. Routines were added to calmomentum distribution is varied. They usedd#ferent up-
culate the gravitational wave forms and luminosities in thedated version of Tohline’s code with neither equatorial plane
guadrupole approximation. The SPH co@keveloped from symmetry nora-symmetry imposed; all their evolutions
TREESPH; se¢31]) imposed no symmetry restrictions and were adiabatic. Using the Maclaurin rotation law, they
was run with up toN,=32,914 particles. Their Eulerian evolved a model with initial3=0.327 to late times, and
code, written in cylindrical coordinates, imposed symmetryobtained a bar-shaped central remnant.

through the equatorial plane but netsymmetry[32]. Over- Recently Imamura, Durisen, and Pick&®4| have per-
all, their simulations produced nearly axisymmetric centralformed additional adiabatic simulations of dynamical insta-
remnants at late times. bilities in N=1.5 and 2.5 polytropes with the Maclaurin ro-

Houser and Centrell#33] carried out additional SPH tation law, using the same hydrodynamics code us¢@ah
simulations withN=1.5,1.0, and 0.5, and initig~0.30  They focused on comparing the early phases of nonlinear
using improved initial models witlN,~ 16,000 particles. As mode growth in their runs with the predictions of quasi-
before, theN=1.5 case resulted in an almost axisymmetriclinear approximations. Their high resolution simulations of
central remnant and a correspondingly short burst of graviN= 1.5 polytropes with3=0.304 and 0.327 both resulted in
tational radiation. The runs witN=1.0 andN=0.5 under- bar-like endstates.
went additional episodes of spiral arm ejection, with the The properties and outcomes of the long duration bar
number of episodes increasingMslecreased; such behavior mode runs witiN=1.5 andN=1.8 are summarized in Table
was also observed by Williams and Tohlip@0]. This re- | for convenience. All of the times reported in Table | are
sulted in longer-lived nonaxisymmetric structure in the cen-given in units oft., wheret, is defined as one central initial
tral remnants, accompanied by longer duration gravitationalotation period(cirp). When surveying the information cata-
wave forms as the models grew stiffdre., asN was de- logued in Table I, one should keep in mind that the identified
creasefl Note that the relatively small number of particles “final” state has been reported at different evolutionary
present in the SPH simulations of Centrella and collaboratimes in the various references. As this table emphasizes,
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over the fifteen years that have passed since the origin8ecause the angular velocity is assumed initially to be only a
Durisen et al. comparison papg29], there remain signifi- function of w, Lichtenstein’s theorem implies that the con-
cant quantitative differences among the results of variougiguration will have reflection symmetry through the equato-
published simulations of the bar mode instability. In particu-rial plane[15].
lar, as indicated by our comments under the “remarks” col- The HSCF method requires that two boundary poiAts,
umn, these previous simulations do not clearly indicateand B, on the surface of the model be selec{&®]. For
whether or not the end product of the evolution should be apheroids, poinf is set alongw at the equatorial radius,
central, steady-state structure that has a bar-like geometry.w(A)=wg, and pointB is set on thezaxis at the polar
radius,z(B) =2zp. The axis ratiozp/wE is given as an input
IIl. NUMERICAL TECHNIQUES parameter; varying it produces equilibrium models with dif-
ferent values ofB. PointsA andB set the boundary condi-
tions for the solution of Eq(6). Sincep, P, and thereforéd
The new simulations of the dynamical bar instability pre-vanish on the surface of the polytropic fluid, we have
sented here begin with rotating spheroidal models above the
Maclaurin stability limit, 3> B4, constructed in hydrostatic H(A)=0=C—d(A)—hiW¥(A), (109
equilibrium. For fluids rotating about theaxis with angular
velocity Q) =Q(w), wherew is the distance from the rota- H(B)=0=C—<I>(B)—h§\lf(B). (10b)
tion axis, the equations of motion reduce to the equation of
hydrostatic equilibrium, Once® andV¥ are known, Eqs(10) can be solved for the
constantsC andh3.
EVP+V<I)+th\P=O, 4) The HSCF iFeration process begins with an initial guess
p for p(w,z), which also specifies the mass enclosed within
each cylindrical radiusn(w). Givenp, the gravitational po-
where ¥ (w) =~ 1/hf Q*(w)w dw is the centrifugal po- tential ®(w,z) is determined by solving Poisson’s equation,
tential andh, is a constant. The gravitational potentlalis a  Eq. (5); see Ref[37] for details. Giverm(w), the centrifu-
solution to Poisson’s equation, gal potential¥ (w) is determined using E@9). Then,C and
) h3 are found from the boundary conditions, E¢s0), and
Ve =47nGp. ®)  the enthalpyH is computed from Eq(6). Finally, a new

The initial models for the runs discussed in this paloerdensity distribution is calculated frob by inverting Eq.(7);

were constructed using Hachisu's self-consistent fielqth's is used as input for the next iteration cycle. The process

(HSCF:[35]; see alsd26]) technique, which is a grid-based Is repeated until fractional changesCD”andhé and the maxi-

iterative method. To facilitate treatment of the boundary con/NUm fractional change it between two successive itera-

. . . 8
ditions, it uses the integral form of the hydrostatic equilib-On Steps are less than some threshigicthis work, 10°).
rium condition, Eq.(4). This gives The virial error VE provides a measure of how well the

energy is balanced, and thus is indicative of the quality of the
H+®+h2¥=C, (6)  resulting equilibrium configuration. It is defined b§5]

A. Initial axisymmetric equilibria

whereH=[p 1dP is the enthalpy of the fluid an€ is a
constant determined by the boundary conditions. The models
are computed on a uniformly-spaceds(z) grid. The
method requires an equation of st&e P(p). For the poly- whereT is the total kinetic energy, and is the volume of
tropic relation in Eq.(2), the enthalpy takes the form the model. TheVEs for the models used here arel0°.

VE=2T+W+3J PdV, (11)

_ /
H=(1+N)Kp™, (7 B. 3D hydrodynamics codes

For purposes of comparison with earlier work, we follow ~ The simulations presented in this paper were carried out
Bodenheimer and Ostrik¢B6] and adopt a specific angular Using two hydrocodes that employ Eulerian finite-
momentum profile that is the same function of cylindrical differencing techniques to solve the equations of hydrody-

mass as a Maclaurin spheroid, namely, namics coupled to Newtonian gravity. Tt (Drexe) hy-
drocode is the same one that was used by Smith, Houser, and
Q(w)=ho[1- (1—m(w)/M)?|w 2, (8)  Centrella[25] in their studies of the bar instability, whereas

the £ (LSU) hydrocode is the one that was used by New and
whereM is the total mass of the systemm(w) is the mass Tohline [26,3§. In this section we briefly describe these
interior to cylindrical radiuss, the constanh,=5J/2M, and  codes, highlighting differences between them that we believe
J is the total angular momentum. Hence, the centrifugal poto be most relevant to the analysis and discussion of our
tential is results. Further details on th and £ hydrocodes may be
found in the Appendix.
. 21312 — Both 3D hydrocodes are written on uniform grids in cy-
¥(w)= _j [1-A-m(@)/M)* P 2do. (9 ngrical coordinates ¢,z,¢). The D code assumes equato-
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FIG. 1. Density contours of the initial model with resolution . .
N,=N,=128 are shown in th&—z plane. The maximum density . |F|IG' 2.dThe_tnorn‘|_a(I)|z/ed r?\ngt]r:na_r };?I?C@(gﬁi)/.ﬂc gnngqui':\to-
is located at the center and is normalized to unity. The density“ﬁ pana ens yJ(Zd_ )pcin e'nt'. |a|m?he glveln n :g.. ared
contours are at levels of 0.5, 0.05, 0.005, and 0.0005. shown. Heref)c andpc are, respectively, the angular velocity an

density at the center of the model.

rial plane symmetry. Th& hydrocode allows the use of both
equatorial andr-symmetries, as discussed in Sec. Il. Bothtime [60—63. However, while theD code is spatially
codes handle the transport terms using similar monotonisecond-order accurate, the accuracy of its time evolution
advection schemes that are second-order accurate in spaseéheme is between first and second ord&39. Finally,
and impose the same outflow boundary conditions on théheD code was written in Fortran 77 and optimized to run on
edges of the grid. Thé® and £ codes both solve energy Cray vector computers such as the C90 and T90 in single-
equations, using the perfect fluid relation of E8).to calcu-  processor mode. These machines use 64-bit words in single
late the gas pressure and artificial viscosity to handle shockgrecision, which allows the use of very low densities in the
Finally, both codes solve Poisson’s equation, &g for the ~ vacuum region, typically,q,= 10 1% The £ code was de-
Newtonian gravitational potentiab with boundary condi- Vveloped for the parallel MasPar MP-1 computer, and was
tions on the edges of the grid specified in terms of sphericalritten in MasPar Fortran, which is MasPar’s version of For-
harmonics. tran 90. The MasPar computers use 32-bit words in single
Eulerian codes typically require that the mass density in g@recision, and theC code useg,,=10 7 in the vacuum
grid zone never be zero, and thus fill the “vacuum” regionsregions.
with a fluid having some small density,,, . To facilitate
the comparison of results in this paper, both codes impose
essentially the same conditions in the “vacuum” regions. IV. ANALYSIS OF RESULTS
The density is set tp=pyq,, if the density drops below,q,
in a zone. The specific internal energy is similarly limited by
€= €4y, Where Eqs(2) and (3) give ejou=Kpioy/(I'—1) The initial axisymmetric equilibrium models used for the
andK is the polytropic constant of the initial model. In ad- simulations presented in this paper were computed with the
dition, the velocities in the low density zones must be limitedHSCF method35] as described in Sec. Il A. Specifying an
to prevent them from becoming too large and thereby requiraxis ratio zp/wg=0.208, polytropic indexN=1.5, and the
ing very small time steps through the Courant critefi8. Maclaurin rotation law, Eq.9), yields a model withg
The velocities are limited whep<p;;,=10%p,o,,. Specifi- =0.298>84. Models with two different resolutions were
cally, in cells wherep<p,,, v, andv, are set to the value constructed for this work. The lower resolution model was
0.5 max. if they exceeds ax. Here,cs maxis the globally  computed on a grid witiN, =64 radial andN,=64 axial
maximum sound speed. Additionally,, is set to zero in zones; its equatorial radius extends out to zpr&6 and its
cells wherep=<p, andv,/w>Q)i,. Here, O, =Qy/4,  polar radius to zon&=7. The higher resolution model was
where(), is the central rotation speed of the initial model. computed on a grid witiN_=N,=128; its equatorial radius
The codes do have a number of differences. The mostxtending out to zon¢=50 and its polar radius to zorle
important of these is that, as discussed in the Appendix, the=12. (Note thatw =0 in radial zonej =2 andz=0 in ver-
hydrodynamical equations in thé code are written in flux- tical zonek=2.) The computations of both models required
conservative form whereas in tii2 code they are not. The 21 iterations. The 6464 model had a virial erroNVE
accuracy of the code is second-order in both space and=2.69x10 3, as defined in Eq(11); for the 128<128

A. Properties of the models
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TABLE II. Basic properties of the models run on tfeand £ codes are shown. Note that model L2 was
actually run withm-symmetry, giving areffectiveresolution of 128 zones in the angular directipp,, is the
minimum density in the “vacuum” regions; see Sec. Ill B. The last column shows the loss of total angular
momentum] at the time tha reaches its first local minimum and the bar reaches it maximum elongation for
each model; cf. Fig. 6], is the initial total angular momentum in the model.

Model Code Grid size T-symmetry Plow Persistent  |Jpar ma— Jol/Jo
N XN, X N‘P bar

D1 D 64X 64X 64 no 1010 no 2.6x1072

D2 D 64X 64X 128 no 1010 no 5.1x 10?2

L1 L 64X 64X 128 no 107 no 5.0<10°3

L2 L 64X 64X 64 yes 107 yes 5.0<10°3

L3 L 128x128x 128 no 107 yes 5103

model, VE=7.52x 10~ *. Density contours of this model in shape. All the runs displayed these basic characteristics,
the x—z plane are shown in Fig. 1 and plots of the angularwhich are illustrated in Fig. 3 using data from model L3.
velocity Q(w) [cf. Eq.(8)] and equatorial plane density pro- Time is measured in units af,, where
file p(w,0) are given in Fig. 2. We have normalized the
equatorial radius and central density to unitye=1 and
pc=1.

To prepare the initial data for evolution with a hydrocode,
the 2D model is swept around in the azimuthal direction to
create a 3D axisymmetric model. Random perturbations arg @

t=0t, 1=18.0t,

then imposed on the density to trigger the instability when
the evolutions are run. Following TD¥R3], we set

p(m,z,(p)=pEQ[1+aof(m,Z,(p)], (12)

where pgq is the density calculated with the HSCF code,
ap=10 2, and—1<f<+1 is a random number.

The perturbed initial models were then evolved with the
hydrocode. Note that the models were initially centered on
the origin. All calculations used equatorial plane symmetry.
Two simulations were performed with tfizcode. Model D1
hadN,=N,=N,=64 zones while model D2 had twice the
angular resolution, N,=128; neither model used
m-symmetry. Models D1 and D2 both used the dengity,
=10"1%in the “vacuum” regions. Three simulations were
performed with thel code. Model L1 was run without
-symmetry and used the same resolution as model D2; fo
comparison, model L2 was run wittr-symmetry andN,,
=64 and thus had the same angular zone Aigeas model
L1. Finally, model L3 was run withoutr-symmetry and
used twice the radial and axial resolutioN,,=N,=N,
=128. The models run with the code all usedpy,
=10 ’. Some basic properties of these models are summal
rized in the first five columns of Table Il for convenience.

t=20.0t, t=21.11,

t=235t, 1=25.91,

B. Dynamical evolutions

All the models give similar results for the initial growth of
the instability and its development into the nonlinear regime. )
An initially axisymmetric system develops bar-shaped struc- g 3. The development of the bar mode into the nonlinear
ture as them=2 mode grows to nonlinear amplitudef.  regime is shown using 2D density contours in the equatorial plane

Sec. IV C,[34]). A pattern of trailing spiral arms is formed for model L3. The maximuntcentraj density has been normalized
as mass and angular momentum are shed from the ends @f unity at the initial time, and the contour levels are at 0.5, 0.05,

the rotating bar. After the bar reaches its maximum elongae.005, and 0.005. The model rotates in the counterclockwise direc-
tion, it recontracts somewhat towards a more axisymmetrigion.
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t=2751 (@ t=265t, (@ ~1—2 bar rotation periods, the model evolves toward a
nearly axisymmetric remnant, which is offset from the center
of the grid; see frame&-f) of Fig. 4. Similar behavior is
seen in model L1, although the second bar elongation phase
is stronger and lasts somewhat longer; representative density
contours are shown in framda—q9 of Fig. 5. The higher
resolution model L3, shown in framdéd—f) of Fig. 5, also
re-expanded to a fairly strong bar, which underwent two ad-
ditional episodes of contraction and expansion. The remnant
in model L3 remained bar-like in shape for4 bar rotation
periods, but eventually it also decayed and settled into a
nearly axisymmetric remnant as it moved off the center of
(b) t=33.0t, ) the grid. In contrast, model LAwhich was run with
-symmetry retained a fairly strong bar for many-@) bar
rotation periods. This model was run for a longer time than
any of the others and experienced episodes of contrac-
@ tion and expansion. At the end of the simulation, model L2
N

still had a strong bar centered on the origin; see fra(ge$
of Fig. 5.

As is illustrated in Fig. 6, for all five model evolutions
each episode of expansion and contraction of the bar is mir-
rored in the time-evolution of the stability parametgr
=T,ot/|W|. As the bar develops and expangsdrops and
reaches a local minimum when the bar is at its maximum
t=3851, © t=385t, ® elongation. Therg rises to a local maximum as the central
regions recontract. This behavior occurs becaliges| w?
«J?/1. Hence, as the bar elongates its moment of indrtia
increases which, assuming its angular momentum is approxi-

P mately conserved, reduces the rotational kinetic en&gy
Each subsequent episode of bar re-expansion can also be
/ associated with a local minimum in the global paramegier

As has been illustrated by Figs. 4 and 5, in each simula-
tion except model L2, the “final” remnant appears to have
moved off of the center of the grid. In each case this dis-
placement is associated with measurable motion of the

FIG. 4. Density contours in the equatorial plane for the latercenter-of-mass of the systefsuch center-of-mass motion
stages of models Dla—g and D2(d-f) are shown. The contour \was also seen in some of the simulationg3#d]). Figure 7
levels are the same as in Fig. 3, and time is measured from thehows the position of the system center-of-maisy

initial moments in the respective simulations. :[xcz:MJrYéM]l/z as a function of time for each of the four
31 affected models(Note thatZy,=0 at all times in all of our
| Re simulations since they all employ equatorial plane symme-
D=(G_|\/|) (13 try.) In runs D1 and D2, the center-of-mass begins to move

rather abruptly at a tim&/tp~ 20, then after moving to a

is the dynamical time for aphereof massM having the location logR-y)~ —0.5(D1) and~ —0.7 (D2), the center-
same radius as the initial equatorial radius of the madgl, of-mass motion slows considerably. Because both models
=wg. have radial zones of sizAw~0.04, this location corre-

Significant differences in the models arise in the nextsponds to approximately 8 and 5 radial grid zones, respec-
stage of the evolution, shown in Figs. 4 and 5. Since thdively, or in terms of the initial equatorial radius of the
models go unstable at slightly different times, they encountemodel,~ :wg and~ : wg, respectively. For models L1 and
the various phases of the instability at somewhat different.3, the center-of-mass motion does not appear to level off,
intervals; the frames in these figures are labeled with the timas seen in Fig. (b). Notice that the center-of-mass moves
measured from the initial moment in each model. Framegarthest from the center of the grid in model L1, which has
(a—0 of Fig. 4 show that the central regions of model D1 the same resolution as D2, and that the onset of this motion
appear to undergo a very slight re-expansion to a weak bais significantly delayed when the radial resolution is doubled
After another~1—2 bar rotation periods this weak bar dis- in model L3.
appears, leaving behind a nearly axisymmetric remnant that Since these simulations all have Newtonian gravitational
is somewhat displaced from the center of the grid. In modefields and the systems are assumed to be isolated from the
D2 the central bar re-expands more strongly, although not texternal environment, in each case the center-of-relasald
the extent of its previous maximum elongation. After anotheremain fixed at the origin if the total mass of the system
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t=259t, (@

/pf’

t=26.1 t, (@)

g
% 00y,
o7 Y

FIG. 5. Same as Fig. 4 for models l(d—qg, L3 (d—f), and L2(g—i).

remains confined within the boundaries of the computationainass loss does not appear to be large or asymmetric enough
grid (i.e., if the system remains isolated from its environ-to account for the center-of-mass motion. We have verified
mend and if the equations governing the dynamics of anthis by running a simulatiofinot presented in detail in this
isolated system are being properly integrated forward imrmanuscript with the same resolution as model L1 but with
time. Although some €5%) mass(and associated linear an expanded gridN,=N,=128). The center of mass mo-
and angular momentundoes flow radially off the grid, this

(@) (b)

(@

65 20 5 B0 65 20 0 50
t/t, t/1,

0.1 20 30 50

t/t,

FIG. 7. The position of the system center of mass is shown as a
FIG. 6. Plots of the stability parametgrare shown for models function of time.(a) Models D1(dotted ling and D2(solid line) (b)
D1 (dotted ling and D2 (solid line) in frame (a) and models L1  Models L1 (dotted ling and L3 (solid line). Note that the use of
(dotted ling, L3 (solid line) and L2 (dashed-dotted linein frame m-symmetry in model L2 prohibits the development of center of
(b). mass motion.
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tion of the model evolved on the expanded grid was noWe shall also find it useful to define the normalized ampli-

significantly different from that present in the run on thetude

smaller grid N,=N,=64); the mass lost from the ex-

panded grid was less than 1%. [Aml=1Cml/|Col, (16)
Instead, we suspect that the center of mass motion arises o

from numerical errors. In “flux-conservative” finite- where Co(w,z)=p(w,2z) is the mean density in the ring.

differencing schemes, such as the one employed here in thkhe phase angle of thath component is defined by

L code(see the Appendjx the advection term is handled in

such a way that, for example, momentum and mass are guar- dm(w,z)=tan [Im(A,)/ReA,,)]. (17)

anteed to be globally conservédthe dynamical equations

contain no source or sink terms. However, such algorithm$Vhen nonaxisymmetric structure propagating in the

are not explicitly designed to preserve the position of thep-direction develops into a global mode we can write the

center-of-mass of the system and source terms due to gradiase angle as

ents in the pressure and gravitational potential do naturally

arise[see, for example, the right-hand sides of E@s2)— dm=omt, (18

(A4)]. So discrepancies that inevitably will arise between the

finite-difference representation of the dynamical equationgvhereo, is called the eigenfrequency of theth mode. The

and their exact differential counterparts can lead to centerPattern speed is then

of-mass motion that is unphysicdlAn exception to this is

the case wherer-symmetry is explicitly enforced. With W, (w.2)= i d_¢: Tm (19

-symmetry imposed, odd azimuthal modes cannot grow m mdt m

and, in particular, no center-of-mass motion can deveglop.

Once such motion begins in either tiieor £ code, it evi- and the pattern period i$,,=27/W,, [28,20. For them

dently has a tendency to amplify rather than to damp. =2 mode, o, is twice the angular velocity of the bar and,
It is also instructive to examine the conservation of totalhence, the rotation period of the barlis=4/o.
angular momentund. All models show some degree of an-  In practice, we implement Eq15) in the codes by sum-

gular momentum loss as the bar expands into the “vacuum’ming up the contributions over the azimuthal coordinate (0
regions of the grid. To quantify this, we consider the loss of< ¢<27) in rings of width Aw centered on the origin at

J in each model at the time tha reaches its first local various values ofs in the equatorial plane=0. By exam-
minimum, and thus at the time the bar reaches its point oming the amplitudes of the Fourier componej&s,| at vari-
maximum expansion; see, for example, Fig($hortly after  ous distances from the rotation axis, we can determine when
this time, the models typically lose mass as the spiral armglobal modes arise in the models. Since the rings are always
expand and material flows off the gridn general, Table Il centered on the origin, care must be taken when interpreting
shows that models run with th® code lose more angular the results once the center-of-mass motion becomes signifi-
momentum during this stage than those run withfheode. cant.

Additional tests with theD code showed that this loss of Figure 8 shows the growth of the amplitudés,| for the
angular momentum increases@ g, increase$25]. Overall, first four Fourier componentsn=1,2,3,4. These amplitudes
we attribute the better angular momentum conservation obaere calculated in the equatorial plane in a ring of radius
tained with the£ code to the fact that it is written in an w =0.354, which corresponds to radial zgne 10, for mod-
explicitly flux-conservative form whereas tig code is not; els D1, D2, L1, and L2. For model L3, the amplitudes were
see the Appendix. calculated in a ring of radiuss = 0.344, which is radial zone
j=18. Similar plots were obtained for rings at other values
of w within the central regions, indicating that these are all
global modes.

We can quantify the development of the dynamical insta-  Notice that the exponential growth of the=2 bar mode
bility shown in the previous section by examining various (thick solid line dominates all evolutions, as expected from
Fourier components in the density distribution. To this endyisual inspection of the density contours shown in Figs. 3-5.
the density in a ring of fixeds andz can be written using the |n addition, all models show a clean=4 mode(thin solid

C. Analysis of Fourier components

complex azimuthal Fourier decomposition line) that begins growing exponentially once the bar mode is
o well into its exponential growth regime. The=2 andm
_ i =4 modes both reach their peak amplitudes at about the
Z,0)= C z)e'me 14 S X X
p(@.2.¢) m:z—oc m(@2) ' (149 same time in all runs. The odd modes appear at later times in

all models except L2, in whichr-symmetry was imposed
where the amplitude€,, of the various components are (which prevents the Qevelopment of odd- modes-; see Sec. Il
defined by[23,40 Them=1, or translational, modé&lotted ling begins grow-
ing after them=4 mode. Comparing Figs. 7 and 8 shows
1 (2 that them=1 mode grows as the center of mass motion
Col(w,2) = _f ﬁp(’w,Z,(p)e_im‘Pd(,D. (15) increases, as expected. Tine=3, or pear, mode is shown by
2m]o the dashed line. In models L1 and L3, time=3 mode is the
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FIG. 8. The growth of the amplitudg#\,,| for m=1 (dotted
line), m=2 (thick solid line, m=3 (dashed ling andm=4 (thin
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TABLE lll. The growth rates, eigenfrequencies, and pattern
speeds for then=2 andm=4 modes are given for all runs. Notice
that the pattern speedd,~W, for all models, indicating that the
m=4 mode is a harmonic of the bar mode.

Model dIn|Ay/dt  dInAJidt o, o4 W, W,
[t5'] [to'] [t [to'] [tp'] [tp']
D1 0.54 0.98 1.5 3.2 0.75 0.80
D2 0.55 1.1 1.5 3.0 0.75 0.75
L1 0.55 0.94 2.0 3.9 1.0 0.98
L2 0.55 1.0 2.0 4.0 1.0 1.0
L3 0.55 1.1 2.0 4.0 1.0 1.0

points in Fig. 8 during the time intervals in which|dg| is
growing linearly with time. We find that all models have
approximately the same growth rate for these modes, as seen
in Table Ill. To find o, for these modes we plot cas,
versus time and use a trigonometric fitting routine toggt

cf. [23]. The function cog,, was used becausg,, itself is
multi-valued due to the tart in Eq. (17). The fit was per-
formed over the same time interval, chosen “by eye,” used
to calculate the corresponding mode growth rate. Table IlI
shows that models D1 and D2 have smaller eigenfrequencies
and pattern speeds than those run ondleede. However, in

all models we find that the pattern speeds for tire 2 and
m=4 modes are nearly the sam#&/,~W,. This confirms

that them=4 mode is a harmonic of the bar mode and not an
independent mode, as mentioned above and first pointed out
by Williams and Tohling 28].

It is interesting to compare the data from our runs with the
results of TIPD, who used a perturbative, linearized Eulerian
scheme to calculate mode growth rates and eigenfrequencies
of differentially rotating polytropes. As discussed by TIPD,

solid line) is shown. The amplitudes were calculated in the equatothis method produces much more precise results than tradi-

rial plane in a ring with radiuss =0.354 for runs D1, D2, L1, and
L2, and radiusw =0.344 for run L3.

last one to grow. In models D1 and D2, tihhe=3 mode
grows at early times, but then lags behind the 1 mode.

tional Lagrangian normal mode analy$#l] (including the
tensor virial approacf42], which has been demonstrated to
be inappropriate for differentially rotating polytrope3IPD
calculated the bar mode growth rate and eigenfrequency for
an axisymmetricN=1.5 polytrope with the Maclaurin rota-

As mentioned in Sec. Il, analysis of Maclaurin spheroidstion law, Eq.(9), and 8=0.300 using their perflirbative Eu-
suggests that models near the dynamical stability limit aréerian method. They foundl In|A,|/dt=0.532t5~ and o>

only unstable to then=2 mode(higher order, even harmon- = 1.99t,*, where we have converted from their units. TIPD
ics of them=2 mode may arise in the subsequent evolytion state that the uncertainties in their results are on the order of
Models near this stability limit are not physically susceptiblea few percen{excluding any systematic errors that may be
to the growth of odd modes. This has been confirmed agaipresent Comparison with the data in Table Il shows that

recently by the perturbative analysis of Toman et(alPD;
[21]). In fact, TIPD demonstrate that= 1.5 polytropes with
the Maclaurin rotation layyEq. (9)] are only unstable to the
m=3 mode wherg is =0.32. In general all our mode($or
which 8=0.298, initially) conform to this expectation, with
the odd modegwhich here are numerical artifagtgrowing

earlier in the models with lower resolution. In the L3 simu-

lation, which has the highest resolution, the=1 andm

=3 modes develop at late times and are cleanly separated

from them=2 andm=4 modes.
The growth rated In|A,|/dt for them=2 andm=4 modes

the numerical models all have growth rates in good agree-
ment with that of TIPD. The eigenfrequencies for the
models run with theC code are also in very good agreement
with the TIPD results, while those for D1 and D2 ar@5%
smaller. The reason for the discrepancies in the eigenfre-
quencies of théD code runs is unknown.

D. Gravitational radiation

We use the quadrupole approximation, which is valid for
nearly Newtonian sourcgg43], to calculate the gravitational

can be determined by fitting a straight line through the dataadiation produced in our models. Since the gravitational
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field in both codes is strictly Newtonian, we compute only G 2.
the gravitational radiation produced and do not include the hy= — =ty (22
effects of radiation reaction. The reduced or traceless quad- ctr

rupole moment of the source is - . L
P where an overdot indicates a time derivato/elt.

Lo a3 A straightforward application of Eq$20),(21) in an Eu-
I’ij:f p (Xix;— 3 ro)d°r, (200 lerian code involves calculatingt;; directly by summing
over the grid, and then taking the time derivatives numeri-
cally. However, such successive application of numerical
wherei,j=1,2,3 are spatial indices and= (x>+y?+2z%)¥?  time derivatives generally introduces spurious noise into the
is the distance to the source. For an observer located on thwave forms, especially when the time step is allowed to
axis atd=0,p=0 of a spherical coordinate system with its change from cycle to cycle. To reduce this problem, we have
origin located at the center of mass of the source, the amplised the partially integrated versions of the standard quadru-
tude of the gravitational waves for the two polarization stategole formula developed by Finn and Evdd$§]. TheD code
becomes simply25,44] uses the first moment of momentum formula, QF1, which

allows the calculation of'hj directly from quantities avail-
able in the codé¢32]. This gives

ho=2 1('% +,y) (21)
+7 27 U™ Tyy)s . > >
ctf "ij=2f plvxj—38;(v-x)]1dr, (23
1 D1 1 D2 where
05f o5f 1
U(in):E(Uin‘f‘Uin). (24)
= 0 = 0
Of course, another time derivative is still required to obtain
08¢ 0-8F tij . When this is taken numerically, the resulting wave form
amplitudesh, andhy can still be dominated by noise. To
! 20 t, 40 60 ; 20 ty¢, 40 60 cure this problem, we pass;; through a filter to smooth it
before calculating the wave forms; see R&2] for details.
1 1 The £ code does not use numerical time derivatives to
L1 L2 compute +; . Instead, the equations of motion are used in
05¢ 05F conjunction with Eq(23) to computet;; directly from quan-
tities available in the code. This gives
<o <o
, 2 . 2 .
-0.5F -05f fim=| p|2viom— 3PY Ui5lm_xmvlq)_§x Vi®éim
o 20 t/1, 0 60 o 20 tt, 0 60 +(A.V. terms |d3x. (25
1 Here, the summation convention is implied on repeated up
L3 and down indices and the “A. V. terms” contain contribu-
o5k tions to the stress tensor from the artificial viscosity; see
Refs.[45] and[26] for details. The expression fot, in Eq.
<o (25) yields smooth wave forms which do not require filter-

ing. Note that both theC and D codes computet;; with
respect to the origin of the coordinate system. Hence when
the center-of-mass motion becomes significant, the wave
1o 20 5 B0 forms computed are no longer precisely correct. However,
t/t, D ! . e
the center-of-mass motion itself is a numerical artifact; thus,
FIG. 9. The gravitational wave forin, for an observer located UPON its development the simulation as a whole becomes
on the axis ab=0, ¢=0 of a spherical coordinate system centeredPhysically unreliable.
on the source is shown as a function of time for all models. The Figure 9 shows the gravitational wave fofm given in
quantity plotted is actually h, , wherer is the distance to the EQ.(21) as a function of time for all models. At early times,
source. The quantitiesh, and r have been normalized to the wave forms are all similar, as the initial expansion of the
(GM/c?R,)? andR,, respectively. bar gives rise to gravitational radiation. Comparing Fig. 9
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- the amplitude and frequencies presenhjg,,(t) should be
i L2 (soli) quantitatively reproducible. Figure 10 thus shows to what
0.6} L3 (dashed) degree oufthree bestsimulations are converging toward the
i 2 D2 (dotted) same answer and thereby begins to establish the nature of the

“correct” result.

V. DISCUSSION AND CONCLUSIONS

0.4

We have carried out simulations of dynamical instability
in a rapidly rotatingN=1.5 polytrope using two different
Eulerian hydrocodes and several different resolutions. The
rapidly rotating polytropic initial models used were con-
structed with the Maclaurin rotation law and had a ratio of
kinetic to gravitational energy~0.3. All models evolved
by both codes agree on the following basic properties of the
early nonlinear development of the instability) The m

=2 mode dominates the evolutions, producing a central ro-
TR SRR - S tating bar which sheds mass and angular momentum at its
t ends to produce a spiral arm pattern. Once the bar reaches its

point of maximum elongation, it contracts and then re-

FIG. 10. The quantityr h,om=r (h2+h%)¥2 is shown as a expands(ii) The m=4 mode is the next one to reach non-
function of time for all models. The normalization is the same as inlinear amplitudes(iii) The growth rates for then=2 and
Fig. 9. The absolute scale of the time axis is not labeled as the Len=4 modes are d |n|A2|/dtmO_55151 and d In|A,|/dt
and D2 curves have been horizontally shifted in order to align theirwl_aal, respectively. The pattern speads~W,, indicat-
initial peaks with that of the L2 curve. ing that them=4 mode is a harmonic of the bar moda)

The instability produces a gravitational wave signal with
with Fig. 6, we see that the maximum amplitudehof oc-  maximum amplitudé Re(c2/GM)2]r h~0.6 for an observer
curs at the same time as the first local m|n|munﬁl,nNh|Ch on the axis awzoy ()DZO of a spherical coordinate System
marks the maximum expansion of the bar. The amplitude ofentered on the source.

h. then dips as the central bar recontracts gngses again The models also exhibit some differences. In particular,
to a local maximum. When the bar re-expands, the amplitudgjmulations run with theéd code have smaller values of the
of h, rises again; cf. Figs. 4 and 5. In models D1, D2, andgjgenfrequencies, and o,, show weaker secondary bars,
L1, the central remnant soon becomes nearly axisymmetrigng lose more angular momentum during the initial bar ex-
andh, decays rapidly. In L3, the bar persists ford bar  pansion than those run with th&code. It appears that most
rotation periods and undergoes two additional episodes qjf these differences can be attributed to the lower order time
expansion and contraction, producing a longer-lived gravitagifferencing and the lack of consistent flux-conservative dif-
tional wave signal. Model L2 maintains a strong bar Withferencing in theD code.

multiple expansions and contractions, and thus a strong Qverall the simulations presented here, and those carried

r hnorm

0.2

0

gravitational wave signal, throughout its evolution. out by previous authors, agree on the qualitative nature and
In Fig. 10 we plot the quantity many quantitative aspects of the initial development of the
bar structure. However, as detailed in Sec. | and Sec. II, such

hom= (h% +h%)*2 (26)  agreement has not been universally present among simula-

tions that follow the long duration evolution of this instabil-

Note that the absolute scale of thexis in this figure is not ity. Such lengthy evolutions are nontrivial for hydrodynam-
labeled because the curves for the three runs have bedrs codes as they may allow any numerical inaccuracies
shifted horizontally in order to line up their initial peaks. All present to grow to the point where they significantly influ-
models show a strong initial peak ., that coincides with  ence the simulations. As described below, the late growth of
the maximum expansion of the bar. The secondary peaks iodd modes in our bar mode evolutions is an example of the
hhorm COrrespond to the secondary expansions of the bar angumerical difficulties that can arise in extended simulations.
the additional local minima i8 shown in Fig. 6. A plot of Linear analysis indicates that tiN= 1.5, 8=0.3 models
hhorm IS instructive because its time variation is not compli- used in our simulations are initially unstable to the=2 bar
cated by the periodic rotation of the bar. Thus,(t) re- mode only, and not to any odd model| (even harmonics
flects how the “mean” properties of the systefe.g., the of them=2 mode may subsequently develophus the odd
moment of inertiachange with time. Thé,,,m curve should modes that develop in all but on&2) of the simulations
be perfectly flat oncéandif) the remnant settles down into a presented here are numerical artifacts arising from shortcom-
steady-state structure; any slight downward slope will proings in the finite-difference techniques utilized in tBeand
vide a measure of long-term secular changes. L hydrocodegsee Sec. IV B and alg@l6]).

Ultimately, every hydrodynamics code should produce Once these artificial odd modes reach nonlinear ampli-
the same, correct, plot &f,.,,(t) for this simulation. Thatis, tudes, the physical reliability of the simulations is degraded.
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In particular, the growth of then=1 mode is tied to the PHY-9722109 at Drexel, and NASA grant NAG5-8497 and
development of center-of-mass motion in the simulations weNSF grant AST-9528424 at LSU. This research was also
ran withoutsr-symmetry. As the center-of-mass moves awaysupported in part by grant number PHU6PHP from the Pitts-
from the origin of the cylindrical grid, the finite-differencing burgh Supercomputing CentéPSQ, which is supported by
of the curvilinear form of the hydrodynamics equations be-several federal agencies, the Commonwealth of Pennsylvania
comes asymmetric. This causes the accuracy of the evoluticand private industry; and by NSF cooperative agreement
to deteriorate. The growth of the center-of-mass motion apACI-9619020 through computing resources provided by the
pears directly related to the decay of the bar-like structure oNational Partnership for Advanced Computational Infra-
the system; the bar decays when the center-of-mass motiatructure(NPACI) at the San Diego Supercomputer Center
becomes significant. (SDSQ. The numerical simulations using tle code were

Because the center-of-mass motion is unphysical, we beun at SDSC and PSC, and those using fheode were run
lieve the decay of the bar structure is unphysical as wellat NASA's HPCC/GSFC. This work performed under aus-
This conclusion is substantiated by run L3, which had twicepices of the U.S. Department of Energy by Los Alamos Na-
the radial(and axia) resolution of run L1. The onset of the tional Laboratory under contract W-7405-ENG-36.
spurious center of mass motion was significantly delayed in
L3 and the central remnant maintained its bar-like structure APPENDIX A:
for a correspondingly longer time. The growth of odd modes ) .
was also delayed. Thus as the resolution is increased, the L TheD and. codes solve the equations of hydrodynamics,
code evolutions converge towards the predictions of linealVhich govern the structure and evolution of a fluid, in cylin-
analysis(Unfortunately, we could not repeat this experimentdrical coordinates. These equations include the continuity
with the D code due to a lack of computational resourges. €guation

Thus it is our belief that a simulation of this instability J
that did not develop the nonphysical center of mass motion _p+v (pv)=0; (A1)
(e.g., one performed with very fine radial resolujiowould ot
produce a long-lived nonaxisymmetric structure. Recall tha
this is the result of the model L2 simulation, which was run
with m-symmetry. That symmetry condition prevents the

%he three components of Euler’s equation,

2

growth of odd modes and thus prohibits the development of 95 +V-(Sv)=——— p@ + A_ (A2)
center of mass motion. Hence, overall L2 is the most physi- ot Iw 0w pid’
cally relevant of the simulations presented here.

We believe our results demonstrate that the physically aT - P IP
accurate outcome of the rotational instability in the object E*’V'(Tv): Tz Paz (A3)
studied here, is a persistent bar with an accompanying long-
lived gravitational wave signal. This dynamically stable con- F) . IP  od
figuration can be viewed as a compressible analog of a Rie- Ak (Av)=— 70 Pag (A4)

mann ellipsoid; efforts to understand the detailed structural
properties of such configurations are underwWdg]. The . , . - . .
nonaxisymmetric structure of the remnant will decay on aand Poisson’s equation, E). Here,u is the fluid velocity

secular timescale due to viscous dissipation and/or gravité’l_—vgg :Sg:gggg;t_splfjﬁ’ UZTB ‘:))v n ;lh—ep(gv’zygge dtlr:gcrtla?dr;:\i
- (o] - Z - ) )

tional radiation emission. The gravitational radiation times-vertical and angular momentum densities. respectivel
cale is likely to be shorter than the viscous timescale for ' 9 . ) ’ P Y-
The codes solve slightly different forms of the energy

sufficiently compact objectf47,48. Note thats will also : e
decrease as a result of this secular evolution. The system wifquation. TheD code evolves the specific internal eneegy

continue to evolve until it reaches a configuration that is

dpe) 1 d(wpevy,) d(pev,) 1 d(pevy)
secularly stable. =— — -

A number of factors including the presence of an enve- dt © Jw 9z w ¢
lope surrounding the rotating object, the variation of the ro- 1 dwvy) dv, 1 dv
tation law and the equation of state, and the influence of —P| = —+ —+ — 2. (A5)
general relativity could potentially affect the outcome of the w o 0z @ ¢
instability. Such effects should be the subject of future studyThe £ code evolves the internal energy density
gell B,
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The following subsections contain further details aboutsuccessive cycle as all six permutations are exhausted. On
the D and £ hydrocodes. each sweep, the same mass flux used to advect the density in
Eqg.(Al) is employed to adveet , v,, andJin Egs.(A2)—

(A4) [52-54. During the transport step, the density is held
constant; thusj(pv )/t is written aspdv ., /4t in Eq. (A2),
and similarly for Eqs(A3)—(Ab). After updating the advec-

The D hydrocode was developed by Clancy, Smith, andtion terms on each cycle, a momentum conservation is ap-
Centrella[49,50,32. It is written in cylindrical coordinates plied with the new density to update the velocities. The equa-
(w,2,¢) with reflection symmetry through the equatorial tion of state, Eq(3), is then used to calculate a new value of
planez=0. The original version allowed nonuniform radial the pressure.
and axial grids and was used to carry out the Eulerian runs in  Once the hydrodynamical equations have been advanced,
Ref. [25]; for the simulations described in this paper, thethe Newtonian gravitational potentiab is calculated by
code was restricted to uniform grids. This code was writtersolving Poisson’s equation, E¢), using the updated den-
in Fortran 77 and optimized for Cray vector computers; itsity. The boundary conditions at the edge of the grid are

1. The D hydrocode

currently runs on the Cray T90. _ _ specified using a spherical multipole expansion. The discreti-
The actual form of the hydrodynamics equatidAd)—  zation yields a large, sparse, banded matrix equation which
(A4) used in theD code is given in Ref[32], with the  we solve using a preconditioned conjugate gradient method
exception that Eq(A4) takes the form with diagonal scaling55,56|.
Wpd) 1 dpIvgw) dpvy) 1 dpJv,)
at w 0w 0z w Jdo
2. The £ hydrocode
— i_p@, (A7) The £ hydrocode was originally developed by Tohline
Je Je [37,57, and has been refined and updated with collaborators

and students. The modern version of the code is fully second
whereJ=wv,, is the specific angular momentum. Note thatorder accurate in both space and tifi2#,58. The parallel
the equations théD code solves are not written in flux- version of the code that we use here was originally devel-
conservative form. In the discrete form of these equationspped for the MasPar MP-1 computer and was written in Mas-
the scalar quantities, e, ®, andP are defined at cell centers Par Fortran, which is MasPar’s version of Fortran 90; see
and at integral time steps. TIe code actually evolves the [26]. The £ code uses uniformly spaced grids in cylindrical
velocities, which are defined on the faces between cells andoordinates 4 ,z,¢). The code allows the use of reflection
at half-integral time steps, located halfway between the intesymmetry through the equatorial plang=0 and
gral time steps. The velocities are face-centered in the coorr-symmetry in the azimuthal direction; cf. Sec. II.

dinate along which they are directed; for examplgjs de- The fluid equations, Eq$A1)—(A4) and(A6), are written
fined at the center of the grid zone faces normal toztagis  in flux-conservative forni54]. When they are discretized on
[32]. the uniform cylindrical grid, the density, the angular mo-

The D code uses operator splitting to evolve the discretementum density4, and the gravitational potentid} are de-
versions of the hydrodynamical equations, E@sl)—(A5), fined at cell centers. The radial and vertical velocities
forward in time[39,51. The accuracy of this time integra- (v, ,v,) and momentum densitiesS(7) are defined at cell
tion method is between first and second orders. vertices or nodes. The source terms on the right-hand sides

The source step is carried out first. This begins by holdingf Egs.(A2)—(A4) are approximated using standard second-
p constant and updating the velocities due to the pressurerder centered differences. The flux or divergence terms are
gradient, gravitational force, and centrifugal force terms inwritten as a summation over the six faces of a cylindrical
Egs. (A2)—(A4) using centered differences; note that in thegrid zone[27],
source step we advance the azimuthal velocity compangnt

instead of the specific angular momentymin Eg. (A7). o1 e

Using these updgted valuegs, the artificial viscos?[y terms are V- (Xv) Y ;1 (Xv)iA . (A8)

applied to advance the velocities andrhese new values are

then used to update the energy due to the compressional or

“PdV” terms. HereV is the volume of the cylindrical grid cell; is the
We next carry out the transport step to evopyepe, v, area of a particular face, anXy); is the product of the

v,, and.7 due to the advection of fluid from one cell to the quantity X e (p,S,7,.4,e'") and the corresponding velocity
next. The transport step consists of three advection sweepspmponent at the fade(i.e., v is the velocity normal to the
one in each of the three coordinate directions. We use #" face. These terms are updated using a monotonic inter-
monotonic advection scheme developed by LeBlg#8;39  polation scheme developed by van L§g9] that is second-
that is second-order accurate in space to calculate the fluxesder accurate in space.

in each direction. On each cycle, we vary the order in which When the system is evolved forward in time, the physical
the advection sweeps are carried out to avoid setting up wariablesX e (p,S,7,.A,e*") are updated by applying the
preference for any one direction; the order changes on eadource terms and the flux terms in different steps. Second-
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order accuracy in time is obtained via a Lax-Wendrofftime t+At/2. With these new velocities, fluxing is per-

scheme that uses velocity values in the flux tef@8) that
are centered at timet+ At/2[60,61]. To accomplish this, the
source terms are applied for a half time st&p2 and the

formed for a full time step on the saved quantitiés An
additional half time step of sourcing is then performed.
Poisson’s equation, E@5), is solved for the gravitational

updated valueX’ are saved. The flux terms are then appliedpotential® using the ADI methodi62], after the fluxes have

for At/2 with the updated valueX to obtain velocities at

been applied for the whole time stéy.
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