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Post-Newtonian SPH calculations of binary neutron star coalescence:
Method and first results

Joshua A. Faber and Frederic A. Rasio
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 22 December 1999; published 8 August 2000!

We present the first results from our post-Newtonian~PN! smoothed particle hydrodynamics~SPH! code,
which has been used to study the coalescence of binary neutron star~NS! systems. The Lagrangian particle-
based code incorporates consistently all lowest-order~1PN! relativistic effects, as well as gravitational radia-
tion reaction, the lowest-order dissipative term in general relativity. We test our code on sequences of single
NS models of varying compactness, and we discuss ways to make PN simulations more relevant to realistic NS
models. We also present a PN SPH relaxation procedure for constructing equilibrium models of synchronized
binaries, and we use these equilibrium models as initial conditions for our dynamical calculations of binary
coalescence. Though unphysical, since tidal synchronization is not expected in NS binaries, these initial
conditions allow us to compare our PN work with previous Newtonian results. We compare calculations with
and without 1PN effects, for NS with stiff equations of state, modeled as polytropes withG53. We find that
1PN effects can play a major role in the coalescence, accelerating the final inspiral and causing a significant
misalignment in the binary just prior to final merging. In addition, the character of the gravitational wave signal
is altered dramatically, showing strong modulation of the exponentially decaying wave form near the end of the
merger. We also discuss briefly the implications of our results for models of gamma-ray bursts at cosmological
distances.

PACS number~s!: 04.30.Db, 04.25.Nx, 47.11.1j, 97.60.Jd
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I. INTRODUCTION AND MOTIVATION

Coalescing compact binaries with neutron star~NS! or
black hole ~BH! components provide the most promisin
sources of gravitational waves for detection by the large la
interferometers currently under construction, such as the
ser Interferometric Gravitational Wave Observatory~LIGO!
@1#, VIRGO @2#, GEO @3,4#, and TAMA @5#. In addition to
providing a major new confirmation of Einstein’s theory
general relativity~GR!, including the first direct proof of the
existence of black holes@6,7#, the detection of gravitationa
waves from coalescing binaries at cosmological distan
could provide accurate independent measurements of
Hubble constant and mean density of the Universe@8#.

Expected rates of NS binary coalescence in the Unive
as well as expected event rates in laser interferometers,
now been calculated by many groups~see@9# for a recent
review!. Although there is some disparity between vario
published results, the estimated rates are generally encou
ing. Finn and Chernoff@10# calculated that an advance
LIGO could observe as many as 20 NS merger events
year. This number corresponds to an assumed Galactic
merger rateR.1026 yr21 derived from radio pulsar survey
@11#. However, later revisions@12# increased this number t
R.331026 yr21, using the latest galactic pulsar populatio
model of Ref.@13#. This value is consistent with the uppe
limit of R&1024 yr21 derived~most recently! by Arzouma-
nian et al. @14# on the basis of very general statistical co
siderations about radio pulsars, and by Kalogera and Lori
@15#, who studied constraints from supernova explosions
binaries.

Many calculations of gravitational wave emission fro
coalescing binaries have focused on the wave forms em
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during the last few thousand orbits, as the frequency swe
upward from;10 Hz to ;300 Hz. The wave forms in this
frequency range, where the sensitivity of ground-based in
ferometers is highest, can be calculated very accurately
performing post-Newtonian~PN! expansions of the equa
tions of motion for two point masses@16#. However, at the
end of the inspiral, when the binary separation becom
comparable to the stellar radii~and the frequency is
*1 kHz!, hydrodynamics becomes important and the ch
acter of the wave forms must change. Special purp
narrow-band detectors that can sweep up frequency in
time will be used to try to catch the last;10 cycles of the
gravitational waves during the final coalescence@17#. These
‘‘dual recycling’’ techniques are being tested right now o
the German-British interferometer GEO 600@4#. In this ter-
minal phase of the coalescence, when the two NS me
together into a single object, the wave forms contain inf
mation not just about the effects of GR, but also about
interior structure of a NS and the nuclear equation of st
~EOS! at high density. Extracting this information from ob
served wave forms, however, requires detailed theoret
knowledge about all relevant hydrodynamic processes. If
NS merger is followed by the formation of a BH, the corr
sponding gravitational radiation wave forms will also pr
vide direct information on the dynamics of rotating core c
lapse and the BH ‘‘ringdown’’~see, e.g., Ref.@6#!.

Many theoretical models of gamma-ray bursts~GRBs!
have also relied on coalescing compact binaries to prov
the energy of GRBs at cosmological distances@18#. The
close spatial association of some GRB afterglows with fa
galaxies at high redshifts is not inconsistent with a comp
binary origin, in spite of the large recoil velocities acquire
by compact binaries at birth@19#. Currently the most popula
models all assume that the coalescence leads to the form
©2000 The American Physical Society12-1
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of a rapidly rotating Kerr BH surrounded by a torus of d
bris. Energy can then be extracted either from the rotation
the BH or from the material in the torus so that, with suf
cient beaming, the gamma-ray fluxes observed from even
most distant GRBs can be explained@20#. Here also, it is
important to understand the hydrodynamic processes ta
place during the final coalescence before making assu
tions about its outcome. For example, contrary to widespr
belief, it is not clear that the coalescence of two 1.4M ( NS
will form an object that must collapse to a BH, and it is n
certain either that a significant amount of matter will
ejected during the merger and form an outer torus around
central object~see Sec. III below and Ref.@21#!.

The final hydrodynamic merger of two compact objects
driven by a combination of relativistic and fluid effects. Ev
in Newtonian gravity, an innermost stable circular or
~ISCO! is imposed by global hydrodynamic instabilitie
which can drive a close binary system to rapid coalesce
once the tidal interaction between the two stars becomes
ficiently strong. The existence of these global instabilities
close binary equilibrium configurations containing a co
pressible fluid, and their particular importance for binary N
systems, was demonstrated for the first time by Rasio
Shapiro~Ref. @22#, hereafter RS1–3 or collectively RS! us-
ing numerical hydrodynamic calculations. These instabilit
can also be studied using analytic methods. The class
analytic work for close binaries containing an incompressi
fluid ~e.g., Ref.@23#! was extended to compressible fluids
the work of Lai, Rasio, and Shapiro~Ref. @24#, hereafter
LRS1–5 or collectively LRS!. This analytic study confirmed
the existence of dynamical instabilities for sufficiently clo
binaries. Although these simplified analytic studies can g
much physical insight into difficult questions of global flu
instabilities, 3D numerical calculations remain essential
establishing the stability limits of close binaries accurat
and for following the nonlinear evolution of unstable sy
tems all the way to complete coalescence.

A number of different groups have now performed su
calculations, using a variety of numerical methods and foc
ing on different aspects of the problem. Nakamura and c
laborators~see@25# and references therein! were the first to
perform 3D hydrodynamic calculations of binary NS coale
cence, using a traditional Eulerian finite-difference code.
stead, RS used the Lagrangian method SPH~smoothed par-
ticle hydrodynamics!. They focused on determining th
ISCO for initial binary models in strict hydrostatic equilib
rium and calculating the emission of gravitational wav
from the coalescence of unstable binaries. Many of the
sults of RS were later independently confirmed by New a
Tohline @26# and Swestyet al. @27#, who used completely
different numerical methods but also focused on stabi
questions, and by Zhuge, Centrella, and McMillan@28,29#,
who also used SPH. Davieset al. @30# and Ruffert et al.
@31,32# have incorporated a treatment of the nuclear phys
in their hydrodynamic calculations~done using SPH and
PPM codes, respectively!, motivated by cosmological mod
els of GRBs. All these calculations were performed in Ne
tonian gravity, with some of the more recent studies add
an approximate treatment of energy and angular momen
06401
of

he

ng
p-
d

t

he

s

t

ce
uf-
r
-

d

s
al
e

e

r
y

s-
l-

-
-

s
e-
d

y

s

-
g
m

dissipation through the gravitational radiation reaction@33#.
Zhuge et al. @28,29# and Ruffertet al. @31,32# also ex-

plored in detail the dependence of the gravitational wa
signals on the initial NS spins. Because the viscous tim
scales for material in the NS is much longer than the dyna
cal timescale during inspiral, it is generally assumed that
binaries will be non-synchronized during mergers. It is ge
erally found that non-synchronized binaries yield less m
loss from the system, but very similar gravity wave signa
especially during the merger itself when the gravity wa
luminosity is highest@31#.

All recent hydrodynamic calculations agree on the ba
qualitative picture that emerges for the final coalescence
the ISCO is approached, the secular orbital decay driven
gravitational wave emission is dramatically accelerated~see
also LRS2, LRS3!. The two stars then plunge rapidly towar
each other, and merge together into a single object in ju
few rotation periods. In the corotating frame of the bina
the relative radial velocity of the two stars always rema
very subsonic, so that the evolution is nearly adiabatic. T
is in sharp contrast to the case of a head-on collision betw
two stars on a free-fall, radial orbit, where shock heating
very important for the dynamics~see, e.g., RS1 and Re
@34#!. Here the stars are constantly being held back b
~slowly receding! centrifugal barrier, and the merging, a
though dynamical, is much more gentle. After typically
22 orbital periods following first contact, the innermo
cores of the two stars have merged and the system resem
a single, very elongated ellipsoid. At this point a second
instability occurs:mass sheddingsets in rather abruptly. Ma
terial ~typically ;10% of the total mass! is ejected through
the outer Lagrange points of the effective potential and s
rals out rapidly. In the final stage, the inner spiral arms wid
and merge together, forming a nearly axisymmetric to
around the inner, maximally rotating dense core.

In GR, strong-field gravity between the masses in a bin
system is alone sufficient to drive a close circular orbit u
stable. In close NS binaries, GR effects combine nonlinea
with Newtonian tidal effects so that the ISCO should
encountered at larger binary separation and lower orbital
quency than predicted by Newtonian hydrodynamics alo
or GR alone for two point masses. The combined effects
relativity and hydrodynamics on the stability of close com
pact binaries have only very recently begun to be stud
using both analytic approximations~basically, PN generali-
zations of LRS; see, e.g.,@35,36#, as well as numerical cal
culations in 3D incorporating simplified treatments of re
tivistic effects ~e.g., @37,38#!. Several groups have bee
working on a fully relativistic calculation of the final coales
cence, combining the techniques of numerical relativity a
numerical hydrodynamics in 3D@39,40#. However this work
is still in its infancy, and only preliminary results of tes
calculations have been reported so far. It should be noted
1PN calculations performed by Taniguchi and collaborat
@41# to study the location of the ISCO for corotating an
irrotational binaries find that the ISCO moves inwards
post-Newtonian corrections are increased, due primarily
the effect of 1PN potentials with momentum-based sou
terms present in the system. Similarly, Buonanno a
2-2
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Damour@42# find that the ISCO for point masses in a bina
under GR moves inwards with increasingly massive obje

The middle ground between Newtonian and fully relat
istic calculations is the study of the hydrodynamics in P
gravity. Formalisms exist describing not only all lowes
order corrections~1PN! to Newtonian gravity, but also the
lowest-order~2.5PN! effects of the gravitational radiation re
action @43,44#. Such calculations have been undertaken
Shibata, Oohara and Nakamura@45# using an Eulerian grid-
based code, and more recently by Ayalet al. @46# using SPH.
This paper is the first of a series in which we will presen
comprehensive study of the hydrodynamics of compact
nary coalescence using a new PN version of a parallel S
code which we have been developing over the past
years. This work will be the natural extension to PN grav
of the original Newtonian study by RS.

PN calculations of NS binary coalescence are particula
relevant for stiff NS EOS. Indeed, for most recent stiff EO
the compactness parameter for a typical 1.4M ( NS is in the
rangeGM/Rc2.0.120.2, justifying a PN treatment. Afte
complete merger, an object close to the maximum sta
mass is formed, withGM/Rc2.0.320.5, and relativistic
effects become much more important. However, even the
PN treatment can remain qualitatively accurate if the fi
merged configuration is stable to gravitational collapse o
dynamical time scale~see the discussion in Sec. III D!. Most
recent theoretical calculations~e.g., the latest version of th
Argonne-Urbana EOS; see Ref.@47#! and a number of recen
observations~e.g., of cooling NS; see Ref.@48#! provide
strong support for a stiff NS EOS. In this paper we repres
NS with stiff EOS by simple polytropes with an adiaba
exponentG53 ~i.e., the EOS is of the formp* 5kr

*
G , where

p* is the pressure,r * is the rest-mass density, andk is a
constant; see RS2 and LRS3, who obtainG.3 for the best
polytropic fit to recent stiff NS EOS!.

The most significant problem facing PN hydrodynam
simulations is the requirement that all 1PN quantities
small compared to unity. Unfortunately, this precludes
use of realistic NS models. Shibata, Oohara and Nakam
@45# computed 1PN mergers of polytropes withG55/3 and a
compactnessGM/Rc250.03, leaving out the effects of th
gravitational radiation reaction. Ayalet al. @46# performed
calculations for polytropes withG51.6 orG52.6 and com-
pactness values in the rangeGM/Rc2.0.0220.04, includ-
ing the effects of the gravitational radiation reaction. F
comparison, a realistic NS of massM51.4M ( and radius
R510 km hasGM/Rc250.2, i.e., about an order of magn
tude larger. Unfortunately, performing calculations with a
tificially small values ofGM/Rc2 also has the side effect o
dramatically inhibiting the radiation reaction, which scales
(GM/Rc2)2.5.

Our PN SPH code combines a new parallel version of
Newtonian SPH code used by RS with a treatment of
gravity based on the formalism of Blanchet, Damour, a
Schäfer @Ref. @44# ~BDS!#. Our calculations include all 1PN
effects, as well as a PN treatment of the gravitational rad
tion reaction. We have also developed a relaxation techn
by which accurate quasi-equilibrium configurations can
calculated for close binaries in PN gravity. These serve
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initial conditions for our hydrodynamic coalescence calcu
tions. In addition, we present in this paper a simple solut
to the problem of suppressed radiation reaction for model
NS with unrealistically low values ofGM/Rc2.

The outline of our paper is as follows. Section II prese
our numerical methods, including the description of our n
PN SPH code, a discussion of the advantages of using S
for this work, and the steps taken to make our results
realistic as possible. More details on the methods and
treatment of the initial conditions are given in the appen
ces. Section III presents our initial results, based on t
large-scale simulations, with and without 1PN effects. Th
are performed for synchronized initial binaries containi
two identical polytropes withG53. In future papers, we will
study systematically the dependence of these results on
NS EOS~by varyingGM/Rc2 andG, and using more real-
istic, tabulated EOS for nuclear matter at high density!, the
NS spins~allowing for nonsynchronized initial conditions!,
and the binary mass ratio. Motivation for this future work
well as a brief summary of our present results are prese
in Sec. IV.

II. NUMERICAL METHOD

A. The SPH code

Smoothed particle hydrodynamics~SPH! is a Lagrangian
method ideally suited to calculations involving se
gravitating fluids moving freely in 3D. The key idea of SP
is to calculate pressure gradient forces by kernel estimat
directly from the particle positions, rather than by finite d
ferencing on a grid~see, e.g.,@49#, for recent reviews on the
method!. SPH was introduced more than 20 years ago
Lucy, Monaghan, and collaborators@50#, who used it to
study dynamical fission instabilities in rapidly rotating sta
Since then, a wide variety of astrophysical fluid dynam
problems have been tackled using SPH~see Ref.@51# for an
overview!.

Because of its Lagrangian nature, SPH presents s
clear advantages over more traditional grid-based meth
for calculations of stellar interactions. Most importantl
fluid advection, even for stars with a sharply defined surfa
such as NS, is accomplished without difficulty in SPH, sin
the particles simply follow their trajectories in the flow. I
contrast, to track accurately the orbital motion of two sta
across a large 3D grid can be quite tricky, and the ste
surfaces then require a special treatment~to avoid ‘‘bleed-
ing’’ !. SPH is also very computationally efficient, since
concentrates the numerical elements~particles! where the
fluid is at all times, not wasting any resources on em
regions of space. For this reason, with given computatio
resources, SPH provides higher averaged spatial resolu
than grid-based calculations, although Godunov-ty
schemes such as PPM typically provide better resolution
shock fronts~this is certainly not a decisive advantage f
binary coalescence calculations, where no strong shocks
develop!. SPH also makes it easy to track the hydrodynam
ejection of matter to large distances from the central de
regions. Sophisticated nested-grid algorithms are neces
to accomplish the same with grid-based methods.
2-3
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JOSHUA A. FABER AND FREDERIC A. RASIO PHYSICAL REVIEW D62 064012
Our simulations were performed using a modified vers
of an SPH code that was originally designed to perform
Newtonian calculations of stellar interactions~see Ref.@52#
and RS1!. Although the fluid description is completely La
grangian, the gravitational field in our code~including PN
terms! is calculated on a 3D grid using a fast-Fouri
transform-~FFT-! based Poisson solver. Our Poisson sol
is based on the FFTW of Frigo and Johnson@53#, which
features fully parallelized real-to-complex transform
Boundary conditions are handled by zero-padding all gr
which has been found to produce accurate results and t
the most computationally efficient method~see also@27#!.
Since we are primarily interested in the gravitational wa
emission, which originates mainly from the inner dense
gions of NS mergers, we fix our grid boundaries to be64
NS radii in all directions from the center of mass. Partic
that fall outside these boundaries are treated by includin
simple monopole gravitational interaction with the matter
the grid. Our code has been developed on the SGI-Cray
gin 2000 parallel supercomputer at NCSA. MPI~the Mes-
sage Passing Interface! reduces the memory overhead of t
code by splitting all large grids among the processors.
hydrodynamic loops over SPH particles and their neighb
have also been fully parallelized using MPI, making our e
tire code easily portable to other parallel supercomput
The parallelization provides nearly linear speedup with
creasing number of processors up to;10, with a progressive
degradation for larger numbers.

For more details on the Newtonian version of the co
and extensive results from test calculations, see Ref.@54#.

B. The Blanchet, Damour, and Scha¨fer PN formalism
with SPH

To investigate the hydrodynamics of NS binary coal
cence beyond the Newtonian regime, the equations of
were modified to account for PN effects described by
formalism of Blanchet, Damour and Scha¨fer ~BDS!, con-
verted into a Lagrangian, rather than Eulerian form. T
main equations and definitions of quantities appearing in
BDS formalism are summarized briefly in Appendix A. Th
formalism is correct to first~1PN! order, with all new forces
calculated from eight additional Poissson-type equati
with compact support, allowing for the computation of a
1PN terms using the same FFT-based convolution algori
as for the Newtonian Poisson solver. PN corrections to
drodynamic quantities are calculated by the SPH meth
i.e., by summations over particles. Dissipation of energy
angular momentum by gravitational radiation reaction is
cluded to lowest~2.5PN! order, requiring the solution of on
additional Poisson-type equation.

The key changes to the BDS formalism involve a conv
sion to quantities based on SPH particle positions, ra
than grid points. In the discussion that follows,a andb refer
to quantities defined for particles, or particle neighbo
while i and j are spatial indices. The rest-mass density
calculated at each particle position as a weighted sum o
the masses of neighboring particles,
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*
(a)5(

b
mbWab , ~1!

wherema is the rest mass of particlea, and the weights are
given in terms of a smoothing kernelW(rW,h) by

Wab5
1

2
@W~ urW (a)2rW (b)u,ha!1W~ urW (a)2rW (b)u,ha!#. ~2!

Hereha is the smoothing length for particlea, which is up-
dated after every iteration so as to keep the number of ne
bors as close as possible to a designated optimal valueNN .
The form of the SPH kernelW used in our calculations is th
same standard third-order spline used by RS~and most other
current implementations of SPH!. This kernel is spherica
and goes to zero forr .2h.

The total mass-energy of the system can be calculate

Mg5E d3x r* ~11d!5(
b

mb~11db!, ~3!

whered is a 1PN correction defined in Eq.~A12!, while the
total rest mass is

M5E d3x r* 5(
b

mb . ~4!

In our simple polytropic models of NS, the pressure
calculated from the local density as

p
*
(a)5ka~r

*
(a)!G ~5!

whereka is a function of the specific entropy of the particl
and G is the adiabatic exponent. The standard Newton
pressure force is given by

Fi
hydro52

] i p*
(a)

r
*
(a)

52(
b

mbS p
*
(a)

~r
*
(a)!2

1
p
*
(b)

~r
*
(b)!2D ¹ iWab .

~6!

In the absence of artificial viscosity~AV !, entropy is con-
served andka is constant throughout the simulation. If AV i
included, the first law of thermodynamics can be expres
as

dka

dt
5

G21

2~r
*
(a)!G21 (

b
mbP (a,b)~wW (a)2wW (b)!•¹ iWab ,

~7!

with a corresponding force on particles given by

Fi
AV52(

b
mbP (a,b)¹ iWab . ~8!

The expression forP (a,b) depends on the particular choice
AV. We use the form proposed by Balsara@55#, which gives
2-4
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P (a,b)5S p
*
(a)

~r
*
(a)!2

1
p
*
(b)

~r
*
(b)!2D ~2a8m (a,b)1b8m (a,b)

2 !, ~9!

wherem (a,b) is a measure of the rate of convergence in
flow. The exact definition ofm (a,b) can be found in Eqs
~15!–~19! of Lombardi et al. @54#, who also show that the
optimal choice of the numerical coefficients isa85b8
5G/2. This form was shown to handle shocks properly a
minimize the amount of spurious mixing and numeric
shear viscosity.

For the PN pressure force@Eq. ~A17!#, we now find

Fi
press52S 11

a

c2D ~Fi
hydro1Fi

AV!2
1

c2

p*
r *

] ia, ~10!

where a/c2!1 is a PN correction. In the calculation o
] ia5(223G)] iU* 2(G/2)] iw

2, we must take a derivative
of the local dynamic velocity-squared field, which we do
SPH summations, i.e., we first write

] i~w2!5
1

r *
„] i~r * w2!2w2] i r * …, ~11!

and we then calculate the derivative terms as

] i r *
(a)5(

b
mb] iWab , ~12!

] i~r * w2!(a)5(
b

mbw(b)
2 ] iWab . ~13!

The nine Poisson-type equations in the full PN formali
of BDS are all solved by the same FFT convolution meth
All 3D grids used by the Poisson solver are distribut
among the processors in the z-direction. Real-to-comp
transforms are computed using theRFFTWND_MPIpackage of
the FFTW library @53#. The source terms of the Poisso
equations that do not contain density derivatives, E
~A5!,~A6!,~A8!, are laid down on the grid by a cloud-in-ce
method. All integrals over the density distribution are co
verted into sums over particles, e.g.,

U* ~x!5E d3x
r * ~x8!

ux2x8u
→(

b

mb

ux2xbu
. ~14!

Source terms containing density derivatives are calculate
finite differencing on the grid, rather than by SPH-based
rivatives at particle positions. This has two benefits. First,
integrals of the type

F5E d3x ] i r * . . . ~15!

we cannot convert directly from a volume integral to a su
over discrete particle masses. Second, it guarantees tha
volume integral of the source term vanishes in E
~A7!,~A16!, as it should. Derivatives of the potentials a
06401
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computed by finite differencing on the grid, and then inte
polated between grid points to assign values at SPH par
positions.

The calculation of the quadrupole tensor and its deri
tives are unchanged in a Lagrangian formulation. When c
culating the third derivative, however, we found it advan
geous to take the SPH expression for the second deriva
of the quadrupole tensor~RS1!,

Q̈i j 5(
b

mb~v i
(b)v j

(b)1xi
(b)] jU* 1xj

(b)] iU* !, ~16!

and numerically differentiate once with respect to time. T
resulting expression differs from the third derivative expre
sion given in BDS by a term ofO(v2/c2), but all radiation
reaction terms into which it enters already contain factors
O(v5/c5). While only approximate, this method prove
more stable since it does not require the numerical evalua
of several second derivatives on a grid.

For calculations in which we include the radiation rea
tion, but ignore 1PN corrections, all terms containing a fac
of 1/c2 in Appendix A can be ignored. In this case our equ
tions reduce to those of the purely Newtonian case, with t
exceptions. First, we includeFi

reac @Eq. ~A19!# in the SPH
equations of motion, replacing Eq.~A21! by

ẇi52
] i p*
r *

1] iU* 1Fi
reac . ~17!

Second, the relationship between the particle velocityvW

and momentumwW is given by

v i5wi1
4

5

G

c5
Qi j

[3]wj . ~18!

This has been shown@31# to give the correct energy loss ra
as predicted by the classical quadrupole formula,

dE

dt
5

1

5

G

c5
^Qi j

[3]Qi j
[3]&. ~19!

Ignoring 1PN terms reduces the number of Poisson equat
to be solved per iteration from nine to two. The obvio
advantage is a proper handling of the dissipative PN effe
while leaving the hydrodynamic equations in a simple fo
that can be directly compared to the Newtonian case. In
dition, because the corrections areO(v5/c5), the radiation
reaction terms always remain small, even when 1PN cor
tions would be large.

We have performed a number of test calculations to
tablish the accuracy of our treatment of PN effects in
SPH code. These include tests for single rotating and no
tating polytropes in PN gravity, which we have compared
well-known analytic and semi-analytic results@56#. In par-
ticular, we have verified that our code reproduces corre
the dynamical stability limit to radial collapse for a sing
PN polytrope withG55/3 ~see Appendix B1!.
2-5
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C. A hybrid 1PNÕ2.5PN post-Newtonian formalism

Throughout this paper, unless otherwise specified, we
units in which Newton’s gravitational constantG, and the
rest massM and radiusR of a single, spherical NS are se
equal to unity. In Newtonian physics, this leads to a sca
free calculation~RS!. When we include PN effects, specify
ing the physical mass and radius of the NS then sets
value of the speed of lightc, and the magnitude of all PN
terms. In our units, the compactness ratioGM/Rc2 of a NS
is expressed simply as 1/c2.

The equations of BDS assume that all 1PN corrections
small. As mentioned in Sec. I, this places a rather sev
constraint on the allowed NS mass and radius, since

1

c2
50.14S M

1.5M (
D S 15 km

R D . ~20!

If, for example, we estimate the potential at the center of
star asU* /c2.1.5/c250.21 @Eq. ~A5!#, which is appropri-
ate forG53 models, we find that our ‘‘first-order’’ correc
tion terma/c2 @Eq. ~A10!#, with G53 and no internal mo-
tions, is

a

c2
5~223G!

U*
c2

527
U*
c2

.21.5. ~21!

This is clearly problematic since the derivation of the BD
formalism assumes thatuau/c2!1. For a fixed radius of
15 km andG53, a NS mass,0.9M ( , or 1/c2,0.09 is
required to keepuau,1. This problem is less severe for
lower value ofG, since the coefficient ofa is then smaller.
For G55/3, we havea523U* , but these configuration
are known to be unstable against gravitational collapse
compactness parameters 1/c2*0.14~See, e.g., Ref.@56#, and
Appendix!. These problems are the reason why previous
hydrodynamic simulations of NS binary coalescence h
used unrealistic NS models with low masses and large ra
In practice, we find that we cannot calculate reliably N
mergers including 1PN corrections, unless 1/c2&0.05, orc
*4. With such a small compactness parameter, radia
reaction effects would then be suppressed by a factor;25

532.
Recognizing that the 1PN and 2.5PN terms describe

sentially independent phenomena, and that the proper f
for energy and angular momentum loss holds even if 1
corrections are ignored, we adopt a hybrid scheme. Spe
cally, in this paper, we setc54.47[c1PN for all 1PN cor-
rections, which is unphysically large, but we use a physica
realistic value ofc52.5[c2.5PN for the 2.5PN corrections
corresponding, for example, to a NS massM51.5M ( with
radiusR513.9 km. We feel that this hybrid formulation pro
vides a reasonable trade-off between physical reality and
limitations of the 1PN approximation.

Note that this method should better extrapolate tow
physical reality, compared with unrealistically undercomp
NS models. If 012.5PN simulations are interpreted as taki
the limit c1PN→` for the 1PN corrections, we see that b
reducing the compactness in both the 012.5PN and 011
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12.5PN cases, the value ofc2.5PN is fixed at an unphysica
value whilec1PN is varied, which can never truly extrapola
to the physical case. By settingc2.5PN to a realistic physical
value while varyingc1PN , we may be able to extrapolate ou
results toward a correct physical limit. However, a disadv
tage of this approach is that it does not allow for direct qu
titative comparison with full GR simulations of binary N
coalescence. In these simulations, which essentially ha
corrections to all orders simultaneously, separation into v
ous PN orders has no meaning.

D. Initial conditions

In addition to its normal use for dynamical calculation
our SPH code can also be used to construct hydrostatic e
librium configurations in 3D, which provide accurate initi
conditions for binary coalescence calculations. This is do
by adding artificial friction terms to the fluid equations
motion and forcing the system to relax to a minimum-ene
state under appropriate constraints~RS!. The great advantage
of using SPH itself for setting up equilibrium solutions
that the dynamical stability of these solutions can then
tested immediately by using them as initial conditions
dynamical SPH calculations. Very accurate 3D equilibriu
solutions can be constructed using such relaxation te
niques, with the virial theorem satisfied to better than 1 p
in 103 and excellent agreement found with known qua
analytic solutions in both Newtonian~LRS1, LRS4, RS2!
and PN gravity@36#. The careful construction of accurat
quasi-equilibrium initial conditions is a distinguishing fe
ture of both our previous Newtonian calculations~RS! and
our new PN calculations of binary coalescence. In contr
most other studies have used very crude initial conditio
placing two spherical stars in a close binary orbit, and,
calculations that went beyond Newtonian gravity, adding
inward radial velocity for the inspiral of two point masse
As demonstrated in Sec. III A, this leads to a significan
slower inspiral rate. Moreover, spurious fluid motions a
created as the stars respond dynamically to the sudden
pearance of the strong tidal force. These can in turn corr
the gravitational radiation wave forms. Spurious velocit
have additional effects in the full 1PN case, where spurio
motions enter repeatedly into the evolution equations,
propagating through the 1PN quantitiesa, b, andd @Eqs.
~A10!,~A11!,~A12!#. A specific cause of worry is the influ
ence of velocities adding tod, which affects not only the
self-gravity of the stars, but also their mutual gravitation
attraction.

We have developed a method, described in detail in A
pendix B, that allows for more realistic initial conditions fo
PN synchronized binaries. It reduces dramatically the ini
oscillations around equilibrium when the dynamical calcu
tion is started. Since the method varies rather significan
between the full 1PN12.5PN formalism and the Newtonian
with radiation reaction formalism, we handle the two cas
separately. For the Newtonian case, radiation reaction p
no role in the relaxation, entering only into the initial valu
of the velocity and momentum,vW andwW @Eq. ~A22!#, upon
the start of the dynamical run. The 1PN case is considera
2-6
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FIG. 1. Evolution of the system in the N run
Projections of a random subset of 20% of all SP
particles onto the orbital~x-y! plane are shown a
various times. The orbital motion is counte
clockwise. Units are such thatG5M5R51,
where M and R are the mass and radius of
single, spherical NS. Note that the developme
of a mass-shedding instability aftert.25, and
the rapid contraction of the remnant toward a
axisymmetric state at late times.
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more complicated, requiring the construction of static sin
star models, which are then input into a PN binary relaxat
scheme.

III. RESULTS

We have performed two large-scale hydrodynamic sim
lations of NS binary coalescence, with and without the 1
correction terms of BDS. Both simulations included rad
tion reaction throughout the entire run, treated in the form
ism of Appendix A. Hereafter, we refer to these two runs
the Newtonian~N! and post-Newtonian~PN! runs, noting
that the N simulation did include 2.5PN effects.

For both runs, we used 50 000 particles per NS~total of
105), with aG53 polytropic EOS. The two NS are identica
Synchronized rotation was assumed in the initial conditi
The optimal number of neighbors for each SPH particle w
set to 100. Shock heating, which plays a completely ne
gible role in the case studied here, was ignored and there
the SPH AV was turned off. All Poisson equations we
06401
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solved on grids of size 2563, including the added space ne
essary for zero-padding. For the 1PN run, we used a c
pactness parameter 1/c1PN

2 50.05 ~see Sec. II C!. In both
runs, we usedc2.5PN52.5 in calculating radiation reaction
terms. The N run required a total of 600 CPU hours and
PN run 1200 hours on the NCSA Origin2000, including t
relaxation phase. Particle plots illustrating qualitatively t
evolution of the system are shown in Fig. 1~N run! and Fig.
2 ~PN run!.

A. Dynamical instability and the inspiral process

It was shown by RS and LRS that equilibrium configur
tions for close binary NS become dynamically unstable wh
the separationr is less than a critical value. For Newtonia
synchronized, equal-mass binaries withG53, the ISCO is at
r 52.95R. Purely Newtonian calculations for binaries sta
ing from equilibrium configurations with a separation larg
than this value will show no evolution in the system. Bin
ries starting from a smaller separation, though, are dyna
2-7
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FIG. 2. Evolution of the system in the PN run
Conventions are as in Fig. 1. We see in the init
frame that the long axes of the NS are misalign
before contact. Note also that the mass-shedd
is suppressed compared to the N case.
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cally unstable, and coalesce within a few orbital perio
even without the energy and angular momentum loss du
radiation reaction~RS @26,27#!.

In simulations with radiation reaction included, coale
cence will always be the end result. The limiting factor
how large to make the initial separation is the comput
time required for the binary orbit to slowly spiral inward
Ideally, one should make sure that the stars are in qu
equilibrium when the orbit approaches the ISCO and
inspiral time scale undergoes a shift from the slow radiati
reaction time scale to the much faster dynamical time sc

Since the effective gravitational attraction between t
stars is increased by PN effects, we expect the ISCO to m
outwards when 1PN corrections are included. This was d
onstrated by Lombardi, Rasio, and Shapiro@54#, who used
the same energy variational method as LRS to find equ
rium configurations for binary NS models including 1P
corrections. Taking into account these results, we used
initial separation ofr 053.1R for our N simulation, andr
54.0R for the PN simulation. As a consequence, there is
06401
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ambiguity in the relative time between the two runs, whi
we resolve by adjusting the initial time of the N run such th
the maximum gravity wave luminosity occurs at the sa
time in both the N and PN runs. This was found to requ
shifting the time in the N run backwards so that it starts
t5213, while the PN run starts att50.

In Fig. 3, we show the evolution of the center-of-ma
binary separation during the initial inspiral phase for our
and PN runs. Figure 4 shows the inspiral phase of the N
as well as the inspiral tracks predicted by the classical qu
rupole formula for two point masses, and by the methods
LRS3 for two corotating spheres and two ellipsoids. We n
that the results of LRS3 predict for extended objects a s
nificantly more rapid inspiral rate, which is confirmed by th
numerical run. In addition, we note that the approach of
ISCO is clearly visible in the plots, where the inspiral ra
switches from the slow radiation-reaction-driven orbital d
cay to the faster dynamical infall. This appears to happen
r .2.7R in the N case, in good agreement with previo
results.
2-8
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POST-NEWTONIAN SPH CALCULATIONS . . . PHYSICAL REVIEW D 62 064012
FIG. 3. Evolution of the binary center of mas
separation during the inspiral phase for the tw
calculations. The solid line is for the PN run, th
dashed line for the N run. The horizontal lin
represents the dynamical stability limit for
Newtonian, equilibrium binary, atr .2.7R. It
appears as a break in the inspiral rate of the Ne
tonian binary, whereas the PN binary inspiral b
comes dynamical at significantly greater sepa
tion.
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Comparing the PN run to the N run, we see that the s
bility limit must lie at a considerably larger separation. Th
agrees with the results of Lombardiet al. @54#, who find that
PN corrections not only move the ISCO outward, but a
flatten out the equilibrium binary energy curveE(r ) near the
stability limit ~whereE(r ) reaches a minimum!. Following
the arguments of LRS3, we conclude that unstable insp
begins when the differential change in binary energy a
function of separation becomes smaller than the energy
rate to gravitational radiation. The condition for unstable
spiral, expressed as

dE

dr
!

dEGW

dt S dr

dt D
21

, ~22!

is then encountered further outside the ISCO~as determined
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for binaries in strict equilibrium!, since PN corrections de
crease the left-hand side. This effect can also be seen in
results of Ayalet al. @46# by careful examination of their Fig
5~a!. Even though the binary separation in their PN run ha
large initial oscillation, caused by the use of non-equilibriu
initial conditions, it still converges at a much more rapid ra
than in their corresponding Newtonian model.

Even though the effective stability limits of N and P
binaries differ by a large amount, their actual inspiral velo
ties are essentially the same from the moment of first cont
at a separation ofr .2.5R, until the merger of the NS cores
The only significant difference is the break in the inspi
velocity for the N run att.20, which occurs as the core
start to come into direct contact with each other. The lack
this feature in the PN run will be explained in Sec. III B.
e
d

p-
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int
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ed
FIG. 4. Same as Fig. 3, but focusing on th
early inspiral of the Newtonian binary. The soli
line is the result from the SPH calculation~N
run!. The dashed line shows the point-mass a
proximation, the dash-dotted and dotted lines t
approximations for two spheres and two ellip
soids, respectively. See text for details. The po
mass approximation clearly fails when tidal inte
actions become significant, but note the excelle
agreement with semi-analytic results for extend
stars before the ISCO is encountered.
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FIG. 5. Evolution of the maximum density in
the two coalescence calculations. The upp
curve is for the PN run, the lower curve for the
run. The sharp decline in density att.15 occurs
as the two NS are tidally disrupted, followed by
larger increase as they coalesce.
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B. Coalescence

In Fig. 5, we show the time evolution of the maximu
density in both runs. The maximum density is at the cente
either star initially, but it shifts eventually to the center of t
merger remnant. The initial oscillations with a period ofT
.223 correspond to the fundamental radial pulsations
the polytropes, and represent the errors resulting from sm
departures from strict equilibrium in the initial condition
We see thatdr/r.0.01 and 0.05, respectively, for the N an
PN runs, which provides a measure of the numerical ac
racy of the initial conditions.

As the binary system contracts to separations or
&2.7R, we see a rather sudden and rapid decrease in
maximum density found at the core of each star, correspo
ing closely with the moment of first contact of the two sta
after which the cores get tidally stretched. For the PN r
this follows a gradual increase in the average density m
mum, which is caused by the contraction of each NS in
sponse to the growing gravitational potential of its comp
ion, rather than a pure tidal effect. This effect, which see
to result primarily from the weakening of the pressure fo
in Eq. ~A17! asa becomes more negative in response to
growing gravitational potential@Eq. ~A10!#, was also seen by
Ayal et al. in one of their runs~Ref. @46#, see their Fig. 6, run
P3!. When the center of mass separation reaches a valu
r .2.0R the maximum density stops decreasing, turn
around and increasing sharply as the cores come into d
contact and merge.

In Fig. 6, we show the gravity wave signatures of bo
runs. The wave forms in the two polarizations of gravi
tional radiation are calculated for an observer at a distand
along the rotation axis of the system in the quadrupole
proximation,

c4~d h1!5Q̈xx2Q̈yy ~23!

c4~d h3!52Q̈xy . ~24!
06401
f

f
all

u-

he
d-
,
,
i-
-
-
s
e
e

of
g
ct

-

-

In Fig. 7 we show the corresponding gravity wave lumino
ity of the system, given by

c5LGW5
1

5
^Qi j

[3]Qi j
[3]&. ~25!

We see that, as the inner NS cores merge, the gravity w
luminosity peaks for both runs, with the characteristic fr
quency of the waves increasing like~twice! the rotation fre-
quency of the system. This frequency increase is more ra
in the PN case, since the inspiral is faster.

After t.30, the evolution of the N binary is rathe
straightforward. A triaxial object is formed at the center
the system, with spiral outflows emanating from the ou
parts of each star. The spiral arms remain coherent for s
eral windings before slowly dissipating, and finally leaving
low-density halo of material in the regionr /R.2215. Dur-
ing this time, the central triaxial object acts as the predo
nant source for the gravity waves as it spins down, leadin
a characteristic damped oscillatory signature, at a lumino
approximately 1/30 that of the peak. The rise in central d
sity from the initial value att50 to the final value att
580 is consistent with what is expected from the ma
radius relation for a Newtonian polytrope withG53.

This simple picture, which is familiar from many previou
Newtonian simulations, is seen to break down when 1
effects are taken into account. As is clear from Fig. 2t
512), just prior to the final coalescence, 1PN effects ca
the long axis of each star to rotate forward relative to
binary axis, so that the inner part of each star leads the ce
of mass in the orbital rotation. Thisdynamical tidal lagis
expected from the rapidly changing tidal forces during t
final inspiral phase~LRS5!. It is not to be confused with the
tidal lag produced by viscous dissipation in nonsynchroniz
binaries~see, e.g., Ref.@57#!. The dynamical tidal lag angle
can be estimated analytically for a Newtonian binary who
orbit decays slowly by gravitational wave emission. Usi
2-10
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POST-NEWTONIAN SPH CALCULATIONS . . . PHYSICAL REVIEW D 62 064012
FIG. 6. Gravity wave signatures for the tw
coalescence runs. The wave forms are calcula
for an observer at a distanced along the rotation
axis. The solid line shows theh1 polarization,
the dashed line theh3 polarization @see Eqs.
~23!,~24!#. At late times in the N run the wave
forms show a simple, exponentially damped o
cillation, whereas in the PN run an addition
large-amplitude modulation is apparent.

FIG. 7. Gravity wave luminosity for the two
coalescence runs@see Eq.~25!#. The solid line is
for the PN run, the dashed line for the N run. Th
peak luminosity in the PN run is smaller than th
of the N run, but secondary peaks occur att
.35, 50, and 70.
064012-11
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FIG. 8. The ratio of the principal moments o
inertia in the equatorial plane for the PN merg
remnant, compared to the gravity wave lumino
ity at late times. The times of maximum elonga
tion correspond to maxima in the gravity wav
luminosity, and to decreases in the maximu
density in Fig. 5 att.35 and t.50 ~and less
clearly att.70).
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Eq. ~9.21! of LRS5, we estimate a lag anglea t.0.01 for
1/c250.16 andr .2R. This is in agreement with the ver
small lag angle observed in our N run~barely visible att
512 in Fig. 1!. In contrast, from our PN run, we finda t
.0.14, indicating that the more rapid inspiral can drama
cally increase this effect.

As the PN merger proceeds, material from the lead
edge of each star wraps around the other, so that the c
simply slide past each other instead of striking more nea
head-on as in the N case. As this happens aroundt.25, the
maximum density drops slightly, and the gravity wave lum
nosity rises again, reaching a second peak att.35, with a
maximum luminosityL250.65L1 compared to the first pea
of luminosity L1. A cursory examination of Fig. 2 reveals
highly asymmetric, triaxial configuration near this time. T
subsequent oscillations of the two cores in their sliding m
tion against each other damp out rather quickly, and the c
tral object becomes more nearly axisymmetric while
maximum density rises again. A third peak of maximum
minosity L350.15L1 is clearly visible neart.51, as is an-
other very slight drop in the central density at that time, a
a fourth, much smaller luminosity peak occurs att.72.

To better understand this oscillation of the merger, a
the corresponding modulation of the gravitational radiat
wave forms, we show in Fig. 8 a comparison between th
gravity wave luminosity and the ratio of the principal m
ments of inertia of the central object in the PN run. As can
seen clearly, the two quantities are strongly correlated. If
ignore the details of the internal motion of the fluid, it ma
be tempting to model the late-time behavior of the remn
in terms of a simple quadrupole (l 52 f-mode! oscillation of
a rapidly and uniformly rotating single star. Adopting a
average value for the angular velocity of the central obje
V̄250.4, and using Eq.~3.30! of LRS5 for the frequency of
the quadrupole oscillation of a compressible Maclau
spheroid, we obtain a frequencys50.38, which gives us a
modulation periodTmod516.6, very close to what we ob
serve in Figs. 6 and 7.
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The occurrence of a second peak in the gravity wave
minosity can also be seen in the PN calculations presente
Ref. @46# for polytropes withG52.6, but the second pea
appears considerably less pronounced forG52.6 than for
G53. This may simply result from the higher central co
centration of objects with lower values ofG, which de-
creases the emission of gravitational radiation for a quad
pole deformation of given amplitude. Grid-based Newton
calculations by Ruffertet al. @31# for nonsynchronized bina
ries with a different EOS also show a second peak in
gravity-wave luminosity. For Newtonian systems withG
&2.2, the merger remnant evolves quickly to axisymme
and the emission of gravitational radiation stops abruptly
ter the first peak~cf. RS1 and RS2!.

C. The final merger product

In Fig. 9, we show density contours of the central merg
remnant in both the equatorial and vertical planes. For th
run, the remnant is shown att580, which is at the end of the
calculation. For the PN run, we show the remnant att555,
which corresponds to the third gravity wave luminosity pea
and att580, the end of the simulation and close to a grav
wave luminosityminimum. Axes for the contour plots are
aligned with the principal axes of the remnant. A summa
of values for the principal axes and moments of inertia
the three configurations is presented in Table I.

We see that the final remnant in the PN case is larger
more centrally condensed than in the N case, with a hig
degree of flattening in the vertical direction. This is in pa
because in the PN case less mass and angular moment
extracted from the central region and deposited in the h
Figures 10 and 11 show the evolution of the angular mom
tum of the various components in both runs. In the N ca
most of the angular momentum lost by the remnant has g
into the halo. In the PN case, about equal amounts of ang
momentum are lost to the halo and to the gravity waves.
2-12
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POST-NEWTONIAN SPH CALCULATIONS . . . PHYSICAL REVIEW D 62 064012
FIG. 9. Density contours of the merger rem
nants. The top frames show the PN remnant at
555, the middle ones show the same remnan
t580, and the lower ones show the N remnant
t580. The left frames show a cut through th
equatorial plane, the right frames through the ve
tical plane ~containing the rotation axis!. Con-
tours are logarithmic, ten per decade, starti
from the maximum density of (r * )max50.567 for
the PN run att555, (r * )max50.608 for the PN
run att580, and (r * )max50.518 for the N run at
t580. The axes have been rotated to fall alo
the principal axes of the remnant. Note the cus
like shape of the contours near the equator in
vertical plane, indicating maximal rotation.
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Nevertheless, the axis ratioa2 /a1 in the equatorial plane
is approximately the same for the N run att580 and for the
PN run att555 and att580, indicating a reasonably con
stant shape for the outermost region. Further comparison
tween the N and PN remnants, however, shows that t
interior structures are remarkably different. In the PN re
nant, the isodensity surfaces do not maintain a consis
orientation or shape as we move from the center to the e
tor of the remnant, indicating that the structure of the re
nant is much more complex than that of a self-similar ell
soid. Gravity-wave luminosity peaks are seen to occur w
the inner and outer contours are aligned, leading to a la
net quadrupole moment~this is nearly the case att555 in
Fig. 9!. Minima occur when the orientations lie at righ
angles, as can be seen neart580 for the PN run in Fig. 9.

In Fig. 12, we show the radial mass and rotational vel
ity profiles of the remnant. Horizontal cuts through the m
ter indicate that the rotation is cylindrical, with rotation
velocity a function only of the distance from the rotatio
axis, independent of height relative to the equatorial pla
~the same type of rotation profile has been obtained fr
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strictly Newtonian calculations; see RS1!. Neither case gives
a rigid rotation law. The angular velocity of the N remna
shows a slight increase forr .1.1R, whereas the PN run
shows a decreasing angular velocity at the same point. T
both exhibit signs of differential rotation, but in opposi
directions. We find that the centrifugal acceleration a
gravitational acceleration become equal at the outer edg
the remnant for both cases, atr .1.6R andr .1.85R for the
N and PN runs, respectively. This is in good agreement w
the morphology of the remnants seen in Fig. 9, where
noticeable cusp-like deformation is visible in the outerm
density contours near the equator in the vertical plane.
conclude that in both runs, the final remnant ismaximally
and differentiallyrotating.

The rest mass of the N remnant att580 is Mr
51.73M , while that of the PN remnantMr51.90M . The
remaining mass, 0.27M for the N run and 0.10M for the PN
run, has been shed during the coalescence, forming the s
arms seen in the middle panels of Figs. 1 and 2. These s
arms later merge to form a halo of matter around the cen
remnant. With a crude linear extrapolation from a halo m
2-13



in
ll
d
n

lly

ely

di-
ill

run
gh-
.
at
ins
ius

ies
we

h a
re-
of

s
ill

ds
the

sted,

OS.
ter
les

ec-
es-
lo at

tha
le,

at
ia

JOSHUA A. FABER AND FREDERIC A. RASIO PHYSICAL REVIEW D62 064012
of Mh50.27M for the N run, with 1/c1PN
2 50, and Mh

50.10M for the PN, run with 1/c1PN
2 50.05, we might

expect that, for physically reasonable NS with 1/c2

;0.1520.20, the vast majority of the mass will remain
the central remnant. However, this result may be crucia
dependent on our choice of initial spins and the EOS, an
is limited by the restrictions we have placed on the mag

TABLE I. Properties of the merger remnants. Units are such
G5M5R51, whereM andR are the mass and radius of a sing
spherical NS. Here,Mr is the rest mass of the remnant,Mgr is its
gravitational mass,Jr is its total angular momentum,Vc and Veq

are the angular rotation velocities at the center and at the equ
and theai ’s and I i ’s are the principle axes and moments of inert

N (t580) PN (t555) PN (t580)

Mr 1.73 1.90 1.89
Mgr N/A 1.85 1.84
Jr 0.56 0.98 0.95

cJr /Mgr
2 0.47 0.72 0.70

Vc 0.45 0.80 0.75
Veq 0.67 0.47 0.48

a1 1.65 1.90 1.82
a2 1.35 1.58 1.53
a3 0.95 0.92 0.93

a2 /a1 0.82 0.83 0.84
a3 /a1 0.58 0.48 0.51

I 1 0.575 0.861 0.741
I 2 0.477 0.583 0.674
I 3 0.247 0.228 0.236

I 2 /I 1 0.829 0.677 0.909
I 3 /I 1 0.429 0.274 0.319
06401
y
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tude of the 1PN corrections. It should also be noted that fu
GR calculations of the coalescence of NS with aG52 EOS
suggest that significant mass loss occurs even for extrem
compact NS@40#.

D. The final fate of the remnant

By their very nature our calculations cannot address
rectly the question of whether the NS merger remnant w
collapse to form a BH. Indeed the parameters of our PN
were chosen so that all 1PN quantities remain small throu
out the evolution, which, forG@4/3, guarantees stability
This can be verified directly by checking, for example, th
the mass distribution in the final merger remnant rema
everywhere well outside the corresponding horizon rad
~see Fig. 12!. However, given some of the general propert
of the merger remnant as determined by our calculations,
can ask whether an object with similar properties, but wit
more realistic EOS and higher compactness, would still
main stable to collapse in full GR. For the coalescence
two 1.4M ( NS with realistic stiff EOS, it is by no mean
certain that the core of the final merged configuration w
collapse on a dynamical time scale to form a BH~see Refs.
@21,58# for recent discussions!.

The final fate of a NS binary merger in full GR depen
not only on the NS EOS and compactness, but also on
rotational state of the merger remnant. It has been sugge
for example, that the Kerr parameterar[Jr /Mgr

2 of the rem-
nant may exceed unity for extremely stiff EOS@37#. This
does not appear to be the case, at least for our choice of E
In Fig. 13, we show the evolution of the Kerr parame
throughout the entire coalescence, including only partic
for which the rest-mass density satisfiesr * .0.005. This cut
includes essentially all matter in the initial stages, and eff
tively cuts out particles in the spiral outflow once the coal
cence begins, as well as those remaining in the outer ha
the end. We see thatar is very near unity just prior to the

t

or,
.

i-

r

FIG. 10. Evolution of the angular momentum
in various components in the N run. HereJtot is
the total angular momentum in the system,Jr is
for the inner remnant~defined by the condition
r * .0.005, which includes the entire binary in
tially, but only the inner remnant at later times!,
and Jh is for the outer halo~so that Jtot5Jr

1Jh). The dotted line shows the initial angula
momentum of the system.
2-14
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FIG. 11. Evolution of the angular momentum
in various components in the PN run. Conve
tions are as in Fig. 10.
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final merger, but, in contrast to what has been assume
some previous studies@58#, it decreases significantly durin
the final coalescence. The decrease occurs mainly during
riods of maximum gravity-wave luminosity, as angular m
mentum is radiated away, and during the mass-shed
phase aftert.20, since angular momentum is transferr
from the core to the outside spiral outflow. By the end of t
PN run, ar has decreased to.0.7, well below unity, and
certainly not large enough to prevent collapse. The fi
value of the Kerr parameter for the PN run,ar50.70, is
considerably greater than that of the N run,ar50.47. The
difference is attributable to the greater mass ejected in th
run, which carries off a significant fraction of the angul
momentum of the system~see Figs. 10 and 11!.

Quite apart from considerations of the Kerr parameter,
rapidly rotating core may be dynamically stable. Inde
06401
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-
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N

e
,

most stiff NS EOS~including the recent ‘‘AU’’ and ‘‘UU’’
EOS of Ref.@59#! allow stable, maximally rotating NS with
baryonic masses exceeding 3M ( @60#, i.e., well above the
mass of the final merger core~which is 1.9M.2.85M ( for
M51.5M ( in our PN calculation; see Fig. 12!. Differential
rotation ~not taken into account in the calculations of Re
@60#! can further increase this maximum stable mass v
significantly ~see@58#!. For slowly rotating stars, the sam
EOS give maximum stable baryonic masses in the ra
2.523 M ( , implying that the core would probably~but not
certainly! collapse to a BH in the absence of rotational su
port.

If the final merger remnant is being stabilized against c
lapse by rotation, one must then consider ways in which
may subsequently lose angular momentum. Further reduc
of the angular momentum of the core by gravitational rad
v-
l

id

rr

g

FIG. 12. Enclosed rest mass and radially a
eraged rotational velocity profiles of the fina
merger remnant att580 for the two runs. Here,
r cyl is the distance from the rotation axis, whiler
is the radius from center. In both plots, the sol
line is for the PN run, the dotted line for the N
run. The dashed line shows the radius for a Ke
black hole witha50.7 ~the value we find for the
PN run at t580!. For the rotational profile, we
show only the data for20.1,z,0.1, all other
horizontal cuts yielding similar profiles extendin
to smaller radii.
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FIG. 13. The evolution of the Kerr paramete
ar[cJr /Mgr

2 , for the inner remnant in the PN
run ~solid line! and in the N run~dashed line!. At
no time do we havear.1. The inner remnant~or
core! is defined by the same density cut as in F
10.
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tion or dynamical instabilities cannot occur, since, at the e
of the dynamical coalescence, the core is, by definition,
namically stable and nearly axisymmetric~i.e., no longer ra-
diating gravity waves; see Figs. 6 and 7!. The development
of a secular bar-mode instability~a quadrupole mode grow
ing unstably on the viscous dissipation time scale; see LR
and LRS4! has been discussed as a way of reducing
angular momentum of a rapidly rotating compact object@61#.
However, this cannot occur either for a binary merger re
nant because, if the remnant were rotating fast enough t
secularly unstable, it would still be triaxial.~Recall, for ex-
ample, that the point of bifurcation of the classical Maclau
spheroid sequence into the Jacobi ellipsoid sequence c
cides with the onset of secular instability for Maclaurin sph
roids; see, e.g.,@56# and LRS1.! Note that other processe
such as electromagnetic radiation or neutrino emiss
which may also lead to angular momentum losses, take p
on time scales much longer than the dynamical time sc
~see, e.g., Ref.@62#, where it is shown that neutrino emissio
is probably negligible!. These processes are therefore dec
pled from the hydrodynamics of the coalescence. Unfo
nately their study is plagued by many fundamental uncert
ties in the microphysics.

IV. SUMMARY AND DIRECTIONS FOR FUTURE WORK

Using a Lagrangian, SPH-based adaptation of the B
PN formalism for hydrodynamics, we have calculated
merger of a coalescing NS binary including 1PN and gra
tational radiation reaction effects. We have also develope
method for computing accurate, quasi-equilibrium init
data for coalescing binaries in PN gravity, improving up
previous calculations that used nonequilibrium initial con
tions containing unperturbed, spherical stars.

We have confirmed that PN corrections to gravity cau
the binary inspiral to become dynamical at larger bina
separation compared to what is predicted in the Newton
limit. In calculations using Newtonian gravity, but includin
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the effects of the gravitational radiation reaction, we ha
found that the inspiral rate just prior to merging agrees w
with the predictions of semi-analytic models using compre
ible ellipsoids as trial functions in an energy variation
method~LRS!.

Using a hybrid formalism where radiation reaction
treated realistically but 1PN effects are reduced in amplitu
so as to remain numerically tractable, we have compared
hydrodynamic coalescence of binary NS systems in Newt
ian and PN gravity. We find that 1PN effects lead to impo
tant qualitative differences in the hydrodynamic behav
and in the gravitational radiation wave forms and lumino
ties. In Newtonian gravity, the merger of two equal-ma
G53 polytropic NS produces a single peak in the gravi
wave luminosity, followed by an exponentially decaying si
nal. In PN gravity, we see a strong quadrupole oscillation
the remnant immediately after coalescence, which lead
several additional peaks in the gravity-wave luminosity.
both Newtonian and PN gravity, the final merger remnan
found to be maximally rotating and nearly axisymmetr
Even for realistic NS EOS and in full GR, this configuratio
is expected to be stable against gravitational collapse to a
on a dynamical time scale. The amount of mass ejected
an outer halo by the rotational instability developing duri
the final merger decreases substantially when 1PN effects
included, and we suggest that, for realistic NS models,
sentially no mass might be ejected, so that the total baryo
mass of the system remains entirely in the central remn
~though this result is hardly a certainty!.

Our study is naturally beginning with PN calculations f
equal-mass, corotating binaries with a simple polytro
EOS. This allows us to compare our results directly to p
vious Newtonian calculations performed with the same se
assumptions~RS @26,27,32#!. The dependence of our resul
on the NS EOS will be studied in future papers by varyi
the adiabatic exponentG ~in the rangeG.224 applicable to
NS; see, e.g., LRS3! and by performing additional runs with
2-16
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more realistic tabulated NS EOS. In particular, we will co
sider the Lattimer-Swesty EOS@63#. This EOS includes
high-temperature effects~which can be significant in the out
ermost, low-density regions of some NS mergers! and has
also been employed in several previous Newtonian stu
@33#, to which we want to compare our results. Even with t
lowest available value of the nuclear compressibilityK
5180 MeV!, the Lattimer-Swesty EOS is relatively stiff~ef-
fectiveG.2.5 for a 1.4M ( NS!. The latest microscopic NS
EOS, constrained by nucleon scattering data and the bin
of light nuclei, and incorporating three-body forces, are ev
stiffer ~effective G*3; see, e.g., Ref.@64# for a summary,
and Ref.@47# for the latest version!. We will use several of
these recent EOS, in tabulated form, to perform addition
more realistic calculations. More schematic EOS based
exotic states of matter, such as pion condensates or str
quark matter, can be much softer (G&2 and maximum stable
masses not much above 1.4M (). We will not consider such
soft EOS in our calculations, since they render the PN
proximation invalid. Note that several observations
progress may have already ruled them out~e.g., from the
large measured mass of the NS in Vela X-1;@65#!.

Using our PN SPH code we will also study the depe
dence of the hydrodynamics and gravitational wave emiss
on the binary mass ratioq. Neutron star masses derived fro
observations of binary radio pulsars are all consistent wit
remarkably narrow underlying Gaussian mass distribut
with Mg51.3560.04M ( @66#. The largest observed depa
ture from q51 in any known binary pulsar with likely NS
companion is currentlyq51.386/1.44250.96 for the Hulse-
Taylor pulsar PSR B1913116 @67#. Although the equal-mas
case is clearly important, one should not conclude from th
observations that it is unnecessary to consider coalescing
binaries with unequal-mass components. Indeed, it canno
excluded that other binary NS systems~that may not be ob-
servable as binary pulsars! could contain stars with signifi
cantly different masses. Moreover, Newtonian calculatio
of binary NS coalescence have shown that even very s
departures fromq51 can drastically affect the hydrody
namic evolution~RS2,@29#!.

In future papers we will also perform PN SPH calcu
tions for binary NS systems that are initiallynonsynchro-
nized. This is likely to be the case for real systems, since
tidal synchronization time in close NS binaries is proba
always longer than the orbital decay time@68#. The methods
of LRS can be used to construct approximate, qua
equilibrium initial conditions for nonsynchronized coales
ing binaries. For binaries that are far from synchronized,
final coalescence involves some new, complex hydro
namic processes, and significant differences in the grav
tional wave emission compared to the synchronized c
with an additional dependence of the gravitational radiat
wave forms on the stellar spins@29,69#. Moreover, the final
fate of the merger may also be very different for initial
nonsynchronized binaries, since the merger remnant ma
longer be maximally rotating@21,31#.
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APPENDIX A: THE BDS 1 ¿2.5 PN FORMALISM

In the original Eulerian, PN formalism of Blanche
Damour, and Scha¨fer @44#, the key variables appearing in th
hydrodynamic evolution equations are PN variants of
standard Newtonian quantities. Specifically, the coordin
rest-mass densityr * and momentum per unit rest-masswi
are given in terms of the proper rest-mass densityr and the
4-velocity um by

r * 5Agu0r ~A1!

wi5S 11
h

c2D cui , ~A2!

whereh is the specific enthalpy of the fluid. Assuming her
after a polytropic equation of state, i.e. one for which t
pressure is given by

p* ~r * !5kr
*
G , ~A3!

it is found that the specific enthalpy is given by

h5k
G

G21
r
*
G215

G

G21

p*
r *

. ~A4!

It should be noted thatp* is not the Newtonian pressure, bu
rather a 1PN variant of it.

The BDS formalism requires the solution of nine Poiss
equations, one for the Newtonian gravitational potentialU* ,
seven for 1PN corrections, and a final one to handle
gravitational radiation reaction.

The equation for the gravitational potential is

¹2U* 524pr * . ~A5!

Note that with this sign convention, the gravitational pote
tial is a positive quantity. The 1PN correction potentials a
given by

¹2Ui524pr * wi ~A6!

¹2Ci524pxi]s~r * ws! ~A7!

¹2U2524pr * d. ~A8!

Note that the summation in Eq.~A6! runs over i 5x,y,z,
thusU2ÞUy in Eq. ~A8!. Using these, we define the quanti

Ai54Ui1
1

2
Ci2

1

2
xi]sUs . ~A9!

It is important to note that the volume integral of th
source term of Eq.~A7! vanishes, assuming that the origin
at the center of mass and momentum of the system, and
2-17
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it contains no monopole term. In Eq.~A8!, the quantityd in
the source term is one of three quantities which are assu
to be of orderO(1/c2). They are, assuming the equation
state Eq.~A3!, and withw25d i j wiwj ,

a52U* 2GS 1

2
w213U* D ~A10!

b5
1

2
w21

G

G21

p*
r *

13U* ~A11!

d5
3

2
w21

3G22

G21

p*
r *

2U* . ~A12!

The third derivative of the symmetric, trace-free~STF! quad-
rupole tensor,Qi j

[3] is calculated from

Pi j 52E d3xr* F3wi] jU* 22wi

] j p*
r *

1xiws]s jU*

2xi]s jUsG ~A13!

Qi j
[3]5

1

2
Pi j 1

1

2
Pji 2

1

3
d i j Pss, ~A14!

and is used in the source term for the radiation reaction
tential U5, of order O(1/c5). This is calculated from the
final Poisson equation,

U55
2

5
G~R2Qi j

[3]xi] j r * ! ~A15!

¹2R524pQi j
[3]xi] j r * . ~A16!

Since we are dealing with the trace-free quadrupole tenso
is easy to show that the volume integral of the source term
Eq. ~A16! also vanishes, for any mass distribution.

Forces are defined by

Fi
press52S 11

a

c2D ] i p*
r *

2
1

c2

p*
r *

] ia ~A17!

Fi
1PN5S 11

d

c2D ] iU* 1
1

c2
] iU22

1

c2
ws] iAs

~A18!

Fi
reac5

1

c5
] iU5 . ~A19!

Finally, the evolution system, in Eulerian form, is give
by

] tr * 5] i~r * v i ! ~A20!

] twi52vs]swi1Fi
press1Fi

1PN

1Fi
reac , ~A21!
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where the particle velocitiesv i are related to the specifi
coordinate momentumwi by

v i5S 12
b

c2D wi1
1

c2
Ai1

4

5

G

c5
wsQis

[3] . ~A22!

The quantitiesvW and wW will be referred to simply as the
velocity and momentum vectors, respectively~see@31#!.

In the SPH method, the evolution equations must be
pressed in a Lagrangian form, given simply by

ẋi5v i ~A23!

ẇi5Fi
press1Fi

1PN1Fi
reac . ~A24!

In BDS, there also appear evolution equations for the
tropy and the pressure. The former, converted into Lagra
ian form, states that entropy is a conserved quantity, an
handled in our code by the choice of AV, as in Eq.~7!. The
latter is not necessary here since we calculate the pres
directly from the density at each time step.

Since the parametersa and b, defined by Eqs.
~A10!,~A11! become rather large for NS with 1/c2;0.05, we
make some small adjustments to Eqs.~A17!,~A22!. We note
that for an adiabatic exponentG. 2

3 , a is everywhere nega
tive. To ensure that the pressure force always acts in
proper direction, we make a substitution in Eq.~A17!,

2S 11
a

c2D ] i p*
r *

→2S 12
a

c2D 21
] i p*
r *

. ~A25!

This new form is entirely equivalent to the one it replaces
1PN order. Similarly,b is everywhere positive, so we mak
the following substitution in Eq.~A22!:

S 12
b

c2D wi→S 11
b

c2D 21

wi . ~A26!

APPENDIX B: RELAXATION METHODS

1. PN case

Constructing hydrostatic equilibrium initial conditions i
PN gravity is a much more difficult problem than in New
tonian gravity, primarily because of the complex relationsh
between the particle velocity and momentum. We get aro
this problem by implementing a multistage approach to
construction of relaxed configurations.

First, we construct a series of hydrostatic equilibriu
models for singleG53 polytropes with increasing values o
1/c2, to gauge the effects of the PN corrections on the str
ture of the stars. Specifically, we construct relaxed mod
with compactness parameters of 1/c250.01 to 0.07, in steps
of 0.01.

In the relaxation procedure, spurious velocities aris
from configurations adjusting toward equilibrium are ignor
as sources for the force equations. Thus particles move
ing the relaxation, but the force exerted on each particle
that of a static mass configuration. We thus solve all Pois
2-18
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equations assumingwW 50, which eliminates Eqs.~A6!,~A7!.
In addition, the velocity terms in the definition of the 1P
quantities a, b, and d are removed from Eqs
~A10!,~A11!,~A12!. This greatly simplifies the equations giv
ing us the set

¹2U* 524pr * ~B1!

¹2U2524pr * d ~B2!

a5~223G!U* ~B3!

b5
G

G21

p*
r *

13U* ~B4!

d5
3G22

G21

p*
r *

2U* ~B5!

Fi
press52S 11

a

c2D ] i p*
r *

2
1

c2

p*
r *

] ia ~B6!

Fi
1PN5S 11

d

c2D ] iU* 1
1

c2
] iU2 ~B7!

v i5S 12
b

c2D wi ~B8!

ẋi5v i ~B9!

ẇi5Fi
press1Fi

1PN2
wi

trelax
, ~B10!

wheret relax is the relaxation time.
To construct our first model, with 1/c250.01 we start

from a NewtonianG53 polytrope and let it relax to an equ
librium configuration. Then, using the maximum particle r
dius Rmax, we adjust the radial position, smoothing leng
and specific entropy of all particles according to

rW→ rW

Rmax
~B11!

hm→ hm

Rmax
~B12!

km→kmRmax
423G . ~B13!

Velocities are set to zero at the end of this rescaling. T
new configuration is relaxed again, and the process is
peated until convergence is achieved. For theG53 models,
we rescaled everyt55.0, with a relaxation timet relax
51.0, The final profile is used as the initial test configurat
of the next model, which is then relaxed iteratively as d
scribed above.

In addition toG53 models, we also computed a sequen
of single PN polytropes withG55/3, and tested their stabil
ity. PN effects should make the star unstable to gravitatio
06401
-
,

is
e-

-

e

al

collapse when 1/c2*0.141 forG55/3 @56#. We tested 1/c2

values in steps of 1/c250.02, until we reached 0.10, a
which point we halved the step size until we reached 1c2

50.13. To make the relaxation overdamped, we reduced
rescaling time tot52.0, with t relax51.0. It was found that
1/c250.13 is always unstable, collapsing inward uncontr
lably, no matter how short the rescaling time. This agre
well with the theoretical prediction when we account for t
magnitude of the 1PN corrections we deal with, and the
proximations made in the analytic treatment. In Fig. 14,
show the time evolution of the specific entropyk for both
sequences, taken as a ratio with the Newtonian value of
specific entropy derived from the Lane-Emden equation.
see a gradual increase ofk as the compactness is increase
in both sequences, until we get to 1/c250.12 forG55/3, for
which k is 50% larger than the corresponding value f
1/c250.11.

Parameters for the single star sequences are show
Table II. Radial profiles of the density, as well as all impo
tant 1PN quantities are shown in Figs. 15 and 16. We se
the G55/3 case that increasing the compactness incre
the central concentration of the model, which can be see
the factor of 2 increase in central density. For compactnes
near the stability limit, we see thata, b, andd are all of
order unity. A different behavior is seen in theG53 case, for
which the internal structure of the star remains almost
changed as the 1PN order parameters get large. We see
a andb both get relatively large for more compact mode
but d is rather small, since the potential and pressure te
cancel each other to some extent.

A comparison of the mass profile for theG53 polytrope
with 1/c250.05, the model used in the PN dynamical sim
lation, to a direct Runge-Kutta integration of the 1PN stru

TABLE II. Parameters for single star models. For each mod
we list the compactness parameter 1/c2, the ratio of the PN specific
entropy k to the Newtonian valuekN , and the central values o
densityr * , and the dimensionless ratiosP/r * c2 andU* /c2.

1/c2 k/kN (r * )c (P/r * c2)c (U* /c2)c

G55/3

0.02 1.177 1.201 0.0111 0.0438
0.04 1.281 1.292 0.0257 0.0893
0.06 1.421 1.452 0.0464 0.1377
0.08 1.634 1.708 0.0792 0.1902
0.10 1.879 1.976 0.1255 0.2470
0.11 2.198 2.336 0.1806 0.2820
0.12 3.400 2.295 0.3011 0.2968

G53

0.01 1.403 0.3822 0.0052 0.0165
0.02 1.553 0.3818 0.0114 0.0326
0.03 1.649 0.3882 0.0187 0.0486
0.04 1.780 0.3948 0.0280 0.0649
0.05 1.918 0.4051 0.0397 0.0813
0.06 2.084 0.4170 0.0549 0.0989
0.07 2.262 0.4321 0.0746 0.1154
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FIG. 14. Results of SPH relaxation calcula
tions for single stars. The ratio of the PN specifi
entropyk to the Newtonian valuekN , is shown
for both G55/3 and G53, computed for se-
quences of increasing compactness 1/c2. The dot-
ted lines give the final value for each case, whi
was used as the initial value for the next rela
ation. For G55/3, we see that for 1/c2

.0.12, k/kN increases without bounds, indica
ing instability. ForG53 and 1/c2*0.07, the 1PN
approximation breaks down.
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ture equations in spherical symmetry is shown in Fig. 17.
see excellent agreement, except at the outer edge of the
where surface effects alter the SPH mass profile sligh
This results from a layer of particles developing at the s
face of the stars, with a slight density decrement immedia
within, but involves only a very small fraction of the tota
mass of the system. Since our method restricts particle p
tions tor /R,1, we see that the density falls to zero sligh
outside this point because of the finite size of the S
smoothing kernel.

Once these single star configurations were complete,
resulting stars were placed in duplicate in a binary confi
ration, which was assumed to be in a state of synchron
rotation, i.e., the velocity of every SPH particle is given a
function of position by
06401
e
tar,
y.
-
ly

si-

he
-
d

a

v0
W5VW 3rW. ~B14!

The main difficulty in relaxing PN configurations is in th
interplay betweenvW andwW , which not only differ in magni-
tude but also in direction. Thus, one or the other can
relaxed in the corotating frame, but not both. HerevW was
assumed to be zero in the corotating frame for a rela
configuration, satisfying the equation above.

We created a method to calculatewW 0(vW 0), which is not
invertible in closed form. As can be seen from Eq.~A22!, the
relationship between particle velocity and momentum is
function of several potentials at the particle position, throu
the term containingAi . SinceAi is itself a function ofwW @see
Eq. ~A9!#, and vice versa, we need to solve consistently
in
ns
.

FIG. 15. Radial profiles for theG55/3 single
star models. The various lines correspond,
monotonic fashion, to the stable configuratio
indicated by dotted lines in the left panel of Fig
14.
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FIG. 16. Radial profiles for theG53 single
star models. The lines correspond, in monoton
fashion, to the stable configurations indicated
dotted lines in the right panel of Fig. 14.
ur
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both. It was found to be best to use an iterative proced
which alternately solves forwW and then uses these trial va
ues in the source terms of the relevant Poisson equation

In the initial step, using known values ofvW 0, we first
approximatewW 0 by the equations

b test5
1

c2 S 3U* 1
G

G21

p*
r *

D ~B15!

wW 05vW 0S 11
b test

c2
1

v0
2

2c2 F11
b test

c2 G 2D .

~B16!
06401
e,

.

The computed value ofwW enters into the source terms of bo
Ui andCi @Eqs. ~A6!,~A7!#. Using these two potentials, w
calculateAi andb @Eqs.~A9!,~A11!#, and recalculate a new
approximation towW 0, denotedwW new, from the previous one
wW old , by an iterative method, using only13 of the correction
to avoid overshooting, thus

wW new5
2

3
wW old1

1

3 S 11
b

c2D S vW 02
AW

c2D . ~B17!

It was found that, for the models we tested, about ten ite
tions would give convergence to within 1 part in 103 to the
correct value ofvW when compared to the value ofvW (wW new)
calculated by Eq.~A22!. For every timestep afterwards, w
n
ar

en-
FIG. 17. Mass profile of theG53 single NS
model with 1/c250.05, used in the PN run
~solid!, compared to a solution of Eqs.~B1!–
~B10! obtained by a direct numerical integratio
~dashed!. The agreement is excellent, except ne
the outer surface of the star, where the SPH d
sity profile is more poorly defined.
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followed the same iteration procedure, and about six ite
tions were found to produce the same convergence to
proper values.

Once convergence to an acceptable solution was fou
forces were calculated, andv̇ was estimated by finite differ
encing,

v̇ f orce5
vW „wW ~ t1dt!…2vW „wW ~ t !…

dt
. ~B18!

We relax the binary models at fixed center-of-mass sep
tion r, in the corotating frame, adjustingV such that the
inward force of gravity is balanced exactly by the centrifug
force. At every time step, we calculate

V5AFin
1 1Fin

2

2r
, ~B19!

whereFin refers to the net inward force on each compon
of the binary. Particle velocities are advanced according

v̇5 v̇ f orce2
v

t relax
1V2r . ~B20!

After every time step, the two stars were adjusted slightly
maintain a center of mass separation at the desired valu

2. Newtonian case

In the regime where the dynamical time scale of the n
tron stars is much smaller than the characteristic time s
for gravitational radiation, we expect the stars to evo
through a series of quasi-equilibrium configurations. If sy
A

nn

r-

,

s.

e
.

06401
-
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d,

a-

l

t

o

-
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e
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chronized rotation is assumed, these equilibrium configu
tions can be constructed by adding a centrifugal force
drag term to the acceleration equation, giving us

v̇ i5Fi
hydro2¹ i~F1F rot!2

v i

t relax
, ~B21!

where the centrifugal potential is given by

F rot5
1

2
V2~x21y2!. ~B22!

The relaxation time scale,t relax is set initially to 1.0, close to
the value required for critical damping of oscillations~RS1!.
For the purposes of relaxation, AV and the radiation ba
reaction, which are both time-asymmetric, are ignored.
addition, during the relaxation, we ignore the distinction b
tween velocity and momentum vectors in Eq.~18!, taking

vW 5wW . The rate of rotation is calculated as in the PN case
Eq. ~B19!. Once the binary has relaxed to a suitable init
configuration, it is set in motion, and we commence the
namical run. Initial velocities are given by

wW x52Vy, wW y5Vx, ~B23!

andvW is calculated fromwW by Eq. ~A22!. In the point mass
limit, this would reduce to Eq.~35! of Ruffert, Janka, and
Schäfer @31#, who use

v r52
16

5

M3

r 3
~B24!

as their initial condition.
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