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We present the first results from our post-NewtoniBN) smoothed particle hydrodynami¢SPH code,
which has been used to study the coalescence of binary neutrofNSiasystems. The Lagrangian particle-
based code incorporates consistently all lowest-oftlEN) relativistic effects, as well as gravitational radia-
tion reaction, the lowest-order dissipative term in general relativity. We test our code on sequences of single
NS models of varying compactness, and we discuss ways to make PN simulations more relevant to realistic NS
models. We also present a PN SPH relaxation procedure for constructing equilibrium models of synchronized
binaries, and we use these equilibrium models as initial conditions for our dynamical calculations of binary
coalescence. Though unphysical, since tidal synchronization is not expected in NS binaries, these initial
conditions allow us to compare our PN work with previous Newtonian results. We compare calculations with
and without 1PN effects, for NS with stiff equations of state, modeled as polytroped'with We find that
1PN effects can play a major role in the coalescence, accelerating the final inspiral and causing a significant
misalignment in the binary just prior to final merging. In addition, the character of the gravitational wave signal
is altered dramatically, showing strong modulation of the exponentially decaying wave form near the end of the
merger. We also discuss briefly the implications of our results for models of gamma-ray bursts at cosmological
distances.

PACS numbgs): 04.30.Db, 04.25.Nx, 47.1%j, 97.60.Jd

I. INTRODUCTION AND MOTIVATION during the last few thousand orbits, as the frequency sweeps
upward from~10Hz to ~300 Hz. The wave forms in this
Coalescing compact binaries with neutron stiiS) or  frequency range, where the sensitivity of ground-based inter-
black hole (BH) components provide the most promising ferometers is highest, can be calculated very accurately by
sources of gravitational waves for detection by the large laseperforming post-NewtoniarfPN) expansions of the equa-
interferometers currently under construction, such as the Ldions of motion for two point mass¢4.6]. However, at the
ser Interferometric Gravitational Wave ObservatorycO) ~ end of the inspiral, when the binary separation becomes
[1], VIRGO [2], GEO[3,4], and TAMA [5]. In addition to comparable to the stellar radifand the frequency is
providing a major new confirmation of Einstein’s theory of =1 kH2), hydrodynamics becomes important and the char-

general relativity GR), including the first direct proof of the 2Cter OL thg\ dwave forn;}s must change. fSpeciaI pu_rposel
existence of black hole,7], the detection of gravitational NaroW-band detectors that can sweep up frequency in real

waves from coalescing binaries at cosmological distanceréme.W'I.I be used to try to catch_ the last10 cycles of the
could provide accurate independent measurements of t ravitational waves during the final coalesceht@]. These

. . dual recycling” techniques are being tested right now on
Hubble constant and mean density of the Univéfe . the German-British interferometer GEO 6[40. In this ter-

, : Fninal phase of the coalescence, when the two NS merge
as well as expected event rates in laser interferometers, haY(?gether into a single object, the wave forms contain infor-

now been calculated by many groufsee([9] for a recent  4tion not just about the effects of GR, but also about the
review). Although there is some disparity between variousinerior structure of a NS and the nuclear equation of state
published results, the estimated rates are generally encourag=09 at high density. Extracting this information from ob-
ing. Finn and Chernoff10] calculated that an advanced served wave forms, however, requires detailed theoretical
LIGO could observe as many as 20 NS merger events p&nowledge about all relevant hydrodynamic processes. If the
year. This number corresponds to an assumed Galactic N§S merger is followed by the formation of a BH, the corre-
merger ratéR=10"®yr~* derived from radio pulsar surveys sponding gravitational radiation wave forms will also pro-
[11]. However, later revisiongl2] increased this number to vide direct information on the dynamics of rotating core col-
R=3%x10 %yr !, using the latest galactic pulsar population lapse and the BH ‘“ringdown’(see, e.g., Ref6]).
model of Ref.[13]. This value is consistent with the upper  Many theoretical models of gamma-ray bur¢@GRBS
limit of R=10"*yr~! derived(most recently by Arzouma- have also relied on coalescing compact binaries to provide
nian et al. [14] on the basis of very general statistical con-the energy of GRBs at cosmological distan¢és]. The
siderations about radio pulsars, and by Kalogera and Lorimetlose spatial association of some GRB afterglows with faint
[15], who studied constraints from supernova explosions irgalaxies at high redshifts is not inconsistent with a compact
binaries. binary origin, in spite of the large recoil velocities acquired
Many calculations of gravitational wave emission from by compact binaries at birfli9]. Currently the most popular
coalescing binaries have focused on the wave forms emitteghodels all assume that the coalescence leads to the formation
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of a rapidly rotating Kerr BH surrounded by a torus of de-dissipation through the gravitational radiation reac{ig].
bris. Energy can then be extracted either from the rotation of Zhuge et al. [28,29 and Ruffertet al. [31,32 also ex-
the BH or from the material in the torus so that, with suffi- plored in detail the dependence of the gravitational wave
cient beaming, the gamma-ray fluxes observed from even th&gnals on the initial NS spins. Because the viscous time-
most distant GRBs can be explaing2D]. Here also, it is scales for material in the NS is much longer than the dynami-
important to understand the hydrodynamic processes takingal timescale during inspiral, it is generally assumed that NS
place during the final coalescence before making assumginaries will be non-synchronized during mergers. It is gen-
tions about its outcome. For example, contrary to widespreadrally found that non-synchronized binaries yield less mass
belief, it is not clear that the coalescence of twoMl.4 NS  loss from the system, but very similar gravity wave signals,
will form an object that must collapse to a BH, and it is not especially during the merger itself when the gravity wave
certain either that a significant amount of matter will beluminosity is highes{31].
ejected during the merger and form an outer torus around the All recent hydrodynamic calculations agree on the basic
central objecisee Sec. Il below and Reff21]). qualitative picture that emerges for the final coalescence. As
The final hydrodynamic merger of two compact objects isthe ISCO is approached, the secular orbital decay driven by
driven by a combination of relativistic and fluid effects. Even gravitational wave emission is dramatically accelergezb
in Newtonian gravity, an innermost stable circular orbitalso LRS2, LRSR The two stars then plunge rapidly toward
(ISCO) is imposed by global hydrodynamic instabilities, each other, and merge together into a single object in just a
which can drive a close binary system to rapid coalescenctew rotation periods. In the corotating frame of the binary,
once the tidal interaction between the two stars becomes suthe relative radial velocity of the two stars always remains
ficiently strong. The existence of these global instabilities forvery subsonic, so that the evolution is nearly adiabatic. This
close binary equilibrium configurations containing a com-is in sharp contrast to the case of a head-on collision between
pressible fluid, and their particular importance for binary NStwo stars on a free-fall, radial orbit, where shock heating is
systems, was demonstrated for the first time by Rasio andery important for the dynamicésee, e.g., RS1 and Ref.
Shapiro(Ref. [22], hereafter RS1-3 or collectively R8s- [34]). Here the stars are constantly being held back by a
ing numerical hydrodynamic calculations. These instabilitiesslowly receding centrifugal barrier, and the merging, al-
can also be studied using analytic methods. The classicéhough dynamical, is much more gentle. After typically 1
analytic work for close binaries containing an incompressible—2 orbital periods following first contact, the innermost
fluid (e.g., Ref[23]) was extended to compressible fluids in cores of the two stars have merged and the system resembles
the work of Lai, Rasio, and ShapirRef. [24], hereafter a single, very elongated ellipsoid. At this point a secondary
LRS1-5 or collectively LRB This analytic study confirmed instability occursmass sheddingets in rather abruptly. Ma-
the existence of dynamical instabilities for sufficiently closeterial (typically ~10% of the total masss ejected through
binaries. Although these simplified analytic studies can givehe outer Lagrange points of the effective potential and spi-
much physical insight into difficult questions of global fluid rals out rapidly. In the final stage, the inner spiral arms widen
instabilities, 3D numerical calculations remain essential forand merge together, forming a nearly axisymmetric torus
establishing the stability limits of close binaries accuratelyaround the inner, maximally rotating dense core.
and for following the nonlinear evolution of unstable sys- In GR, strong-field gravity between the masses in a binary
tems all the way to complete coalescence. system is alone sufficient to drive a close circular orbit un-
A number of different groups have now performed suchstable. In close NS binaries, GR effects combine nonlinearly
calculations, using a variety of numerical methods and focuswith Newtonian tidal effects so that the ISCO should be
ing on different aspects of the problem. Nakamura and colencountered at larger binary separation and lower orbital fre-
laborators(see[25] and references thergimvere the first to  quency than predicted by Newtonian hydrodynamics alone,
perform 3D hydrodynamic calculations of binary NS coales-or GR alone for two point masses. The combined effects of
cence, using a traditional Eulerian finite-difference code. Intelativity and hydrodynamics on the stability of close com-
stead, RS used the Lagrangian method $&oothed par- pact binaries have only very recently begun to be studied,
ticle hydrodynamics They focused on determining the using both analytic approximatior{pasically, PN generali-
ISCO for initial binary models in strict hydrostatic equilib- zations of LRS; see, e.d.35,36], as well as numerical cal-
rium and calculating the emission of gravitational wavesculations in 3D incorporating simplified treatments of rela-
from the coalescence of unstable binaries. Many of the retivistic effects (e.g., [37,3§). Several groups have been
sults of RS were later independently confirmed by New andvorking on a fully relativistic calculation of the final coales-
Tohline [26] and Swestyet al. [27], who used completely cence, combining the techniques of numerical relativity and
different numerical methods but also focused on stabilitynumerical hydrodynamics in 3(89,40. However this work
questions, and by Zhuge, Centrella, and McMil[@8,29, s still in its infancy, and only preliminary results of test
who also used SPH. Daviext al. [30] and Ruffertetal. calculations have been reported so far. It should be noted that
[31,32 have incorporated a treatment of the nuclear physicdPN calculations performed by Taniguchi and collaborators
in their hydrodynamic calculationgdone using SPH and [41] to study the location of the ISCO for corotating and
PPM codes, respectivelymotivated by cosmological mod- irrotational binaries find that the ISCO moves inwards as
els of GRBs. All these calculations were performed in New-post-Newtonian corrections are increased, due primarily to
tonian gravity, with some of the more recent studies addinghe effect of 1PN potentials with momentum-based source
an approximate treatment of energy and angular momentuterms present in the system. Similarly, Buonanno and
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Damour[42] find that the ISCO for point masses in a binary initial conditions for our hydrodynamic coalescence calcula-
under GR moves inwards with increasingly massive objectstions. In addition, we present in this paper a simple solution
The middle ground between Newtonian and fully relativ-to the problem of suppressed radiation reaction for models of
istic calculations is the study of the hydrodynamics in PNNS with unrealistically low values o M/R¢c?.
gravity. Formalisms exist describing not only all lowest- The outline of our paper is as follows. Section Il presents
order correction§1PN) to Newtonian gravity, but also the our numerical methods, including the description of our new
lowest-orden(2.5PN effects of the gravitational radiation re- PN SPH code, a discussion of the advantages of using SPH
action [43,44). Such calculations have been undertaken byfor this work, and the steps taken to make our results as
Shibata, Oohara and Nakamu#b] using an Eulerian grid- realistic as possible. More details on the methods and our
based code, and more recently by Agahl.[46] using SPH.  treatment of the initial conditions are given in the appendi-
This paper is the first of a series in which we will present aces. Section Ill presents our initial results, based on two
comprehensive study of the hydrodynamics of compact bitarge-scale simulations, with and without 1PN effects. These
nary coalescence using a new PN version of a parallel SPHre performed for synchronized initial binaries containing
code which we have been developing over the past twdwo identical polytropes with = 3. In future papers, we will
years. This work will be the natural extension to PN gravitystudy systematically the dependence of these results on the
of the original Newtonian study by RS. NS EOS(by varyingGM/R¢ andT’, and using more real-
PN calculations of NS binary coalescence are particularlystic, tabulated EOS for nuclear matter at high densitye
relevant for stiff NS EOS. Indeed, for most recent stiff EOS,NS spins(allowing for nonsynchronized initial conditions
the compactness parameter for a typicalM 4 NS is in the  and the binary mass ratio. Motivation for this future work as
rangeGM/Rc?=0.1-0.2, justifying a PN treatment. After well as a brief summary of our present results are presented
complete merger, an object close to the maximum stablén Sec. IV.
mass is formed, withGM/Rc?=0.3-0.5, and relativistic

effects become much more important. However, even then, a Il. NUMERICAL METHOD

PN treatment can remain qualitatively accurate if the final

merged configuration is stable to gravitational collapse on a A. The SPH code

dynamical time scalésee the discussion in Sec. Il) [Most Smoothed particle hydrodynami¢SPH is a Lagrangian

recent theoretical calculatiorfs.g., the latest version of the method ideally suited to calculations involving self-
Argonne-Urbana EOS; see Rg47]) and a number of recent  grayitating fluids moving freely in 3D. The key idea of SPH
observations(e.g., of cooling NS; see Ref48]) provide s to calculate pressure gradient forces by kernel estimation,
strong support for a stiff NS EOS. In this paper we represengjrectly from the particle positions, rather than by finite dif-
NS with stiff EOS by simple polytropes with an adiabatic ferencing on a gridsee, e.g.[49], for recent reviews on the
exponent’ =3 (i.e., the EOS is of the form, =kr; , where  method. SPH was introduced more than 20 years ago by
P, is the pressurer, is the rest-mass density, akdis a  Lucy, Monaghan, and collaboratof§0], who used it to
constant; see RS2 and LRS3, who obtBis 3 for the best  study dynamical fission instabilities in rapidly rotating stars.
polytropic fit to recent stiff NS EOS Since then, a wide variety of astrophysical fluid dynamics
The most significant problem facing PN hydrodynamicproblems have been tackled using SRde Ref[51] for an
simulations is the requirement that all 1PN quantities begverview).
small compared to unity. Unfortunately, this precludes the Because of its Lagrangian nature, SPH presents some
use of realistic NS models. Shibata, Oohara and Nakamur@ear advantages over more traditional grid-based methods
[45] computed 1PN mergers of polytropes with-5/3 and a  for calculations of stellar interactions. Most importantly,
compactnes$ M/Rc?=0.03, leaving out the effects of the fluid advection, even for stars with a sharply defined surface
gravitational radiation reaction. Ayadt al. [46] performed  such as NS, is accomplished without difficulty in SPH, since
calculations for polytropes with'=1.6 orI'=2.6 and com-  the particles simply follow their trajectories in the flow. In
pactness values in the ran@M/Rc?=0.02-0.04, includ-  contrast, to track accurately the orbital motion of two stars
ing the effects of the gravitational radiation reaction. Foracross a large 3D grid can be quite tricky, and the stellar
comparison, a realistic NS of madé=1.4M, and radius surfaces then require a special treatmg@atavoid “bleed-
R=10km hasGM/Rc?=0.2, i.e., about an order of magni- ing”). SPH is also very computationally efficient, since it
tude larger. Unfortunately, performing calculations with ar-concentrates the numerical elemeifpgrticles where the
tificially small values ofGM/R¢ also has the side effect of fluid is at all times, not wasting any resources on empty
dramatically inhibiting the radiation reaction, which scales asegions of space. For this reason, with given computational
(GM/RE)?>. resources, SPH provides higher averaged spatial resolution
Our PN SPH code combines a new parallel version of thehan grid-based calculations, although Godunov-type
Newtonian SPH code used by RS with a treatment of PNschemes such as PPM typically provide better resolution of
gravity based on the formalism of Blanchet, Damour, andshock fronts(this is certainly not a decisive advantage for
Schder [Ref. [44] (BDS)]. Our calculations include all 1PN binary coalescence calculations, where no strong shocks ever
effects, as well as a PN treatment of the gravitational radiadevelop. SPH also makes it easy to track the hydrodynamic
tion reaction. We have also developed a relaxation techniquejection of matter to large distances from the central dense
by which accurate quasi-equilibrium configurations can beaegions. Sophisticated nested-grid algorithms are necessary
calculated for close binaries in PN gravity. These serve ag accomplish the same with grid-based methods.
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Our simulations were performed using a modified version @
of an SPH code that was originally designed to perform 3D M ZEb MpWap, 1)
Newtonian calculations of stellar interactio(see Ref[52]
and RS]. Although the fluid description is completely La-
grangian, the gravitational field in our codmcluding PN
term9 is calculated on a 3D grid using a fast-Fourier
transform-(FFT-) based Poisson solver. Our Poisson solver 1
is based on the FFTW of Frigo and Johng@8], which WabZE[WuF(a)_F(b)|aha)+w(|'?(a)_F(b)|'ha)]- 2)
features fully parallelized real-to-complex transforms.
Boundary conditions are handled by zero-padding all grldsHereha is the smoothing length for particie which is up-

which has been fou_nd to proQgce accurate results and to bdeated after every iteration so as to keep the number of neigh-
the most compu_tauonally efficient methddee alsd27)). bors as close as possible to a designated optimal \Wjue

e hich oriai il f he i q ®The form of the SPH kernaV used in our calculations is the
emission, which originates mainly from the inner dense réxme standard third-order spline used by(R&d most other

gions of NS mergers, we fix our grid boundaries t0bé ¢ \;rrent implementations of SPHThis kernel is spherical
NS radii in all directions from the center of mass. Particlesypq goes to zero far>2h.

that fall outside these boundaries are treated by including a The total mass-energy of the system can be calculated as

simple monopole gravitational interaction with the matter on

the grid. Our code has been developed on the SGI-Cray Ori-

gin 2000 parallel supercomputer at NCSA. M@te Mes- Mng d® r,(1+ 5):% Mp(1+ 8y), ()

sage Passing Interfaceeduces the memory overhead of the

code by splitting all large grids among the processors. Allyhere 5is a 1PN correction defined in EA12), while the

hydrodynamic loops over SPH particles and their neighborgyia) rest mass is

have also been fully parallelized using MPI, making our en-

tire code easily portable to other parallel supercomputers.

The parallelization provides nearly linear speedup with in- M:f d3x f*=% my. (4)

creasing number of processors up+td0, with a progressive

degradation for larger numbers. , In our simple polytropic models of NS, the pressure is
For more details on the Newtonian version of the code g culated from the local density as

and extensive results from test calculations, see [Rdi.

wherem, is the rest mass of particee and the weights are
given in terms of a smoothing kernW(F,h) by

) P =kqa(r)" (5)
B. The Blanchet, Damour, and Schéer PN formalism

with SPH wherek, is a function of the specific entropy of the patrticle,
To investigate the hydrodynamics of NS binary coales2nd I' is the adiabatic exponent. The standard Newtonian

cence beyond the Newtonian regime, the equations of REessure force is given by
were modified to account for PN effects described by the

formalism of Blanchet, Damour and Sdaa (BDS), con- thdm:_fﬁ_ﬁf‘):_ @ N ® .

verted into a Lagrangian, rather than Eulerian form. The "' ria) > P (rff‘))z (r&b))Z 1THab
main equations and definitions of quantities appearing in the (6)
BDS formalism are summarized briefly in Appendix A. The

formalism is correct to firsLPN) order, with all new forces In the absence of artificial viscositAV ), entropy is con-

calculated from eight additional Poissson-type equationserved and, is constant throughout the simulation. If AV is
with compact support, allowing for the computation of all included, the first law of thermodynamics can be expressed
1PN terms using the same FFT-based convolution algorithras
as for the Newtonian Poisson solver. PN corrections to hy-
drodynamic quantities are calculated by the SPH method, dk, r-1
i.e., by summations over particles. Dissipation of energy and a9t or@ir-1
angular momentum by gravitational radiation reaction is in- 2(ry”)
cluded to lowest2.5PN order, requiring the solution of one (7)
additional Poisson-type equation. . . . .

The key changes to the BDS formalism involve a conver-W'th a corresponding force on particles given by
sion to quantities based on SPH particle positions, rather
than grid_points. Ip the discussipn that foIIovefsandb r.efer FiAV= _ E Mol (a,0) ViWap - (8)
to quantities defined for particles, or particle neighbors, b
while i and | are spatial indices. The rest-mass density is
calculated at each particle position as a weighted sum oveFhe expression fofl , ,,) depends on the particular choice of
the masses of neighboring particles, AV. We use the form proposed by BalsdBb|, which gives

Eb MpIT (4, by (W(ay = Wpy) - ViWap,
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() (b)
*

*
R —
(ria))Z (r’(kb))Z

computed by finite differencing on the grid, and then inter-
(— O"M(a,b)+,3'ﬂ(2a,b)), (9)  polated between grid points to assign values at SPH particle
positions.

The calculation of the quadrupole tensor and its deriva-
where u(, ) is @ measure of the rate of convergence in thejves are unchanged in a Lagrangian formulation. When cal-
flow. The exact definition ofu, ) can be found in Egs. culating the third derivative, however, we found it advanta-
(15)—(19) of Lombardiet al. [54], who also show that the geous to take the SPH expression for the second derivative
optimal choice of the numerical coefficients &' =p’ of the quadrupole tensgRSY),
=I"/2. This form was shown to handle shocks properly and
minimize the amount of spurious mixing and numerical .
shear viscosity. Qij = mb(vi(b)vj(b)+xi(b)(9ju* +X,(b)f9iU*), (16)

For the PN pressure ford&g. (A17)], we now find b

Hap)=

and numerically differentiate once with respect to time. The

(Fhydroy pAVy i p_*&_a, (10) resulting expression differs from the third derivative expres-
' ' c2ry sion given in BDS by a term o®(v?/c?), but all radiation

reaction terms into which it enters already contain factors of
where a/c?<1 is a PN correction. In the calculation of O(v®/c®). While only approximate, this method proved
dia=(2—3I")a;U, —(I'/2)9,w?, we must take a derivative more stable since it does not require the numerical evaluation
of the local dynamic velocity-squared field, which we do by of several second derivatives on a grid.
SPH summations, i.e., we first write For calculations in which we include the radiation reac-
tion, but ignore 1PN corrections, all terms containing a factor

o
1+—

press_ __
FPress— .
c

1 of 1/c? in Appendix A can be ignored. In this case our equa-
2y— (A 2\ W25
(W)= My (@(r W) =W=air ), 1) tions reduce to those of the purely Newtonian case, with two
exceptions. First, we includg®?¢ [Eq. (A19)] in the SPH
and we then calculate the derivative terms as equations of motion, replacing EGA21) by
ar@=3 myaW, (12) LY reac
il x = b ab, w;=— s +U, +F~. a7
a(r, w)@=> mbW(zb)ﬂiWab- (13) Second, the Iglat|9nsh|p between the particle velogity
b and momentunw is given by
The nine Poisson-type equations in the full PN formalism G
of BDS are all solved by the same FFT convolution method. vi=w;+z —QFlw;. (18)
All 3D grids used by the Poisson solver are distributed Sc

among the processors in the z-direction. Real-to-complex

transforms are computed using tReFTWND_MPIpackage of ~ This has been showi31] to give the correct energy loss rate
the FFTW library[53]. The source terms of the Poisson as predicted by the classical quadrupole formula,
equations that do not contain density derivatives, Egs.

(A5),(A6),(A8), are laid down on the grid by a cloud-in-cell dE B 1G (3] ~[3]

method. All integrals over the density distribution are con- dt 55 % Qi) (19
verted into sums over patrticles, e.g.,

, Ignoring 1PN terms reduces the number of Poisson equations
r(x )_) M (14) o be solved per iteration from nine to two. The obvious
|x—x'| D [X—Xp| advantage is a proper handling of the dissipative PN effects,

while leaving the hydrodynamic equations in a simple form
Source terms containing density derivatives are calculated bthat can be directly compared to the Newtonian case. In ad-
finite differencing on the grid, rather than by SPH-based dedition, because the corrections aPv°/c®), the radiation
rivatives at particle positions. This has two benefits. First, foreaction terms always remain small, even when 1PN correc-
integrals of the type tions would be large.

We have performed a number of test calculations to es-
tablish the accuracy of our treatment of PN effects in the
SPH code. These include tests for single rotating and nonro-
tating polytropes in PN gravity, which we have compared to
we cannot convert directly from a volume integral to a sumwell-known analytic and semi-analytic resu[ts6]. In par-
over discrete particle masses. Second, it guarantees that ttieular, we have verified that our code reproduces correctly
volume integral of the source term vanishes in Eqgsthe dynamical stability limit to radial collapse for a single
(A7),(A16), as it should. Derivatives of the potentials are PN polytrope withl'=5/3 (see Appendix BL

U*(x)zf d3x

<I>=f d3x airy ... (15)
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C. A hybrid 1PN/2.5PN post-Newtonian formalism +2.5PN cases, the value of 5y is fixed at an unphysical

Throughout this paper, unless otherwise specified, we uséalué Whilecspy is varied, which can never truly extrapolate
units in which Newton’s gravitational consta@, and the O the physical case. By setting s to a realistic physical
rest massM and radiusR of a single, spherical NS are set valué while varyingc,py, we may be able to extrapolate our
equal to unity. In Newtonian physics, this leads to a scalelesults toyvard a correct phy§|cal limit. However, a_d|sadvan-
free calculationRS). When we include PN effects, specify- t2ge of this approach is that it does not allow for direct quan-
ing the physical mass and radius of the NS then sets thitative comparison with 'fuII GR S|mula}t|ons of bl'nary NS
value of the speed of light, and the magnitude of all PN coalesc;ence. In these sw_nulatlons, which esserjnal.ly hanqle
terms. In our units, the compactness raB/Rc® of a NS Corrections to all orders simultaneously, separation into vari-

is expressed simply asc® ous PN orders has no meaning.
The equations of BDS assume that all 1PN corrections are
small. As mentioned in Sec. |, this places a rather severe D. Initial conditions

constraint on the allowed NS mass and radius, since

L M
2 T1\15Mg

If, for example, we estimate the potential at the center of th
star asU, /c?=1.5k£2=0.21[Eq. (A5)], which is appropri-
ate forI'=3 models, we find that our “first-order” correc-
tion term a/c? [Eq. (A10)], with I'=3 and no internal mo-
tions, is

In addition to its normal use for dynamical calculations,
our SPH code can also be used to construct hydrostatic equi-
(200 librium configurations in 3D, which provide accurate initial
conditions for binary coalescence calculations. This is done
by adding artificial friction terms to the fluid equations of
fnotion and forcing the system to relax to a minimum-energy
state under appropriate constraifRS). The great advantage
of using SPH itself for setting up equilibrium solutions is
that the dynamical stability of these solutions can then be
tested immediately by using them as initial conditions for
dynamical SPH calculations. Very accurate 3D equilibrium
ﬁ:(2_3r)u_*:_7u_*2_1_5_ 21) solutions can be constructed using such relaxation tech-
2 c? c? niques, with the virial theorem satisfied to better than 1 part
in 10° and excellent agreement found with known quasi-
This is clearly problematic since the derivation of the BDSanalytic solutions in both Newtonia(LRS1, LRS4, RSP
formalism assumes thdi|/c?<1. For a fixed radius of and PN gravity[36]. The careful construction of accurate
15km andI'=3, a NS mass<0.9M,, or 1£2<0.09 is  quasi-equilibrium initial conditions is a distinguishing fea-
required to keega|<1. This problem is less severe for a ture of both our previous Newtonian calculatiofi®S) and
lower value ofT", since the coefficient o& is then smaller. our new PN calculations of binary coalescence. In contrast,
For I'=5/3, we havea=—3U, , but these configurations most other studies have used very crude initial conditions,
are known to be unstable against gravitational collapse foplacing two spherical stars in a close binary orbit, and, for
compactness parameters?#0.14(See, e.g., Ref56], and  calculations that went beyond Newtonian gravity, adding the
Appendi¥. These problems are the reason why previous PNnward radial velocity for the inspiral of two point masses.
hydrodynamic simulations of NS binary coalescence havés demonstrated in Sec. lll A, this leads to a significantly
used unrealistic NS models with low masses and large radislower inspiral rate. Moreover, spurious fluid motions are
In practice, we find that we cannot calculate reliably NScreated as the stars respond dynamically to the sudden ap-
mergers including 1PN corrections, unless?#0.05, orc pearance of the strong tidal force. These can in turn corrupt
=4. With such a small compactness parameter, radiatiofhe gravitational radiation wave forms. Spurious velocities
reaction effects would then be suppressed by a faetd? have additional effects in the full 1PN case, where spurious
=32, motions enter repeatedly into the evolution equations, by
Recognizing that the 1PN and 2.5PN terms describe egropagating through the 1PN quantities g8, and & [Egs.
sentially independent phenomena, and that the proper forf10),(A11),(A12)]. A specific cause of worry is the influ-
for energy and angular momentum loss holds even if 1PNence of velocities adding té, which affects not only the
corrections are ignored, we adopt a hybrid scheme. Specifself-gravity of the stars, but also their mutual gravitational
cally, in this paper, we sat=4.47=c,py for all 1PN cor-  attraction.
rections, which is unphysically large, but we use a physically We have developed a method, described in detail in Ap-
realistic value ofc=2.5=c, ¢ for the 2.5PN corrections, Pendix B, that allows for more realistic initial conditions for
corresponding, for example, to a NS mads-1.5M o with PN synchronized binaries. It reduces dramatically the initial
radiusR=13.9 km. We feel that this hybrid formulation pro- oscillations around equilibrium when the dynamical calcula-
vides a reasonable trade-off between physical reality and théon is started. Since the method varies rather significantly
limitations of the 1PN approximation. between the full PN+ 2.5P N formalism and the Newtonian
Note that this method should better extrapolate towardvith radiation reaction formalism, we handle the two cases
physical reality, compared with unrealistically undercompacseparately. For the Newtonian case, radiation reaction plays
NS models. If O+ 2.5PN simulations are interpreted as takingn0 role in the relaxation, entering only into the initial values
the limit c,py—0° for the 1PN corrections, we see that by of the velocity and momentuny, and w [Eq. (A22)], upon
reducing the compactness in both the 5PN and 6-1  the start of the dynamical run. The 1PN case is considerably

15km
R
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FIG. 1. Evolution of the system in the N run.
Projections of a random subset of 20% of all SPH
particles onto the orbitak-y) plane are shown at
various times. The orbital motion is counter-
clockwise. Units are such th&dbB=M=R=1,
where M and R are the mass and radius of a
single, spherical NS. Note that the development
of a mass-shedding instability aftér=25, and
the rapid contraction of the remnant toward an
axisymmetric state at late times.

more complicated, requiring the construction of static singlesolved on grids of size 286including the added space nec-
star models, which are then input into a PN binary relaxatioressary for zero-padding. For the 1PN run, we used a com-
scheme. pactness parametercff,=0.05 (see Sec. IIC In both
runs, we used, spn=2.5 in calculating radiation reaction
ll. RESULTS terms. The N run required a total of 600 CPU hours and the
PN run 1200 hours on the NCSA Origin2000, including the

We have performed two large-scale hydrodynamic SIMUza|axation phase. Particle plots illustrating qualitatively the

lations of NS binary coalescence, with and without the 1PN,y olution of the system are shown in Fig(N run) and Fig
correction terms of BDS. Both simulations included radia-2 (PN run. '

tion reaction throughout the entire run, treated in the formal-
ism of Appendix A. Hereafter, we refer to these two runs as
the Newtonian(N) and post-NewtonialPN) runs, noting
that the N simulation did include 2.5PN effects. It was shown by RS and LRS that equilibrium configura-
For both runs, we used 50000 particles per (f&al of tions for close binary NS become dynamically unstable when
10°), with aI'=3 polytropic EOS. The two NS are identical. the separatiom is less than a critical value. For Newtonian,
Synchronized rotation was assumed in the initial conditionsynchronized, equal-mass binaries Witk 3, the ISCO is at
The optimal number of neighbors for each SPH particle was =2.95R. Purely Newtonian calculations for binaries start-
set to 100. Shock heating, which plays a completely negliing from equilibrium configurations with a separation larger
gible role in the case studied here, was ignored and therefottban this value will show no evolution in the system. Bina-
the SPH AV was turned off. All Poisson equations wereries starting from a smaller separation, though, are dynami-

A. Dynamical instability and the inspiral process
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1 FIG. 2. Evolution of the system in the PN run.
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cally unstable, and coalesce within a few orbital periodsambiguity in the relative time between the two runs, which
even without the energy and angular momentum loss due tave resolve by adjusting the initial time of the N run such that
radiation reactioRS[26,27)). the maximum gravity wave luminosity occurs at the same
In simulations with radiation reaction included, coales-time in both the N and PN runs. This was found to require
cence will always be the end result. The limiting factor onshifting the time in the N run backwards so that it starts at
how large to make the initial separation is the computingt=— 13, while the PN run starts &&= 0.
time required for the binary orbit to slowly spiral inward. In Fig. 3, we show the evolution of the center-of-mass
Ideally, one should make sure that the stars are in quasbinary separation during the initial inspiral phase for our N
equilibrium when the orbit approaches the ISCO and theand PN runs. Figure 4 shows the inspiral phase of the N run,
inspiral time scale undergoes a shift from the slow radiationas well as the inspiral tracks predicted by the classical quad-
reaction time scale to the much faster dynamical time scaleupole formula for two point masses, and by the methods of
Since the effective gravitational attraction between twolLRS3 for two corotating spheres and two ellipsoids. We note
stars is increased by PN effects, we expect the ISCO to mouhat the results of LRS3 predict for extended objects a sig-
outwards when 1PN corrections are included. This was demmificantly more rapid inspiral rate, which is confirmed by the
onstrated by Lombardi, Rasio, and Shafisd], who used numerical run. In addition, we note that the approach of the
the same energy variational method as LRS to find equilibiSCO is clearly visible in the plots, where the inspiral rate
rium configurations for binary NS models including 1PN switches from the slow radiation-reaction-driven orbital de-
corrections. Taking into account these results, we used acay to the faster dynamical infall. This appears to happen at
initial separation ofr;=3.1R for our N simulation, and r=2.7R in the N case, in good agreement with previous
=4.0R for the PN simulation. As a consequence, there is amesults.
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FIG. 3. Evolution of the binary center of mass
separation during the inspiral phase for the two
calculations. The solid line is for the PN run, the
dashed line for the N run. The horizontal line
represents the dynamical stability limit for a
Newtonian, equilibrium binary, at=2.7R. It
appears as a break in the inspiral rate of the New-
tonian binary, whereas the PN binary inspiral be-
comes dynamical at significantly greater separa-
tion.
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Comparing the PN run to the N run, we see that the stafor binaries in strict equilibriuryy since PN corrections de-

bility limit must lie at a considerably larger separation. This
agrees with the results of Lombareti al. [54], who find that

crease the left-hand side. This effect can also be seen in the
results of Ayalet al.[46] by careful examination of their Fig.

PN corrections not only move the ISCO outward, but alsos(g), Even though the binary separation in their PN run has a

flatten out the equilibrium binary energy curiér) near the
stability limit (whereE(r) reaches a minimujn Following

the arguments of LRS3, we conclude that unstable inspirg},

large initial oscillation, caused by the use of non-equilibrium
initial conditions, it still converges at a much more rapid rate
an in their corresponding Newtonian model.

begins when the differential change in binary energy as a pyen though the effective stability limits of N and PN

function of separation becomes smaller than the energy lo
rate to gravitational radiation. The condition for unstable in
spiral, expressed as

i

is then encountered further outside the IS@GOG determined

dE dEgw

dr
ar < Tdt \dt

dt

(22)

'%FJinaries differ by a large amount, their actual inspiral veloci-

ties are essentially the same from the moment of first contact,
at a separation af=2.5R, until the merger of the NS cores.
The only significant difference is the break in the inspiral
velocity for the N run att=20, which occurs as the cores
start to come into direct contact with each other. The lack of
this feature in the PN run will be explained in Sec. Il B.

3.1 T T T T

-~
——

3.0

2.9

28

r/R

2.7

2.6

25

FIG. 4. Same as Fig. 3, but focusing on the
early inspiral of the Newtonian binary. The solid
line is the result from the SPH calculatidiN
run). The dashed line shows the point-mass ap-
proximation, the dash-dotted and dotted lines the
approximations for two spheres and two ellip-
soids, respectively. See text for details. The point
mass approximation clearly fails when tidal inter-
actions become significant, but note the excellent
agreement with semi-analytic results for extended
stars before the ISCO is encountered.
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0.65 T T T T T T T

FIG. 5. Evolution of the maximum density in
the two coalescence calculations. The upper
curve is for the PN run, the lower curve for the N
run. The sharp decline in density tat 15 occurs
as the two NS are tidally disrupted, followed by a
larger increase as they coalesce.

B. Coalescence In Fig. 7 we show the corresponding gravity wave luminos-

In Fig. 5, we show the time evolution of the maximum %y Of the system, given by

density in both runs. The maximum density is at the center of

either star initially, but it shifts eventually to the center of the 5L =£(Q[3]Q[3]) (25
merger remnant. The initial oscillations with a periodTof GWT g\ eij xij /-

=2-3 correspond to the fundamental radial pulsations of

the polytropes, and represent the errors resulting from smalje see that, as the inner NS cores merge, the gravity wave
departures from strict equilibrium in the_ initial conditions. luminosity peaks for both runs, with the characteristic fre-
We see thaﬁp/pzo_o_l and 0.05, respectively, for th_e N and quency of the waves increasing likevice) the rotation fre-

PN runs, which provides a measure of the numerical acCljyency of the system. This frequency increase is more rapid
racy of the initial conditions. , in the PN case, since the inspiral is faster.

As the binary system contracts to separationsrof — ager t=30, the evolution of the N binary is rather
=2.7R, we see a rather sudden and rapid decrease in thgaightforward. A triaxial object is formed at the center of
maximum density found at the core of each star, correspondne system, with spiral outflows emanating from the outer
ing closely with the moment of first contact of the two stars, yarts of each star. The spiral arms remain coherent for sev-
after which the cores get tidally stretched. For the PN rung g windings before slowly dissipating, and finally leaving a
this follows a gradual increase in the average density maXifo\-density halo of material in the regioWR=2— 15. Dur-
mum, which is caused by the contraction of each NS in réjng this time, the central triaxial object acts as the predomi-
sponse to the growing gravitational potential of its companyant source for the gravity waves as it spins down, leading to
ion, rather than a pure tidal effect. This effect, which seems; characteristic damped oscillatory signature, at a luminosity

to result primarily from the weakening of the pressure force,,,oximately 1/30 that of the peak. The rise in central den-
in Eq. (A17) asa becomes more negative in response 10 thesjry from the initial value at=0 to the final value at

growing gravitational potentidEq. (A10)], was also seen by  _gq js consistent with what is expected from the mass-
Ayal et al.in one of their rungRef.[46], see their Fig. 6, run re%dius relation for a Newtonian polytrope with=3.
P3. When the center of mass separation reaches a value of 1 simple picture, which is familiar from many previous
r=2.0R the maximum density stops decreasing, tUmingneyonian simulations, is seen to break down when 1PN
around and increasing sharply as the cores come into diregkacis are taken into account. As is clear from Fig.t2 (
contact and mergi. N , , - 1= 12), just prior to the final coalescence, 1PN effects cause
In F'%' 6, we ? ow the %rawty Wa\I/e_S|g_nature? of bothye long axis of each star to rotate forward relative to the
runs. The wave forms in the two polarizations of gravita-jin, v ayis, so that the inner part of each star leads the center
tional radiation are calculated for an observer at a distance of mass in the orbital rotation. Thidynamical tidal lagis

along the rotation axis of the system in the quadrupole apg,nected from the rapidly changing tidal forces during the

proximation, final inspiral phas€LRS5). It is not to be confused with the
4 o . tidal lag produced by viscous dissipation in nonsynchronized
c¢*(dhy)=Qu=Qyy (23 binaries(see, e.g., Re{57]). The dynamical tidal lag angle
) can be estimated analytically for a Newtonian binary whose
c*d hyx)=2Q,y. (24 orbit decays slowly by gravitational wave emission. Using
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-2.0 FIG. 6. Gravity wave signatures for the two
o5 ) ) ) ) ) ) ) coalescence runs. The wave forms are calculated
0 10 20 30 40 50 60 70 80 for an observer at a distanckalong the rotation
t axis. The solid line shows thk, polarization,
the dashed line thén, polarization[see Egs.
25 , . . . , , . (23),(24)]. At late times in the N run the wave

forms show a simple, exponentially damped os-
cillation, whereas in the PN run an additional
large-amplitude modulation is apparent.

tdh

0.45 T T T T T T T

FIG. 7. Gravity wave luminosity for the two
coalescence rurisee Eq(25)]. The solid line is
for the PN run, the dashed line for the N run. The
peak luminosity in the PN run is smaller than that
of the N run, but secondary peaks occurtat
=35, 50, and 70.
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FIG. 8. The ratio of the principal moments of
inertia in the equatorial plane for the PN merger
remnant, compared to the gravity wave luminos-
ity at late times. The times of maximum elonga-

0.25 . T . . . . T . T tion correspond to maxima in the gravity wave
luminosity, and to decreases in the maximum
o201 ] density in Fig. 5 att=35 andt=50 (and less
045 | clearly att=70).
g
- 0.10 —
0.05 B
0.00 L 1 i L L ! MR daten mimen =N
30 35 40 45 50 55 60 65 70 75 80
t
Eqg. (9.21) of LRS5, we estimate a lag anglg=0.01 for The occurrence of a second peak in the gravity wave lu-

1/c?=0.16 andr=2R. This. is in agreement Wi_th_ the very minosity can also be seen in the PN calculations presented in
small lag angle observed in our N rubarely visible att  Ref. [46] for polytropes withI'=2.6, but the second peak
=12 in Fig. 1. In contrast, from our PN run, we findy  gppears considerably less pronounced Fet 2.6 than for
=0.14, |nd|cat|n_g that the more rapid inspiral can dramati-r—3 This may simply result from the higher central con-
cal'lglsulﬁ:ee%ss trglsrggfcp};ocee ds. material from the leadin centration of objects with lower values df, which de-
edge of each star wraps around the other, so that the cor Leases the emission of grawtgtlonal raQ|at|on for a quac_:iru—
ole deformation of given amplitude. Grid-based Newtonian

simply slide past each other instead of striking more nearl . : ;
head-on as in the N case. As this happens arduri2h, the ~calculations by Rufferet al. [31] for nonsynchronized bina-

maximum density drops slightly, and the gravity wave lumi-'i€s with a different EOS also show a second peak in the
nosity rises again, reaching a second peak=a85, with a  9ravity-wave luminosity. For Newtonian systems with
maximum luminositylL,= 0.65L ; compared to the first peak =2.2, the merger remnant evolves quickly to axisymmetry
of luminosity L;. A cursory examination of Fig. 2 reveals a and the emission of gravitational radiation stops abruptly af-
highly asymmetric, triaxial configuration near this time. Theter the first peakcf. RS1 and RSR
subsquent oscillations of the two cores in their sliding mo- C. The final merger product
tion against each other damp out rather quickly, and the cen-
tral object becomes more nearly axisymmetric while the |5 Fig. 9, we show density contours of the central merger
maximum density rises again. A third peak of maximum Iu-remnant in both the equatorial and vertical planes. For the N
minosity Ly=0.15L, is clearly visible neat=51, as is an- Jun. the remnant is shown &% 80, which is at the end of the
gt?;:r;f %ﬁl('%h;g]g?e'rnlljrrﬁn(::s?ttral g:;sc;tcij:;:;gme’ anCalculation. For the PN run, we show the remnant=ab5,

' y P ) d/vhich corresponds to the third gravity wave luminosity peak,

To better understand this oscillation of the merger, an L nd att=80. the end of the simulation and close to a aravit
the corresponding modulation of the gravitational radiation RS 9 y

wave forms, we show in Fig8 a comparison between the WaV€ Ium_inositymi_nimum Axes for the contour plots are
gravity wave luminosity and the ratio of the principal mo- &ligned with the principal axes of the remnant. A summary
ments of inertia of the central object in the PN run. As can bef values for the principal axes and moments of inertia for
seen clearly, the two quantities are strongly correlated. If wdhe three configurations is presented in Table I.

ignore the details of the internal motion of the fluid, it may ~ We see that the final remnant in the PN case is larger and
be tempting to model the late-time behavior of the remnanthore centrally condensed than in the N case, with a higher
in terms of a simple quadrupolé=2 f-mode oscillation of ~ degree of flattening in the vertical direction. This is in part
a rapidly and uniformly rotating single star. Adopting an because in the PN case less mass and angular momentum is
average value for the angular velocity of the central objectgxtracted from the central region and deposited in the halo.
02=0.4, and using Eq3.30 of LRS5 for the frequency of Figures 10 and 11 show the evolution of the angular momen-
the quadrupole oscillation of a compressible Maclaurintum of the various components in both runs. In the N case,

spheroid, we obtain a frequeney=0.38, which gives us a Most of the angular momentum lost by the remnant has gone
modulation periodT,,,=16.6, very close to what we ob- into the halo. In the PN case, about equal amounts of angular

serve in Figs. 6 and 7. momentum are lost to the halo and to the gravity waves.
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FIG. 9. Density contours of the merger rem-
nants. The top frames show the PN remnartt at
=55, the middle ones show the same remnant at
t=80, and the lower ones show the N remnant at
t=80. The left frames show a cut through the
equatorial plane, the right frames through the ver-
tical plane (containing the rotation axis Con-
tours are logarithmic, ten per decade, starting
from the maximum density ofr(, ) ,a,= 0.567 for
the PN run at=55, (r,)max=0.608 for the PN
run att=80, and () nax=0.518 for the N run at
t=80. The axes have been rotated to fall along
the principal axes of the remnant. Note the cusp-
like shape of the contours near the equator in the
vertical plane, indicating maximal rotation.

-1 0 1 2 -1 0 1 2

Nevertheless, the axis rata,/a, in the equatorial plane strictly Newtonian calculations; see RSNeither case gives
is approximately the same for the N runtat80 and for the a rigid rotation law. The angular velocity of the N remnant
PN run att=55 and att=380, indicating a reasonably con- shows a slight increase for>1.1R, whereas the PN run
stant shape for the outermost region. Further comparison behows a decreasing angular velocity at the same point. Thus,
tween the N and PN remnants, however, shows that theipoth exhibit signs of differential rotation, but in opposite
interior structures are remarkably different. In the PN rem-directions. We find that the centrifugal acceleration and
nant, the isodensity surfaces do not maintain a consistemravitational acceleration become equal at the outer edge of
orientation or shape as we move from the center to the equdhe remnant for both cases,rat 1.6R andr =1.85R for the
tor of the remnant, indicating that the structure of the rem-N and PN runs, respectively. This is in good agreement with
nant is much more complex than that of a self-similar ellip-the morphology of the remnants seen in Fig. 9, where a
soid. Gravity-wave luminosity peaks are seen to occur whemoticeable cusp-like deformation is visible in the outermost
the inner and outer contours are aligned, leading to a largetensity contours near the equator in the vertical plane. We
net quadrupole momergthis is nearly the case a=55 in  conclude that in both runs, the final remnantmsximally
Fig. 9. Minima occur when the orientations lie at right and differentiallyrotating.
angles, as can be seen near80 for the PN run in Fig. 9. The rest mass of the N remnant &80 is M,

In Fig. 12, we show the radial mass and rotational veloc=1.73M, while that of the PN remnaril,=1.90M. The
ity profiles of the remnant. Horizontal cuts through the mat-remaining mass, 0.2M for the N run and 0.1 for the PN
ter indicate that the rotation is cylindrical, with rotational run, has been shed during the coalescence, forming the spiral
velocity a function only of the distance from the rotation arms seen in the middle panels of Figs. 1 and 2. These spiral
axis, independent of height relative to the equatorial planerms later merge to form a halo of matter around the central
(the same type of rotation profile has been obtained frommemnant. With a crude linear extrapolation from a halo mass
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TABLE I. Properties of the merger remnants. Units are such thatude of the 1PN corrections. It should also be noted that fully
G=M=R=1, whereM andR are the mass and radius of a single, GR calculations of the coalescence of NS with &2 EOS
spherical NS. Herel, is the rest mass of the remnaMy, is it gyggest that significant mass loss occurs even for extremely
gravitational mass); is its total angular momentun) . and (2 compact NS40].
are the angular rotation velocities at the center and at the equator,

and thea;’s andl;’s are the principle axes and moments of inertia. .
D. The final fate of the remnant

N (t=80) PN ¢=55) PN =280) By their very nature our calculations cannot address di-
rectly the question of whether the NS merger remnant will
M, 1.73 1.90 1.89
collapse to form a BH. Indeed the parameters of our PN run
Mg, N/A 1.85 1.84 o .
were chosen so that all 1PN quantities remain small through-
J, 0.56 0.98 0.95 . . .
3 IM2 0.47 072 0.70 out the evolutlo_n., WhI.Ch, fol’>4/3, guarantees stability.
Cor Myr : : : This can be verified directly by checking, for example, that
Q. 0.45 0.80 0.75 the mass distribution in the final merger remnant remains
Qeq 0.67 0.47 0.48 everywhere well outside the corresponding horizon radius
(see Fig. 12 However, given some of the general properties
a; 1.65 1.90 182 of the merger remnant as determined by our calculations, we
ap 1.35 1.58 1.53 can ask whether an object with similar properties, but with a
as 0.95 0.92 0.93 more realistic EOS and higher compactness, would still re-
a,/a, 0.82 0.83 0.84 main stable to co_llapse _m_fuII _GR. For _th_e coalescence of
/ 0.58 0.48 0.51 two 1.4M NS with realistic stiff EOS, it is by no means
a3/ ' : : certain that the core of the final merged configuration will
I 0.575 0.861 0.741 collapse on a dynamical time scale to form a Bi¢e Refs.
Iy 0.477 0.583 0.674 [21,58 for recent discussions
I 0.247 0.228 0.236 The final fate of a NS binary merger in full GR depends
not only on the NS EOS and compactness, but also on the
I2/1; 0.829 0.677 0.909 rotational state of the merger remnant. It has been suggested,
I3/1y 0.429 0.274 0.319 for example, that the Kerr paramem,rz‘]r/Mgr of the rem-

nant may exceed unity for extremely stiff EQS7]. This
does not appear to be the case, at least for our choice of EOS.
of M,=0.27M for the N run, with 1¢%,,=0, andM;,  In Fig. 13, we show the evolution of the Kerr parameter
=0.10M for the PN, run with 1¢§PN=0.05, we might throughout the entire coalescence, including only particles
expect that, for physically reasonable NS withc?/ for which the rest-mass density satisfigs>0.005. This cut
~0.15-0.20, the vast majority of the mass will remain in includes essentially all matter in the initial stages, and effec-
the central remnant. However, this result may be cruciallytively cuts out particles in the spiral outflow once the coales-
dependent on our choice of initial spins and the EOS, and itence begins, as well as those remaining in the outer halo at
is limited by the restrictions we have placed on the magnithe end. We see that, is very near unity just prior to the
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N FIG. 10. Evolution of the angular momentum
101 "\ 7 in various components in the N run. Helg, is
N, the total angular momentum in the systeip,is
J osl \'\, Jr i for the inner remnantdefined by the condition
Nl - r,>0.005, which includes the entire binary ini-
~7 1 tially, but only the inner remnant at later times
06 e . PR and J,, is for the outer halo(so that J;o=J,
R +J;,). The dotted line shows the initial angular
04l e Jh | momentum of the system.
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POST-NEWTONIAN SPH CALCULATION . ..
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r i FIG. 11. Evolution of the angular momentum
in various components in the PN run. Conven-

tions are as in Fig. 10.
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final merger, but, in contrast to what has been assumed imost stiff NS EOS(including the recent “AU” and “UU”
some previous studig$8], it decreases significantly during EOS of Ref[59]) allow stable, maximally rotating NS with
the final coalescence. The decrease occurs mainly during pbaryonic masses exceedingV3, [60], i.e., well above the
riods of maximum gravity-wave luminosity, as angular mo- mass of the final merger cofehich is 1.9M =2.85M, for
mentum is radiated away, and during the mass-sheddinl =1.5M in our PN calculation; see Fig. L2Differential
phase aftett=20, since angular momentum is transferredrotation (not taken into account in the calculations of Ref.
from the core to the outside spiral outflow. By the end of the[60]) can further increase this maximum stable mass very
PN run,a, has decreased te-0.7, well below unity, and significantly (see[58]). For slowly rotating stars, the same
certainly not large enough to prevent collapse. The finaEOS give maximum stable baryonic masses in the range
value of the Kerr parameter for the PN rum,=0.70, is 2.5-3 Mg, implying that the core would probablput not
certainly collapse to a BH in the absence of rotational sup-

considerably greater than that of the N rap=0.47. The

difference is attributable to the greater mass ejected in the Igort.

run, which carries off a significant fraction of the angular If the final merger remnant is being stabilized against col-
lapse by rotation, one must then consider ways in which it

momentum of the systeltsee Figs. 10 and 11
Quite apart from considerations of the Kerr parameter, thenay subsequently lose angular momentum. Further reduction
rapidly rotating core may be dynamically stable. Indeed,of the angular momentum of the core by gravitational radia-

2.0 T 0.50
1
]
181 ] PN 0451
[ Y A
k
1.6} ' N 0.40}
,' FIG. 12. Enclosed rest mass and radially av-
1.4r ! 0351 eraged rotational velocity profiles of the final
P merger remnant at=80 for the two runs. Here,
oo ! o.80r eyl is the distance from the rotation axis, while
= i Q is the radius from center. In both plots, the solid
% 101 ! B 025y line is for the PN run, the dotted line for the N
osl ! 020 run. The dashed line shows the radius for a Kerr
| ,’ | black hole witha=0.7 (the value we find for the
osl ! osl PN run att=80). For the rotational profile, we
’ ,' ’ show only the data for-0.1<z<0.1, all other
ok ! 0.10 horizontal cuts yielding similar profiles extending
| to smaller radii.
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' -
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FIG. 13. The evolution of the Kerr parameter
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10.
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tion or dynamical instabilities cannot occur, since, at the endhe effects of the gravitational radiation reaction, we have
of the dynamical coalescence, the core is, by definition, dyfound that the inspiral rate just prior to merging agrees well
namically stable and nearly axisymmet(i@., no longer ra-  with the predictions of semi-analytic models using compress-
diating gravity waves; see Figs. 6 angl The development ible ellipsoids as trial functions in an energy variational
of a secular bar-mode instabilitg quadrupole mode grow- method(LRS).

ing UnStably on the viscous diSSipation time Scale; see LRS1 Using a hybnd formalism where radiation reaction is
and LRS4 has been discussed as a way of reducing thgreated realistically but 1PN effects are reduced in amplitude
angular momentum of a rapidly rotating compact obfédf. g s to remain numerically tractable, we have compared the
However, this cannot occur either for a binary merger reMpy drodynamic coalescence of binary NS systems in Newton-

nant because, if the remnant were rotating fast enough to hg, on4 pN gravity. We find that 1PN effects lead to impor-

ke ot ot ko o s Sl i@, ualtaiv ifrences i the ydfodyramio behar
PI€, point A .and in the gravitational radiation wave forms and luminosi-
spheroid sequence into the Jacobi ellipsoid sequence coin- . .
ties. In Newtonian gravity, the merger of two equal-mass,

cides with the onset of secular instability for Maclaurin sphe—r:3 polytropic NS produces a single peak in the gravity-

roids; see, e.g[56] and LRS1). Note that other processes, S i ; :
such as electromagnetic radiation or neutrino emission’@ve luminosity, followed by an exponentially decaying sig-

which may also lead to angular momentum losses, take placé®- In PN gravity, we see a strong quadrupole oscillation of

on time scales much longer than the dynamical time scalthe remnant immediately after coalescence, which leads to

(see, e.g., Ref62], where it is shown that neutrino emission several additional peaks in the gravity-wave luminosity. In

is probably negligible These processes are therefore decouP®th Newtonian and PN gravity, the final merger remnant is

pled from the hydrodynamics of the coalescence. Unfortufound to be maximally rotating and nearly axisymmetric.
nately their study is plagued by many fundamental uncertain_Even for realistic NS EOS a_nd in fuII_ GR, this configuration
ties in the microphysics. is expected to be_ stable against gravitational collap_se to a_BH
on a dynamical time scale. The amount of mass ejected into
an outer halo by the rotational instability developing during
the final merger decreases substantially when 1PN effects are
Using a Lagrangian, SPH-based adaptation of the BD$1cluded, and we suggest that, for realistic NS models, es-
PN formalism for hydrodynamics, we have calculated thesentially no mass might be ejected, so that the total baryonic
merger of a coalescing NS binary including 1PN and gravi-nass of the system remains entirely in the central remnant
tational radiation reaction effects. We have also developed &hough this result is hardly a certainty
method for computing accurate, quasi-equilibrium initial ~ Our study is naturally beginning with PN calculations for
data for coalescing binaries in PN gravity, improving uponequal-mass, corotating binaries with a simple polytropic
previous calculations that used nonequilibrium initial condi-EOS. This allows us to compare our results directly to pre-
tions containing unperturbed, spherical stars. vious Newtonian calculations performed with the same set of
We have confirmed that PN corrections to gravity causeassumptiongRS[26,27,33). The dependence of our results
the binary inspiral to become dynamical at larger binaryon the NS EOS will be studied in future papers by varying
separation compared to what is predicted in the Newtoniathe adiabatic exponeft (in the rangd’=2—4 applicable to
limit. In calculations using Newtonian gravity, but including NS; see, e.g., LRS3and by performing additional runs with

IV. SUMMARY AND DIRECTIONS FOR FUTURE WORK
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more realistic tabulated NS EOS. In particular, we will con-knowledges support from MIT. F.A.R. was supported in part
sider the Lattimer-Swesty EO§3]. This EOS includes by the Alfred P. Sloan Foundation. This work was also sup-
high-temperature effectsvhich can be significant in the out- ported by the National Computational Science Alliance un-

ermost, low-density regions of some NS mergeasd has der grant AST980014N and utilized the NCSA SGI/CRAY
also been employed in several previous Newtonian studie§rigin2000.
[33], to which we want to compare our results. Even with the

lowest available value of the nuclear compressibilitg ( APPENDIX A: THE BDS 1 +2.5 PN FORMALISM
=180 MeV), the Lattimer-Swesty EQOS is relatively stiff- ' '
fective'=2.5 for a 1.4V NS). The latest microscopic NS In the original Eulerian, PN formalism of Blanchet,

EOS, constrained by nucleon scattering data and the bindingamour, and Sctiar [44], the key variables appearing in the
of light nuclei, and incorporating three-body forces, are evemydrodynamic evolution equations are PN variants of the
stiffer (effective '=3; see, e.g., Ref64] for a summary, standard Newtonian quantities. Specifically, the coordinate
and Ref.[47] for the latest version We will use several of (est-mass density, and momentum per unit rest-mass

these recent EQS, in tabulated form, to perform additionalgre given in terms of the proper rest-mass densignd the
more realistic calculations. More schematic EOS based Oﬁ—velocityu” by

exotic states of matter, such as pion condensates or strange

quark matter, can be much softdi£2 and maximum stable r, =\gup (A1)
masses not much above M4,). We will not consider such

soft EOS in our calculations, since they render the PN ap-

proximation invalid. Note that several observations in W=
progress may have already ruled them ¢elg., from the

large measured mass of the NS in Vela X-85]).

Using our PN SPH code we will also study the depen-whereh is the specific enthalpy of the fluid. Assuming here-
dence of the hydrodynamics and gravitational wave emissioafter a polytropic equation of state, i.e. one for which the
on the binary mass ratig. Neutron star masses derived from pressure is given by
observations of binary radio pulsars are all consistent with a .
remarkably narrow underlying Gaussian mass distribution P (Fe)=Kry (A3)
with My=1.35-0.04M, [66]. The largest observed depar- . . . o
ture fromq=1 in any known binary pulsar with likely NS it is found that the specific enthalpy is given by
companion is currentlg=1.386/1.442-0.96 for the Hulse- r r p
Taylor pulsar PSR B191316[67]. Although the equal-mass h=k r£’1= =
case is clearly important, one should not conclude from these -1 F=1r,
o.bservatlo.ns that it is unnecessary to consider coglescmg ngshould be noted that, is not the Newtonian pressure, but
binaries with unequal-mass components. Indeed, it cannot br% : .
excluded that other binary NS systeftisat may not be ob- ther a 1PN variant of it : . : :
servable as binary pulsarsould contain stars with signifi- The BDS formalism requires the solution of nine Poisson

i . . _equations, one for the Newtonian gravitational potertigl,
cantly different masses. Moreover, Newtonian calculations for 1PN i d a final to handle th
of binary NS coalescence have shown that even very small. en 1or corrections, and a final one 10 handle the
departures fromg=1 can drastically affect the hydrody- gra_l\_/rl]tatmnal t_radl?tlotr;] reacthtn .t' | potential i
namic evolution(RS2,[29]). e equation for the gravitational potential is

In future papers we will also perform PN SPH calcula- VU, =—A4xr, . (A5)
tions for binary NS systems that are initiallyonsynchro-
nized This is likely to be the case for real systems, since theNote that with this sign convention, the gravitational poten-
tidal synchronization time in close NS binaries is probablytial is a positive quantity. The 1PN correction potentials are
always longer than the orbital decay tiff&8]. The methods given by
of LRS can be used to construct approximate, quasi-

h

1+§ cuy;, (A2)

(A4)

equilibrium initial conditions for nonsynchronized coalesc- VU= —47r,w, (AB)
ing binaries. For binaries that are far from synchronized, the ) :
final coalescence involves some new, complex hydrody- VCi=—4mX d5(r , Ws) (A7)

namic processes, and significant differences in the gravita-
tional wave emission compared to the synchronized case,
with an additional dependence of the gravitational radiatio
wave forms on the stellar spifg9,69. Moreover, the final

fate of the merger may also be very different for initially
nonsynchronized binaries, since the merger remnant may no

1 1.
longer be maximally rotating21,31]. Ai=4U;+ EC‘_ Ex'aSUS. (A9)

V2U,=—4mr, 6. (A8)

"Note that the summation in E@A6) runs overi=x,y,z,
thusU,# U, in Eg. (A8). Using these, we define the quantity

ACKNOWLEDGMENTS L .
It is important to note that the volume integral of the

This work was supported in part by NSF Grant AST- source term of EqA7) vanishes, assuming that the origin is
9618116 and NASA ATP Grant NAG5-8460. J.A.F. ac- at the center of mass and momentum of the system, and thus

064012-17



JOSHUA A. FABER AND FREDERIC A. RASIO

it contains no monopole term. In EGA8), the quantitys in

PHYSICAL REVIEW B2 064012

where the particle velocities' are related to the specific

the source term is one of three quantities which are assumezbordinate momenturw; by

to be of orderO(1/c?). They are, assuming the equation of

state Eq(A3), and withw?= &'w,w;,

1
a=2U*—F(§W2+3U*) (A10)
1 b
— w2y *
B= W i1y *3Us (A11)
3 3-2
5= 2w+ P (A12)

2 r-1 E_U*'

The third derivative of the symmetric, trace-frie&®TF) quad-
rupole tensorQf’! is calculated from

dj .
Pij=2f d3xr, 3WiajU*—2WiJr—p*+x'WSaSjU*
*
—xiasjus} (A13)
o 111
Qij"=5PijT 5Pji— 56ijPss, (A14)

T2 2 3

1 4G
— | W+ C—Ai+§ EWSQiS . (AZZ)

The quantitiesy andw will be referred to simply as the
velocity and momentum vectors, respectivedge[31]).

In the SPH method, the evolution equations must be ex-
pressed in a Lagrangian form, given simply by

X' =y (A23)

w; = FPressy F1PN g preec, (A24)

In BDS, there also appear evolution equations for the en-
tropy and the pressure. The former, converted into Lagrang-
ian form, states that entropy is a conserved quantity, and is
handled in our code by the choice of AV, as in Eg).. The
latter is not necessary here since we calculate the pressure
directly from the density at each time step.

Since the parametersx and B, defined by Egs.
(A10),(A11) become rather large for NS withcf~0.05, we
make some small adjustments to E¢s17),(A22). We note
that for an adiabatic exponehit>3, « is everywhere nega-
tive. To ensure that the pressure force always acts in the

and is used in the source term for the radiation reaction poproper direction, we make a substitution in EA17),

tential Ug, of order O(1/c%). This is calculated from the

final Poisson equation,
Us= —ZG(R—Q[-3]xi&-r ) (A15)
5 5 ] IS

VZR=—47Ql X g;r, . (A16)

Since we are dealing with the trace-free quadrupole tensor, it
is easy to show that the volume integral of the source term of

Eqg. (A16) also vanishes, for any mass distribution.
Forces are defined by

a dp 1p
press_ __ S %P, = Px
Fpress_ (1+C2>r Srote (A1)
1) 1 1
File: 1+§ &iU*+§é’iU2 CZWSaiAS
(A18)
Freac_ 4Us. (A19)

Finally, the evolution system, in Eulerian form, is given

by
IF = i(r 0" (A20)
AW, = — S W, + FPressy p 1PN

+Fjeac, (A21)

a )\ dip o -t aip
—l1+=|——-|1-—=] —. (A25
( CZ) M ( CZ) - ( )
This new form is entirely equivalent to the one it replaces to

1PN order. Similarly 8 is everywhere positive, so we make
the following substitution in Eq(A22):

2

c

-1

i W, . (A26)

1+ 5
CZ

APPENDIX B: RELAXATION METHODS
1. PN case

Constructing hydrostatic equilibrium initial conditions in
PN gravity is a much more difficult problem than in New-
tonian gravity, primarily because of the complex relationship
between the particle velocity and momentum. We get around
this problem by implementing a multistage approach to the
construction of relaxed configurations.

First, we construct a series of hydrostatic equilibrium
models for singld” =3 polytropes with increasing values of
1/c?, to gauge the effects of the PN corrections on the struc-
ture of the stars. Specifically, we construct relaxed models
with compactness parameters of2# 0.01 to 0.07, in steps
of 0.01.

In the relaxation procedure, spurious velocities arising
from configurations adjusting toward equilibrium are ignored
as sources for the force equations. Thus particles move dur-
ing the relaxation, but the force exerted on each particle is
that of a static mass configuration. We thus solve all Poisson
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equations assuming=0, which eliminates EqgA6),(A7).  collapse when £F=0.141 forl'=5/3[56]. We tested 1
In addition, the velocity terms in the definition of the 1PN Vvalues in steps of &#=0.02, until we reached 0.10, at
quantities a, B, and & are removed from Egs. which point we halved the step size until we reachecf 1/

(A10),(A11),(A12). This greatly simplifies the equations giv- =0.13. To make the relaxation overdamped, we reduced the

ing us the set rescaling time ta=2.0, witht,s,=1.0. It was found that

1/c?=0.13 is always unstable, collapsing inward uncontrol-

VU, =—4mr, (B1)  lably, no matter how short the rescaling time. This agrees

5 well with the theoretical prediction when we account for the
VeU,=—47r, 6 (B2)  magnitude of the 1PN corrections we deal with, and the ap-
proximations made in the analytic treatment. In Fig. 14, we

a=(2-3U, (B3) show the time evolution of the specific entrogyfor both

sequences, taken as a ratio with the Newtonian value of the

B=—— Px +3U (B4) specific entropy derived from the Lane-Emden equation. We

I'=1r, * see a gradual increase lofas the compactness is increased,

in both sequences, until we get tai# 0.12 forl'=5/3, for

_3r-2 P_*_U B5 which k is 50% larger than the corresponding value for
S r-1r, °F B9 qe2=0.11,
Parameters for the single star sequences are shown in
a\dp, 1 ps Table Il. Radial profiles of the density, as well as all impor-
PP —| 1+ 5|~ 5 de (B6)  tant 1PN quantities are shown in Figs. 15 and 16. We see in
¢ e the I'=5/3 case that increasing the compactness increases
the central concentration of the model, which can be seen in
FilPN: 1+ EZ) aU, + izﬁiUz (B7) the factor of 2_i_ncr<_ea_se in central density. For compactnesses
c c near the stability limit, we see that, B8, and § are all of
order unity. A different behavior is seen in the= 3 case, for
i which the internal structure of the star remains almost un-
v'= ( 1- —2) W, (B8) changed as the 1PN order parameters get large. We see that
c a and B both get relatively large for more compact models,
S but § is rather small, since the potential and pressure terms
X'=v' (B9  cancel each other to some extent.
A comparison of the mass profile for thie=3 polytrope
Wy = FPressy FIPN_ L (10  With 1/02=0.Q5, the model used in the PN dynamical simu-
trelax lation, to a direct Runge-Kutta integration of the 1PN struc-
wheret,q 4y is the relaxation time. TABLE II. Parameters for single star models. For each model,

To construct our first model, with 7=0.01 we start We list the compactness parameter?Lthe ratio of the PN specific
from a Newtoniarl" =3 polytrope and let it relax to an equi- entro_pyk to the Nevv_tonian_ valuey, , _and thze central vzalues of
librium configuration. Then, using the maximum particle ra-9€SIyr , and the dimensionless ratigdr, c* andU, /c”.
dius Ry, We adjust the radial position, smoothing length,

and specific entropy of all particles according to Le? Klkn ("e)e (P/r, ¢ (U 1€)c
R r=5/3
- r
r—g (B11) 0.02 1.177 1.201 0.0111 0.0438
max 0.04 1.281 1.292 0.0257 0.0893
hy, 0.06 1.421 1.452 0.0464 0.1377
hy,— R (B12 0.08 1.634 1.708 0.0792 0.1902
max 0.10 1.879 1.976 0.1255 0.2470
Koy ka4m_a§F . (B13) 0.11 2.198 2.336 0.1806 0.2820
0.12 3.400 2.295 0.3011 0.2968
Velocities are set to zero at the end of this rescaling. This r=3
new configuration is relaxed again, and the process is re=
peated until convergence is achieved. Forlhe3 models, 0.01 1.403 0.3822 0.0052 0.0165
we rescaled everyt=5.0, with a relaxation timet,qay 0.02 1.553 0.3818 0.0114 0.0326
=1.0, The final profile is used as the initial test configuration 0.03 1.649 0.3882 0.0187 0.0486
of the next model, which is then relaxed iteratively as de- 0.04 1.780 0.3948 0.0280 0.0649
scribed above. 0.05 1.918 0.4051 0.0397 0.0813
In addition tol’ =3 models, we also computed a sequence (.06 2.084 0.4170 0.0549 0.0989
of single PN polytropes witth'=5/3, and tested their stabil- 0.07 2.262 0.4321 0.0746 0.1154

ity. PN effects should make the star unstable to gravitational
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FIG. 14. Results of SPH relaxation calcula-
............. tions for single stars. The ratio of the PN specific
entropyk to the Newtonian valué,, is shown
for both I'=5/3 and'=3, computed for se-
quences of increasing compactness 1The dot-
ted lines give the final value for each case, which
was used as the initial value for the next relax-
ation. For I'=5/3, we see that for &f
>0.12, k/ky increases without bounds, indicat-
ing instability. Forl'=3 and 1¢?=0.07, the 1PN
approximation breaks down.
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ture equations in spherical symmetry is shown in Fig. 17. We
see excellent agreement, except at the outer edge of the star,

where surface effects alter the SPH mass profile slightly. The main difficulty in relaxing PN configurations is in the
This results from a Iayer_of partlcl_es developlng_ at the_ S”rinterplay betweem andw, which not only differ in magni-
fa_ce_ of the stars,wnh a slight density decrementlmmed|atel¥ude but also in direction. Thus, one or the other can be
within, but involves only a very small fraction of the total _ . -
mass of the system. Since our method restricts particle posg_elaxed in the corotatl_ng frame, b Ut. not both. Herevas
tions tor/R<1, we see that the density falls to zero slightly assu_med to be Z€ro n the corotating frame for a relaxed
outside this point because of the finite size of the SP'_Fonﬁgurann, satisfying the eq“a“oﬂ atzove.
smoothing kernel. We created a method to calculatg(vy), which is not
Once these single star configurations were complete, th@vertible in closed form. As can be seen from E422), the
resulting stars were placed in duplicate in a binary configufelationship between particle velocity and momentum is a
ration, which was assumed to be in a state of synchronizettnction of several potentials at the particle position, through

rotation, i.e., the velocity of every SPH particle is given as athe term containing\; . SinceA, is itself a function ofw [see

vo=OXr. (B14)

function of position by Eqg. (A9)], and vice versa, we need to solve consistently for
25 0.4
2.0 0.3
15 o
¥ ¥ 02
1.0 =
05 01
0.0 0.0
0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.8 08 1.0

FIG. 15. Radial profiles for th€ =5/3 single
star models. The various lines correspond, in
monotonic fashion, to the stable configurations
indicated by dotted lines in the left panel of Fig.
0.0 -1.0 14.
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both. It was found to be best to use an iterative procedurerhe computed value af enters into the source terms of both
which alternately solves fov and then uses these trial val- U; andC; [Egs. (A6),(A7)]. Using these two potentials, we
ues in the source terms of the relevant Poisson equations. calculateA andﬁ [Egs.(A9),(A11)], and recalculate a new

In the initial step, using known values (i;fo, we first

approximatew, by the equations

1 r
Btest:? 3U*+Ff
WQ Uo 1+ ﬁtzSt‘f‘

c

1r

2¢c?

P

)

IBIES’[

(B15) - 2.

apprOX|mat|on tow,, denotedw,,,, from the previous one,

wOm, by an iterative method, using only of the correction
to avoid overshooting, thus

B

CZ

It was found that, for the models we tested, about ten itera-
tions would give convergence to within 1 part in®1® the

correct value ofy when compared to the value 0{W,e,)
calculated by Eq(A22). For every timestep afterwards, we

-

A
Wnew_§W0Id+ 1+ Vo— CZ) . (817)

3

1.0

09

0.8

0.7

031

0.2F

FIG. 17. Mass profile of th&'=3 single NS
model with 1£?=0.05, used in the PN run
(solid), compared to a solution of Eq$B1)—
(B10) obtained by a direct numerical integration
(dashedl The agreement is excellent, except near
the outer surface of the star, where the SPH den-
sity profile is more poorly defined.

0.0
0.0
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followed the same iteration procedure, and about six iterachronized rotation is assumed, these equilibrium configura-
tions were found to produce the same convergence to thigons can be constructed by adding a centrifugal force and

proper values. drag term to the acceleration equation, giving us
Once convergence to an acceptable solution was found,
forces were calculated, andwas estimated by finite differ- 0i=FMIC_ V(D + D) — L, (B21)
encing, trelax
_ o (W(t+dt))— o (W(t)) where the centrifugal potential is given by
Utorce™ dt . (B19) 1
®rot:§QZ(X2+y2)- (B22)

We relax the binary models at fixed center-of-mass separa-

tion r, in the corotating frame, adjustin@ such that the  The relaxation time scale,e, is set initially to 1.0, close to
inward force of gravity is balanced exactly by the centrifugalihe value required for critical damping of oscillatiofRS .

force. At every time step, we calculate For the purposes of relaxation, AV and the radiation back-
T E reaqtjon, wh?ch are both t_ime—asymmetric, are i.gno_red. In
0= [Tin™ Tin (B19) addition, during the relaxation, we ignore the distinction be-

2r tween velocity and momentum vectors in Hd8), taking

w. The rate of rotation is calculated as in the PN case by
(B19). Once the binary has relaxed to a suitable initial
configuration, it is set in motion, and we commence the dy-
namical run. Initial velocities are given by

whereF,, refers to the net inward force on each componenfé:
! . o : g.
of the binary. Particle velocities are advanced according to

. . v
U=Utorce— t_+er' (B20) . R
relax w,=—Qy, WYIQX, (B23)
After every time step, the two stars were adjusted slightly to

o : ; andv is calculated fromw by Eq.(A22). In the point mass
maintain a center of mass separation at the desired value. limit, this would reduce to Eq(35) of Ruffert, Janka, and

. Schder [31], who use
2. Newtonian case
In the regime where the dynamical time scale of the neu- 16 M3
tron stars is much smaller than the characteristic time scale UrT T g 13 (B24)
for gravitational radiation, we expect the stars to evolve
through a series of quasi-equilibrium configurations. If syn-as their initial condition.
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