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Optical geometry for gravitational collapse and Hawking radiation
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The notion of optical geometry, introduced more than 20 years ago as a formal tool in quantum field theory
on a static background, has recently found several applications to the study of physical processes around
compact objects. In this paper we define optical geometry for spherically symmetric gravitational collapse,
with the purpose of extending the current formalism to physically interesting spacetimes which are not con-
formally static. The treatment is fully general but, as an example, we also discuss the special case of the
Oppenheimer-Snyder model. The analysis of the late-time behavior shows a close correspondence between the
structure of optical spacetime for gravitational collapse and that of flat spacetime with an accelerating bound-
ary. Thus, optical geometry provides a natural physical interpretation for derivations of the Hawking effect
based on the ‘‘moving mirror analogy.’’ Finally, we briefly discuss the issue of back reaction in black hole
evaporation and the information paradox from the perspective of optical geometry.

PACS number~s!: 04.62.1v, 04.70.Bw, 04.70.Dy
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I. INTRODUCTION
A conformally static spacetime1 (M,gab) admits a privi-

leged congruence of timelike curves, corresponding to
flow lines of conformal Killing timet. Consequently, one ca
define a family of privileged observers with four-veloci
na5ha/(2hbhb)1/2, whereha is the conformal Killing vec-
tor field. The set of these observers can be thought of a
generalization of the Newtonian concept of a rest fram
Their acceleration can be expressed as the projection
gradient,

nb¹bna5ha
b¹bF ~1.1!

~see Appendix A for a proof!, whereha
b5da

b1nanb and

F5
1

2
ln~2haha!; ~1.2!

thus, F is a suitable general-relativistic counterpart of t
gravitational potential@2#. One can define the ultrastatic@3#

metric g̃ab5(2hch
c)21gab5e22Fgab , which can be writ-

ten asg̃ab52¹at¹bt1h̃ab , whereh̃ab5e22Fhab . The hy-
persurfacest5const of M are all diffeomorphic to some
three-dimensional manifoldS. If the spacetime is static, i
follows from Fermat’s principle that light rays coincide wit
the geodesics onS according toh̃ab @4#. For this reason,g̃ab

*Electronic address: sebastiano.sonego@uniud.it
†Electronic address: joal@sissa.it
‡Electronic address: marek@tfa.fy.chalmers.se
1We adopt the notation and conventions of Ref.@1#.
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is called theoptical metric @4#, and (S,h̃ab) is the optical
space. We shall also refer to the family of preferred obser
ersna as theoptical frame.

There is a simple operational definition of the optical m
ric. Suppose that all the observersna agree to construct a se
of synchronized devices that measure the Killing timet. ~Of
course, these ‘‘clocks’’ will not agree with those based
local physical processes—e.g., on atomic transitions—
this is totally irrelevant for the following argument.! Then,
they use light signals according to a radar procedure,
define the distance between two pointsP,QPS as tPQP/2,
wheretPQP5tQPQ is the lapse of Killing time correspondin
to the round trip of the signal between the observers base
P andQ.2 In this way, they attribute the metrich̃ab to S.

The notion of optical geometry has recently received c
siderable attention as a powerful tool in general relativ
@5,6#. It is thus important to investigate to which extent it ca
be generalized to spacetimes that are not conformally st
One proposal in this direction@7# appears mainly formal, and
is probably not sufficient in order to determinena andg̃ab in
a unique way for an arbitrary spacetime@8#. It is perhaps
more helpful to focus on specific situations, that may prov
one with additional, physically motivated, hints. In th
present paper we study the case of a spacetime that desc
the gravitational collapse of a spherically symmetric config
ration of matter. This problem is interesting for two reaso
First, it represents one of the simplest cases in which

2There is a one-to-one correspondence between conformally s
observers and points ofS.
©2000 The American Physical Society10-1
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property of conformal staticity does not hold. This is partic
larly evident if we consider a situation in which the collap
ing matter is concentrated on an infinitely thin shell. In th
case, the spacetime is composed of two regions, corresp
ing to the interior and the exterior of the shell, joined throu
a timelike hypersurface which represents the history of
shell. Both these regions are static when considered s
rately, their metrics being the Minkowski and the Schwar
child ones, respectively. However, the fieldsna associated
with these two metrics do not match in a satisfactory w
across the surface of the shell~see Fig. 1!. In particular, the
horizon is a singular locus for the Schwarzschild frame,
is perfectly regular for the Minkowski observers. This ve
different behavior prevents one from considering a sin
frame that reduces to the Schwarzschild and the Minkow
one, respectively, outside and inside the shell. The fail
can be seen as a consequence of the fact that the spacet
not conformally static in any region containing the she3

Indeed, independently of its specific properties, the shell r
resents a nonstationary boundary between two static reg
A second motivation for studying this class of spacetime
that they lead to the Hawking effect@10#. Given the success
of optical geometry in discussing complicated physical p
nomena, one expects that it might give new insight about
process of black hole evaporation. Indeed, this appears t
the case, as we shall see.

The structure of the paper is the following. In the ne
section we present a general construction of the optical
ometry for an arbitrary matter configuration undergoi
spherical collapse. Section III is devoted to the analysis
some features that become universal~i.e., model indepen-

3See Ref.@9# for considerations related to this point.

FIG. 1. Kruskal diagram for the collapse of a spherically sy
metric shell of matter; only the region outside the horizon is sho
The natural ‘‘rest frame’’ inside the shell does not match satisf
torily with the Schwarzschild frame, because the behaviors of
two frames near the horizon are very different.
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dent! at late times. In Sec. IV we consider a very simp
particular case, the Oppenheimer-Snyder dust model. In
V we argue that the optical geometry picture of collapse
the natural framework for derivations of the Hawking effe
based on the ‘‘moving mirror analogy,’’ and that it give
useful insight about the issue of black hole evaporation
the information paradox. Section VI contains a summary
the results, together with some final comments and outli
for future investigations.

II. GENERAL CONSTRUCTION

The metric of any spherically symmetric spacetime can
written as

g52a~ t,r !dt21b~ t,r !dr 21r 2~du21sin2 u dw2!,
~2.1!

wherea andb are positive functions~see, e.g., Ref.@11#, pp.
616–617!. In the following we consider situations wher
matter is confined to a regionr<R(t), with R(t) being a
known function~the ‘‘radius of the star’’!. For r .R(t), we
assume that the spacetime is empty. However, the treatm
can be easily extended to include more general types
collapse—e.g., of electrically charged configurations@12#.
According to Birkhoff’s theorem, the metric in the extern
region is the Schwarzschild one, thus we havea(t,r )
5b(t,r )215C(r )ª122M /r for r .R(t).

In this case, the ‘‘rest frame’’na outside the star is jus
made of the Schwarzschild static observers,nm

5C(r )21/2d t
m , and the optical geometry is g̃ab

5C(r )21gab . Introducing the Regge-Wheeler ‘‘tortoise
coordinatex, such that dxªC(r )21dr , we have

g̃52dt21dx21 r̃ ~x!2~du21sin2 u dw2!, ~2.2!

where r̃ªC(r )21/2r . The Regge-Wheeler coordinate ha
therefore, a very simple geometrical meaning in the opti
space: It expresses directly the value of radial distances
(S,h̃ab). Notice that, as far as purely radial motions are co
cerned, the optical metric~2.2! gives the same line elemen
as Minkowski spacetime. In particular, no event horizon
present, because the conformal transformation fromgab to
g̃ab ‘‘sends’’ the Schwarzschild horizonr 52M to infinity.
In fact, for a spacetime with metricg̃ab the points withr
52M belong to the null infinity, and the conformal rescalin
that carriesgab into g̃ab can be compared to the ‘‘decompa
tification’’ of a Penrose-Carter diagram, as it is evident fro
Figs. 2–4.

To define ‘‘natural’’ observers inside the star is not
easy. In general, the metric in the internal region is not c
formally static, and one cannot thus apply the construct
based on the timelike conformal Killing vector field, outline
at the beginning of Sec. I. However, even when such a fi
exists it does not necessarily produce a satisfactory famil
internal observers. This point can be clarified by consider
again the example of a collapsing shell of matter. Inside
shell the spacetime is flat, by Birkhoff’s theorem; therefo
it would seem obvious to choose inertial observers at fix

-
.
-
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distances with respect to the center of the shell, in orde
define a ‘‘rest frame.’’ But such observers are not the natu
continuation inside the shell of the Schwarzschild static on
defined outside. This can be seen by noticing that the hor
H 1 is infinitely ahead in the future for the Schwarzsch
observers, but not for those at rest with respect to the ce
of the shell. Similarly, the Schwarzschild observe
‘‘crowd’’ near H 1, unlike the internal ones~see Fig. 1!.
Thus, using the Schwarzschild and the inertial frames wo
lead to ill-behaved optical metrich̃ab and potentialF.

Before constructing explicitly an extension of th
Schwarzschild frame that does not suffer from these pr
lems, let us present a graphical discussion of some o
properties. Basically, we are looking for a continuation of t
coordinatest and x inside matter, such that dt/dx561 for
light signals and fundamental observers are located ax
5const. In a (t,x) diagram, the surface of the star is repr
sented by a line like b in Fig. 4, so that we have still only

FIG. 2. Penrose-Carter diagram of ther .2M region of
Schwarzschild spacetime. Lines of constantt and of constantr are
drawn, as well as the worldlines of two observers, one escapin
r→1` ~worldline a!, the other entering in the black hole~world-
line b!.

FIG. 3. Kruskal diagram of ther .2M region of Schwarzschild
spacetime. This figure can be regarded as a ‘‘partial decompa
cation’’ of Fig. 2, whereinI 6 are ‘‘sent to infinity’’ and linesr
5const are ‘‘straightened up’’ for large values ofr.
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establish how the centerr 50 looks. To this end, it is con-
venient to consider the Kruskal diagram in Fig. 5, whi
shows three incoming radial light rays~or spherical wave
fronts!. The ray atv5v0 simply passes through the center
the star and is then converted into an outgoing signalu
5u0. The rayv5vH reachesr 50 just on the horizon and
then turns into a null generator ofH 1. For v.vH , all in-
coming signals enter the black hole region; in particular,
ray v5vP does so exactly when the surface of the s
crosses the horizon~eventP in Fig. 5!. Since light signals are
still represented by straight lines at645° in the (t,x) dia-
gram, andv0 , vH , vP all have finite values, it follows tha
the centerr 50 must correspond to a line that becomes
ymptotically parallel to the one representing the surface
the star, as shown in Fig. 6. Since fundamental observers
represented by vertical linesx5const in the (t,x) plane, it is

to

fi-

FIG. 4. Ther .2M region of Schwarzschild spacetime in (t,x)
coordinates. This is how au5const, w5const section of

Schwarzschild spacetime appears when the optical metricg̃ab is
used. The worldlinesr 5const of the privileged observers have be
completely straightened, and the horizonsH 6 have been ‘‘sent to
infinity.’’ Notice that the observers a and b appear accelerated
this diagram.

FIG. 5. Light rays in a Kruskal diagram for spherically symme
ric collapse. The outgoing rayu5u0 is generated by the incoming
one, v5v0, after it has crossed the center of the star. It appe
reflected because the diagram is in polar coordinates.
0-3
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easy to see that their qualitative behavior in a Kruskal d
gram is the one shown in Fig. 7. Their worldlines now acc
mulate along the wholeH 1 and match regularly across th
surface of the star. These conditions guarantee that when
metric g̃ab is used,H 1 becomes a regular portion of th
future asymptotic null infinity.

Let us now proceed to constructna analytically. It is con-
venient to introduce new coordinates (t,j) in the internal
region r ,R(t), such that

2a~ t,r !dt21b~ t,r !dr 25g~t,j!~2dt21dj2!, ~2.3!

with g being a positive function.~Such coordinates alway
exist, because all two-dimensional spacetimes are con

FIG. 6. Collapse in (t,x) coordinates. Both the surface and th
center of the star appear accelerated, and their worldlines are
ymptotically parallel to each other. The radius of the star in
optical geometry approaches the valuevP2vH ast→1`. Only the
part of the (t,x) plane above the curver 50 is physically meaning-
ful.

FIG. 7. Regular extension of the Schwarzschild frame.
06401
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mally flat.! Of course,t and r become now functionst(t,j)
andr (t,j) of the new coordinates. Thus, the internal met
reads

g5g~t,j!~2dt21dj2!1r ~t,j!2~du21sin2 u dw2!.
~2.4!

Since botht andt are timelike coordinates, the history of
point with u5const,w5const on the surface of the star co
sists of a sequence of events ordered int. Therefore, in terms
of the internal coordinates, the equation of the surface ca
written as j5J(t), obtained by solving the equatio
r (t,j)5R„t(t,j)… with respect toj.

The spacetime metric must be continuous across the
face of the star. Thus, the external metric~2.1! and the inter-
nal one, given by Eq.~2.4!, must agree in the evaluation o
the spacetime interval between two events that occur on
star’s surface. Let us consider two such events, labeled
the internal coordinates, by„t,R(t),u,w… and „t1dt,R(t
1dt),u,w…'„t1dt,R(t)1R8(t)dt,u,w…, where a prime de-
notes the derivative of a function with respect to its arg
ment. Similarly, in external coordinates we have, for t
same events,„t,J(t),u,w… and „t1dt,J(t1dt),u,w…
'„t1dt,J(t)1J8(t)dt,u,w…. Replacing in Eqs.~2.1!
and ~2.4!, and equating the outcomes by continuity, we o
tain a differential relation betweent andt at the surface of
the star,

g„t,J~t!…@12J8~t!2#dt2

5@C„R~ t !…2R8~ t !2/C„R~ t !…#dt2. ~2.5!

Integrating Eq.~2.5! gives a relationshipt5 f (t) between the
values oft andt at the surface.

The form ~2.4! of the internal metric is convenient be
cause it allows one to readily define null coordinates (U,V),

U5t2j1U0 , ~2.6!

V5t1j1V0 , ~2.7!

whereU0 andV0 are arbitrary constants. The coordinatesU
and V have the usual physical meaning: The locusU
5const in spacetime is the history of an outgoing spher
wave front of light, whileV5const represents an incomin
one. If we introduce null coordinates (u,v) in the outside
region as

u5t2x, ~2.8!

v5t1x, ~2.9!

we have that an outgoing spherical wave front is describ
inside the star, by the equationU5const and, outside the
star, byu5const. Therefore, one can establish a one-to-
correspondenceU(u) between the values ofU andu, defin-
ing U(u) as the internalU-label of the wave front which,
outside, is labeled byu. Similarly, one can define a functio
V(v). The explicit form ofU(u) can be obtained by solving
with respect tot the equation

as-
e

0-4
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t2x„R~ t !…5u ~2.10!

and then substituting the result into

U5 f ~ t !2J„f ~ t !…1U0 . ~2.11!

Analogously,V(v) is obtained by replacing the solution o

t1x„R~ t !…5v ~2.12!

into

V5 f ~ t !1J„f ~ t !…1V0 . ~2.13!

The functionsU(u) andV(v) can be used to extend th
coordinates (u,v), hence (t,x), also inside the star. It is suf
ficient to invert them, gettingu andv as functions ofU and
V, respectively, and thendefine tandx as

t:5
1

2
@v~V!1u~U !#, ~2.14!

x:5
1

2
@v~V!2u~U !#. ~2.15!

In terms oft andx, the internal metric~2.4! takes the form

g5gU8V8~2dt21dx2!1r 2~du21sin2 u dw2!,
~2.16!

where U8ªdU/du, V8ªdV/dv, and all the functions are
implicitly supposed to be expressed in terms oft andx. Now
we choose

F5
1

2
ln~gU8V8!, ~2.17!

so that the internal optical metric reads

g̃52dt21dx21
r 2

gU8V8
~du21sin2 u dw2!. ~2.18!

In (t,r ) coordinates, the optical framena has components
nm5(gU8V8)21/2d t

m , i.e., in (t,j) coordinates

nm5
1

2~gU8V8!1/2
@~V81U8!dt

m1~V82U8!dj
m#.

~2.19!

This vector field is a satisfactory extension inside the sta
the static Schwarzschild frame, and it is not difficult to che
that, although the metric~2.16! is not conformally static, Eq
~1.1! is still satisfied. Thus, we can continue to interpretF as
the gravitational potential.

The factorU8V8 can be computed as follows. Let us co
sider two outgoing light rays, corresponding to the valuesU
andU1dU, u andu1du of the coordinates, withdU and
du very small. Equations~2.10! and~2.11! give us the coor-
dinate timest andt1dt at which these rays cross the surfa
of the star, expressed as functions ofu, u1du, U, and U
06401
f
k

1dU. This allows us to find the coefficients that linkdu and
dU to dt; eliminatingdt and taking the limit, we get

dU

du
5

12J8„f „t~u!……

12R8„t~u!…/C„R„t~u!……
f 8„t~u!…, ~2.20!

where the functiont(u) is implicitly defined by Eq.~2.10!.
Similarly, one obtains from Eqs.~2.12! and~2.13!, consider-
ing two incoming light rays,

dV

dv
5

11J8„f „t~v !……

11R8„t~v !…/C„R„t~v !……
f 8„t~v !…, ~2.21!

where nowt(v) is given by Eq.~2.12!. Using Eq.~2.5! we
get, at the end,

U8~u!V8~v !5F12J8„f „t~u!……

11J8„f „t~u!…
G 11J8„f „t~v !……

12J8„f „t~v !……

3
11R8„t~u!…/C„R„t~u!……

12R8„t~u!…/C„R„t~u!……

3
12R8„t~v !…/C„R„t~v !……

11R8„t~v !…/C„R„t~v !……

3
C„R„t~u!……

g$ f „t~u!…,J„f „t~u!……%

3
C„R„t~v !……

g$ f „t~v !…,J„f „t~v !……%
1/2. ~2.22!

III. ASYMPTOTIC BEHAVIOR

Equations~2.17!–~2.22! give a complete characterizatio
of the optical geometry inside a collapsing spherically sy
metric star. Of course, since they require an explicit kno
edge of the functionsR(t), J(t), f (t), and g(t,j), one
can use them only within a specific model of collapse—a
even in that case their integration will usually require n
merical methods. It is therefore remarkable that, at late tim
~i.e., for t,u→1`), one could establish analytically som
features that are universal, in the sense that they do not
pend on the details of the model.

In the limit u→1`, it is easy to circumvent the nast
expression on the right-hand side of Eq.~2.20! by noticing
that, although the relationship between the functionsU andu
is singular onH 1, U is regularly connected to the Kruska
retarded null coordinate@1#

U52exp~2u/4M ! ~3.1!

for all values ofU; this follows from the fact that both (U,V)
and the Kruskal coordinates are regular at the surface of
star. Then, two outgoing light rays, labeled byU and U
1dU inside the star, are labeled byU and U1dU outside,
with dU5a(U)dU, where a is a regular positive function
that depends on the details of collapse~i.e., R, R8, J, and
J8) at the moment when the light rays cross the surface
0-5
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the star. For rays near the horizon, i.e., in the limitu→1`,
one hasU'0 and thusdU'a(0)dU, which gives the de-
sired asymptotic relation@13#

dU

du
;

a~0!

4M
exp~2u/4M !. ~3.2!

~Hereafter, we use the notationf 1; f 2 to express the fact tha
two functions have the same asymptotic expression in s
limit, i.e., lim f 1 / f 251.! The constant positive factora(0)
is all that remains of the details of collapse in the limitu
→1`.

The situation is rather different as far as dV/dv is con-
cerned. Of course, considering two incoming light rays
beled by V and V1dV inside the star, and byV and V
1dV outside, where

V5exp~v/4M ! ~3.3!

is the Kruskal advanced null coordinate, one can still cla
that dV5b(V)dV, whereb is a regular positive function de
pending on the dynamics of the star’s surface when i
crossed by the light rays. However, since the interior of
star atH 1 corresponds to an entire range of values forV and
v ~the interval@vH ,vP# in Fig. 5!, the function dV/dv, al-
though regular everywhere, has not a universal depend
on v.

The asymptotic form~3.2! of U8(u) and the regular de
pendence ofV8 on v are nevertheless sufficient in order
establish the main properties of optical geometry during
late stages of collapse. Sinceg, U8, andV8 are regular posi-
tive functions, the productgU8V8 can simply be written as

gU8V8;F~v !exp~2u/4M !, ~3.4!

whereF(v) is a nonvanishing positive function which de
pends on the details of collapse. Of course, outside the
U[U, V[V, and g5(32M3/r )exp(2r/2M ), so gU8V8
5122M /r andF(v);exp(211v/4M ).

From Eq.~2.19! it is evident that, sinceU8→0 whenu
→1`, the optical frame behaves like the one in Fig.
because the componentsnt andnj tend to become equal nea
H 1. The optical metric~2.18! and the potentialF have the
following asymptotic forms:

g̃;2dt21dx21
4M2e(t2x)/4M

F~ t1x!
~du21sin2 u dw2!;

~3.5!

F;
x2t

8M
1

1

2
ln F~ t1x!. ~3.6!

Using Eq.~1.1!, one can easily compute the acceleration
the fundamental observers. The only nonvanishing com
nent is

na¹anx5
]F

]x
5

1

8M
1

F8~ t1x!

2F~ t1x!
, ~3.7!
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which gives, up to the sign, the value of the ‘‘gravitation
field’’ at late times. It is interesting to notice that, outside t
star,na¹anx51/4M , which coincides with the surface grav
ity of the black hole~see Appendix B for a general proof!.
On the other hand, inside the star, the termF8/2F gives a
correction to the surface gravity that varies from place
place on the horizon and depends on the model of collap

Let us now consider a timelike hypersurface with equ
tion j5F(t), such that nearH 1 one can writej;nt
1const, wheren is a constant@from expression~2.4! of the
metric, it follows that21,n,1#. This is the case, for ex
ample, of the center of the star,j[0, or of the star’s surface
for which we haven5dJ/dt evaluated at the horizon
Equations~2.6! and ~2.7! give then (11n)dU'(12n)dV.
NearH 1, the coordinatev is approximately constant on th
submanifold identified byj5F(t) ~for example, in the case
of the center and of the surface of the star, it is equal tovH
andvP , in the notations of Fig. 5!, and this relation can be
rewritten as

dv;A exp~2u/4M !du, ~3.8!

whereA is a cumulative positive constant and we have us
Eq. ~3.2!. Integrating and using Eq.~2.9!, we get

t1x; v̄2K exp~2u/4M !, ~3.9!

where Kª4MA.0 and the integration constantv̄ is the
advanced time at which the surfacej5F(t) crossesH 1.
Equation~3.9! can be rewritten using Eq.~2.8! as

x;2t1 v̄2K exp~2t/2M ! ~3.10!

~see also Ref.@11#, p. 869, and Ref.@14#!. This equation
expresses the asymptotic behavior, in (t,x) coordinates, of
any worldline that crossesH 1. Of course, it is valid both
inside and outside the star.

IV. EXAMPLE: THE OPPENHEIMER-SNYDER MODEL

In order to apply the general techniques developed so
to a specific case, let us consider the simplest model o
collapsing star, in which matter is a ball of dust with unifor
density @15#. In this case, the internal solution is part of
spatially closed Friedman spacetime~see Ref.@11#, pp. 851–
856!, so we haveg(t,j)5a(t)2/a0

2 and

r ~t,j!5a~t!sin~j/a0!, ~4.1!

where 0<t,pa0 (t50 corresponds to the beginning o
collapse!, a0 is a constant, 0<j<J0, with J0,pa0/2 cor-
responding to the surface of the star, and

a~t!5a0 cos2~t/2a0!. ~4.2!

It is convenient to introduce the dimensionless variables
ªt/2a0. Then, the functionR(t) is defined implicitly by the
two equations

R5Ri cos2 s ~4.3!
0-6
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and

t52M lnF S Ri

2M
21D 1/2

1tans

S Ri

2M
21D 1/2

2tans
G

14M S Ri

2M
21D 1/2Fs1

Ri

4M
~s1sins coss!G ,

~4.4!

whereRi5a0 sin(J0 /a0) is the radius of the star at the be
ginning of collapse. Note that fors5s*ªarccosA2M /Ri ,
which corresponds to the event horizon, one hast51`, as it
should be.

In this model one hasJ(t)5J05const. The functions
U(u) andV(v) can, in principle, be obtained by the system

u5t2X,
~4.5!

U5t2J01U0 ,

and

v5t1X,
~4.6!

V5t1J01V0 ,

respectively, whereX5R12M ln(R/2M21) and bothRand
t are expressed in terms oft, according to Eqs.~4.3! and
~4.4!. From now on, we shall exploit the freedom in th
constantsU0 and V0, choosingU052V05J0, so thatU
5V5t at the surface of the star. In practice, Eq.~4.4! is a
transcendental one fort and cannot be inverted. Howeve
we can easily find the inverse functionsu(U) and v(V).
Consider an outgoing spherical wave front of light, char
terized byU5Ū5const andu5ū5const, respectively, in-
side and outside the star. In particular, we must haveū

5t( t̄)2X( t̄), wheret̄ is the value oft at the moment when
the wave front crosses the surface of the star. But from
~4.5! we have alsoŪ5 t̄, so Eqs.~4.3! and~4.4! allow us to
conclude that, inside the star, the relationship betweenU and
u is

u~U !5t~t5U !2X~t5U !524M lnS Ri

2M
cos2 sU21D

14M lnF S Ri

2M
21D 1/2

1tansUG2Ri cos2 sU

12M ln cos2 sU14M S Ri

2M
21D 1/2

sU

1Ri S Ri

2M
21D 1/2

~sU1sinsU cossU!, ~4.7!

with sU5U/2a0. Analogously, we find
06401
-

q.

v~V!5t~t5V!1X~t5V!54M lnF S Ri

2M
21D 1/2

1tansVG
1Ri cos2 sV12M ln cos2 sV14M S Ri

2M
21D 1/2

sV

1Ri S Ri

2M
21D 1/2

~sV1sinsV cossV!, ~4.8!

wheresV5V/2a0. Substituting Eqs.~4.7! and~4.8! into Eqs.
~2.14! and ~2.15!, we can expresst and x inside the star as
functions ofU andV.

Along the worldlines of the observers belonging to t
optical frame one hasx5const, i.e., du/dv51. Writing Eqs.
~4.7! and ~4.8! in differential form,

du5
Ri

2 cos4 sU

2a0M

S Ri

2M
21D 1/2

1tansU

Ri

2M
cos2 sU21

dU, ~4.9!

dv5
Ri

2 cos4 sV

2a0M

S Ri

2M
21D 1/2

2tansV

Ri

2M
cos2 sV21

dV,

~4.10!

we find the slope of these worldlines in (U,V) coordinates:

dU

dV
5

S cos2 sU2
2M

Ri
D cos4 sV

S cos2 sV2
2M

Ri
D cos4 sU

S Ri

2M
21D 1/2

2tansV

S Ri

2M
21D 1/2

1tansU

.

~4.11!

This equation can be integrated numerically for suitable v
ues ofM andRi , and produces diagrams that agree with o
qualitative sketch of Fig. 7.

The function u(U) assumes a particularly simpl
asymptotic form near the event horizon, in agreement w
the general analysis in Sec. III. The surface of the s
crosses the horizon whenR52M , i.e., at a timet5t* such
that cos2 s*52M/Ri . Since the horizon is a null hypersurfac
with U5U* 5const, we have also that cos2 sU*52M/Ri .
Then, forU→U* the first term on the right-hand side of Eq
~4.7! dominates and one can write, asymptotically,

u~U !;24 ln~sU* 2sU!. ~4.12!

Consistently, one finds from Eq.~4.9! that du/dU;
24M /(U2U* ); in fact, this relationship is not restricted t
the present model and holds for a generic collapse, a
follows from Eq. ~3.2!. Sincev(V) remains finite, we have
also

t~U,V!;22M ln~sU* 2sU! ~4.13!

and
0-7
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x~U,V!;2M ln~sU* 2sU!. ~4.14!

Notice thatt→1` andx→2` for U→U* . The worldlines
of the observers belonging to the optical frame,x5const,
tend to lie along the event horizon, as one can also see f
Eq. ~4.11!, which implies dU/dV→0 asU→U* . All these
features are very satisfactory from the point of view of
smooth extension of the Schwarzschild rest frame inside
star, and are in full agreement with the general results
tained in Sec. III.

V. HAWKING EFFECT

We now want to figure out what collapse looks like in t
optical geometry. For this purpose it is convenient to co
sider the embedding diagrams of an equatorial plane at
ferent values oft ~see Ref.@16# for a general discussion o
embedding diagrams!. When R.3M , there are no qualita
tive differences with respect to the conventional descript
~see Fig. 8!. However, asR becomes smaller than 3M , a
‘‘throat’’ develops in the external space, in corresponden
with r 53M , while the surface of the star expands progr
sively ~Figs. 9 and 10!, escaping tox→2` with the
asymptotic law ~3.10!. Thus, ‘‘collapse’’ actually corre-
sponds, in optical geometry, to a sort of expansion int
space that is created by the process itself. This picture is

FIG. 8. Embedding diagram of theu5p/2 section of optical
space at an early stage of collapse. Points in the shadowed are
located inside the star.

FIG. 9. The shape of theu5p/2 section of optical space whe
3M.R(t).9M /4.
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absurd than it may seem, if one remembers the operati
meaning of optical distance outlined in Sec. I. Consider
observer standing at a large value ofr, who sends light sig-
nals on a mirror that has been previously placed at the ce
of the star, and then defines his distance from the ce
simply in terms of the lapse of Killing timet taken by the
round trip. Since the time delay becomes progressiv
larger, he will deduce that a collapsing star recedes from
at an increasing speed. Because of spherical symmetry
only geometrical picture consistent with this description
the one of Figs. 8–10, where the star expands into a ‘‘low
space’’ that is created in the course of collapse.

If a quantum field is present, this dynamical process d
turbs its modes analogously to what happens when there
moving boundary. In fact, in the two-dimensional secti
shown in Fig. 6, the situation isexactlythe same as if there
were a moving boundary, that accelerates asymptotically
wards the speed of light, with the law~3.10!. In Minkowski
spacetime, this is known to lead, at late timest, to a thermal
flux of radiation with temperature (8pM )21 @17# ~see also
Ref. @13#, pp. 102–109 and 229!. Given the identity between
the (t,x) part of the line element ofg̃ab with the one of a
two-dimensional Minkowski spacetime, one expects the
fore that even in the late stages of collapse there must b
flux of radiation at temperatureTH5(8pM )21. This is pre-
cisely the quantum emission found by Hawking@10,13,17#,
whose existence follows therefore in a natural way from
picture of collapse based on the optical geometry. It is
markable that, although the moving boundary analogy
often been used in the literature@17#, optical geometry gives
a very simple physical explanation ofwhy it works: Essen-
tially, because gravitational collapseis a particular case of a
moving boundary.4

4Although the optical spaceS has not a boundary in the technic
sense of the topology of manifolds, the center of the star work
the same way as far as fields are concerned, because the bou
conditions atr 50 coincide with those of perfect reflection.

are
FIG. 10. WhenR(t),9M /4, no faithful embedding is possible

in the three-dimensional Euclidean space. The star escapes tox→
2` at an increasing speed. The optical radial distance between
centerr 50 and the surfacer 5R(t) tends to the finite valuevP

2vH whent→1`, while the area of the surface increases witho
bound.
0-8
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Actually, the analogy with a moving boundary i
Minkowski spacetime fails to hold exactly when the angu
dimensions are taken into account, because the field pr
gates on a non-Euclidean geometry. However, this has
only effect of distorting the spectrum of the emitted rad
tion, according to the way waves are scattered by the cu
ture of space. Such a correction is well known in the the
of the Hawking effect@10,13#.

In this picture the event horizon does not play any role
deriving Hawking’s radiation. In this respect, it is worth r
minding the reader that in the optical geometry the horizo
very much alike to a portion of the asymptotic null infinit
To claim that it has anything to do with the thermal flux fro
black holes would be exactly analogous to saying that
future null infinity is relevant for the radiation produced by
moving boundary in Minkowski spacetime. Thus, explan
tions of the effect based on quantum tunneling mechani
appear rather implausible from the perspective of optical
ometry.

A similar situation occurs for black hole entropy. In th
optical geometry, the celebrated relationS5A/4 has no di-
rect meaning, because the horizon has an infinite area
cording to the metrich̃. Indeed, the horizon is located atx
→2` in the optical space. If some notion of entropy can
introduced, it can therefore be associated only with the
gion r .2M . One possibility is to attribute the entropy e
tirely to the Hawking radiation, in the following way. Let u
consider Fig. 10 again, where the space around a collap
star at sufficiently late times is visualized as made of a v
‘‘lower’’ region connected to the usual ‘‘upper’’ one throug
a mouth atr 53M . To observers living at large values ofr,
the r 53M surface looks like the boundary of a thre
dimensional cavity containing thermal black body radiati
at the temperatureTH . ~One may even consider ther ,3M
region as analogous to a Kirchhoff cavity in ordinary the
modynamics.! Whenever a small amount of energyDE es-
capes to infinity as Hawking’s radiation, or is added to t
collapsing star in the form of accreted matter, the total
tropy of the radiation contained in the cavity is modified
the amountDS5DE/TH . Since DE coincides with the
change in the mass, as measured from infinity, we reco
the Beckenstein-Hawking expressionS54pM2 @10,17,18#
in its differential form. Thus, optical geometry suggests t
one should regard the so-called black hole entropy as b
actually associated with the Hawking radiation surround
the collapsing star.5 This interpretation contrasts with a view
point often expressed, according to whichS is a property of
spacetime, and is similar to others that attribute entropy
‘‘thermal atmosphere’’ of the black hole@19#.

Until now, we have assumed that the quantum field i

5That there must be a trapping effect on waves~usually attributed
to the reflection off an effective potential barrier! is rather evident
from the embedding diagram of Fig. 10. This phenomenon, and
relevance for the study of long-lived gravitational-wave modes,
been discussed in some detail in Ref.@6#. In the present context, i
is responsible for the persistence of a consistent amount of radia
in the region withr ,3M .
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test one, i.e., that it does not affect the background spa
time. Clearly, this approximation becomes invalid at la
times, when the amount of energy carried away by
Hawking radiation that leaks through the neck atr 53M
becomes a non-negligible fraction of the massM of the star.
Let us then sketch qualitatively how back-reaction modifi
the picture of collapse suggested by the optical geome
Roughly, the main effect of Hawking’s emission is to d
crease the value ofM. This has essentially three cons
quences on the diagram of Fig. 10: First, it decreases the
of the mouth atr 53M ; second, it increases the curvature
the optical space at the mouth and in the lower region; th
it increases the value of the Hawking temperatureTH . Thus,
as the process goes on and more radiation is able to esca
r→1`, the geometry in the regionr .3M of space be-
comes closer and closer to the Euclidean one, while
throat at r 53M shrinks down, becoming progressive
sharper. The regionr ,3M has larger and larger negativ
curvature and contains, at large negative values ofx, matter
that escapes tox→2` with increasing acceleration.

Although this description is purely qualitative and is n
based on an explicitly constructed model, it gives us imp
tant clues about the issue of the final state of a collaps
star, when Hawking’s radiation is taken into account. First
all, it implies that the black hole, in the strict sense of t
region beyond the future event horizonH 1, does not form.
This is evident in the optical geometry point of view, whe
H 1 corresponds tox→2` and t→1`. In the usual lan-
guage, one would say that radiation makes the value oM
decrease, which in turn makes the horizon shrink, and ev
tually reduce to a point before the star could cross it. Th
the very existence of the Hawking effect would prevent t
formation of black holes by collapse.6

If this is the case, what are then we left with in the lim
t→1`? A straightforward extrapolation of the process th
we have just described suggests that, forM→0, the throat at
r 53M pinches off, leaving two spaces—one Euclidean,
other with infinite negative curvature—with just one point
common. This is clearly a degenerate, and highly impl
sible, situation; one would rather think that the process st
when the throat reaches a critical size~perhaps at the Planck
ian scale!, because of as yet unknown physical process
Such a situation corresponds to the hypothesis of remnan
the common description@21,22#.

Remnants have originally been introduced as a poss
resolution of the information paradox@22,23#. However, the
viability of this hypothesis has sometimes been question
because the small scale and mass of remnants would a
them to store very little information@24#. Roughly, the argu-
ment is the following. A physical system with sizel, total
energyE, and Hamiltonian bounded from below has a nu
ber of states of the order ofEl; thus, it can contain a maxi
mum information which is also of orderEl. The status of this

ts
s

on

6This was suggested already in the early years following Haw
ing’s discovery@20#, but the idea has never been pursued further
least to the authors’ knowledge.
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claim is rather controversial@25#. However, even assumin
that there is indeed such an information bound, it wo
hardly represent a difficulty in optical geometry, where t
‘‘remnant’’ is actually an enormously vast region, becau
ordinary distances are rescaled by a huge factor.7 Even if l
should represent the size of the remnant as seen from
exterior, as suggested by Bekenstein@24#, the bound would
still be circumvented thanks to the existence, in the low
space, of an enormous supply of negative energy assoc
with the fieldF.

VI. CONCLUSIONS AND OUTLOOKS

We have constructed the optical geometry for a sph
cally symmetric collapsing body. The procedure adopted
simple extension of the technique used when defining opt
distance operationally in a static spacetime. Essentially,
any spacetime eventP, one considers the in- and out-goin
spherical light-fronts that cross atP. These correspond to
well-defined values of advanced and retarded timev andu,
that can be read at infinity as the affine parameters along
null generators ofI 2 andI 1. The eventP is then labeled by
v andu, in addition to the angular coordinates, and can a
be identified by a timelike coordinatetª(v1u)/2 and a
spacelike one,xª(v2u)/2. The optical metric is then de
fined as the only one which is conformal togab—the metric
of spacetime in general relativity—and which reproduces
two-dimensional Minkowskian line element onu5const,w
5const sections. Outside the collapsing star,gab has the
Schwarzschild form andx coincides with the Regge-Wheele
‘‘tortoise’’ coordinate, thus giving the well-known optica
metric of an empty, spherically symmetric spacetime. Ho
ever, our construction allows one to extend the optical
ometry smoothly inside the star.

Associated with the optical space are the optical framena,
made of the observers atx5const, and the scalar potenti
F, essentially the logarithm of the conformal factor th
links gab and g̃ab . These two concepts are related to ea
other in the following sense. The optical frame defines
notion of ‘‘rest in the gravitational field,’’ thus the four
accelerationnb¹bna of the observers can be identified wi
the gravitational acceleration, with a change of sign. Si
nb¹bna is equal to the spatial gradient ofF in the optical
frame, see Eq.~1.1!, F can be thought of as a covaria
generalization of the gravitational potential. This allows o
to give a precise meaning to the notion of gravitational fi
inside a collapsing object. It must be noted that a grav
tional field so defined, although analogous to the same N
tonian concept, nevertheless differs from it in some essen
details. As an example, consider a collapsing spherical s
It is obvious from Fig. 7 thatnb¹bnaÞ0 everywhere, thus

7This is similar to what happens in the ‘‘cornucopion’’ scenario
dilaton gravity coupled to electromagnetism@26# ~see Ref.@27# for
criticisms of this model!. However, the internal geometries and t
physical contexts are very different in the two cases. The possib
that information be stored inside a large region delimited by a sm
neck has been discussed in general by Giddings@22#.
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leading to the conclusion that the gravitational field is no
vanishinginside the shell, as well as outside. This contras
with intuition shaped after Newton’s theory, according
which the gravitational field inside the shell should be ze
However, this difference is not surprising if one conside
that F does not obey the Poisson equation, but a nonlin
generalization of it, as can be easily checked on replac
gab5e2Fg̃ab in the trace of the Einstein equation.

Although we have focused our treatment on the case
star collapsing in empty space, generalizations to, e.g.,
collapse of electrically charged bodies are straightforw
~see, e.g., Ref.@12# for a configuration with extremal charge
Q25M2). In fact, the construction presented in Sec.
makes a heavy use of the null structure onI 7 in defining the
coordinatesv and u, but seems rather general otherwise.
would be important to understand whether a similar te
nique could be used to define optical geometry in still mo
general situations—for example, for nonspherically symm
ric collapse.

We have seen that, in optical geometry, gravitational c
lapse corresponds to a very fast expansion of the star in
‘‘lower space,’’ with the center receding from the optic
observersna at a speed that approaches exponentially
speed of light. This process excites the modes of a quan
field, as it happens in the presence of a moving bound
leading to the production of Hawking radiation. Thus, optic
geometry provides one with a physical origin of the form
‘‘moving mirror analogy’’ of the Hawking effect.

The issue of the final state of black hole evaporation
also clarified by the use of optical geometry. There are
sentially two possibilities, in both of which the black ho
does not form, strictly speaking. Either the evaporation p
cess continues until one remains with flat space and a~physi-
cally unaccessible! infinitely warped ‘‘lower space’’ or, per-
haps more likely, the process stops at some scale leavin
enormously large remnant. In both cases there is no infor
tion paradox. Of course, since the issue involves distance
the order of the Planck length, a definitive answer is beyo
the limits of applicability of present-day physics. Neverth
less, it would be useful to get a more detailed insight into
evaporation process by reformulating simple models that
clude back-reaction~see, e.g., Ref.@28#! in the language of
optical geometry.

Of course, all our conclusions apply to black holes der
ing from collapse. However, it is not difficult to extend the
to eternal black holes, simply studying the quantum fie
theory on the optical spacetime associated with
Schwarzschild solution. In this case there is no mov
boundary, and the optical metric looks~as far as thet andx
coordinates are concerned! exactly like the Minkowski one.
In particular, the observers atx5const, belonging to the op
tical frame, correspond to the Minkowskian inertial obse
ers. Thus, one expects that they should register no partic
provided that a condition of ‘‘no incoming radiation’’ is im
posed for t→2`. This is precisely what happens in th
so-called Boulware~or Schwarzschild! stateu0B& @29#. The
optical geometry viewpoint provides therefore support
regardingu0B&, rather than the Hartle-Hawking~or Kruskal!
and the Unruh statesu0H& and u0U& ~see Ref.@13#, pp. 281–

ty
ll
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282!, as describing the quantum vacuum around an ete
black hole.

The Boulware state is often considered pathological
cause the expectation value of several physical quantitie
verges at the horizon@30#. For example, for the stress
energy-momentum tensor operator of a massless scalar
f one has, after renormalization, that^0BuTabu0B& ren de-
pends onr as (122M /r )21 for r→2M . It is remarkable
that, in the optical spacetime (M,g̃ab), such a factor is ex-
actly canceled out, becausef is conformally transformed in
f̃5eFf, and ^0BuT̃abu0B& ren turns out to be finite every
where, representing just the vacuum polarization due to
vature. A similar situation occurs when considering the
sponse functionP(vur ) for an ideal static detector in th
Boulware state. In the spacetime (M,gab) one has, near the
horizon @30#,

P~vur !;2
1

122M /r

v

2p
Q~2v!, ~6.1!

whereQ is the step function. However, after the conform
rescaling the response is given by

P̃~vur !;2
v

2p
Q~2v!, ~6.2!

which not only is finite, but is also the answer one wou
expect in a proper ‘‘vacuum.’’ Thus, the pathologies of t
Boulware state are removed by the conformal transforma
to the optical spacetime, in whichu0B& behaves as a satisfac
tory quantum vacuum.
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APPENDIX A: PROOF OF EQ. „1.1…

From the definition~1.2! of F it follows that the vector
field na can be expressed asna5e2Fha. Thus,

nb¹bna5e22F~hb¹bha2hahb¹bF!. ~A1!
,

, J

tiv
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Using now the relation

¹ahb1¹bha5
1

2
gab¹ch

c, ~A2!

valid for any conformal Killing vector fieldha ~see, e.g.,
Ref. @1#, pp. 443–444!, we can write

hb¹bha5e2F¹aF1
1

2
ha¹bhb. ~A3!

Furthermore,

hb¹bF5
hbhc¹bhc

haha 5
hbhc¹ (bhc)

haha
5

1

4
¹bhb. ~A4!

Substituting Eq.~A4! into Eq. ~A3! and then the latter into
Eq. ~A1! we obtain, after some trivial algebra, Eq.~1.1!.

APPENDIX B: PHYSICAL MEANING OF THE SURFACE
GRAVITY IN OPTICAL GEOMETRY

Here we show that, for a static black hole, the surfa
gravity coincides with the magnitude of the gravitational p
on the natural observers fort→1`, as measured with re
spect to the optical metric. A convenient expression for
surface gravityk is

k5 limF2
~ha¹ahc!~hb¹bhc!

hdhd G1/2

, ~B1!

where ‘‘lim’’ stands for the limit as the horizon is ap
proached~see Ref.@1#, p. 332!. From the Killing equation
and the definition of F it follows that ha¹ahc
5¹c(2haha)/25e2F¹cF. Substituting into Eq.~B1! we
obtain

k5 lim~ g̃ab¹aF¹bF!1/25 lim~ h̃abD̃aFD̃bF!1/2, ~B2!

whereD̃ is the Riemannian connection associated withh̃ab ,
and we have used the stationarity property in the fo
ha¹aF50. By Eq.~1.1!, the last term in Eq.~B2! is just the
value of the gravitational pull on the observers of the opti
frame.

This proof can be generalized without any difficulty to th
case of a stationary black hole, simply by replacingha with
a Killing vector field which is normal to the horizon.
m
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