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The notion of optical geometry, introduced more than 20 years ago as a formal tool in quantum field theory
on a static background, has recently found several applications to the study of physical processes around
compact objects. In this paper we define optical geometry for spherically symmetric gravitational collapse,
with the purpose of extending the current formalism to physically interesting spacetimes which are not con-
formally static. The treatment is fully general but, as an example, we also discuss the special case of the
Oppenheimer-Snyder model. The analysis of the late-time behavior shows a close correspondence between the
structure of optical spacetime for gravitational collapse and that of flat spacetime with an accelerating bound-
ary. Thus, optical geometry provides a natural physical interpretation for derivations of the Hawking effect
based on the “moving mirror analogy.” Finally, we briefly discuss the issue of back reaction in black hole
evaporation and the information paradox from the perspective of optical geometry.

PACS numbd(s): 04.62:+v, 04.70.Bw, 04.70.Dy

. INTRODUCTION is called theoptical metric[4], and (S,h,p) is the optical

A conformally static spacetimgM,ga,) admits a privi-  gpace We shall also refer to the family of preferred observ-
leged congruence of timelike curves, corresponding to th@ysna as theoptical frame

flow lines of conformal Killing timet. Consequently, one can
define a family of privileged observers with four-velocity
n?= 7%/(— n,7°)2, wherez? is the conformal Killing vec-
tor field. The set of these observers can be thought of as
generalization of the Newtonian concept of a rest frame
Their acceleration can be expressed as the projection of
gradient,

There is a simple operational definition of the optical met-
ric. Suppose that all the observersagree to construct a set
of synchronized devices that measure the Killing timeOf
&urse, these “clocks” will not agree with those based on
local physical processes—e.g., on atomic transitions—but
ffis is totally irrelevant for the following argumeptThen,
they use light signals according to a radar procedure, and
n°V,n,=h,oV,® (1.2) define the distange between two_p_oirﬁ{s_QeS asthPIZ_,
wheretpop=tgpg is the lapse of Killing time corresponding
(see Appendix A for a proof whereh,”= 5,°+n,n° and to the round trip of the signal between the observers based at

P and Q.2 In this way, they attribute the metrft,, to S.
b= Eln(— a). (1.2) The notion of optical geometry has recently received con-
2 Tl 2 ' siderable attention as a powerful tool in general relativity
[5,6]. It is thus important to investigate to which extent it can
thus, @ is a suitable general-relativistic counterpart of thebe generalized to spacetimes that are not conformally static.
gravitational potential2]. One can define the ultrastafi8]  One proposal in this directidiY] appears mainly formal, and

metric §ap=(— 7¢7°) " 'gap=€ >*ap, Which can be writ-  is probably not sufficient in order to determing andgyy, in

ten asgap=— V,tVyt+h,p, whereh,,=e 2®h,,. The hy-  a unique way for an arbitrary spacetiri@l. It is perhaps
persurfaceg =const of M are all diffeomorphic to some more helpful to focus on specific situations, that may provide
three-dimensional manifold. If the spacetime is static, it one with additional, physically motivated, hints. In the
follows from Fermat's principle that light rays coincide with present paper we study the case of a spacetime that describes

the geodesics o8 according tch,, [4]. For this reasorg,,  the gravitational collapse of a spherically symmetric configu-
ration of matter. This problem is interesting for two reasons.

First, it represents one of the simplest cases in which the
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deny at late times. In Sec. IV we consider a very simple
particular case, the Oppenheimer-Snyder dust model. In Sec.
V we argue that the optical geometry picture of collapse is
the natural framework for derivations of the Hawking effect
based on the “moving mirror analogy,” and that it gives
useful insight about the issue of black hole evaporation and
the information paradox. Section VI contains a summary of
the results, together with some final comments and outlines
for future investigations.

Il. GENERAL CONSTRUCTION

The metric of any spherically symmetric spacetime can be
written as

g=—a(t,r)dt>+ B(t,r)dr?+r2(d6?+sir? 6 de?),
(2.2

wherea andg are positive functiongsee, e.g., Refl1], pp.

. . 616—617. In the following we consider situations where
FIG. 1. Kruskal diagram for the collapse of a spherically sym- 7 9

. . ) ) e matter is confined to a region=R(t), with R(t) being a
metric shell of matter; only the region outside the horizon is shownk f tion(the “radi f the st = “R(t
The natural “rest frame” inside the shell does not match satisfac- nown function(the “radius of the star}. Forr (1), we

torily with the Schwarzschild frame, because the behaviors of th@SSume that. the spacetime 'S_ empty. However, the treatment
can be easily extended to include more general types of

collapse—e.g., of electrically charged configuratiddg].

o o . According to Birkhoff's theorem, the metric in the external
property of conformal staticity does not hold. This is particu-region is the Schwarzschild one, thus we hawét,r)
larly evident if we consider a situation in which the collaps- =B(t,r) " t=C(r):=1—2M/r for r>R(t).
ing matter is concentrated on an infinitely thin shell. In this | this case, the “rest frame'h? outside the star is just

case, the spacetime is composed of two regions, corresponisqe  of the Schwarzschild —static observers*
ing to the interior and the exterior of the shell, joined through_c(r),l,zbw and the optical geometry isd
a timelike hypersurface which represents the history of the t: P 9 y Yab

- -1 i u ise”
shell. Both these regions are static when considered sepi—c(r) 9ap- Introducing the Regge-Wheeler “tortoise

. . _1
rately, their metrics being the Minkowski and the Schwarzs-coordmatex’ such that #:=C(r)~"dr, we have
child ones, respectively. However, the field$ associated
with these two metrics do not match in a satisfactory way

across the surface of the sh&kee Fig. L In particular, the

two frames near the horizon are very different.

g=—dt?+dx?+T(x)X(de?+sir? 6de?), (2.2

heret:=C(r) Y%. The Regge-Wheeler coordinate has,

horizon is a singular locus for the Schwarzschild frame, bu heref impl tical ing in th tical
is perfectly regular for the Minkowski observers. This very erefore, a very simple geometrical meaning In the optica
space: It expresses directly the value of radial distances on

different behavior prevents one from considering a single’™ " ! : i
frame that reduces to the Schwarzschild and the MinkowskiS:Nab). Notice that, as far as purely radial motions are con-
one, respectively, outside and inside the shell. The failuréerned, the optical metri2.2) gives the same line element
can be seen as a consequence of the fact that the spacetim@fsMinkowski spacetime. In particular, no event horizon is
not conformally static in any region containing the sfiell. Present, because the conformal transformation foym to
Indeed, independently of its specific properties, the shell repg,, “sends” the Schwarzschild horizon=2M to infinity.
resents a nonstationary boundary between two static regiong, fact, for a spacetime with metrig,;, the points withr

A second motivation for studying this class of spacetimes is=2M belong to the null infinity, and the conformal rescaling
that they lead to the Hawking effeft0]. Given the success that carriesy,, into Ja, can be compared to the “decompac-

of optical geometry in discussing complicated physical phesigiation” of a Penrose-Carter diagram, as it is evident from
nomena, one expects that it might give new insight about th%i s. 2—4 '

process of black hole evaporation. Indeed, this appears to be To define

natural” observers inside the star is not so
the case, as we shall see.

. . easy. In general, the metric in the internal region is not con-

T_he structure of the paper is the foI_Iowmg. In the_: r‘EthormaIIy static, and one cannot thus apply the construction
section we present a general construction (.)f the optlcal_ 9%5ased on the timelike conformal Killing vector field, outlined

ometry for an arbltrary mattgr configuration undergqlng t the beginning of Sec. |I. However, even when such a field

spherical collapse. Section I IS de\{oted to the_anaIyS|s Obxists it does not necessarily produce a satisfactory family of

some features that become univergia., model indepen- internal observers. This point can be clarified by considering

again the example of a collapsing shell of matter. Inside the

shell the spacetime is flat, by Birkhoff's theorem; therefore,

3See Ref[9] for considerations related to this point. it would seem obvious to choose inertial observers at fixed
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) ) FIG. 4. Ther>2M region of Schwarzschild spacetime it)X)
FIG. 2. Penrose-Carter diagram of the=2M region of  oordinates. This is how ad=const, ¢=const section of

Schwarzschild spacetime. Lines of constaahd of constant are Schwarzschild spacetime appears when the optical mggcis

drawn, as well as the worldlines of two observers, one escaping to h _ .
. - used. The worldlines= const of the privileged observers have been
r—+o (worldline @, the other entering in the black holeorld-

line by _co_m_pletely s_traightened, and the horizdids have been “sent to _
) infinity.” Notice that the observers a and b appear accelerated in
this diagram.
distances with respect to the center of the shell, in order to
define a “rest frame.” But such observers are not the naturaéstablish how the center=0 looks. To this end, it is con-
continuation inside the shell of the Schwarzschild static onesyenient to consider the Kruskal diagram in Fig. 5, which
defined outside. This can be seen by noticing that the horizoshows three incoming radial light rayer spherical wave
H " is infinitely ahead in the future for the Schwarzschild fronts). The ray at = v, simply passes through the center of
observers, but not for those at rest with respect to the centéhe star and is then converted into an outgoing signal,
of the shell. Similarly, the Schwarzschild observers=u,. The rayv=vy reaches =0 just on the horizon and
“crowd” near H*, unlike the internal onegsee Fig. 1L  then turns into a null generator { . Forv>uvy, all in-
Thus, using the Schwarzschild and the inertial frames wouldoming signals enter the black hole region; in particular, the
lead to ill-behaved optical metric,, and potentiakp. ray v=vp does so exactly when the surface of the star
Before constructing explicitty an extension of the crosses the horizof@ventP in Fig. 5. Since light signals are
Schwarzschild frame that does not suffer from these probstill represented by straight lines at45° in the ¢,x) dia-
lems, let us present a graphical discussion of some of it§ram, andvo, vy, vpe all have finite values, it follows that
properties. Basically, we are looking for a continuation of thethe center =0 must correspond to a line that becomes as-
coordinates andx inside matter, such thatthiix=+1 for ~ ymptotically parallel to the one representing the surface of
light signals and fundamental observers are locatec at the star, as shown in Fig. 6. Since fundamental observers are
=const. In a {,x) diagram, the surface of the star is repre-represented by vertical lines=const in the {,x) plane, it is
sented by a line like b in Fig. 4, so that we have still only to

FIG. 3. Kruskal diagram of the>2M region of Schwarzschild FIG. 5. Light rays in a Kruskal diagram for spherically symmet-
spacetime. This figure can be regarded as a “partial decompactifric collapse. The outgoing ray=u, is generated by the incoming
cation” of Fig. 2, whereinZ* are “sent to infinity” and linesr one,v=v,, after it has crossed the center of the star. It appears
=const are “straightened up” for large values rof reflected because the diagram is in polar coordinates.
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mally flat) Of courset andr become now function§( 7, &)
andr (7,¢) of the new coordinates. Thus, the internal metric
reads

g=v(7,&)(—dr?+d&?) +r(7,€)2(d6?+ sir? 6 dep?).
(2.4

Since botht and 7 are timelike coordinates, the history of a
point with #= const, ¢ = const on the surface of the star con-
sists of a sequence of events ordered.iherefore, in terms
of the internal coordinates, the equation of the surface can be
written as ¢é=E(7), obtained by solving the equation
r(7,&€)=R(t(7,£&)) with respect tof.

The spacetime metric must be continuous across the sur-
face of the star. Thus, the external metcl) and the inter-
nal one, given by Eq2.4), must agree in the evaluation of

FIG. 6. Collapse int(x) coordinates. Both the surface and the the spacetime interval between two events that occur on the
center of the star appear accelerated, and their worldlines are agtar's surface. Let us consider two such events, labeled, in
ymptotically parallel to each other. The radius of the star in thethe internal coordinates, byt,R(t),6,¢) and (t+ ot,R(t
optical geometry approaches the valye- v, ast— +«. Only the +6t),8,0)~(t+ 6t,R(t) + R’ (1) 6t, 8, ), where a prime de-
part of the ¢,x) plane above the curve=0 is physically meaning- a5 the derivative of a function with respect to its argu-
ful. ment. Similarly, in external coordinates we have, for the

same events,(7,2(7),0,¢) and (7+ 67,E(7+ 67),6,¢)

easy to see that their qualitative behavior in a Kruskal dia= (7+ 57, 2(7)+E'(7)87,0,¢). Replacing in Egs.(2.1)
gram is the one shown in Flg 7. Their worldlines now acCu-gnd (24)’ and equating the outcomes by Continuity, we ob-
mulate along the whol@{ * and match regularly across the tain a differential relation betweenand = at the surface of
surface of the star. These conditions guarantee that when thge star,
metric 9,5, is used,H © becomes a regular portion of the
future asymptotic null infinity. Y(rE(r)[1-E'(7)?]d7?

Let us now proceed to construe? analytically. It is con- _ LN 2 2
venient to introduce new coordinates, £) in the internal =[C(R(t))—R'(t)?/C(R(t))]dt>. (2.5
regionr <R(t), such that

Integrating Eq(2.5) gives a relationship= f(t) between the
values oft and 7 at the surface.

—a(t,r)dt?+ B(t,r)dr’=y(7,&)(—dr?+de?), (2.3 The form (2.4) of the internal metric is convenient be-
cause it allows one to readily define null coordinatgs\(),

with vy being a positive function(Such coordinates always U=r—&+U,, (2.6)
exist, because all two-dimensional spacetimes are confor-

V=r1+£&+V,, 2.7

whereU, andV, are arbitrary constants. The coordinatés
H and V have the usual physical meaning: The locus
=const in spacetime is the history of an outgoing spherical
wave front of light, whileV=const represents an incoming
one. If we introduce null coordinatesi,p) in the outside
region as

u=t—x, (2.9
v=t+X, (2.9)

we have that an outgoing spherical wave front is described,
inside the star, by the equatidd=const and, outside the
- star, byu=const. Therefore, one can establish a one-to-one
I & correspondencl (u) between the values & andu, defin-

~ ) ing U(u) as the internalJ-label of the wave front which,

& outside, is labeled by. Similarly, one can define a function
V(v). The explicit form ofU(u) can be obtained by solving
FIG. 7. Regular extension of the Schwarzschild frame. with respect ta the equation
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t—x(R(t))=u (2.10
and then substituting the result into
U=f(t)—Z(f(t))+Uq. (2.1)
Analogously,V(v) is obtained by replacing the solution of
t+x(R(t))=v (2.12
into

V=Ff(t)+E(f(t))+V,. (2.13

The functionsU (u) andV(v) can be used to extend the
coordinates §,v), hence {,x), also inside the star. It is suf-

ficient to invert them, getting andv as functions oU and
V, respectively, and thedefine tandx as

1
t:=§[v(V)+u(U)], (2.19

1
x:=§[v(V)—u(U)]. (2.195

In terms oft andx, the internal metri¢2.4) takes the form

g=yU'V'(—dt?+dx?) +r?(de?+ sir? 6 de?),
(2.16

where U’ :=dU/du, V':=dV/dv, and all the functions are
implicitly supposed to be expressed in termg ahdx. Now
we choose

q>=%|n(7u'v'), (2.17

so that the internal optical metric reads

~ r2
g=—dt>+dx>+ U’V’(d62+5in2 6de?). (2.18
Y

In (t,r) coordinates, the optical frame® has components
nt=(yU’'V") Y25 i.e., in (r,&) coordinates

n*

[(V'+U") 8"+ (V' —U") 8],
(2.19

_Z(YU/V/):L/Z

PHYSICAL REVIEW D62 064010

+6U. This allows us to find the coefficients that lidki and
6U to ét; eliminating 6t and taking the limit, we get

- 1-E'(ftw)
du  1-R/(t(u))/C(R((u)))

f'(t(u)), (2.20

where the functiort(u) is implicitly defined by Eq.(2.10.
Similarly, one obtains from Eq$2.12 and(2.13), consider-
ing two incoming light rays,

v 1+E'(f(t(v)))

dv 1+4R'(t(v))/C(R(t(v)))

f'(t(v)), (2.2)

where nowt(v) is given by Eq.(2.12. Using Eq.(2.5 we
get, at the end,

1-E'(f(t(w)
1+E"(f(t(u)

1+E'(f(t(v))

1-E'(f(t(v))

y 1+R'(t(u))/C(R(t(u)))
1-R’(t(u))/C(R(t(u)))

U’ (u)V'(v)=

y 1—R’'(t(v))/C(R(t(v)))
1+R'(t(v))/C(R(t(v)))

y C(R(t(u)))
Y{f(t(w),E(f(t(u)))}

» C(R(t(v))) "
HEtw) . E(F )}

(2.22

. ASYMPTOTIC BEHAVIOR

Equations(2.17—(2.22 give a complete characterization
of the optical geometry inside a collapsing spherically sym-
metric star. Of course, since they require an explicit knowl-
edge of the functionR(t), E(r), f(t), and y(r,&), one
can use them only within a specific model of collapse—and
even in that case their integration will usually require nu-
merical methods. It is therefore remarkable that, at late times
(i.e., for t,u—+0), one could establish analytically some
features that are universal, in the sense that they do not de-
pend on the details of the model.

In the limit u— +o0, it is easy to circumvent the nasty
expression on the right-hand side of E8.20 by noticing
that, although the relationship between the functiorendu
is singular onH ™, U is regularly connected to the Kruskal

This vector field is a satisfactory extension inside the star ofetarded null coordinatfl]
the static Schwarzschild frame, and it is not difficult to check

that, although the metri2.16) is not conformally static, Eq.
(1.2) is still satisfied. Thus, we can continue to interpbetis
the gravitational potential.

U= —exp(—uldM) (3.1

for all values ofl4; this follows from the fact that both(, V)

The factorU’V’ can be computed as follows. Let us con- and the Kruskal coordinates are regular at the surface of the
sider two outgoing light rays, corresponding to the values star. Then, two outgoing light rays, labeled by and U

andU+ 6U, u andu+ éu of the coordinates, wit®U and
Su very small. Equation$2.10 and(2.11) give us the coor-

+ 86U inside the star, are labeled By andi{+ S outside,
with U =a(l) U, wherea is a regular positive function

dinate timeg andt+ 6t at which these rays cross the surfacethat depends on the details of collagge., R, R’, E, and

of the star, expressed as functionswfu+ éu, U, andU

E’) at the moment when the light rays cross the surface of
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the star. For rays near the horizon, i.e., in the limit +o,  which gives, up to the sign, the value of the "“gravitational
one hasi/~0 and thussU~a(0)é8l4, which gives the de- field” at late times. It is interesting to notice that, outside the

sired asymptotic relatiofil 3] star,n®V  n,=1/4M, which coincides with the surface grav-
ity of the black hole(see Appendix B for a general proof
du a(0) On the other hand, inside the star, the tefi2F gives a
qu " am S ulam). (320 correction to the surface gravity that varies from place to

place on the horizon and depends on the model of collapse.

(Hereafter, we use the notatidp~f, to express the fact that L€t us now consider a timelilie hypersurface with equa-
two functions have the same asymptotic expression in somion é=F(7), such that near ™ one can write{~vr
limit, i.e., lim f,/f,=1.) The constant positive facta(0) +const, wherev is a constantfrom expression(2.4) of the

is all that remains of the details of collapse in the limit Metric, it follows that—1<»<1]. This is the case, for ex-
et oo, ample, of the center of the st&i=0, or of the star’s surface,

The situation is rather different as far a¥/dv is con-  for which we havev=dZ/dr evaluated at the horizon.
cerned. Of course, considering two incoming light rays la-Equations(2.6) and (2.7) give then (I+v)dU~(1-v)dV.

beled byV and V+ 8V inside the star, and by and V NearH *, the coordinate is approximately constant on the
+ 8V outside, where submanifold identified b¢=F () (for example, in the cases

of the center and of the surface of the star, it is equai o
V=expv/4M) (3.3 andvp, in the notations of Fig. 5 and this relation can be
rewritten as
is the Kruskal advanced null coordinate, one can still claim
that 5V=Db(V) 8V, whereb is a regular positive function de- do~ A exp( - u/aM)du, (3.8
pending on the dynamics of the star's surface when it iswhereA is a cumulative positive constant and we have used
crossed by the light rays. However, since the interior of theE 39 Int i dp ing Eq2.9) t
star atH * corresponds to an entire range of values\f@nd g.(3.2). Integrating and using =), We ge
v (the interval[vy,vp] in Fig. 5), the function &/dv, al-
though regular everywhere, has not a universal dependence
onuv.

The asymptotic form(3.2) of U’(u) and the regular de-
pendence oV’ onv are nevertheless sufficient in order to
establish the main properties of optical geometry during th
late stages of collapse. Singe U’, andV’ are regular posi-
tive functions, the producyU’V' can simply be written as

t+X~v—K exp(— u/dM), (3.9

where K:=4MA>0 and the integration constant is the
advanced time at which the surfage=F(7) crossesH *.
éEquation(3.9) can be rewritten using E@2.8) as

X~—t+v—K exp(—t/2M) (3.10

(see also Ref[11], p. 869, and Ref[14]). This equation
expresses the asymptotic behavior, tnx] coordinates, of

. y " .
where F(v) is a nonvanishing positive function which de- any worldline that crosses *. Of course, it is valid both
inside and outside the star.

pends on the details of collapse. Of course, outside the star,

U=u, V=V, and y=(32M3%r)exp(r/i2M), so yU'V’
— 1—2M/r andF(v)~ exp(—1+uv/4M). IV. EXAMPLE: THE OPPENHEIMER-SNYDER MODEL

From Eq.(2.19 it is evident that, sinc&)’—0 whenu In order to apply the general techniques developed so far
—+, the optical frame behaves like the one in Fig. 7,15 a specific case, let us consider the simplest model of a
because the componemtSandn® tend to become equal near collapsing star, in which matter is a ball of dust with uniform
H *. The optical metrig2.18 and the potentiad have the  density[15]. In this case, the internal solution is part of a

YUV’ ~F(v)exp —u/dM), (3.4)

following asymptotic forms: spatially closed Friedman spacetitisee Ref[11], pp. 851—
2 (s 856), so we havey(r,&)=a(7)%a3 and
T~ —dt2 2, 7 7 (dp24 i 2y.
g —dt®+ o+ — (6 s 6 dg®); . (7,6)=a(7)sin(élay), 4.
(3.
where O<7<may (7=0 corresponds to the beginning of
-t 1 collapse, a; is a constant, & é<= ), with E,<ag/2 cor-
b~ gy T3 INFt+x). (3.6 responding to the surface of the star, and

Using Eq.(1.1), one can easily compute the acceleration of a(7) =2 cos(7/2ag). 4.2
the fundamental observers. The only nonvanishing COmpOg is convenient to introduce the dimensionless variable

nent is :=7/2a,. Then, the functiorR(t) is defined implicitly by the
> 1 Fl(t+x) two equations

X 8M T 2F(tix)’ (3.7

a =
nVany R=R; cog o 4.3
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and ) 112
v(V)=t(r=V)+X(r=V)=4M In| | 5=~ —1| +tanoy
R 1/2 2M
(m—l) +tano R\
t=2Min| — s +Rico§av+2MInco§av+4M(m—1 ay
i
(m—l) —tano R "
R; 1/2) i +R ( oM 1] (oyt+sinoycosoy), (4.8
+4M(m—l) 0'+m(0’+SIHO'COSO'),

whereo, = V/2a,. Substituting Eqs(4.7) and(4.8) into Egs.
(4.9 (2.14 and(2.15, we can expressandx inside the star as
functions ofU and V.
whereR;=ag sin(Ey/ay) is the radius of the star at the be-  Along the worldlines of the observers belonging to the
ginning of collapse. Note that far=¢o* :=arccos/2M/R;,  optical frame one has=const, i.e., d/dv=1. Writing Egs.
which corresponds to the event horizon, onethas-», asit  (4.7) and(4.8) in differential form,

should be. 1/2

In this model one ha& (7)=E,=const. The functions (i—l T tane
U(u) andV(v) can, in principle, be obtained by the systems Riz coday |2M v
du= du, (4.9
2aoM R;
u:t—x’ mcoszou—l
(4.9
U=T_Eo+UO, Ri . 1/2
and Ricod oy |2M 1) ~t@nov
dv= dv,
2a,M R 2
v=t+X, WCO oy—1
(4.6) (4.10

V= T+ EO+V01
we find the slope of these worldlines it (V) coordinates:

respectively, wher&X=R+2M In(R/2M — 1) and bothR and

t are expressed in terms of accordil_"ng to Eqgs(4.3) a}nd (c052 ou— ﬂ) cod oy (i—l)m—tanav
(4.4). From now on, we shall exploit the freedom in the dU Ri 2M

constantsU, and V,, choosingU,=—V,=2E,, so thatU av 2M R 2

=V=r at the surface of the star. In practice, £4.4) is a (0052 VTR cod oy, (m—l +tanoy
transcendental one far and cannot be inverted. However, ! (4.1

we can easily find the inverse functiongU) and v (V).

Consider an outgoing spherical wave front of light, charac-This equation can be integrated numerically for suitable val-
terized byU=U = const andu=u=const, respectively, in- ues ofM andR;, and produces diagrams that agree with our
side and outside the star. In particular, we must have dualitative sketch of Fig. 7. _ .
=t(7)— X(7), wherer is the value ofr at the moment when The function u(U) assumes a particularly simple
the wave front crosses the surface of the star. But from E asymptotic form near the event horizon, in agreement with

= he general analysis in Sec. lll. The surface of the star
(4.5 we have alsdJ = 7, so Eqs.(4.3) and(4.4) allow us to

ISt ! K crosses the horizon whd®=2M, i.e., at a timer=7* such
conclude that, inside the star, the relationship betwgéemd o+ cod o* =2M/R. . Since the horizon is a null hypersurface

uis with U=U*=const, we have also that dasg;=2M/R,.
R Then, forU—U* the first term on the right-hand side of Eq.
u(U)=t(r=U)—X(r=U)=—4M In(mcosz Uu_1> (4.7) dominates and one can write, asymptotically,
R, 12 u(U)~—=41In(of—oy). (4.12
+4MIn|| s——1| +tanoy|—R;cod
(2M u ! u Consistently, one finds from Eq(4.9 that di/dU~
12 —4M/(U—U%*); in fact, this relationship is not restricted to
+2M Incog 0'U+4M(_i_1) oy the present model and holds for a generic collapse, as it
2M follows from Eq.(3.2). Sincev (V) remains finite, we have
) 12 also
+R —'—1) +sinoy cos , 4.
'\ 2m (7u+sinoy cosou) 49 t(U,V)~—2M In(o— o) (4.13
with oy =U/2a,. Analogously, we find and
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¢
fed .2

FIG. 8. Embedding diagram of thé=/2 section of optical FIG. 10. WhenR(t)<9M/4, no faithful embedding is possible
space aF ar_l early stage of collapse. Points in the shadowed area #&he three-dimensional Euclidean space. The star escapes to
located inside the star. — at an increasing speed. The optical radial distance between the

centerr=0 and the surface=R(t) tends to the finite valuep
X(U,V)~2M In(a{;— ay). (4149 —y,, whent— +c, while the area of the surface increases without

bound.
Notice thatt— + o andx— —» for U—U*. The worldlines

of the observers belonging to the optical franxe; const,

tend to lie along the event horizon, as one can also see fro@PSurd than it may seem, if one remembers the operational
Eq. (4.11), which implies dJ/dV—0 asU—U*. All these meaning of optical distance outlined in Sec. |. Consider an

features are very satisfactory from the point of view of aCPServer standing at a large valueroivho sends light sig-

smooth extension of the Schwarzschild rest frame inside th@?Ishon a mirror thﬁt has t;gen pk:.evio.usly pIa(;ed at rt}he center
star, and are in full agreement with the general results op?t the star, and then defines his distance from the center

tained in Sec. Il simply in terms of the lapse of Killing timé taken by the
round trip. Since the time delay becomes progressively
larger, he will deduce that a collapsing star recedes from him
at an increasing speed. Because of spherical symmetry, the
We now want to figure out what collapse looks like in the only geometrical picture consistent with this description is
optical geometry. For this purpose it is convenient to conthe one of Figs. 8—10, where the star expands into a “lower
sider the embedding diagrams of an equatorial plane at difspace” that is created in the course of collapse.
ferent values ot (see Ref[16] for a general discussion of  If @ quantum field is present, this dynamical process dis-
embedding diagramsWhen R>3M, there are no qualita- turbs its modes analogously to what happens when there is a
tive differences with respect to the conventional descriptiormoving boundary. In fact, in the two-dimensional section
(see Fig. 8 However, asR becomes smaller than\8, a  shown in Fig. 6, the situation isxactlythe same as if there
“throat” develops in the external space, in correspondencévere a moving boundary, that accelerates asymptotically to-
with r=3M, while the surface of the star expands progreswards the speed of light, with the la{8.10. In Minkowski
sively (Figs. 9 and 1§) escaping tox— —c with the  Spacetime, this is known to lead, at late tinie® a thermal
asymptotic law (3.10. Thus, “collapse” actually corre- flux of radiation with temperature @V)~* [17] (see also
sponds, in optical geometry, to a sort of expansion into &Ref.[13], pp. 102-109 and 229Given the identity between
space that is created by the process itself. This picture is leske (t,x) part of the line element of,, with the one of a
two-dimensional Minkowski spacetime, one expects there-
fore that even in the late stages of collapse there must be a
flux of radiation at temperatur®y=(87M) L. This is pre-
cisely the quantum emission found by Hawkifig,13,17,
whose existence follows therefore in a natural way from the
picture of collapse based on the optical geometry. It is re-
markable that, although the moving boundary analogy has
often been used in the literatur&7], optical geometry gives
a very simple physical explanation afy it works: Essen-
tially, because gravitational collapgea particular case of a
moving boundary.

V. HAWKING EFFECT

“4Although the optical spacé has not a boundary in the technical
sense of the topology of manifolds, the center of the star works in
FIG. 9. The shape of thé= /2 section of optical space when the same way as far as fields are concerned, because the boundary
3M>R(t)>9M/4. conditions atr =0 coincide with those of perfect reflection.
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Actually, the analogy with a moving boundary in testone, i.e., that it does not affect the background space-
Minkowski spacetime fails to hold exactly when the angulartime. Clearly, this approximation becomes invalid at late
dimensions are taken into account, because the field prop@mes, when the amount of energy carried away by the
gates on a non-Euclidean geometry. However, this has thgawking radiation that leaks through the neckrat3M
only effect of distorting the spectrum of the emitted radia-hecomes a non-negligible fraction of the massf the star.
tion, according to the way waves are scattered by the curva-et ys then sketch qualitatively how back-reaction modifies
ture of space. Such a correction is well known in the theorype picture of collapse suggested by the optical geometry.
of the Hawking effec{10,13. _ Roughly, the main effect of Hawking’s emission is to de-

In this picture the event horizon does not play any role in.aqqe “the value ofl. This has essentially three conse-
deriving Hawking's radiation. In this respect, it is worth re- guences on the diagram of Fig. 10: First, it decreases the size
minding the r_eader that in_ the optical geometr_y the h_orizpn iSof the mouth at =3M; second, it increas:es the curvature of
very much alike to a portion of the asymptotic null infinity. the optical space at the mouth and in the lower region; third,

To claim that it has anything to do with the thermal flux l‘romét increases the value of the Hawking temperaffige Thus,

black holes would be exactly analogous to saying that th h d diation is abl
future null infinity is relevant for the radiation produced by a as the process goes on andmorera lation Is able to escape to
r—+oo, the geometry in the region>3M of space be-

moving boundary in Minkowski spacetime. Thus, explana- ; X
tions of the effect based on quantum tunneling mechanism&omes closer and closer to the Euclidean one, while the
appear rather implausible from the perspective of optical gethroat atr=3M shrinks down, becoming progressively
ometry. sharper. The region<3M has larger and larger negative

A similar situation occurs for black hole entropy. In the curvature and contains, at large negative values, ofiatter
optical geometry, the celebrated relatiSsA/4 has no di- that escapes te— —o with increasing acceleration.
rect meaning, because the horizon has an infinite area ac- Although this d_e_scrlptlon is purely quall'tat|ye and is not
cording to the metridh. Indeed, the horizon is located mt ~Pased on an explicitly constructed model, it gives us impor-
— — in the optical space. If some notion of entropy can bef@nt clues about the issue of the final state of a collapsing
introduced, it can therefore be associated only with the reStar, when Hawking's radiation is taken into account. First of
gion r>2M. One possibility is to attribute the entropy en- all, it implies that the black hole, in the strict sense of the

. . . +

tirely to the Hawking radiation, in the following way. Let us "€gion beyond the future event horizén", does not form.
consider Fig. 10 again, where the space around a collapsing‘lS is evident in the optical geometry point of view, where
star at sufficiently late times is visualized as made of a vasf! corresponds tx— —c« andt— +c. In the usual lan-
“lower” region connected to the usual “upper” one through 9u@ge, one would say that radiation makes the valu/ of
a mouth at =3M. To observers living at large values of decrease, which in turn makes the horizon shrink, and even-
the r=3M surface looks like the boundary of a three- tually reduce to a point before the star could cross it. Thus,
dimensional cavity containing thermal black body radiationth® Very existence of the Hawking effect would prevent the

at the temperatur&,, . (One may even consider the<3M  formation of black holes by collapSe. o .
region as analogous to a Kirchhoff cavity in ordinary ther- If this is the case, what are then we left with in the limit
modynamics. Whenever a small amount of energyE es- t— +»? A straightforward extrapolation of the process that
capes to infinity as Hawking’s radiation, or is added to theV& have just described suggests that,Nbr-0, the throat at

collapsing star in the form of accreted matter, the total en! =3M pinches off, leaving two spaces—one Euclidean, the
tropy of the radiation contained in the cavity is modified by Other with infinite negative curvature—uwith just one point in
the amountAS=AE/T,,. Since AE coincides with the ~¢0mmon. This is clearly a degenerate, and highly implau-
change in the mass, as measured from infinity, we recovetible, situation; one would ra_ther th_lnk that the process stops
the Beckenstein-Hawking expressi@r 47M? [10,17,18 when the throat reaches a critical siperhaps at the Planck-

in its differential form. Thus, optical geometry suggests thatan Scalg, because of as yet unknown physical processes.

one should regard the so-called black hole entropy as bein%“‘:h a situation corresponds to the hypothesis of remnants in
e common descriptiof21,22.

actually associated with the Hawking radiation surroundingI oL ) .
the collapsing stat This interpretation contrasts with a view- ~ Reémnants have originally been introduced as a possible
resolution of the information paradd22,23. However, the

point often expressed, according to whilis a property of oV ) ) ; :
yiability of this hypothesis has sometimes been questioned,

spacetime, and is similar to others that attribute entropy to
“thermal atmosphere” of the black hofdd]. because the small scale and mass of remnants would allow

Until now, we have assumed that the quantum field is 4hem to store very little informatiof24]. Roughly, the argu-
ment is the following. A physical system with sizetotal

energyE, and Hamiltonian bounded from below has a num-
ber of states of the order &l; thus, it can contain a maxi-

5That there must be a trapping effect on wa ally attributed
Pping vasially mum information which is also of ord&l. The status of this

to the reflection off an effective potential barpies rather evident
from the embedding diagram of Fig. 10. This phenomenon, and its

relevance for the study of long-lived gravitational-wave modes, has

been discussed in some detail in R&. In the present context, it ®This was suggested already in the early years following Hawk-
is responsible for the persistence of a consistent amount of radiatiang’s discovery{20], but the idea has never been pursued further, at
in the region withr <3M. least to the authors’ knowledge.
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claim is rather controversidR5]. However, even assuming leading to the conclusion that the gravitational field is non-

that there is indeed such an information bound, it wouldvanishinginsidethe shell, as well as outside. This contrasts

hardly represent a difficulty in optical geometry, where thewith intuition shaped after Newton's theory, according to

“remnant” is actually an enormously vast region, becausewhich the gravitational field inside the shell should be zero.
ordinary distances are rescaled by a huge factven if | However, this difference is not surprising if one considers
should represent the size of the remnant as seen from thieat & does not obey the Poisson equation, but a nonlinear
exterior, as suggested by Bekenstgtd], the bound would generalization of it, as can be easily checked on replacing
still be circumvented thanks to the existence, in the lowely  —e2¥q_ " in the trace of the Einstein equation.

space, of an enormous supply of negative energy associated Although we have focused our treatment on the case of a

with the field ®. star collapsing in empty space, generalizations to, e.g., the
collapse of electrically charged bodies are straightforward
VI. CONCLUSIONS AND OUTLOOKS (see, e.g., Ref12] for a configuration with extremal charge,

We have constructed the optical geometry for a spheri- “=M?). In fact, the construction presented in Sec. I
b 9 y Pl makes a heavy use of the null structureZon in defining the

cally symmetric collapsing body. The procedure adopted is aoordinates) and u, but seems rather general otherwise. It

s!mple extension of the_techmql_Je used V\_/hen defmmg Optlca\?vould be important to understand whether a similar tech-
distance operationally in a static spacetime. Essentially, for.

ary Spaceime eveRt, one consers the - and outgoing e 010 1 USEG 0 deine oteal geomety st more
spherical light-fronts that cross & These correspond to 9 pie, P sy

. ; ric collapse.
well-defined values .Of. a_dvanced anq retarded du, We have seen that, in optical geometry, gravitational col-
that can be read at infinity as the affine parameters along ﬂ]g se corresponds to a very fast expansion of the star into a
null generators of ~ andZ *. The evenP is then labeled by ., p b y b

; " . lower space,” with the center receding from the optical
v andu, in addition to the angular coordinates, and can alsoobserversna at a speed that aporoaches exponentially the
be identified by a timelike coordinate=(v+u)/2 and a P PP P y

spacelike onex:=(v—u)/2. The optical metric is then de- speed of light. This process excites the modes of a quantum

' T ) field, as it happens in the presence of a moving boundary,
fined as t.he only one which is conformal gg,—the metric leading to the production of Hawking radiation. Thus, optical

E‘geometry provides one with a physical origin of the formal
“moving mirror analogy” of the Hawking effect.

The issue of the final state of black hole evaporation is
also clarified by the use of optical geometry. There are es-

“tortt(_)|se]:’ coordu:ate, Lhu_s glllvmg the ;/v_ell-knowtr_] opt;_c|al sentially two possibilities, in both of which the black hole
MeEtnc ot an emptly, Spherically Symmetric spacetime. How-qqeq not form, strictly speaking. Either the evaporation pro-

ever, our construction allows one to extend the optical 9€%ess continues until one remains with flat space atphgsi-
ometry smoothly inside the star.

: . : . cally unaccessibleinfinitely warped “lower space” or, per-
Associated with the optical space are the optical fraﬁ)g haps more likely, the process stops at some scale leaving an
made of the observers at=const, and the scalar potential

. . enormously large remnant. In both cases there is no informa-
@, essentially the logarithm of the conformal factor thatyjqn naradox. Of course, since the issue involves distances of
links gap and gap. These two concepts are related to eachthe order of the Planck length, a definitive answer is beyond
other in the following sense. The optical frame defines ahe limits of applicability of present-day physics. Neverthe-
notion of “rest in the gravitational field,” thus the four- |ess, it would be useful to get a more detailed insight into the
acceleratiom®V,,n, of the observers can be identified with evaporation process by reformulating simple models that in-
the gravitational acceleration, with a change of sign. Sincglude back-reactiofisee, e.g., Ref.28]) in the language of
nbena1 is equal to the spatial gradient df in the optical  optical geometry.

frame, see Eq(1.1), ® can be thought of as a covariant  Of course, all our conclusions apply to black holes deriv-

generalization of the gravitational potential. This allows oneing from collapse. However, it is not difficult to extend them

to give a precise meaning to the notion of gravitational fieldto eternal black holes, simply studying the quantum field
inside a collapsing object. It must be noted that a gravitatheory on the optical spacetime associated with the
tional field so defined, although analogous to the same NewSchwarzschild solution. In this case there is no moving
tonian concept, nevertheless differs from it in some essentidjoundary, and the optical metric lookss far as the andx
details. As an example, consider a collapsing spherical sheltoordinates are concerneexactly like the Minkowski one.

It is obvious from Fig. 7 thahV,n,#0 everywhere, thus |n particular, the observers &t const, belonging to the op-
tical frame, correspond to the Minkowskian inertial observ-
ers. Thus, one expects that they should register no particles,

"This is similar to what happens in the “corucopion” scenario of Provided that a condition of “no incoming radiation” is im-
dilaton gravity coupled to electromagneti§@6] (see Ref[27] for ~ Posed fort— —oe. This is precisely what happens in the
criticisms of this model However, the internal geometries and the So-called Boulwardor Schwarzschildstate|Og) [29]. The
physical contexts are very different in the two cases. The possibilitptical geometry viewpoint provides therefore support for
that information be stored inside a large region delimited by a smalregarding|Og), rather than the Hartle-Hawkin@r Kruska)

neck has been discussed in general by Giddjagh and the Unruh statd®,,) and|0) (see Ref[13], pp. 281—

two-dimensional Minkowskian line element @+ const, ¢
=const sections. Outside the collapsing s@y, has the
Schwarzschild form ang coincides with the Regge-Wheeler
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282), as describing the quantum vacuum around an eterndlsing now the relation
black hole.

The Boulware state is often considered pathological be-
cause the expectation value of several physical quantities di-
verges at the horizon30]. For example, for the stress- ) . ]
energy-momentum tensor operator of a massless scalar fie¥@lid for any conformal Killing vector fields® (see, e.g.,
¢ one has, after renormalization, thé@g|T,p|Op) e, de-  R€f[1] pp. 443444 we can write
pends onr as (1-2M/r)~! for r—2M. It is remarkable 1
that, in the optical spacetimeM,g,,), such a factor is ex- 7°Vpna=e€*TV 0+ Eﬂavbﬂb- (A3)
actly canceled out, becaugeis conformally transformed in
$=e®¢, and (0g|Tap|Og)ren turns out to be finite every- Furthermore,
where, representing just the vacuum polarization due to cur- b b
vature. A similar situation occurs when considering the re- by, = 77 Vp7c _nm Vib7e) :1
sponse functiolI(w|r) for an ideal static detector in the Vo Nan® Nan® 4

Boulware state. In the spacetim@A,g,,) one has, near the
horizon[30], Substituting Eq(A4) into Eq. (A3) and then the latter into

Eqg. (A1) we obtain, after some trivial algebra, Ed..1).

1
Va77b+vb77a:§gabvc7icy (A2)

Ver°. (Ad)

w
(o)~ = 3—5r 5 -0(- o), (6.1 APPENDIX B: PHYSICAL MEANING OF THE SURFACE
GRAVITY IN OPTICAL GEOMETRY
where® is the step function. However, after the conformal

rescaling the response is given by Here we show that, for a static black hole, the surface

gravity coincides with the magnitude of the gravitational pull
- ® on the natural observers for +, as measured with re-
M(w|r)~- 7, 0(-0), (6.2 spect to the optical metric. A convenient expression for the

surface gravityx is

which not only is finite, but is also the answer one would (Va0 (V)12

expect in a proper “vacuum.” Thus, the pathologies of the )= lim| — 117 Yo7

Boulware state are removed by the conformal transformation 47

to the optical spacetime, in whidBg) behaves as a satisfac-

tory quantum vacuum.

, (B1)

where “lim” stands for the limit as the horizon is ap-
proached(see Ref[1], p. 332. From the Killing equation
and the definition of ® it follows that 7%V .7,
ACKNOWLEDGMENTS =V(— 7°9,)/2=€**V ®. Substituting into Eq(B1) we
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’ and we have used the stationarity property in the form

72V, ®=0. By Eq.(1.2), the last term in Eq(B2) is just the
value of the gravitational pull on the observers of the optical
From the definition(1.2) of ® it follows that the vector frame.

APPENDIX A: PROOF OF EQ. (1.1

field n? can be expressed aé=e~® 2. Thus, This proof can be generalized without any difficulty to the
case of a stationary black hole, simply by replacigfgwith
nPVon,=e 2®(4°Vy7.— 7.7°V,®). (A1)  aKilling vector field which is normal to the horizon.
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