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Oscillators with constrained energy difference: Coherent states and a quantum clock
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In order to study the ‘‘problem of time in quantum gravity,’’ Rovelli proposed a model of a two harmonic
oscillator system where one of the oscillators can be thought of as a ‘‘clock’’ for the other oscillator. In this
paper we examine a model where the Hamiltonian is a difference between two harmonic oscillators, and we
consider one of them which has the minus sign as a ‘’clock,’’ since the gravitational degree of freedom has a
minus sign in the Hamiltonian of quantum cosmology. Klauder’s projection operator approach to generalized
coherent states is used to define physical states and operators. The resolution of unity is derived in terms of a
gauge invariant coordinate. We investigate the ‘‘quantum clock’’ and show that the evolution described by it
is identical to the classical motion when the energy becomes large.

PACS number~s!: 04.60.Ds, 04.60.Kz
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I. INTRODUCTION

One of the measure conceptual problems in quan
gravity is the ‘‘problem of time’’ @1#. In quantum gravity
physical states and physical operators do not depend on
time coordinate~t! because of the constraints in Dirac qua
tization @2#. In order to study the ‘‘problem of time in quan
tum gravity,’’ Rovelli proposed an interesting model of
two harmonic oscillator system where one of the oscillat
can be thought of as a ‘‘clock’’ for the other oscillator@3#.
He showed that the ‘‘clock’’ can describe a natural tim
evolution, even though the system has a time reparamet
tion invariance. In a similar model Lawrie and Epp made o
gauge invariant oscillator from the original two harmon
oscillators and studied an evolution which is governed by
exact Heisenberg equation@4#. They considered coheren
states and introduced a window function to investigate
approximate analytical time dependence of the system.
cently, Ashworth utilized Klauder’s projection operator a
proach to generalized coherent states@5# for the double har-
monic oscillator system@6#. Using Marolf’s gauge invarian
statement@7#, he introduced ‘‘time’’ by the phase of an os
cillator, a ‘‘clock,’’ 1 and he showed that the time evolutio
described by the ‘‘clock’’ agrees with the classical equat
of motion when the energy becomes large.

On the other hand, it is well known that the gravitation
degree of freedom has a minus sign in the Hamiltonian
quantum cosmology@9#. The Hamiltonian can be written as
difference between two harmonic oscillators in some ca
for example, the five-dimensional Kaluza-Klein cosmolo
by Wudka @10# and the minisuperspace model by Hart
Hawking @11# if time variable is redefined and the cosm
logical constant is assumed to be zero. Other examples w
also considered in Refs.@12,13#. Such a cosmological mode
and some aspects of its coherent states have been exten
discussed in Refs.@14–16#.

*Email address: ohkuwa@post.miyazaki-med.ac.jp
1The idea to use a phase variable of an oscillator as a quan

clock was given already in Ref.@8#.
0556-2821/2000/62~6!/064008~7!/$15.00 62 0640
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In this paper we examine a model where the Hamilton
is a difference between two harmonic oscillators, and
consider one of them which has the minus sign in the Ham
tonian as a ‘‘clock.’’ The projection operator approach
generalized coherent states is used to define physical st
We deduce a resolution of unity with respect to gauge inv
ant states by virtue of a coordinate transformation. In
same way physical operators are expressed in terms of g
invariant states and physical symbols. We investigate
‘‘quantum clock’’ and show that the evolution described
it is identical to the classical motion when the energy b
comes large.

In Sec. II we will consider a model where the Ham
tonian is a difference between two harmonic oscillators, a
we will use the projection operator approach to generali
coherent states in order to obtain physical states. In Sec
the resolution of unity will be derived in terms of a gaug
invariant coordinate. In Sec. IV we will project operators
the physical space, and we will define a ‘‘quantum cloc
and show that the evolution described by it is the same w
the classical motion when the energy becomes large.
summarize in Sec. V. Appendix A is devoted to derive t
gauge transformation of our system. In Appendix B it will b
shown that our result of the resolution of unity agrees w
that in Ref.@17#.

II. A MODEL OF TWO HARMONIC OSCILLATORS

Let us consider the following action which is a differen
between two harmonic oscillators:

S5E dt L,

L5
1

2N F S dq1

dt D 2

2S dq2

dt D 2G2
N

2
@v2~q1

22q2
2!22E#,

~1!

whereq1(t),q2(t) are the harmonic oscillators with the sam
frequencyv, N(t) is the lapse function, andE is the energy
difference. The action~1! has the time reparametrization in
variance, and the Hamiltonian reads
m
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YOSHIAKI OHKUWA PHYSICAL REVIEW D 62 064008
H5N~H12H22E!, ~2!

whereHi5
1
2 (pi

21v2qi
2) ( i 51,2). If we define the prope

time t5*0
t dt8N(t8), the classical equations of motion fo

q1 ,q2 are q̈i52v2qi ( i 51,2), q̈i5d2qi /dt2. Therefore,
q1 and q2 are ordinary harmonic oscillators with only on
exceptional point thatq2 has a minus sign in the Hamiltonia
~2!.

We write the classical solution of this system as

q1
cl5A cos~vt1f1!, q2

cl5B cos~2vt1f2!, ~3!

where we have assumed that the two harmonic oscilla
have opposite dependence on the proper time. The reas
this assumption is because under the gauge transforma
that is the time translation generated by the Hamiltonian,
phases of the two harmonic oscillators are transformed
opposite direction, which is discussed in Appendix A.2 Then
the classical motion of each harmonic oscillator can be a
written by another harmonic oscillator as

q1
cl5A cosS 2cos21

q2
cl

B
1f11f2D ,

q2
cl5B cosS 2cos21

q1
cl

A
1f11f2D , ~4!

where we have assumed that arccosine takes the prin
value, namely, 0<cos21x<p. This expression shows tha
eitherq1

cl or q2
cl can be used for a classical clock forq2

cl or
q1

cl , respectively.
According to the Dirac procedure@2#, we obtain a primary

constraint on the momentumpN which is canonical conju-
gate toN:

pN50, ~5!

since the action~1! has no time derivative ofN. As this
constraint must hold throughout all time, we get a second
constraint

H12H22E50. ~6!

Equations~3!, ~6! imply that the classical amplitudes of th
oscillators must satisfy

~Av!22~Bv!252E. ~7!

The two constraints~5!, ~6! are the first class constraints, an
they come from the time reparametrization invariance. In
Dirac quantization, the physical states are defined by imp
ing the first class constraints on the full states. Because
constraint~5! means that the physical states do not containN,
hereafter we consider the dynamical variables areq1 , q2.

2It was pointed out by Professor T. Kubota that the phases of
harmonic oscillators are transformed into opposite direction un
the gauge transformation.
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To quantize this model, we impose the canonical comm
tation relations for Heisenberg operatorsQ̂j , P̂k

@Q̂j ,P̂k#5 i\d jk ,

@Q̂j ,Q̂k#5@ P̂j ,P̂k#50. ~8!

Provided we define annihilation operators by

a5A v

2\
Q̂11

i

A2\v
P̂1 , b5A v

2\
Q̂21

i

A2\v
P̂2 ,

~9!

then we obtain @a,a†#5@b,b†#51, @a,b#5@a†,b†#50.
Now Eq. ~6! suggests that the HamiltonianH12H22E be-
comes the generator of the gauge transformation assoc
with the time translation~see Appendix A!. From Eqs.~6!
and ~9! the constraint operator can be written as

F̂5a†a2b†b2E8, ~10!

with E85E/\v.
We start from the coherent states for the two harmo

oscillators:

ua,b&5e2(uau21ubu2)/2 (
n,m50

`
anbm

An!Am!
un,m&, ~11!

where

un,m&5
1

An!
~a†!n

1

Am!
~b†!mu0,0&

anda,b are arbitrary complex numbers@18#. These coheren
states satisfy the properties

aua,b&5aua,b&, bua,b&5bua,b&,

^a,bua,b&51, I5E d2a

p

d2b

p
ua,b&^a,bu, ~12!

with d2a5d(Rea)d(Im a). Using Eqs.~9!, ~12!, we obtain
the diagonal element ofQ̂1 andQ̂2 as

q1~a,b!5^a,buQ̂1ua,b&5A \

2v
~a1ā !,

q2~a,b!5^a,buQ̂2ua,b&5A \

2v
~b1b̄ !. ~13!

In the same way as Ref.@6#, we utilize Klauder’s projec-
tion operator approach to generalized coherent states@5#.
Projectingua,b& on the physical states as

o
er
8-2
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OSCILLATORS WITH CONSTRAINED ENERGY . . . PHYSICAL REVIEW D62 064008
ua,b&phys5Pua,b&, P5E dm~l! e2 ilF̂,

dm~l!5dl
sin~el!

pl
~0,e!1!, ~14!

we have

ua,b&phys5e2(uau21ubu2)/2 (
n,m50

`
anbm

An!Am!

3E dm~l! e2 il(n2m2E8)un,m&

5e2(uau21ubu2)/2(
m50

`
am1m8bm

A~m1m8!!Am!
um1m8,m&.

~15!

Here we have setE85m85n2m . The norms of these state
are

phyŝ a,bua,b&phys5^a,buPua,b&

5e2(uau21ubu2) (
m50

` uau2(m1m8)ubu2m

m! ~m1m8!!

5e2(uau21ubu2)UabU
m8

I m8~2uabu!, ~16!

where we have used the formula@19#

(
n50

`
~x/2!2n

n! ~k1n!!
5S 2

xD k

I k~x!, ~17!

andI k(x) is a modified Bessel function. Normalized physic
states,ua,b&n phys can be written as

ua,b&n phys5ua,b&phys/A phyŝ a,bua,b&phys

5
ub/aum8/2am8

AI m8~2uabu!
(

m50

`
~ab!m

A~m1m8!!Am!

3um1m8,m&. ~18!

These states are analogous to Eq.~14! in the first of Ref.@6#.
Lawrie and Epp@4# showed that the reduced physical spa
contains only one oscillator owing to the Hamiltonian co
straint. It seems that the coherent states for this gauge in
ant oscillator are equivalent to the physical states in Ref.@6#
and the difference is the way how to construct the phys
states.

III. RESOLUTION OF UNITY

As indicated in Appendix A the gauge transformati
generated by the constraint transforms the complex coo
nates asa→aeiw and b→be2 iw. If we define a complex
coordinatej5ab, thenj is gauge independent. Nowuju is a
product of the amplitudes of the two harmonic oscillato
06400
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and argj is the sum of their phases. We will see thatj is
sufficient to describe the resolution of unity in the physic
space. Let us define the minus of the phase of the sec
harmonic oscillatorq2 that has the minus sign in the Hami
tonian~2! asu, that isb5ubue2 iu(0<u,2p). In principle,
any of the two oscillators could be used as a ‘‘clock.’’ How
ever, the gravitational degree of freedom has a minus sig
the Hamiltonian of quantum cosmology. And we will con
sider the classical limit of our model as when the ene
becomes large, namely, the first oscillatorq1 becomes large.
So we will later regardq2 as a ‘‘clock’’ andu as ‘‘time’’ in
this system. We can factor out the dependence onu from
ua,b&n phys,

ua,b&n phys5eim8uuj&,

uj&5
jm8

ujum8/2AI m8~ u2ju!
(

m50

`
jm

A~m1m8!!Am!

3um1m8,m&. ~19!

The unity operator in the full phase space can be projec
in the physical phase space

I85PIP5E d2a

p

d2b

p
Pua,b&^a,buP. ~20!

Suppose we change the coordinates

r̃ 5uau22ubu2,

e2 iu5
b

ubu
,

j5ab. ~21!

We have

a5Ar̃ 1

2

j

uju
eiu, b5A2 r̃ 2

2
e2 iu,

where r̃ 65 r̃ 6Ar̃ 214uju2, r̃ 1 r̃ 2524uju2. The absolute
value of the JacobianuJu associated with this change of co
ordinates is calculated as3

uJu5
1

2Ar̃ 214uju2
5

1

2r
, ~22!

where we have defined r 5uau21ubu25Ar̃ 214uju2,
(r>2uju). Using Eqs.~16!, ~19!–~22!, we deduce the reso
lution of unity

3It is easier to consider the inverse change of coordinates an
deriveuJ21u52r than to calculateuJu directly, which was suggested
by Professor T. Kubota.
8-3
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YOSHIAKI OHKUWA PHYSICAL REVIEW D 62 064008
I85E d2a

p

d2b

p
u^a,buPua,b&uuj&^ju

5E dr̃dud2j
1

2p2r
e2r S r̃ 1

2uju D
m8

I m8~2uju!uj&^ju.

Because r̃ 56Ar 224uju2 (1 for uau>ubu, 2 for uau
,ubu), we are led to

I85E d2j

p

I m8~2uju!

~2uju!m8
f m8~ uju!uj&^ju,

f m8~ uju!5E
2`

`

dr̃
e2r

r
~ r̃ 1!m8

5E
2uju

`

dr
e2r

Ar 224uju2
@r 1

m81r 2
m8#, ~23!

with r 65r 6Ar 224uju2. Owing to the formula@20#

E
a

`

dx
~x1Ax22a2!n1~x2Ax22a2!n

Ax22a2
e2px

52anKn~ap! ~a.0, Rep.0!,

whereKn is a modified Bessel function, we can obtain t
explicit expression off m8(uju) as

f m8~ uju!52~2uju!m8Km8~2uju!. ~24!

Finally we can derive the resolution of unity

I85
2

pE d2j I m8~2uju!Km8~2uju!uj&^ju, ~25!

from Eqs.~23!, ~24!.
Now the constraint equations~7!, ~10! suggest that the

underlying symmetry of our model is SU~1,1!. As shown in
Appendix B, it is possible to prove that our result~25! agrees
with Eq. ~3.22! in Ref. @17# which is the resolution of unity
for generalized coherent states associated with the Lie a
bra of SU~1,1!. Our coherent states~19! and the resolution of
unity ~25! are also closely analogous to Eqs.~3.6!, ~3.7! of
conserved charge coherent states in Ref.@21#.

IV. PROJECTION OF OPERATORS AND QUANTUM
CLOCK

According to Ref.@6#, let us define a symbol for an arb
trary operatorÕ(Q̂,P̂) on the physical space as

o~q,p!uphys5
^q,puPÕ~Q̂,P̂!Puq,p&

u^q,puPuq,p&u
, ~26!

and let us projectÕ(Q̂,P̂) to a well-defined operator on th
physical states as
06400
e-

Õ~Q̂,P̂!uphys5E dm~q,p!o~q,p!Puq,p&^q,puP. ~27!

In the same way as the resolution of unity, we can rew
this equation into the form

Õ~Q̂,P̂!uphys5E d2a

p

d2b

p
o~a,b!Pua,b&^a,buP

5
2

pE d2j I m8~2uju!Km8~2uju! o8~j!uj&^ju,

o8~j!5
1

2~2uju!m8Km8~2uju!

3E
2`

`

dr̃E
0

2p du

2p

e2r

r
r̃ 1

m8o~j, r̃ ,u!, ~28!

where r and r̃ 1 were defined in Eqs.~21!, ~22!. Note that
o8(j) is the projected symbol ando8(j)51 wheno(a,b)
51.

Unless the symbolo(j, r̃ ,u) changes very much with re
spect tor̃ , the integrand ofo8(j) (X below! approaches a
Gaussian function aroundr̃'m8, when the energy of the
systemE85m8 becomes large

X5
e2Ar̃ 214uju2

2Km8~2uju!Ar̃ 214uju2
S r̃ 1Ar̃ 214uju2

2uju D m8

→ 1

A2pm8
expF2

~ r̃ 2m8!2

2m8
G . ~29!

Here we have used the asymptotic form ofKn in Ref. @22#,

Kn~nz!;A p

2n

e2nh

~11z2!1/4
~n→`!,

h5A11z21 log
z

11A11z2
, ~30!

and we have assumedr̃ @uju,m8@1. Figure 1 demonstrate
the relation betweenX and r̃ , whenm8510, 100, 1000 and
uju51. The limit ~29! of X means that limm8→`*2`

` dr̃X

51. ThusX becomes a delta functiond( r̃ 2m8) in the clas-
sical limit. This means that, whenm8 is large, the projection
of the symbol satisfieso8(j)'*0

2p(du/2p)o(j,m8,u), and,
if the symbol o is gauge independent, namely,o does not
depend onu, we haveo8(j)'o(j,m8,u0), whereu0 is an
arbitrary constant (0<u0,2p).

For example, let us takeQ̂1 andQ̂2 for Õ(Q̂,P̂), then we
have
8-4
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q18~j!}E
0

2p

du cos~f11u!50,

q28~j!}E
0

2p

du cosu50,

where we have used Eqs.~13!, ~28! and have definedj
5ujueif1. This result is rather natural, since the average
sitions of operators over one period of the oscillator are z
@6#. Note that the gauge transformation is ‘‘time translatio
in this system, so we must choose a specific time to av
this result.

Following Ashworth, we use Marolf’s gauge invaria
statement@7#

ouq5s5E dt
dq

dt
d@q~ t !2s#o~ t !. ~31!

Let us consider the second oscillatorq2 which has the minus
sign in the Hamiltonian as a ‘‘clock,’’ and let us regard th
minus of its phaseu as ‘‘time’’ in our system. So we take
q5q2(u), s5B cos(vt2f2)5q2

cl , and we obtain

ouq25s5E du
dq2

du
d@q2~u!2B cos~vt2f2!#o~u!

5E dud@u2~vt2f2!#o~u!5o~vt2f2!.

This means that we can replaceo(j, r̃ ,u)uq25s by o(j, r̃ ,vt

2f2), so Eq.~28! gives

o8~j,s!5o8~j!U
q25s

5
1

2~2uju!m8Km8~2uju!

3E
2`

`

dr̃E
0

2p du

2p

e2r

r
r̃ 1

m8o~j, r̃ ,u!uq25s

5
1

2~2uju!m8Km8~2uju!
E

2`

`

dr̃
e2r

r
r̃ 1

m8

3o~j, r̃ ,vt2f2!. ~32!

Choosingq1 aso, we obtain

q18~j!uq25s5
1

2~2uju!m8Km8~2uju!

3E
2`

`

dr̃
e2r

r
r̃ 1

m8A\

v
Ar̃ 1

3cos@f11~vt2f2!#

5A\

v

cos@f11~vt2f2!#

2~2uju!m8Km8~2uju!
f m811/2~ uju!,
06400
-
o

’
id

wheref1 is the phase ofj, and f m811/2(uju) is defined in
Eqs.~23! with the replacementm8→m81 1

2 . Since Eq.~24!

means that f m811/2(uju)52(2uju)m811/2Km811/2(2uju), we
arrive at

q18~j!uq25s5A\

v
A2uju

Km811/2~2uju!

Km8~2uju!
cos~vt2f21f1!.

~33!

In the classical limit E85m8→`, the asymptotic form
of the modified Bessel function ~30! gives
Km811/2(2uju)/Km8(2uju)'Am8/uju and

q18~j!uq25s'A2\

v
Am8cos~vt2f21f1!

'A cos~vt2f21f1!. ~34!

Here A is the amplitude of the first oscillator, and we ha
used r̃'m8, r̃ @uju. Note thatj is gauge invariant and its
phasef1 is the same as the initial phase sumf11f2.
Hence the right-hand side of Eq.~34! is identical to the clas-
sical solutionq1

cl in Eqs. ~3!. Namely, the evolution of the
first operatorq1 described by the ‘‘quantum clock’’q2 is
identical to the classical motion when the energy becom
large.

V. SUMMARY

We examined a model where the Hamiltonian is a diff
ence between two harmonic oscillators, and we conside
one of them which has the minus sign in the Hamiltonian
a ‘‘clock,’’ since the gravitational degree of freedom has
minus sign in quantum gravity. The projection operator a
proach to generalized coherent states was used to d
physical states. We deduced a resolution of unity with
spect to gauge invariant states . In the same way, phys
operators were expressed in terms of gauge invariant s
and physical symbols. We investigated the ‘‘quantum cloc
and showed that the evolution described by it is identica
the classical motion when the energy becomes large.

As a future work, it will be interesting to apply the pro
jection operator approach to coherent states in order to s
the time evolution of the five-dimensional Kaluza-Klein co

FIG. 1. The relation betweenX and r̃ , whenm8510,100,1000
and uju51.
8-5
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YOSHIAKI OHKUWA PHYSICAL REVIEW D 62 064008
mology by Wudka@10# and the minisuperspace model b
Hartle-Hawking @11# when the cosmological constant
zero. It would be also interesting to extend our results fr
minisuperspace to full superspace and to examine the
tion between our consideration and some recent paper
the ‘‘problem of time’’ @23–25#.
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APPENDIX A

First we begin by a pair of creation and annihilation o
erators of a harmonic oscillatora†,a which satisfy@a,a†#
51. Let us formally define the polar decomposition ofa as

a5eiuauau, ~A1!

where uau and ua are the absolute value operator and t
phase operator ofa, respectively@26#. Then the number op
eratorNa5a†a5uau2 satisfies

@Na ,eiua#52eiua. ~A2!

In the following expansion:

eiuaNae2 iua5Na1 i @ua ,Na#1
i 2

2!
@ua ,@ua ,Na##1•••,

the left-hand side is equal toNa11 by Eq. ~A2!, and the
right-hand side becomesNa1 i @ua ,Na#, because@ua ,Na# is
a c number. Therefore we obtain

@Na ,ua#5 i . ~A3!

Next let us consider another pair of creation and ann
lation operatorsb†,b with @b,b†#51, then similar equations
as Eqs.~A1!–~A3! hold with respect tob. We examine two
cases where the Hamiltonian is the sum or the differenc
two harmonic oscillators.

Case 1: Ĥ15\v(Na1Nb2E8). Since Eq.~A3! means

@Ĥ1 ,ua#5 i\v and @Ĥ1 ,ub#5 i\v, we have

@Ĥ1 ,ua1ub#52i\v, @Ĥ1 ,ua2ub#50. ~A4!

Therefore the phase differenceua2ub is gauge invariant,
and the phase sumua1ub is not invariant in this case. Thi
case was investigated in Ref.@6#.

Case 2: Ĥ25\v(Na2Nb2E8). Since Eq.~A3! means

@Ĥ2 ,ua#5 i\v and @Ĥ2 ,ub#52 i\v, we have

@Ĥ2 ,ua1ub#50, @Ĥ2 ,ua2ub#52i\v. ~A5!

Hence the phase sumua1ub is gauge invariant, and th
phase differenceua2ub is not invariant in this case.
06400
la-
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From Eq.~10!, Ĥ25\vF̂, andĤ2 is the generator of the
gauge transformation~time translation! of our system. So
Eqs.~A5! suggest that the phase of each harmonic oscilla
transforms into opposite direction under the gauge trans
mation.

APPENDIX B

Barut and Girardello@17# derived the resolution of unity
for generalized coherent states associated with the Lie a
bra of SU~1,1! as

I85E ds~z! uz&^zu,

s~z!5s~r!rdrdw,

s~r!5
4

pG~22F!
~A2r!22F21K112F~2A2r!,

~B1!

where z5reiw,uzu5r and 22F2150,1,2, . . . . Here we
have corrected an erratum ofs(r) in Ref. @17#, namely,
K1/21F→K112F . The reason for this is because the formu
in Ref. @27# was wrong, and should be replaced by

E
0

`

dx 2xa1bK2(a2b)~2Ax!xs215G~2a1s!G~2b1s!.

~B2!

This formula follows immediately from Eq.~6.561.16! in
Ref. @28#:

E
0

`

dx xmKn~ax!52m21a2m21GS 11m1n

2 DGS 11m2n

2 D ,

where Re(m116n).0, Rea.0. We can also easily as
sure Eq.~B2! in a special case thata51/4, b50, s51,
usingK1/2(z)5Ap/2z exp(2z) @29#.

Let us write the normalized state ofuz& as uz&n , then we
have

uz&^zu5^zuz&uz&n n̂ zu,

^zuz&5G~22F! (
n50

`
~A2uzu!2n

n!G~22F1n!

5
m8!

~A2uzu!m8
I m8~2A2uzu!, ~B3!

where we have used Eq.~17! and have identifiedm8
522F21. If we write j5A2z and uz&n n̂ zu5uj&^ju, then
Eqs.~B1! is identical to Eq.~25!. Therefore, we have estab
lished that our resolution of unity agrees with that in R
@17#.
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@24# P. Hájiček, J. Math. Phys.36, 4612 ~1995!; Nucl. Phys. B

~Proc. Suppl.! 57, 115 ~1997!.
@25# H. Kodama, Prog. Theor. Phys.94, 475 ~1995!; 94, 937

~1995!.
@26# P.A.M. Dirac, Proc. R. Soc. LondonA114, 243 ~1927!.
@27# Integral Transformations, Vol. I of Bateman Project, edited by
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