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Oscillators with constrained energy difference: Coherent states and a quantum clock
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In order to study the “problem of time in quantum gravity,” Rovelli proposed a model of a two harmonic
oscillator system where one of the oscillators can be thought of as a “clock” for the other oscillator. In this
paper we examine a model where the Hamiltonian is a difference between two harmonic oscillators, and we
consider one of them which has the minus sign as a “clock,” since the gravitational degree of freedom has a
minus sign in the Hamiltonian of quantum cosmology. Klauder’s projection operator approach to generalized
coherent states is used to define physical states and operators. The resolution of unity is derived in terms of a
gauge invariant coordinate. We investigate the “quantum clock™ and show that the evolution described by it
is identical to the classical motion when the energy becomes large.

PACS numbds): 04.60.Ds, 04.60.Kz

[. INTRODUCTION In this paper we examine a model where the Hamiltonian
is a difference between two harmonic oscillators, and we
One of the measure conceptual problems in quantungonsider one of them which has the minus sign in the Hamil-
gravity is the “problem of time”[1]. In quantum gravity —tonian as a “clock.” The projection operator approach to
physical states and physical operators do not depend on ttgeneralized coherent states is used to define physical states.
time coordinatet) because of the constraints in Dirac quan-We deduce a resolution of unity with respect to gauge invari-
tization[2]. In order to study the “problem of time in quan- ant states by virtue of a coordinate transformation. In the
tum gravity,” Rovelli proposed an interesting model of a Same way physical operators are expressed in terms of gauge
two harmonic oscillator system where one of the oscillatordnVariant states and physical symbols. We investigate the
can be thought of as a “clock” for the other oscillat@8]. “quantum clock” and shovy that th.e evolution described by
He showed that the “clock” can describe a natural time't 1S identical to the classical motion when the energy be-

; ) ._comes large.
evolution, even though the system has a time reparametrlzg— In Sec. Il we will consider a model where the Hamil-

tion invariance. Ina §|m|Iar model Lawrlle'and Epp made ONSonian is a difference between two harmonic oscillators, and
gauge Invariant osqllator from _the °r!9'”?" two_harmonic we will use the projection operator approach to generalized
oscillators and studied an evolution which is governed by an,nerent states in order to obtain physical states. In Sec. Iil
exact Heisenberg equatidd]. They considered coherent yhe resolution of unity will be derived in terms of a gauge
states and introduced a window function to investigate anfyariant coordinate. In Sec. IV we will project operators to
approximate analytical time dependence of the system. Rgpe physical space, and we will define a “quantum clock”
cently, Ashworth utilized Klauder's projection operator ap- and show that the evolution described by it is the same with
proach to generalized coherent stdtgkfor the double har-  the classical motion when the energy becomes large. We
monic oscillator systeni6]. Using Marolf's gauge invariant summarize in Sec. V. Appendix A is devoted to derive the
statement7], he introduced “time” by the phase of an os- gauge transformation of our system. In Appendix B it will be
cillator, a “clock,”* and he showed that the time evolution shown that our result of the resolution of unity agrees with
described by the “clock” agrees with the classical equationthat in Ref.[17].
of motion when the energy becomes large.

On the other hand, it is well known that the gravitational |, A MODEL OF TWO HARMONIC OSCILLATORS
degree of freedom has a minus sign in the Hamiltonian of
guantum cosmolog}9]. The Hamiltonian can be written as a  Let us consider the following action which is a difference
difference between two harmonic oscillators in some casedietween two harmonic oscillators:
for example, the five-dimensional Kaluza-Klein cosmology
by Wudka[10] and the minisuperspace model by Hartle- S:J dt L
Hawking [11] if time variable is redefined and the cosmo- '
logical constant is assumed to be zero. Other examples were
also considered in Reff12,13. Such a cosmological model 1[(da;\* [dgp\?] N, ,
and some aspects of its coherent states have been extensivel))-: Nl dt )  \dt/ | E[“’ (91—02) —2E],
discussed in Ref§14-1§. )

whereq;(t),q,(t) are the harmonic oscillators with the same
*Email address: ohkuwa@post.miyazaki-med.ac.jp frequencyw, N(t) is the lapse function, and is the energy
The idea to use a phase variable of an oscillator as a quantuifference. The actioiil) has the time reparametrization in-
clock was given already in Ref8]. variance, and the Hamiltonian reads
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H=N(H;—H,—E), 2) To quantize this model, we impose the canonical commu-
tation relations for Heisenberg operat®s, Py
whereH,;=}(p?+ w?q?) (i=1,2). If we define the proper
. _ t 7 ’ . . . ~ ~ .

time T_fo.qt N(t l th(? cIassmazI eql;atlons2 of motion for [Q;.P]=ihdy,

d:,0, are g;=—wq; (i=1,2), g;=d°qg;/dr*. Therefore,

g, and g, are ordinary harmonic oscillators with only one AoA L aa

exceptional point tha, has a minus sign in the Hamiltonian [Q;. Qul=LP;.,Pil=0. ®)
2.

We write the classical solution of this system as Provided we define annihilation operators by

gf'=Acogwr+ ), 05'=Bcog—wrtd,), (3) w . L L
a=\/5; Qut=—=P1, b=1\/5;Q+—P;,
where we have assumed that the two harmonic oscillators 2hw 2hw

have opposite dependence on the proper time. The reason of ©
this assumption is because under the gauge transformation, i + + ot

that is the time translation generated by the Hamiltonian, thé1€n we obtain[a,a’]=[b,b’]=1, [a,b]=[a’,b']=0.
phases of the two harmonic oscillators are transformed inthoW Ed. (6) suggests that the Hamiltonia, —H,—E be-
opposite direction, which is discussed in Appendi% Ahen ~ COMeS the generator of the gauge transformation associated

the classical motion of each harmonic oscillator can be als®/ith the time translatiorsee Appendix A From Egs.(6)
written by another harmonic oscillator as and(9) the constraint operator can be written as

N ) d=a'a—b'b—F’, (10
g; =Acos —cos B + P+ do

with E' =E/hw.
We start from the coherent states for the two harmonic
, (4)  oscillators:

|
qC
q5'=B co{ - Cos;‘lT1 + i+ by
where we have assumed that arccosine takes the principal (lal241822 - a"pm
value, namely, &cos x<. This expression shows that |, B) =€ (1180 n;:O —Wﬁln,mh 11
eitherqgt' or gS' can be used for a classical clock fg§' or ' U
qS', respectively.
According to the Dirac proceduf@], we obtain a primary
constraint on the momentuipy which is canonical conju- 1 1
gate toN: In,my=—(a"h"—(b")"0,0

Pn=0, ©) it mt

since the action1l) has no time derivative oN. As this atnac'::s"i ;:gfjrt?]'ga%cgmzfx numbef$8]. These coherent
constraint must hold throughout all time, we get a secondar)§ prop

where

constraint ala,By=ala,B), bla,B)=p|a,B),
| | . . d?a d?B
Equations(3), (6) imply that the classical amplitudes of the (a.Bla,p)=1, I= f 77|a,,8><a,,8|, (12

oscillators must satisfy

(Aw)?— (Bw)?=2E. (7)  with dzazd(Rea)d(lmAa). Using Eqs(9), (12), we obtain
the diagonal element @, andQ, as

The two constraint$s), (6) are the first class constraints, and
they come from the time reparametrization invariance. In the R [ _
Dirac quantization, the physical states are defined by impos- g1(a,B8)=(a,B|Q1|a,B)= 2—(a+ a),
ing the first class constraints on the full states. Because the @
constraint5) means that the physical states do not conltgin
hereafter we consider the dynamical variablesareq,.

A h _
d2(@,B)=(a,B|Qzla,B)=\/5-(B+B). (13

%It was pointed out by Professor T. Kubota that the phases of two  In the same way as Reff6], we utilize Klauder’s projec-
harmonic oscillators are transformed into opposite direction undetion operator approach to generalized coherent stiigs
the gauge transformation. Projecting|a, 8) on the physical states as
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|, B)phys= Pl e, B), szdﬂ()\) g ind

sin(e)
du(N)=d\ (0<e<1), (14)
T\
we have
nom
(a2t S B
|a’uﬂ>phys € 2:0 \/FT'\/H
m+m’ pom
B
_eaPripey L P m.
m2 Vv(m+m’)ym | )
(15

Here we have s’ =m’=n—m . The norms of these states

are

phy5<a13| avﬁ>phys: <a’:8|P| a,,B)

— g (al?+18? [a* AP

m=0 m!(m+m’)!

—e (a®+18? % Il (2]aB]), (16)

where we have used the formyla9]

2 (17)

(x/2)%" (2
X

k
I’l'(k+n)' = _) Ik(x)y

andl(x) is a modified Bessel function. Normalized physical

states|a, B)n physCan be written as
|a1:8>n phys:|aa:8>phys/\/phys<ai:8|aaﬁ>phys
_Bla™Pa™ & (ap)"
o (2[f]) m=0 (m+m')! ym!

X|m+m’,m).

(18

These states are analogous to 84) in the first of Ref[6].
Lawrie and Epd4] showed that the reduced physical space

contains only one oscillator owing to the Hamiltonian con-
straint. It seems that the coherent states for this gauge invari- J|=

ant oscillator are equivalent to the physical states in F&f.

and the difference is the way how to construct the physical

states.

I1l. RESOLUTION OF UNITY

As indicated in Appendix A the gauge transformation

PHYSICAL REVIEW [B2 064008

and ar¢g is the sum of their phases. We will see thats
sufficient to describe the resolution of unity in the physical
space. Let us define the minus of the phase of the second
harmonic oscillatony, that has the minus sign in the Hamil-
tonian(2) asé, that isg=|Ble”'’(0< §<2). In principle,

any of the two oscillators could be used as a “clock.” How-
ever, the gravitational degree of freedom has a minus sign in
the Hamiltonian of quantum cosmology. And we will con-
sider the classical limit of our model as when the energy
becomes large, namely, the first oscillatgrbecomes large.
So we will later regardy, as a “clock” and @ as “time” in

this system. We can factor out the dependenceddmom

|av:8>n phys:
|ai:8>n phys— eim’0| §>v

’ o0

_ & g
|§>_Ifl'""z\/lmf(l%l) mzzo J(m+m’)ymt
X|m+m’,m). (19

The unity operator in the full phase space can be projected
in the physical phase space

_mp—f Fad’s P 20
=PIP= | — —PlaNaplP. (20
Suppose we change the coordinates
T=lal*~|B[%
_ip. B
e |0:_,
|l
§=ap. (21)
We have
M+ § ait T —i0
= e ,
N2 TN

where T, =T +=\r?+4|¢? T.r_=—4|£2 The absolute
value of the Jacobiahl| associated with this change of co-
cordinates is calculated &s

1 1 27
_EY ( )

2\r2+4|¢?

where we have definedr=|a|?+|B|?=\r?+4|¢|?,
(r=2|¢|). Using Egs.(16), (19—(22), we deduce the reso-
lution of unity

generated by the constraint transforms the complex coordi-

nates ase— a€'¢ and B— Be '¢. If we define a complex
coordinatef= a8, then¢ is gauge independent. Naw| is a

31t is easier to consider the inverse change of coordinates and to
derive|J~Y|=2r than to calculat¢J| directly, which was suggested

product of the amplitudes of the two harmonic oscillators,by Professor T. Kubota.
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7= [ L2088  pmapllee

’

Yo"
M) L (2] E))]€)(].

= [ drded2s ——e "
J’ 52772

Becauser =+ \r?—4[¢[? (+ for |a|=|B],

<|Bl), we are led to

|

[ ~e_r - ,
foelleh= | di -

* e
= dr ————
f2§ \/I’2—4|§|2
with r.=r = r?—4[£[?. Owing to the formulg20]

J (X+Vx?2—a?%)"+(x— Yx°—a?)"
a \/X —a

(a>0, Rep>0),

— for |«

o2 1y (2]¢])

rfm’ ) ]
o Gy Imehlod

[r™ ™7, (23)

e~ Px

=2a’K,(ap)

whereK , is a modified Bessel function, we can obtain the SyStemE’=

explicit expression of ., (|¢]) as

for (1€ =2(2 €)™ K (2] €]). (24
Finally we can derive the resolution of unity
=2 [ ¢ 1ldralelee. @
T m’ m’ ’

from Eqgs.(23), (24).

Now the constraint equationd), (10) suggest that the
underlying symmetry of our model is $U1). As shown in
Appendix B, it is possible to prove that our res(#@b) agrees
with Eq. (3.22 in Ref.[17] which is the resolution of unity

PHYSICAL REVIEW D 62 064008

6(Qﬁ’)lphys=fdu(q,p)o(q,p)qu,m(q,plP- (27)

In the same way as the resolution of unity, we can rewrite

this equation into the form
50 Pl [ £ T ot pyPla ) 1P

2
2| @@k 2le) 0 (2)leNe,

1
o'(§)= ;
O e K 218])

f fh%—uo(g,r,e)

wherer andT, were defined in Eqs(21), (22). Note that
0'(¢) is the projected symbol and’(¢)=1 wheno(a,B)
=1.

Unless the symbab(£,T,6) changes very much with re-
spect tor, the integrand ob’ (&) (X below) approaches a

Gaussian function around~m’, when the energy of the
m’ becomes large

(28)

y e WEAd Ty \fr2+4|g|2>m'
2K (2 \T24 a2 2]
1 (r—m’)?
— exp — (29
2mm’ 2m’

Here we have used the asymptotic formkof in Ref.[22],

vy

T e
Ky(v2)~ V2_V(1+22)1/4

(v—00),

for generalized coherent states associated with the Lie alge-

bra of SU1,1). Our coherent statg49) and the resolution of
unity (25) are also closely analogous to E@3.6), (3.7) of
conserved charge coherent states in [R&f].

IV. PROJECTION OF OPERATORS AND QUANTUM
CLOCK

According to Ref[6], let us define a symbol for an arbi-
trary operatolO(Q,P) on the physical space as

(a,p|PO(Q,P)P|q,p)
l{a.p|Pla.,p)|

O(qyp)|phys: (26)

and let us projecO(Q,P) to a well-defined operator on the
physical states as

(30

z
=V1+2°+log——;,
1+\1+22

and we have assumed>|¢|,m’>1. Figure 1 demonstrates
the relation betweeX andr, whenm’ =10, 100, 1000 and
|&]=1. The limit (29) of X means that liny ../~ .drX
=1. ThusX becomes a delta functiof(r —m’) in the clas-
sical limit. This means that, whem’ is large, the projection
of the symbol satisfies’ (£)~ [37(d6/2m)o(&,m’,6), and,

if the symbolo is gauge independent, namely,does not
depend ond, we haveo’(&)~o0(&,m’,6p), wheredg is an
arbitrary constant (& 6p<2r).

For example, let us tak®; andQ, for O(Q,P), then we
have
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2 v X
qi(é)“J décog ¢, +60)=0, v m
0 0.5
2
qs(&)« | d@coss=0, 0.4
0

m'=10
0.3 / m'=100
where we have used Eqg§l3), (28) and have defined ,
=|¢|e'?+. This result is rather natural, since the average po- 0.2 m'=1000
sitions of operators over one period of the oscillator are zero
[6]. Note that the gauge transformation is “time translation” 4 4

in this system, so we must choose a specific time to avoid

this result. F/m'
Following Ashworth, we use Marolf's gauge invariant 0.5 1 1.5 2
statemen{7] FIG. 1. The relation betweeX andT, whenm’ = 10,100,1000
and|é&=1
0lq-s= f dt— 5[q(t) s]o(t). BL  where, is the phase of, and fry ., 1(|¢]) s defined in

Egs. (23) with the replacememn’ﬂm + 1. Since Eq.(24)
Let us consider the second oscnlatgrwmch has the minus  means thatf . 1| &) =2(2|&)™ *Y2K 1y 1 12| ]), We
sign in the Hamiltonian as a “clock,” and let us regard the g/yjve at
minus of its phase as “time” in our system. So we take

0=0,(6), s=B cosr—¢,)=0 , and we obtain Ko + 222/ E])
? ? ? Q1 |q2 s— V Ko cofwT— ¢t ).
K (2]&])
0g,=s= fdﬁ o[ d2(6) —B cogwT— ¢3)]o(6) (33
In the classical limitE’'=m’—~, the asymptotic form
_ _ _ _ _ f the modified Bessel function (30) gives
= | dOS[0—(wT— ¢,)]0()=0(wT— ¢,). o :
J ’ ’ Ko+ 12| )/ K (2] €[) = ym'7[¢] and
This means that we can replaogé,r, 6)[q,—s by o(&,7, w7 , 2h —
—~\— — ot
~ $.), 50 Eq.(26) gives 41(&)lg,=s~ V- Jm'cog wr— o+ )
~AcodwT— ¢+ ¢, ). (34
0'(&5)=0'(¢) a4y=s Here A is the amplitude of the first oscillator, and we have
usedr~m’,r>|£|. Note thaté is gauge invariant and its
B 1 phase ¢, is the same as the initial phase sum+ ¢.
2021E)™ Ko (2]€)) Hence the right-hand side of E(84) is identical to the clas-

sical solutionqgI in Egs. (3). Namely, the evolution of the
first operatorq, described by the “quantum clockq, is

f fzwd__r+o(§,r,9)|q2 s

large.

~e
m
dr—r ry

22" Kmf<2|§|>f = V. SUMMARY

identical to the classical motion when the energy becomes

XO(&,T, 07— ¢by). (32)
Choosingg; aso, we obtain

1
2(2[&)™ K (2]€])

xfx re_ir,+,\[\/r

Xcog ¢+ (wr—¢y)]

\/%coimﬂm— $2)]
= - ’ fm’+ g )1
® 202 &)™ K (2¢]) |4

qi(§)|q2:S:

We examined a model where the Hamiltonian is a differ-
ence between two harmonic oscillators, and we considered
one of them which has the minus sign in the Hamiltonian as
a “clock,” since the gravitational degree of freedom has a
minus sign in quantum gravity. The projection operator ap-
proach to generalized coherent states was used to define
physical states. We deduced a resolution of unity with re-
spect to gauge invariant states . In the same way, physical
operators were expressed in terms of gauge invariant states
and physical symbols. We investigated the “quantum clock”
and showed that the evolution described by it is identical to
the classical motion when the energy becomes large.

As a future work, it will be interesting to apply the pro-
jection operator approach to coherent states in order to study
the time evolution of the five-dimensional Kaluza-Klein cos-
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mology by Wudka[10] and the minisuperspace model by  From Eq.(10), H_=%w®, andA _ is the generator of the
Hartle-Hawking [11] when the cosmological constant is gauge transformatioritime translatioh of our system. So
zero. It would be also interesting to extend our results fronggs. (A5) suggest that the phase of each harmonic oscillator

minisuperspace to full superspace and to examine the relgransforms into opposite direction under the gauge transfor-
tion between our consideration and some recent papers QRation.

the “problem of time” [23-25.

APPENDIX B
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r generalized coherent states associated with the Lie alge-
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I’=fda(z) |z){z],
APPENDIX A

First we begin by a pair of creation and annihilation op- a(z)=o(p)pdpde,
erators of a harmonic oscillata’,a which satisfy[a,a']
=1. Let us formally define the polar decompositionachs 4 o
. o(P)= =y (V2 2" K1 2a(2420),
a=e'%|a|, (A1) (B1)
where |a| and ¢, are the absolute value operator and the

; =pe'? |z|= d-2®-1=0,1,2... . Here we
hase operator o, respectively[26]. Then the number op- Wherez=pe |2=p an T
gratorN p=aTa=|a|2 sa[iisﬁes M26] P have corrected an erratum of(p) in Ref. [17], namely,
a

K1ipreo— K119 . The reason for this is because the formula
N. elfa]= —gifa, A2 in Ref. was wrong, and should be replace
[N,,e'%] 0 (A2) Ref. [27] g, and should be replaced by

In the following expansion: o
g exp f dx 2X* PRy 5 (2X)x 1=T (2a+9)T(28+5).
i 0

eiaaNae_iHa: Na+i[9a1Na]+ E[eai[aa:Na]]"' T (BZ)

i2

the left-hand side is equal thi,+1 by Eq.(A2), and the This formula follows immediately from Eq(6.561.16 in

right-hand side becomes,+i[ 6,,N,], becausé¢ 6,,N,] is Ref. [28]:

a c number. Therefore we obtain
1+u+v

2

1+,LL—1/)

N U —ou—lg—pu-1
(A3) fdxxKV(ax) 24" a F( 5

0

[N, 6,]=1.

Next let us consider another pair of creation and annihi- . .
lation operatord’,b with [b,b"]=1, then similar equations \;VLTrGéreE R?g;)— %rr;);géizec?;sg .trY;/ttecher]f alﬂsg oeagiylas
as Eqgs.(A1)—(A3) hold with respect td. We examine two q: P k ' '

cases where the Hamiltonian is the sum or the difference ofS"9Kv2(2) = Vm/2zexp(=2) [29].
two harmonic oscillators. Let us write the normalized state ) as|z),, then we

N h
Case 1 H, =%w(N,+N,—E’). Since Eq.(A3) means ave
[Hi,0,]=ifw and[H . ,6p]=ifw, we have 12)(z|=(2|2)|2)n (2,
Hi, 0.+ 6,]=2i%ow, [H,,0,—6,]=0. (A4) -
[ + a b] [ + a b] | o 2 (\/§|Z|)2n
Therefore the phase differenag — 6, is gauge invariant, (zlz)=T( )n=0 n'I'(—=2d+n)

and the phase sum,+ 6,, is not invariant in this case. This
case was investigated in R¢6]. m’!
i Case 2 I:I_zﬁw(l:la—Nb—E’). Since EQ.(A3) means - (\/§|z|)”‘/ Im,(2\/§|z|), (B3)
[H_,0,]=ihw and[H_,0,]=—ihw, we have
R . where we have used Eql7) and have identifiedm’
[H_,0,+6,]=0, [H_,0,—6,]=2ifiw. (A5) =-2d—1. If we write é=2z and|z),(z|=|£)(¢|, then
Egs.(B1) is identical to Eq(25). Therefore, we have estab-

Hence the phase sum,+ 6, is gauge invariant, and the lished that our resolution of unity agrees with that in Ref.
phase differenc@,— 6, is not invariant in this case. [27].
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