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Dynamical Casimir effect and quantum cosmology
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We apply the background field method and the effective action formalism to describe the four-dimensional
dynamical Casimir effect. Our picture corresponds to the consideration of quantum cosmology for an expand-
ing FRW universe~the boundary conditions act as a moving mirror! filled by a quantum massless GUT which
is conformally invariant. We consider cases in which the static Casimir energy is attractive and repulsive.
Inserting the simplest possible inertial term, we find, in the adiabatic~and semiclassical! approximation, the
dynamical evolution of the scale factor and the dynamical Casimir stress analytically and numerically@for
SU(2) super Yang-Mills theory#. Alternative kinetic energy terms are explored in the Appendix.

PACS number~s!: 04.60.2m, 11.15.Kc, 12.10.2g, 12.60.Jv
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I. INTRODUCTION

The Casimir effect@1# can be regarded as the change
the zero-point fluctuations due to nontrivial boundary con
tions. Surveys of the effect are given, for instance, by P
nien et al.@2#, Mostepanenko and Trunov@3#, and Milton
@4#. The recent ‘‘resource letter’’ of Lamoreaux@5# contains
a wealth of references, although it is admittedly highly
complete.

In the past, the Casimir effect has been considered
staticeffect. Growing interest in recent years has been dra
to the dynamicalvariant of the effect, meaning, in essenc
that not only the geometrical configurations of the exter
boundaries~such as plates! but also their velocities play a
physical role. Moore@6# is probably the first to have consid
ered the dynamical Casimir effect. Examples of more rec
references are@7# and @8#.

The recent paper of Nagatani and Shigetomi@9# is an
interesting development in this direction. These authors
cused attention on the fact that if moving boundaries~mir-
rors! create radiation, the mirrors have to experience a re
tion force. They proposed an effective theory for the ba
reaction of the dynamical Casimir effect in 111 dimensions
for a scalar field, this theory being constructed by the ba
ground field method in the path integral formalism. In fa
they considered a kind of 2D quantum cosmology for d
scribing the dynamical Casimir effect.

In the present paper we show how to apply the effect
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action formalism, using the background field method, to f
mulate the dynamical Casimir effect in four dimensions in
convenient and elegant form. We are able to consider
arbitrary matter content@typically a grand unified theory
~GUT!# and present the dynamical Casimir effect as a kind
quantum cosmological model. Using the background fi
method, we treat the geometrical configuration of the bou
aries classically, but consider the GUT in the interior regi
as a quantum object.

In the next section we consider a GUT in a thre
dimensional space, where the size of the spacea(t) is a
dynamical variable. Similarly to@9# we make use of the adia
batic approximation. Exploiting the conformal invariance
the theory we calculate the anomaly-induced effective ac
W. In the simplest case~a torus!, W is given by Eq.~2.4!. We
consider the static Casimir energy in Sec. III, and show th
for the usual boundary conditions on the torus, the Casi
energy is attractive. In Sec. IV we start with the effecti
action, Eq.~4.1!, for the dynamical case. Introducing a ma
m associated with the scale factora, with a corresponding
kinetic energy in the low-velocity approximation equal
1
2 mȧ2 ~a phenomenological term!, we then consider two
cases. If the Casimir energy is attractive, we derive in E
~4.15! the time variation ofa(t) for large values oft, the last
term in the expression being a~special case of the! dynami-
cal correction to the pure quasistatic Casimir result. For
perhaps less realistic repulsive case, the small and large
behavior of the Casimir behavior is extracted in Eqs.~4.24!,
~4.26!. Numerical results in both cases are given in Sec.
The behavior of the scale factor in the two cases is show
Figs. 1 and 3, while the dynamical stress on the torus
presented in Figs. 2 and 4. In the Appendix we discuss
effects of alternative kinetic energy terms.

II. THE EFFECTIVE ACTION

Let us consider conformally invariant, massless matte
4D-dimensional space-time. The matter may correspond

/
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some GUT@say,SU(5), SO(10), or any other alternative#.
We are interested first in the study of the static Casimir eff
for such a theory when the field is assumed to be bounde
a three-dimensional region. In other words, we are intere
in a space having the formR1

^ K3, where asK3 one can
take any manifold permitting an exact Casimir effect calc
lation. It can beS3, T3, S1

^ S2 or any other compact mani
fold with a known spectrum of the d’Alembertian operato
We limit ourselves toT3 or S3, for the sake of simplicity.

Suppose now that our GUT lives in such a thre
dimensional space, where the size of the space is a dyn
cal variable~moving mirror or moving universe!. Hence, we
will be interested in the dynamical Casimir effect in a thre
dimensional region and the back-reaction from the indu
radiation on the moving background geometry. We shall
-
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h
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the adiabatic approximation in this study. A great simplific
tion comes from adopting a physical picture in which t
Casimir effect is described as an effective action in curv
spacetime~see@10# for an introduction!. Here, spacetime is
taken to be an expanding universe with topologyR1

^ S3 or
R1

^ T3. The corresponding metric is given by

ds25dt22a2~ t !ds3
2 , ~2.1!

where ds3
25dx21dy21dz2 for T3 ~coordinates are re

stricted by all radii being equal!, or the line element of a
three-dimensional sphereS3.

Let us calculate now the effective action for such a GU
Using the fact that the theory is conformally invariant w
may use the anomaly-induced effective action@11#
W5bE d4xA2ḡF̄s1b8E d4xA2ḡH sF2h̄214R̄mn¹̄m¹̄n2
4

3
R̄ h̄1

2

3
~¹̄mR̄!~¹̄m!Gs1S Ḡ2

2

3
h̄ R̄DsJ

2
1

12
3

2

3
~b1b8!E d4xA2ḡ@R̄26h̄s26~¹̄ms!~¹̄ms!#2, ~2.2!
sign
of

in

it-

-

where our metric is presented in conformal form. Thus gmn

5e2sḡmn , s5 ln a(h), h is the conformal time,F is the
square of the Weyl tensor, andG is the square of the Gauss
Bonnet invariant. Overbar quantities indicate that the cal
lation is made with ḡmn . Further,

b5
1

120~4p!2
~N016N1/2112N1!,

b852
1

360~4p!2
~N0111N1/2162N1!, ~2.3!

whereN0 , N1/2, andN1 are the numbers of scalars, spino
and vectors. For example, forN54 SU(N) super Yang-
Mills ~YM ! one gets@12# b52b85(N221)@4(4p)2#21.
We also adopt the scheme wherein theb9-coefficient of the
hR term in the conformal anomaly is zero. Being ambig
ous, it does not influence the dynamics@12#.

As the simplest case we consider henceforth a torus. T

W5E dh @2b8ss9922~b1b8!~s91s82!2#. ~2.4!

This is a typical effective action for a GUT in a Friedman
Robertson-Walker~FRW! Universe of a special form.

III. THE STATIC CASIMIR ENERGY

Let us briefly overview the static Casimir effect for
torus of sideL ~for more detail, see@13#!. The Casimir en-
ergies associated with massless spin-j fields is
-

,

-

en

ENj
5

Nj

2
~21!2 j (

nPZ3
vn, j , ~3.1!

where we see the appearance of the characteristic minus
associated with a closed Fermion loop. The frequency
each mode is given by

vn, j
2 5S 2p

L D 2

(
i 51

3

~ni1gi
( j )!2, n5~n1 , n2 , n3!. ~3.2!

Here gi
( j )50,1/2 depending on the field type chosen

R1
^ T3.
We use thep-dimensional Epstein zeta function

ZpUg1 , . . . ,gp

h1 , . . . ,hp
U~s!

defined forR s.1 by the formula

ZpUg1 , . . . ,gp

h1 , . . . ,hp
U~s!

5 (
nPZp

8 @~n11g1!21•••1~np1gp!2#2ps/2

3exp@2p i ~n1h11•••1nphp!#, ~3.3!

where gi andhi are real numbers, and the prime means om
ting the term with (n1 , . . . ,np)5(2g1 , . . . ,2gp) if all the
gi are integers. ForR s,1 the Epstein function is under
5-2
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DYNAMICAL CASIMIR EFFECT AND QUANTUM COSMOLOGY PHYSICAL REVIEW D62 064005
stood to be the analytic continuation of the right-hand side
Eq. ~3.3!. Defined in such a way, the Epstein zeta functi
obeys the functional equation

p2ps/2GS 1

2
psDZpU g1 , . . . ,gp

h1 , . . . ,hpU~s!

5p2p(12s)/2GS 1

2
p~12s! D

3exp@22p i ~g1h11•••1gphp!#

3ZpU h1 , . . . ,hp

2g1 , . . . ,2gp
U~12s!. ~3.4!

The function ~3.3! is an entire function in the complexs
plane except for the case when allhi are integers. In the
latter case the function~3.3! has a simple pole ats51.

Using Eq.~3.3! we have

ENj
5

p

L
Nj~21!2 jZ3Ug1

( j ) g2
( j ) g3

( j )

0 0 0
US 2

1

3D . ~3.5!

Taking into account the functional equation~3.4! one gets

Z3Ug1
( j ) g2

( j ) g3
( j )

0 0 0
US 2

1

3D
52

1

2p3
Z3U 0 0 0

2g1
( j ) 2g2

( j ) 2g3
( j )US 4

3D .

~3.6!

The Casimir energies~3.1! take the form

ENj
52

~21!2 j

2p2L
NjZ3U 0 0 0

2g1
( j ) 2g2

( j ) 2g3
( j )US 4

3D .

~3.7!

Finally the Casimir energy associated with a multiplet
fields characterized by the numbersN0 , N1/2, andN1 can be
written as follows:

E5(
j

ENj
52

1

2p2L
FN0Z3U 0 0 0

2g1
(0) 2g2

(0) 2g3
(0)US 4

3D
2N1/2Z3U 0 0 0

2g1
(1/2) 2g2

(1/2) 2g3
(1/2)US 4

3D
1N1Z3U 0 0 0

2g1
(1) 2g2

(1) 2g3
(1)US 4

3D G . ~3.8!

Thus, the static Casimir energy for a torus is proportiona
c/L, wherec is defined by the features of the GUT und
consideration. Note that the sign ofc is a priori unpredict-
able.

If for all the fields of the theory we take the same boun
ary conditions~periodic or antiperiodic!, the Z3’s are all
06400
f

f

o

-

equal, and consequently the supersymmetry is not bro
and the Casimir energy is zero. On the other hand, if
different fields satisfy different types of boundary condition
supersymmetry is broken and there is a static Casimir eff

For the latter situation, consider, as an illustration, t
usual case of bosons satisfying periodic boundary conditi
and fermions satisfying antiperiodic boundary conditions
the torus. Then we require only two values. For the boso
the Casimir energy is proportional to

Z3U0 0 0

0 0 0
US 4

3D516.5323, ~3.9!

which value is given explicitly in Ref.@14#. For the fermions,
the same reference gives the value

Z3U0 0 0

1

2

1

2

1

2
U S 4

3D523.86316. ~3.10!

So each term in Eq.~3.8! contributes a negative energy. Thu
the net Casimir energy is attractive,

E52
c

L
,

c50.837537~N01N1!10.195710N1/2

51.033247N1/2, ~3.11!

since the number of fermions must be equal to the numbe
bosons.1

We should make the following general remarks conce
ing the physical interpretation of the calculation sketch
here. Imposition of periodic boundary conditions at t
boundaries of the field volume is a basic physical ingredi
in expressions such as Eqs.~3.1!, ~3.2! for the Casimir en-
ergy. It is analogous to the imposition of perfect conducti
boundary conditions, or more generally, electromagne
boundary conditions, at the walls, when considering ordin
electrodynamics, for example within a spherical volume. T
physical outcome of a calculation of this kind is the residu
energy remaining when the influence of the local stresse
separated off.~Presumably, such stresses are absorbed
kind of renormalization of physical parameters.! The field
theoretical calculation is able to cope only with the cuto

1Any case with periodic boundary conditions in some directio
and antiperiodic ones in others may be given in terms of the va
given in Eqs.~3.9!,~3.10! and the additional values

Z3U0 0 0

1

2
0 0US43D50.689223,

Z3U0 0 0

1

2

1

2
0U S 4

3D522.156887.
5-3
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independent part of the physical stress; the local cutoff
pendent parts of the stress are automatically lost in the z
function regularization process. This is an important po
whenever the result of the field theoretical calculation is
be compared with experiments.

As a typical example of this sort, we may mention t
calculation of the Casimir energy of a dilute dielectric ba
One may adopt a field theoretical viewpoint~cf., for in-
stance,@15#!, from which the Casimir energy is calculated
a cutoff independent, positive, expression. More deta
considerations, using quantum mechanical perturba
theory @16# ~cf. also @17#!, or quantum statistical mechanic
@18# show however how this expression is to be supp
mented with attractive cutoff dependent parts. Such terms
presumably not observable. As for the cutoff independ
term, agreement between the methods is found, so the s
tion is in this respect satisfactory.

IV. DYNAMICAL PROPERTIES

Now let us turn to a simplified discussion of the dynam
cal Casimir effect. We here take into account that we hav
dynamical radiusa(t)L, a(t) being a dimensionless sca
factor. Then, the total effective action is given as

G5W2LE dh a~h! E, ~4.1!

whereW is given by Eq.~2.4! andE52c/(aL) as displayed
in Eq. ~3.8!. Because the action is dimensionless, the len
L disappears from the calculation, and we have

G5E dh@2b8ss9922~b1b8!~s91s82!21c#.

~4.2!

This is a typical effective action to describe a quantum FR
Universe.

In order to consider dynamical properties we add to
above effective action a phenomenological term, which
the form of a kinetic energy. We associate a massm with the
scale factora, and take the corresponding kinetic energy
be given by1

2 mȧ2. Our essential idea is that the geometric
configuration of the space is treated classically and that
GUT field is a quantum object which induces the Casim
effect. One might in principle introduce other expressions
the kinetic energy, but this expression is clearly the simp
choice that one can make. The Newtonian form is moreo
in correspondence with our use of the adiabatic approxi
tion, meaning thatuȧ(t)u!1; cf. also the analogous argume
in @9# in connection with the~111! dimensional case.2 Intro-
ducing the physical timet via dh/dt51/a, we now writeG
as

2We consider other possibilities for the kinetic energy term in
Appendix.
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G5E dt F1

2
mȧ212b8ln a S âa213âȧa1ä2a1äȧ222~b

1b8!
~ ȧ21aä!2

a
1

c

a
G , ~4.3!

whereȧ5da/dt.
From the variational equationdG/da50 we obtain, after

some algebra,3

mä22 b8 S ä212
d2

dt2
~aä!D 22 ~b1b8! S 2â14ȧâ13ä2

212
ȧ2ä

a
13

ȧ4

a2D 1
c

a2
50. ~4.4!

It is remarkable that the logarithm is absent in Eq.~4.4!;
there seems to be no reasona priori why this should be so.

We limit ourselves to theN54 SU(N) super YM theory
for which, as mentioned, (b1b8)50. Then Eq.~4.4! simpli-
fies to

mä12b~2âa14âȧ13ä2!1
c

a2
50. ~4.5!

Both the terms involvingb and c are dynamical, quantum
mechanical, effects, which in dimensional terms are prop
tional to \. However, we will see that it is sensible~if c
Þ0) to regard theb term as a small correction to th
Casimir-determined geometry. We denote theb50 solution
by a0(t); it satisfies the equation

mä01
c

a0
2

50, ~4.6!

implying

1

2
mȧ0

25
c

a0
1const. ~4.7!

A. Attractive Casimir energy, cÌ0

If the Casimir energy is attractive, as actually realized
our illustrative calculation given in Sec. III, see Eq.~3.11!,
we will assume, as boundary conditions, thata0(t→`)
5`, ȧ0(t→`)50. Then, the constant in Eq.~4.7! becomes
equal to zero, and we get the Casimir solution

a0~ t !5At2/3, with A5S 9c

2mD 1/3

. ~4.8!

e

3This and subsequent equations are dimensionally consistent
restore dimensions:

@a#5@t#5@m21#5length.
5-4
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It is worth noticing here that the proportionality ofa0(t) to
t2/3 is precisely the behavior shown by the scale factor in
Einstein–de Sitter universe. This may be surprising at fi
sight, but does not seem to be so unreasonable after all, s
the Einstein–de Sitter universe is flat, thus in corresponde
with our neglect of Riemannian curvature terms in the f
malism above.

Now we turn to the solutiona(t), taking into account the
b correction. We shall limit ourselves to giving a perturb
tive solution, implying an expansion ofa(t) arounda0(t)
assumingb to be small:

a~ t !5a0~ t !1ba1~ t !. ~4.9!

We consider only times for which the correction term
small:

ba1 /a0!1. ~4.10!

Thus, we may expand the Casimir term in Eq.~4.5! as
c/a25(c/a0

2)(122ba1 /a0). A first order expansion of the
other terms in Eq.~4.5! then yields, when we take into ac
count the Casimir solution~4.8!, the inhomogeneous equa
tion

ä12
4

9t2
a15

8A2

9m
t28/3. ~4.11!

The homogeneous version of Eq.~4.11! has solutions of the
form ta, with a54/3 anda521/3. We write the indepen
dent solutions as

f ~ t !5t4/3, g~ t !5t21/3. ~4.12!

The WronskianD betweenf andg is simple;D5 f ġ2g ḟ5
25/3. Writing for brevity the right-hand side of Eq.~4.11! as
r we then get, as the solution of the inhomogeneous eq
tion,

a1~ t !5 f ~ t !S C12
1

DE rg dtD1g~ t !S C21
1

DE r f dt D
5t4/3S C12

4A2

15m
t22D1t21/3S C21

8A2

5m
t21/3D

5C1t4/31C2t21/31
4

3

A2

m
t22/3, ~4.13!

with C1 andC2 being constants. As for the values of the
constants, we have first to observe our restriction~4.10!,
which implies that

b

A S C1t2/31C2t211
4A2

3m
t24/3D!1. ~4.14!

If we require the perturbative approximation to be valid f
large times, we must haveC150. If we also setC250, our
perturbative solution becomes
06400
e
t
ce

ce
-

-

a-

a~ t !5At2/31
4A2

3m
bt22/3, ~4.15!

which is only valid for large enought, i.e., for

bA

m
t24/3!1. ~4.16!

The static Casimir force is

FCas52
]

]a S 2
c

aD52
c

a2
, ~4.17!

whereas the dynamical force is

Fdyn5mä. ~4.18!

Substituting Eq.~4.15! into Eqs.~4.17! and ~4.18!, and ob-
serving the relation betweenc andA in Eq. ~4.8!, we get

Fdyn5FCasS 12
4bA

m
t24/3D , ~4.19!

which shows that the dynamical force is the Casimir for
modified by a small dynamical correction when the pert
bative approximation is valid.

Before we turn to a numerical solution of Eq.~4.5!, we
discuss the repulsive case.

B. Repulsive Casimir energy,cË0

Now let us consider the case whenc,0, a repulsive Ca-
simir energy. In this case we must takeȧ0u t→`Þ0. Let us
write theb50 equation~4.7! in the form

ȧ056Ac1

a0
1c2, ~4.20!

c15
2c

m
, c25v`

2 , v`5ȧ0u t→` . ~4.21!

From Eq.~4.20! we obtain

1

c2
Fa0Ac1

a0
1c22

c1

Ac2

ln~2Ac2a012Ac2a01c1!G
56t1c3 , ~4.22!

wherec3 is a further integration constant. We see from E
~4.20! that

a0>
22c

mv`
2

. ~4.23!

For long times, the solution behaves as

a0~ t !;Ac2t, t@1. ~4.24!

For short times, supposea0 approaches the minimum valu
~4.23!; then
5-5
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c352
c1

c2
3/2

ln 2A2c1, ~4.25!

and

a0~ t !;2
c1

c2
2

c2
2

4c1
t2, t!1. ~4.26!

V. NUMERICAL SOLUTION AND DISCUSSION

A. cÌ0

Let us consider numerical solutions of dynamical eq
tions~4.5! for SU(2) super Yang-Mills theory, for the attrac
tive case. We suppose that the initial behavior ofa(t) is
given by the perturbative form Eq.~4.15!. We may always
setm51 since that amounts to using dimensionless variab
for a and t. Let us take as an illustration

N52, c51 ~A51.65096!, t050.5. ~5.1!

FIG. 1. Casimir~dashed line! and dynamical behavior fora(t)
for c.0.

FIG. 2. Casimir~dashed line! and dynamical behavior ofF for
c.0.
06400
-

s

For later times we integrate the exact equations numerica
starting with the initial conditions att0:

a051.06744, ȧ051.35019,

ä0520.802706, â051.81582. ~5.2!

For those conditions we have a numerical solution fora(t)
as shown in Fig. 1. For comparison we also show in
figure the unperturbed solution~4.8! due to the static Casimi
force. It will be noticed that for larget there are significant
deviations from the unperturbed solution, which must be d
to C1Þ0 in the perturbative solution~4.13!. In fact, for the
entire range oft50.1280, the exact solution shown in Fig.
is roughly reproduced by Eq.~4.13! with C15C2525. For
the Casimir force we have the behavior as shown in Fig
The exact solution has oscillations, but overall is close to
unperturbed solution. Not surprisingly, the Casimir ener
dominates the force. Note also that for another choice
initial conditions one will find somewhat different behavio
The essential property of the approximation under discuss
is that there are always dynamical oscillations around
static Casimir force.

B. cË0

Next we consider numerical solutions of dynamical equ
tions ~4.5! for SU(2) super Yang-Mills theory whenc,0.
We suppose that the initial behavior ofa(t) is given by form
Eq. ~4.22!. Let us take the illustrative values

N52, c1521, c251, a0u t5051, t050.1. ~5.3!

For later times we integrate the exact equations numerica
starting from the initial conditions att0:

a051.00241, ȧ050.0490327,

ä050.497511, â0 520.049793. ~5.4!

FIG. 3. Dynamical behavior ofa(t) for c,0.
5-6
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Note that the perturbative values of these parameters, g
from Eq. ~4.26!, are close to these:

a051.0025, ȧ050.05, ä050.5, â0 50. ~5.5!

For those conditions we have a numerical solution fora(t)
as shown in Fig. 3. For the Casimir force we have the
havior as shown in Fig. 4. For both cases the exact solu
has very small oscillations, but overall is close to the Casi
solution, and is accurately described by the limits of th
solution, Eqs.~4.26! and ~4.24!.

Thus, we have presented a formalism to describe the
namical Casimir effect in the adiabatic approximation.
may be applied to an arbitrary GUT. Without any technic
problems one can generalize the present consideration to
specific four-dimensional background~we limited ourselves
to a discussion of a toroidal FRW universe as providing
moving boundary conditions!. But the limitations of our ap-
proach must be stressed: It would be extremely interestin
suggest new formulations of the dynamical Casimir eff
beyond the adiabatic approximation.
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APPENDIX: ALTERNATIVE KINETIC ENERGY TERMS

In the text, we introduced anad hockinetic energy term
into the action, referring to the change of scale with physi
time:

E dt
1

2
mȧ2. ~A1!

This is rather natural in the adiabatic context, whereuȧu!1,
for then simple scaling properties obtain, as evidenced by
dimensional consistency of the resulting equations of mo

FIG. 4. Dynamical behavior ofF for c,0.
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when m has dimensions of mass. But we cannot offer ve
strong arguments in its favor, in the absence of dynam
information. So, in this appendix we consider two altern
tives, which provide somewhat different models for the d
namical evolution of the world.

In the first, we suppose that the same kinetic ene
should be integrated over conformal time,4

E dh
1

2
mȧ25mE dt

1

2

ȧ2

a
, ~A2!

so that the Casimir evolution equation is, in place of E
~4.7!,

1

2

mȧ2

a
5

c

a
1k, ~A3!

where we have dropped the subscript 0 for simplicity, a
written the constant of integration ask. The solution of this
equation is very simple,

a5a01tA2

m
Ac1ka01

k

2m
t2, a05a~0!. ~A4!

If c.0, we can setk50 and obtain instead of the behavio
exhibited in Eq.~4.8!, a linear growth of the scale,

a5a01A2c

m
t. ~A5!

If c,0, as before we cannot set the integration const
equal to zero; if we again choose the initial velocity to
zero, ora052c/k, we get a result very like Eq.~4.26!:

4In this case the parameterm is dimensionless.

FIG. 5. Dynamical behavior fora(t) for the first alternative
kinetic energy term, Eq.~A2!. Shown are the behaviors withm
51, and initial conditiona(0)51, evolving initially until t50.01
according to Eq.~A4!, with c51, k51 ~solid line!; and withc5
21, k52 ~dashed line!.
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a52
c

k
1

k

2m
t2, ~A6!

but now valid for all times.
Perhaps a more natural possibility is to use the confor

time everywhere in the kinetic energy term,5

E dh
m

2 S da

dh D 2

5
m

2 E dt a ȧ2. ~A7!

5In this case the parameterm has dimension 1/length2.

FIG. 6. Dynamical behavior fora(t) for the second alternative
kinetic energy term, Eq.~A7!. Shown are the behaviors withm
51, and initial conditiona(0)51, evolving initially until t50.01
according to Eq.~A9!, with c51, k51 ~solid line!; and withc5
21, k52 ~dashed line!.
in
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The solution to the purely Casimir dynamical equation is

m

2
aȧ25

c

a
1k, ~A8!

which is integrated to

t5
1

k2Am

2 H 2

3
@~ka1c!3/22~ka01c!3/2#

22c@~ka1c!1/22~ka01c!1/2#J . ~A9!

When c.0 again we can takek→0, which leads to thek
50 result

a25a0
212A2c

m
t. ~A10!

If c,0 and we choose againka01c50, we obtain for short
times

a52
c

k
1

k3

2mc2 t2, t!1, ~A11!

again very similar to Eq.~4.26!.
In Figs. 5 and 6 we show the effect of the inclusion of t

dynamicalb term for these kinetic energy structures. Qua
tatively, the results do not depend much on whether the
simir term is positive or negative. The example given for t
first alternative kinetic energy is similar to the simple mod
result forc,0 shown in Fig. 3 except that the growth int is
quadratic rather than linear. The evolution for the seco
form of kinetic energy resembles the simple model result
c.0 shown in Fig. 1.
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