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Dynamical Casimir effect and quantum cosmology
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We apply the background field method and the effective action formalism to describe the four-dimensional
dynamical Casimir effect. Our picture corresponds to the consideration of quantum cosmology for an expand-
ing FRW universdthe boundary conditions act as a moving miyrilied by a quantum massless GUT which
is conformally invariant. We consider cases in which the static Casimir energy is attractive and repulsive.
Inserting the simplest possible inertial term, we find, in the adialfatid semiclassicalapproximation, the
dynamical evolution of the scale factor and the dynamical Casimir stress analytically and numéfizally
SU(2) super Yang-Mills theorly Alternative kinetic energy terms are explored in the Appendix.

PACS numbgs): 04.60—m, 11.15.Kc, 12.10-g, 12.60.Jv

[. INTRODUCTION action formalism, using the background field method, to for-

mulate the dynamical Casimir effect in four dimensions in a

The Casimir effecf1] can be regarded as the change inconvenient and elegant form. We are able to consider an
the zero-point fluctuations due to nontrivial boundary condi-arbitrary matter contenftypically a grand unified theory

tions. Surveys of the effect are given, for instance, by Plu{GUT)]and present the dynamical Casimir effect as a kind of

nien et al.[2], Mostepanenko and Trundi&], and Milton quantum cosmological modell. Usmg_the t_)ackground field

[4]. The re.zcer,n “resource letter” of Lamorea,uljﬁ] contains method, we treat the geometrical configuration of the bound-

o . : . aries classically, but consider the GUT in the interior region
2ovr¥]epfliétthe of references, although it is admittedly highly iN-2s a quantum object.

o . In the next section we consider a GUT in a three-
In the past, the Casimir effect has been considered as

taticeffect. Growing int (i X has b d #mensional space, where the size of the spa@d is a
staticetiect. .rowing Interest in recent years has been raV‘"('.'jynamical variable. Similarly tf9] we make use of the adia-
to the dynamicalvariant of the effect, meaning, in essence,

. ) . atic approximation. Exploiting the conformal invariance of
that not _only the geometrical conflgurqtlons OT _the externay, theory we calculate the anomaly-induced effective action
boundaries(such as platgsbut also their velocities play a

physical role. Moorg6] is probably the first to have consid- W. In the simplest casea torus, Wis given by Eq(2.4). We

d the d ical Casimir effect. E | P consider the static Casimir energy in Sec. Ill, and show that,
ered the dynamical Casimir effect. Examples of more receng, . 1o ygya| boundary conditions on the torus, the Casimir
references arf7] and[8].

Th i f Nagatani and Shiqetdsi i energy is attractive. In Sec. IV we start with the effective
. € recent paper of Nagatani an igetdsy is an action, Eq.(4.1), for the dynamical case. Introducing a mass
interesting development in this direction. These authors fo

d attenti the fact that if ina bound . m associated with the scale factay with a corresponding
cused attention on the fact that i moving boun e - kinetic energy in the low-velocity approximation equal to
rors) create radiation, the mirrors have to experience a reacy -, h logical h id

tion force. They proposed an effective theory for the back:M& (@ phenomenological teqmwe then consider two

reaction of the dynamical Casimir effect in-1 dimensions ~¢2S€S: If the Casi_mi_r energy is attractive, we derive in Eq.
for a scalar field, this theory being constructed by the back£4'15)_ the time variaion Oﬁ_‘(t) for Ia_lrge values of, the Ia_st
ground field method in the path integral formalism. In fact, €M in the expression being(apecial case of thedynami-

they considered a kind of 2D quantum cosmology for de_cal correction to the pure quasistatic Casimir result. For the
scribing the dynamical Casimir effect. perhaps less realistic repulsive case, the small and large time

. behavior of the Casimir behavior is extracted in E@s24),

In the present paper we show how to apply the effect|v<:1‘()4.26). Numerical results in both cases are given in Sec. V.
The behavior of the scale factor in the two cases is shown in
Figs. 1 and 3, while the dynamical stress on the torus is

/presented in Figs. 2 and 4. In the Appendix we discuss the
effects of alternative kinetic energy terms.
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some GUT[say,SU(5), SO(10), or any other alternatiye the adiabatic approximation in this study. A great simplifica-
We are interested first in the study of the static Casimir effection comes from adopting a physical picture in which the
for such a theory when the field is assumed to be bounded i@asimir effect is described as an effective action in curved
a three-dimensional region. In other words, we are interestespacetimesee[10] for an introduction. Here, spacetime is

in a space having the forfi'®@ K3, where ask® one can taken to be an expanding universe with topoldty® S® or
take any manifold permitting an exact Casimir effect calcu-R*® T3. The corresponding metric is given by

lation. It can beS3, T3, S'®S? or any other compact mani-

fold with a known spectrum of the d’Alembertian operator. ds’=dt?—a?(t)ds3, 29

We limit ourselves tdl® or S, for the sake of simplicity.

Suppose now that our GUT lives in such a three-where dsi=dx?+dy?+dz for T° (coordinates are re-
dimensional space, where the size of the space is a dynanstricted by all radii being equglor the line element of a
cal variable(moving mirror or moving universeHence, we three-dimensional sphef&.
will be interested in the dynamical Casimir effect in a three- Let us calculate now the effective action for such a GUT.
dimensional region and the back-reaction from the inducedlsing the fact that the theory is conformally invariant we
radiation on the moving background geometry. We shall usenay use the anomaly-induced effective actia]

_ - 4__ 2 _ _ _
20%+4R*'V ,V ,— §RD+§(VMR)(VM) o+

w=bf d4X\/—_g_FU+b’fd4X\/—_5{0

G- %R
§ ag
2

—%zxg(an b')f d*x\—g[R-600—6(V,0)(V40) 12, (2.2

where our metric is presented in conformal form. Thys g N, .

—e27g. = i imeF i &= (DI 2 o, (3.
€°’0,,, o=Ina(y), n is the conformal timeF is the i 2 3 3]

square of the Weyl tensor, a@lis the square of the Gauss- ne

Bonnet invariant. Overbar quantities indicate that the CaICUWhere we see the appearance of the characteristic minus sign

lation is made with g, . Further, associated with a closed Fermion loop. The frequency of
each mode is given by

b:m(No+6N1/2+ 12N,), o2 3
o .
wﬁ,,:(T) 2, (ni+g?)?% n=(ng, nz, ny). 3.2
1
b’'=———(Ny+1INyp,+62N;), (2.3 A
3604m)? 1 ' Here ¢"=0,1/2 depending on the field type chosen in

R'®T3.
. We use thep-dimensional Epstein zeta function
whereNg, Ny, andN, are the numbers of scalars, spinors, ® P

and vectors. For example, fo=4 SU(N) super Yang-

Mills (YM) one gets[12] b= —b'=(N2-1)[4(4m)?] 1. 2|9 % (s)
We also adopt the scheme wherein tifecoefficient of the Plhy, ... Np
IR term in the conformal anomaly is zero. Being ambigu-
ous, it does not influence the dynam[d<]. defined for%i s>1 by the formula
As the simplest case we consider henceforth a torus. Then
oI o §
wzf dp[2b’ g™ —2(b+b') (0" +0'?)?]. (2.4 ohy,. ..y (s)
This is a typical effective action for a GUT in a Friedmann- — 2 ! [(N+0y)2+ - +(n,+g )2] P2
Robertson-WalketFRW) Universe of a special form. nep =P
lll. THE STATIC CASIMIR ENERGY Xex2mi(nghy - -+ nphy) ], 33

Let us briefly overview the static Casimir effect for a where g andh; are real numbers, and the prime means omit-
torus of sideL (for more detail, se¢13]). The Casimir en- ting the term with @, ... ,np)=(—0;, ...,—gp) if all the
ergies associated with massless gpiields is g; are integers. FofRs<1 the Epstein function is under-
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stood to be the analytic continuation of the right-hand side okqual, and consequently the supersymmetry is not broken,

Eqg. (3.3). Defined in such a way, the Epstein zeta functionand the Casimir energy is zero. On the other hand, if the

obeys the functional equation different fields satisfy different types of boundary conditions,
supersymmetry is broken and there is a static Casimir effect.

1 O, .- % For the latter situation, consider, as an illustration, the
m PYT| —ps|z h h.l(s) usual case of bosons satisfying periodic boundary conditions
2 PNy, ..ty p > > - ) ) PE -
and fermions satisfying antiperiodic boundary conditions on
1 the torus. Then we require only two values. For the bosons,
= W—p(l—s)lzr(zp(1_5)> the Casimir energy is proportional to
. 0 0 0/4
Xexd —2mi(gihy+---+gyhy)] _|=
11 pMp Z3 0 0 ol3 16.5323, (3.9
hy, ... hy
XZy| _ e Op (1-s9). (34 which value is given explicitly in Ref14]. For the fermions,

the same reference gives the value
The function(3.3) is an entire function in the complex

plane except for the case when &jl are integers. In the 0 00 4
latter case the functiofB.3) has a simple pole a=1. Zsl1 1 1 (_) — _3.86316. (3.10
Using Eq.(3.3) we have 5 3 33
. o o o 1 | | .
En=1Nj(—1)3Z, ( - _) . (3.5  Soeachtermin Ed3.8) contributes a negative energy. Thus
L 0 0 0 3 the net Casimir energy is attractive,
Taking into account the functional equati@®4) one gets c
. 4 . E=—+,
o o @% 1 -
23 - §
c 0 0 c=0.837537Ny+N;)+0.195710,,
1 0 0 0 |/4 =1.03324N,, (3.1
TR ) o —gp|\3)

since the number of fermions must be equal to the number of
(3.60  bosons
We should make the following general remarks concern-
ing the physical interpretation of the calculation sketched
4 here. Imposition of periodic boundary conditions at the
(_)_ boundaries of the field volume is a basic physical ingredient
3 in expressions such as Ed8.1), (3.2) for the Casimir en-
(3.7 ergy. It is analogous to the imposition of perfect conducting
) o ) ) ) boundary conditions, or more generally, electromagnetic
Finally the Casimir energy associated with a multiplet of youndary conditions, at the walls, when considering ordinary
fields characterized by the numbég, N;/,, andN; canbe  electrodynamics, for example within a spherical volume. The

The Casimir energie&3.1) take the form

0 0 0

o P
N —g) - —¢f

T NZ
R

written as follows: physical outcome of a calculation of this kind is the residual
energy remaining when the influence of the local stresses is
5:2 £ = 1 N.Z 0 0 0 ( f) separated off(Presumably, such stresses are absorbed in a
TN o2 03— —g® g\ 3 kind of renormalization of physical parametgr3he field
theoretical calculation is able to cope only with the cutoff
0 0 0 4
—NupZs| g2 gD g2 (g)
IAny case with periodic boundary conditions in some directions
IN.Z 0 0 0 f 3.9 and antiperiodic ones in others may be given in terms of the values
143 _g(ll) _g(zl) _9(31) 3/ ' given in Egs.(3.9),(3.10 and the additional values
0 0
Thus, the static Casimir energy for a torus is proportional to Zi1 (f’ ~0.689223,
c/L, wherec is defined by the features of the GUT under 5 00 3
consideration. Note that the sign ofis a priori unpredict-
able. 000 4
If for all the fields of the theory we take the same bound- Zgl 1 (5) =—2.156887.
ary conditions(periodic or antiperiodi; the Z3's are all 2 2
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independent part of the physical stress; the local cutoff de-
pendent parts of the stress are automatically lost in the zetaF = | dt
function regularization process. This is an important point

1., o np L wig
Ema +2b’Ina| aa“+3aaa+a“a+aa“—2(b

whenever the result of the field theoretical calculation is to (a%+ax)? ¢
be compared with experiments. +b')y——+—|, 4.3
As a typical example of this sort, we may mention the a a

calculation of the Casimir energy of a dilute dielectric ball. ]

One may adopt a field theoretical viewpoiftdf., for in-  wherea=da/dt.

stance[15]), from which the Casimir energy is calculated as  From the variational equatiosl’/ 6a=0 we obtain, after
a cutoff independent, positive, expression. More detailecsome algebrd,

considerations, using quantum mechanical perturbation

theory[16] (cf. also[17]), or quantum statistical mechanics . s G -
[18] show however how this expression is to be supple- Ma—2b’|a*+ ZE(aa)) —2(b+b’) | 2a+4aa+3a?
mented with attractive cutoff dependent parts. Such terms are t

presumably not observable. As for the cutoff independent 225 at c

term, agreement between the methods is found, so the situa- — 12— +3—) +—=0. (4.4
tion is in this respect satisfactory. a a?/ a®

It is remarkable that the logarithm is absent in E4.4);
IV. DYNAMICAL PROPERTIES there seems to be no reasamriori why this should be so.
Now let us turn to a simplified discussion of the dynami- ~ We limit ourselves to thev=4 SU(N) super YM theory
cal Casimir effect. We here take into account that we have #r which, as mentioned)o(+b") =0. Then Eq(4.4) simpli-
dynamical radiusa(t)L, a(t) being a dimensionless scale fies to
factor. Then, the total effective action is given as

ma-+ 2b(2aa+4aa+3az)+—2=0. (4.5
F:W—Lfdna(n) g (4.) a
Both the terms involvingy and ¢ are dynamical, quantum

whereW is given by Eq(2.4) andé= —c/(aL) as displayed mechanical, effects, which in dimensional terms are propor-
in Eq. (3.8). Because the action is dimensionless, the lengtfional to 7. However, we will see that it is sensiblé c

L disappears from the calculation, and we have #0) to regard theb term as a small correction to the
Casimir-determined geometry. We denote he0 solution

by ay(t); it satisfies the equation
I'= f dy[2b’ oo™ —2(b+b")(a"+d'?)%+c].

(42 mag+ — =0, (4.6
Qo
This is a typical effective action to describe a quantum FRW
Universe. implying
In order to consider dynamical properties we add to the
above effective action a phenomenological term, which has 1 ., ¢
the form of a kinetic energy. We associate a nrassith the Emaﬂ_a_o +const. (4.7)

scale factora, and take the corresponding kinetic energy to

be given byt ma?. Our essential idea is that the geometrical
configuration of the space is treated classically and that the
GUT field is a quantum object which induces the Casimir If the Casimir energy is attractive, as actually realized in
effect. One might in principle introduce other expressions forour illustrative calculation given in Sec. lll, see Eg.11),
the kinetic energy, but this expression is clearly the simplestve Will assume, as boundary conditions, thej(t— )
choice that one can make. The Newtonian form is moreovet o, a,(t—)=0. Then, the constant in E¢4.7) becomes

in correspondence with our use of the adiabatic approximaequal to zero, and we get the Casimir solution

tion, meaning thajté(t)l«l; cf. also the analogous argument

A. Attractive Casimir energy, c>0

1/3
in [9] in connection with thé1+1) dimensional caséIntro- ag(t)=At?3, with A= (_> . (4.8
ducing the physical timeé via d»/dt=1/a, we now writel’ ’ 2m
as

3This and subsequent equations are dimensionally consistent if we
2We consider other possibilities for the kinetic energy term in therestore dimensions:
Appendix. [a]=[t]=[m !]=length.
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It is worth noticing here that the proportionality af(t) to 4A2

t??is precisely the behavior shown by the scale factor in the a(t)=At#+ 3_mbt_2/3’ (4.19

Einstein—de Sitter universe. This may be surprising at first

sight, but does not seem to be so unreasonable after all, singgich is only valid for large enough i.e., for

the Einstein—de Sitter universe is flat, thus in correspondence

with our neglect of Riemannian curvature terms in the for- bA _,;

malism above. Ht <1. (4.16
Now we turn to the solutiom(t), taking into account the

b correction. We shall limit ourselves to giving a perturba- The static Casimir force is

tive solution, implying an expansion @f(t) aroundag(t)

assumingp to be small: d c c
® Fearm = 5| 2| == 5. (.17
a
a(t)=ap(t) +bay(t). (4.9
whereas the dynamical force is
We consider only times for which the correction term is )
small: Fayn=ma. (4.18
ba;/ay<1. (4.10 Substituting Eq(4.15 into Egs.(4.17) and(4.18), and ob-

serving the relation betweenandA in Eq. (4.8), we get
Thus, we may expand the Casimir term in Hd4.5 as
c/a2=(c/a§)(1—2ba1/a0). A first order expansion of the F. =F ﬂ(l— &A‘t—ms) 4.19
other terms in Eq(4.5 then yields, when we take into ac- dyn™ " Ca m ' ’

count the Casimir solutioi4.8), the inhomogeneous equa- . . . .
“.8 9 q which shows that the dynamical force is the Casimir force

tion o . .
modified by a small dynamical correction when the pertur-
4 A2 bative approximation is valid.
2o o7 e Before we turn to a numerical solution of E@.5), we
a; 1 to (4.11 ) )
ot2 am discuss the repulsive case.
The homogeneous version of Eg.11) has solutions of the B. Repulsive Casimir energy,c<0

form t%, with a=4/3 anda= —1/3. We write the indepen-

dent solutions as Now let us consider the case wher 0, a repulsive Ca-

simir energy. In this case we must tahghﬁwaﬁo. Let us

f(H)=t*3 gt)=t=13 (4.1  write theb=0 equation(4.7) in the form
The WronskianA betweenf andg is simple;A=fg—gf= ap="* /&ﬂ;z, (4.20
—5/3. Writing for brevity the right-hand side of EG.11) as 8o
r we then get, as the solution of the inhomogeneous equa- 2c
t|0n, Clzﬁ, C2=vi, Ux:-a0|t*>x. (421)
1 1 _
a,(t)y=f(t)| C,— Kf rgdt|+g(t)| Co+ Kf rfdt From Eg.(4.20 we obtain
4A? 8A2 1 C1 C1
_143l ~ -2 -1/3 P V! —lag\/—tC,— —=In(2ycrag+2ycrap+cC
=t (Cl 15mt +t (C2+ 5mt ) c,| % Vg, "2 \/C—z (2\cp30+ 2V om0+ Cy)
4 A? =*t+cs, (4.22
=Cot+ Cot 4 5 7%, (4.13 ’
m wherecs; is a further integration constant. We see from Eqg.
. . (4.20 that
with C; and C, being constants. As for the values of these
constants, we have first to observe our restrict{driL0), —2¢
which implies that = —. (4.23
mo s,
b 4A2 . .
A Cit?3+Cot 1+ %r“r/?’ <1. (4.14 For long times, the solution behaves as
ag(t)~cot, t>1. (4.24)

If we require the perturbative approximation to be valid for
large times, we must havé;=0. If we also seC,=0, our  For short times, suppos®, approaches the minimum value
perturbative solution becomes (4.23); then
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$
0.0 . : : .
0.0 20 40 6.0 80 10.0
t t
FIG. 1. Casimir(dashed lingand dynamical behavior faa(t) FIG. 3. Dynamical behavior cdi(t) for c<O.
for ¢>0.
For later times we integrate the exact equations numerically,
cy starting with the initial conditions dt):
c3——T/2In2\/—c , (425)
o :
2 ay=1.06744, a,=1.35019,
and
5 ag=—0.802706, a,=1.81582. (5.2
a(t)~—&—2t2 t<1 (4.26
0 c, 4cq '’ ' ' For those conditions we have a numerical solution&¢n)
as shown in Fig. 1. For comparison we also show in the
figure the unperturbed solutidd.8) due to the static Casimir
force. It will be noticed that for large there are significant

V. NUMERICAL SOLUTION AND DISCUSSION
deviations from the unperturbed solution, which must be due
0 C1#0 in the perturbative solutiofd.13. In fact, for the

A.c>0
t
entire range of=0.1— 80, the exact solution shown in Fig. 1

is roughly reproduced by E@4.13 with C;=C,=—5. For

Let us consider numerical solutions of dynamical equa-
the Casimir force we have the behavior as shown in Fig. 2.

tions(4.5) for SU(2) super Yang-Mills theory, for the attrac-
tive case. We suppose that the initial behavioradf) is
given by the perturbative form E@4.15. We may always X e .
setm=1 since that amounts to using dimensionless variableg—he exact SOIUI'OH. has oscﬂlaﬂon;, but overall |s.clpse to the
unperturbed solution. Not surprisingly, the Casimir energy
dominates the force. Note also that for another choice of
initial conditions one will find somewhat different behavior.
The essential property of the approximation under discussion

for a andt. Let us take as an illustration
is that there are always dynamical oscillations around the

N=2, c=1 (A=1.65096, t,=0.5. (5.1

static Casimir force.

0.0
B. c<0

Next we consider numerical solutions of dynamical equa-
tions (4.5) for SU(2) super Yang-Mills theory when<0.
We suppose that the initial behavioraft) is given by form

Eq. (4.22. Let us take the illustrative values

11 C2:1! a0|t:O:1’ tozo.l. (5.3)

& -05F
N = 2, C]_: -
For later times we integrate the exact equations numerically,

starting from the initial conditions dt,:

a,=1.00241, a,=0.0490327,

’
]
’
]
]
]
]
[}
]
]
t
]
]
]
]
]
'
]
]
1]
1
i
]
[}
'
1
'
'
H
10.0

8.0

20 60
(5.9

-1.0 .
0.0 20
t

FIG. 2. Casimir(dashed lingand dynamical behavior d¥ for .
ap,=0.497511, a,=—0.049793.

c>0.
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0.50 T T T T 100.0

0.40 - g 80.0

F
aft)

0.20 b i 400

0.10 ] 200

0.0

0.00 0.0 2.0 40 6.0 8.0 10.0

0.0 20 4.0 6.0 8.0 100
t

FIG. 4. Dynamical behavior of for c<0. FIG. 5. Dynamical behavior fom(t) for the first alternative

kinetic energy term, Eq(A2). Shown are the behaviors witm
Note that the perturbative values of these parameters, giveri1+ @nd initial conditiora(0)=1, evolving initially untilt=0.01
from Eq.(4.26), are close to these: according to Eq(A4), with c=1, k=1 (solid line); and withc=

—1, k=2 (dashed ling
20=1.0025,8p=0.05, 3,=0.5, a=0. (59 0 m has dimensions of mass. But we cannot offer very
strong arguments in its favor, in the absence of dynamical
information. So, in this appendix we consider two alterna-
H’ves, which provide somewhat different models for the dy-
amical evolution of the world.

In the first, we suppose that the same kinetic energy

For those conditions we have a numerical solution&(r)

as shown in Fig. 3. For the Casimir force we have the be
havior as shown in Fig. 4. For both cases the exact solutio
has very small oscillations, but overall is close to the Casimir”
solution, and is accurately described by the limits of that

solution, Eqs(4.26 and (4.24 should be integrated over conformal tithe,

Thus, we have presented a formalism to describe the dy- b
namical Casimir effect in the adiabatic approximation. It J dnlm;’f:mj dtza— (A2)
may be applied to an arbitrary GUT. Without any technical 2 2 a’

problems one can generalize the present consideration to any

specific four-dimensional backgrourde limited ourselves SO that the Casimir evolution equation is, in place of Eq.
to a discussion of a toroidal FRW universe as providing the4.7),

moving boundary conditionsBut the limitations of our ap- .
proach must be stressed: It would be extremely interesting to 1 ma?
suggest new formulations of the dynamical Casimir effect 27 a
beyond the adiabatic approximation.

Ck A3
2k (A3)

where we have dropped the subscript 0 for simplicity, and
ACKNOWLEDGMENTS written the constant of integration &s The solution of this

. ) equation is very simple,
We thank A. Bytsenko for helpful discussions. The work

by S.D.O. and K.E.O. has been supported in part by RFBR, 2 k
that of S.D.O. also by CONACyYT, and that of K.A.M. by the a=ag+t\/—=vc+kag+ 2—t2, ap=a(0). (A4)
U.S. Department of Energy. m m

If ¢>0, we can sek=0 and obtain instead of the behavior

In the text, we introduced aad hockinetic energy term 5
into the action, referring to the change of scale with physical a=ag+ _Ct_ (A5)

time:

- If ¢<0, as before we cannot set the integration constant
f dtzma . (A1) equal to zero; if we again choose the initial velocity to be
zero, orag= —c/k, we get a result very like Eq4.26):

This is rather natural in the adiabatic context, whigre<1,
for then simple scaling properties obtain, as evidenced by the
dimensional consistency of the resulting equations of motion “in this case the parameteris dimensionless.
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80 , ' , , The solution to the purely Casimir dynamical equation is
Mas2=< 1k A8
saat=_+k (A8)

which is integrated to

t=E12\/g[g[(ka+c)3/2—(kao+c)3’2]

—20[(ka+c)1’2—(ka0+c)1’2]]. (A9)

Whenc>0 again we can takk— 0, which leads to th

00 . . . .
0.0 20 40 6.0 8.0 100 =0 result

t
FIG. 6. Dynamical behavior foa(t) for the second alternative s 2 2c
kinetic energy term, Eq(A7). Shown are the behaviors witm a‘=agt2\/—t (A10)
=1, and initial conditiona(0)= 1, evolving initially untilt=0.01

according to Eq(A9), with c=1, k=1 (solid line); and withc=
—1, k=2 (dashed ling

If c<0 and we choose agakey+c=0, we obtain for short

times
c k 3
a=— + oot (AB) a=—§+2:]—02t2, t<1, (A11)
but now valid for all times. again very similar to Eq(4.26).
Perhaps a more natural possibility is to use the conformal In Figs. 5 and 6 we show the effect of the inclusion of the
time everywhere in the kinetic energy term, dynamicalb term for these kinetic energy structures. Quali-
tatively, the results do not depend much on whether the Ca-
m/da\2 m . sjmir term i; posi_tive_ or negati\_/e. .Th.e example given for the
f d”? ar :ff dt a a2. (A7) first alternative kinetic energy is similar to the simple model
7 result forc<0 shown in Fig. 3 except that the growthtiis
quadratic rather than linear. The evolution for the second
form of kinetic energy resembles the simple model result for
SIn this case the parametar has dimension 1/length ¢>0 shown in Fig. 1.
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