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Can geodesics in extra dimensions solve the cosmological horizon problem?
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We demonstrate a non-inflationary solution to the cosmological horizon problem in scenarios in which our
observable universe is confined to three spatial dimengetisree-braneembedded in a higher dimensional
space. A signal traveling along an extra-dimensional null geodesic may leave our three-brane, travel into the
extra dimensions, and subsequently return to a different place on our three-brane in a shorter time than the time
a signal confined to our three-brane would take. Hence, these geodesics may connect distant points which
would otherwise be “outside” the four dimensional horizgoints not in causal contact with one another

PACS numbd(s): 98.80.Cq
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I. INTRODUCTION t, dt

. . . " fo at)’

The universe appears to be homogeneous and isotropic on

large scales. According to the Cosmic Background Explorein order to explain causal contact of all points within our
(COBB) measurements, the cosmic background radiatiombservable universe at the time of nucleosynthesis, we re-
(CBR) is uniform to a part in 1Hon large scale6from about  quireL,<L,. However, this condition is not met in a naive
10" to 180°[1]). Furthermore, the light element abundanceFRW cosmology with matter or radiation domination. Even
measurements seem to indicate that the observable univer§ave taket, to be the the time of last scattering of CBR and
(bounded by the last scattering surfaegas homogeneous not the nucleosynthesis time, we still have a horizon problem
by the time of nucleosynthesjg]. Hence, we would expect by a factor of 18. In both matter or radiation domination
the observable universe toddtime ty) to have been in cases, the time dependence of the scale factor is a power law
causal contact by the time of nucleosynthdsis otherwise ~ With the |n2c/13ex less than 1; in a dughattej dominated glg"'
the initial conditions of the universe would have to be ex-Ve€rse,a=t™ and in a radiation dominated universe;t™.
tremely fine-tuned in order for the causally disconnectedi€nce, in the naive FRW cosmologio~ts/a, and Ly
patches to resemble one another as much as they do. How-tn/&(tn), such thatl,>L, while causal connection re-
ever, in a Friedmann Robertson Walk&RW) universe[a quiresL,<L,,. Thisis the_horlzon problem. Inf_Iannary_cos-
metric of ds?=dt?—a(t)2dx?] that is matter or radiation mology([3] solves th.e hon;lon problem by haylng a period of
dominated, upon naive extrapolation back to the singularity@ccelerated expansion, wiér-0 (a period of time when the
one finds that there is a finite horizon length at the time of!Niverse was not dust or radiation dominated

nucleosynthesis. Hence, for the observable universe to have He€ré we consider a non-inflationary solution to the hori-
on problem. The argument in the previous paragraph that

been in causal contact by the time of nucleosynthesis, th : L
comoving horizon length must have been larger than the coF—éads tol,>Lp, has assumed that causal signals travel within

moving distance to the last scattering surface. Inotherwordthe lightcone defined by the null geodesics of a

our observable universe todawhen appropriately scaled 2-dimensional manifold. If the causal signals can instead
: when appropriately s travel through higher dimensions, the points that are seem-
back to the time of nucleosynthegisiust have fit inside a

. : . ingly causally disconnected from the 4-dimensional point of
causal region at the time of nucleosynthesis. _view may in fact be causally connected. A signal along the
The comoving sizé., of the observable universe today is geodesic may leave our spatially three dimensional world,

travel into the extra dimensions, and subsequently return to a
o dt different place in our three dimensional world; the distance
o= ft al) (1) between the initial and the findteturn point when mea-
dec sured along the 3-spatial dimensions may be longer than the
distance that a light signal confined to ouB+1)-
wheretye. is the time of the radiation decoupling atglis  dimensional universe would travel in the same amount of
the time today(subscript O refers to todayThe comoving time. Such a geodesic may arise when the curvature allows
sizel, of the horizon at the time of nucleosynthesis is the path length for a null signdé.g., light ray through the
higher dimensions to be shorter than any path length in our
lower dimensional world alone. Such a possibility has been
*Electronic mail: djchung@umich.edu alluded to befordsee for example Ref4] and the footnote
"Electronic mail: ktfreese@umich.edu in Ref.[5]). In this paper, we construct explicit examples of
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such spacetimes. Other papers of interest relating to this C
topic can be found in Ref.6], Refs.[7,8], and references
therein.

In this paper, we will focus on noncompact 3-branes. We
construct an exampl@n Sec. Il A) which is compatible with 3e
the cosmology of our universe. In this scenario, there are two B
separate 3-branes: one is our observable universe and the
other is the hidden sector. We take these 3-branes to be “par-
allel” to one another(i.e. each of the branes is located at a S
constant coordinate value of the extra dimengioh field A
signal originating on our observable 3-brane travels away
from our brane on a path perpendicular to both branes and h
arrives at the other 3-brane. There, it interacts with fields L’
confined to the hidden sector. Subsequently, due to these u
interactions, the signal travels along the hidden sector
3-brane. Because of the specific metric we have constructed, FIG. 1. Branes and geodesics f@+1)-dimensional example.
the signal can traverse a longer coordinate distance than ®Ur brane is represented by the left hand vertical line witD; a
could on our brane in the same amount of time. The signa?econd brane is _represented by th'e right hand vertical line u!vith
then returns back to our brane through a path perpendicula:r'-' The geodesic in the full metric leaves our brane at. point 1,
to the two 3-branes. As a consequence of this path, the signijfvels along A, B, and C, and reenters our brane at point 2. The
has traversed an effective distance on our 3-brane that f2St2nceN,s between points 1 and 3 is the horizon distance usu-
much longer than any distance it could have covered had @_Iy calculated in cosmology n the at:senge of extra _dlm?nsmns.
remained on our 3-brane in the same time. Hence point inceh; 2>h(13), points traditionally “outside the horizon” are

. . T . . ﬁere causally connected.
outside of the naive 3-brane “horizon” can be connected in
tthnwéa\é/(.:. Il A, we describe a class of metrics which may besics labeled A, B, C, and D as shown in Fig. 1. Explicitly, the

used to obtain semirealistic cosmology and for which thenu” geodesics can be written ps=ug(t),h=hy(t)] with

geodesic is higher dimensional: as described in the last para- At o<t<L,

graph, this model requires interactions between our brane

and the hidden sector brane. In Sec. Il B, we will construct a ug(t)=9y B- L, Lst<t—L, 4
2+1 dimensional example of a continuous metno inter- C: ti—t, ti—Lststy,

actions requiredthat allows geodesics to connect seemingly
distant points; expansion of the universe is not yet taken int@nd
account in this simple case. Then, in Sec. Il C, we will gen-

eralize such a continuous metric to+4 dimensions with A: 0, O<t<L,
expansion. However, the continuous case in Sec. Il C does L dt’
not produce a viable cosmology for our universe: first, the _ ) B: gkt —— Lstst—L,

; . ) L ; hg(t)= " (5
universe is not homogeneo(ss special point is required and Loat’)
in this example is singularand second, in this model both c: L, t—L<t<t,,

our 3-dimensional world as well as the bulk describing the
extra dimensions are expanding with the same scale factor.. ] o ] o
In Sec. Ill we discuss some issues of causality violationWith h chosen along a particular directidnwith an initial

Finally, in Sec. IV, we summarize and conclude. value of 0 without any loss of generality.
One can show that, indeed, these paths labeled A, B, and

C satisfy the geodesic equations
II. HORIZON EVADING METRICS
d2x* L dx? dx?

A. (4+1)-dimensional example with viable cosmology 4T~ — =
dt2 a6 7dr dr 0 ©

Here we consider #4+1)-dimensional case which pro-
duces a viable cosmology: our observable universe is hom%herel‘“

: : . 5 Is the Christoffel symbol. Here, a signal originat-
geneous and expanding. Consider a metric of the form . "
ing on our observable 3-branewt 0 travels away from our

ds?=dt2—[e~2kua2(t)dh?+ du?] (3y  brane on a path A perpendicular to the 3-brane. Once it ar-

rives atu=L, it follows a trajectory B with constant. Sub-
sequently it returns to our brane via trajectory C, again per-

with our observable brane locatedwst 0. Hereh is a three  pendicular to our brane. Hence the effective distance it

dimensional Euclidean vectoiiNote that although this met- traverses on our brane is approximately given by the path-

ric is similar to the one that was considered[BY, there isa length B (up to small corrections

crucial difference in thatit? term does not share the confor- ~ The distance traveled by a null signal along the brane

mal factor multiplyingdh?.) Now, consider the null geode- between points 1 and 3 in tinte is
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tedt 5 —
has=| —- 7) Ss | d®\ga,pa d+ N pyip
o a brane 1
As before, this is the distance that one would naively inter- +j )\2¢Z¢+f K.E.(¢) (10
pret as the horizon size in E(l).! However, for a null signal brane 2 branes 1,2

leaving and reentering the brane via the geodesic A, B, and ) o . .
C, the effective distance traveled on the observable brane i¥here¢ is a massless bulk scalar fieldith the dimensions

time t; is the distance between points 1 and 2, i.e., the samBroperly normalizefiand ¢ is a four dimensional fermion
as the distance traveled along path B: confined to the boundary. After integrating out thdield we

obtain interactions of the form

Seff E f d4Xlsl
brane 1

)\isl_ 4,1 N ! ’
200w | 60000 )

oo katf*L dt g
12~€ Loal (8)

Clearly for large enougkL,
X

ha2>hag 9) =
1A 28— ,
+ 2 lﬁ(xl)lﬂ(xl)f d*x5G
brane 2

and regions that ordinarily would be considered out of causal
contact can be connected. In the ordinary FRW cosmology,
the surface of last scattering of photons encompasses 10 S ,
causally disconnected patches. Here, however, if we take X (Xq,X2) P(X3) h(X3)
to be the time of last scattering of photons, as longkhs

~In(10°), then these patches can have all been in contagheres,=ad(t) is the ratio of thed dimensional volume

with one another and we can solve the horizon problemmeasure to the extra 1 dimensional volume measure evalu-
Because the induced metric on the brane in this scenario igted on brane 1 whils,=e~3a3(t) is the same ratio on

11

homogeneous, this scenario is cosmologically viable. brane 2: i.e.
We have performed a numerical exploration of the solu-
tions to the geodesic equations in Ef) resulting from the \/@
metric in Eq.(3) for various initial conditions, in particular S = (12
for initial velocity vectors leaving the brane in a variety of VI9ad brane i

directions. We indeed find that there are geodesics with a

continuous path which leave and subsequently reenter o is the Green function of a five dimensional Klein Gordon
brane, i.e., there are extra-dimensional causal paths whiabperator: i.e.

connect points 1 and 2 without a need to jump from one

geodesic to anothésuch as turning the corner from segment 1 ab ) , 5) )

A to segment B However we have not found continuous E(ﬂa{\/@g Ipt+€)G(X,X") = (x=x") (13
paths which return to our brane at a point more distant than

our naive “horizon,” i.e., the effective distance traveled on ynere the derivatives are with respectt@nd the infrared
the observable brane is shorter thgn ) in the same time.  reqylating masg is arbitrarily small. Because of the sup-

On the other hand, as shown above, the scenario Qiression factor, one would naively expect the couplings con-
patched causal patfiwithout a single smooth causal geode- necting theys on two different branes to be suppressed.
sic) can solve the horizon problem. Such a scenario may bﬂowever, because in that case the Green fund@ontains
effective when there is another “hidden sector” branauat 45 1k, behavior in thee—0 limit, the s, factors approxi-

=L and the intersections of segments A and B or segmentgately cancel and the coupling is unsuppressed.
B and C represent vertices of interactions of the bulk fields  Einajly, we note that this patched geodesic model can

with the fields confined on the brane. Hence, since the signaasjly pe generalized to spacetimes with dimension greater
jumps from one geodesic to another through interactions, thg,an just five.
bulk fields must interact sufficiently strongly with the fields

on each of the branes for this scenario to be viable.

Although naively this requirement may seem problematic
in our scenario, in reality, sufficient interactions may be pos- For pedagogical purposes we will here describe a lower
sible. For example, suppose one considers an action of thdimensional example, in which our observable universe is a
form one-dimensional surface in a spatially two-dimensional
world. We consider a Minkowski spacetime of the form

B. Example in 24+1 dimensions

INote that this does not correspond to a geodesic in the
5-dimensions. 2A fuller exploration will be given in a related work.4].
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2~ ing from point 1 to point 2. Hence, while we might naively

/ think points 1 and 2 are causally disconnected, in fact they
brane; are causally connected by information traveling off the brane
3./ brane at point 1 and reentering the brane at point 2. This behavior
[ geodesic 2. ‘ can be explained because, in the trivial Minkowski metric of
\ geodesic the (x,y) coordinates, the distance between points 1 and 2
\ X ; can be traversed by a straight line while the distance between
\ L»y 1 points 1 and 3 must involve a curved and hence longer path.
ZL» We will illustrate the above quantitatively. In thei,g)

u coordinate system, a particle moving along the brane from

points 1 to 3 satisfies

(a) 1™ (b)

FIG. 2. Brane and geodesics shown in coordinate systgms
and(u,2) in (2+1)-dimensional example. The location of our brane 0=d=dt2—dZ (18)
(our observable universés shown ay = ¢(x) in (@) and au=0 in
(b). The geodesic of the full metric is a straight line between pointssuch that the distanc®; ) traveled along the brane between
1 and 2 in(a) and a curve inb). The distance, 3, between points points 1 and 3 in time; is
1 and 3 in(b) is the horizon distance usually calculated in cosmol-

ogy in the absence of extra dimensions. Note #a4>z(; 3, such Z13= 1. (19
that points traditionally “outside the horizon” are here causally
connected. This is the distance that one would naively calculate as the
horizon size in Eq(1). However, let us consider a geodesic
d €=dt?—dx®—dy?. (14)  that leaves and subsequently reenters the brane. For simplic-
ity, we can choosg to be a constany, for the particular
Under the coordinate transformation geodesic we consid¢as drawn in Fig. @&)].
Then, in thely,x) coordinate system, the geodesic is given
z=f 1+ (%) Pdx (15 Y
and Yg=VY1, Xg=—C+t, (20

wherec is a positive constant, subscrigtrefers to the geo-
u=y—£&x), (16)  gesic, and we assume the signal leaves the brane at initial
timet=0.

where the functior£(x) will be chosen below and the prime Now to proceed we will choose a particular form &fx),

operation () refers to derivatives with respect # the line

element transforms to &' (x)=tan(kx), (21
2¢' (x(z))dudz ie.
d=dP—dZ—dP——————. (17 ’
VI+[E (X(2)]? 1
We will choose the location of the braifnat is our observ- §x)=- Eln(cos{ k), 22

able universgto be atu=0, such that in théu,z) coordinate

system, the brane is merely a straight line withs the co- wherekiis a constant. Then, using E¢45) and(16), we can
ordinate on the brane. From E{.6), one can see that, in the transform the geodesic in Eq20) to the (u,2 coordinate
(x,y) coordinate system, the location of the brane is at ysystem:
=¢(x). Hence, in this coordinate system, the brane looks
curved. Figures @),(b) show the location of the brane in the

(x,y) and (u,z) coordinate systems respectively. Since the

(x,y) coordinate system is trividMinkowski), it is obvious

that a geodesic is simply a straight line. We have hence 1

plotted such a geodesic in Figla? between two points 1 and zy(t) = pIn[se&(t—c)+tark(t—c)]. (24)
2. This same geodesiof the full metrig becomes a curved

line in the (u,2) coordinate system, as shown in FigbR  Hencez, ,=z,(t;) is the z-coordinate distance traversed by
For comparison, in Fig. () we have also plotted a third the light ray following a geodesic in the full metric from
point 3, which is a geodesic of the induced metric on thepgints 1 to 2 in the time; . It is clear that the second term in

brane. Itis the distancg, s) that is the usual horizon that we Eq. (24) can blow up, such that it is certainly possible that
calculate in cosmology when geodesics off the brane are not

considered. The claim is that, in the same amount of time, Z1.2>213), (25)

the distance traveled by a null sigrialg., light ray directly

along the brane from point 1 to point 3 is shorter than thesuch that seemingly causally disconnected points 1 and 2
effective distance on the brane traveled by a light ray travelhave in fact been in causal contact.

1
Ug()=y;—é(t—c)=y+ Eln[cosk(t—c)], (23
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In the next subsection, we will generalize the continuousvheret; is the time at which the geodesic reintersects the
metric of this subsection to an expanding universe in highebrane after leaving the brane at the initial tilze0. If we set

dimensions. ty=t, and varyk appropriately, we can make,=r(t,) of
Eq. (2) arbitrarily large. Hence, points which from the brane
C. Generalization of the 2+1 example to 41 dimensions point of view are outside of the causal horizon are actually

causally connected.

e ozt oty THE Metric g by Eqz6 i no relstic because th
P 9 cosmology on the brane is not homogeneous. Indeed, the

expansion. However, as we will see, because the origin be- . = . .
p . ; ! ) org fesult is not surprising since the spatial curvature on the non-
comes a specialeven singulgr point, this example is not

. -~ compact brane is positive. The only homogeneous constant
homogeneous and hence does not describe the real UniVeragy oy re 4-dimensional manifolds are the 3 types of FRW
Still, it solves the horizon problem in a novel way and as

such is instructive metric (positive, zero, gnd neggt_ive intrinsic spa_tial curva-
Consider a met.ric of the form ture). The only boundariless positive curvature object of con-
stant curvature in 31 dimensions is a 3-sphere, which is
ds?=dt2—a(t)(dr?+ f(r)dQ2+du+ 2g(r)dudr) compact. Hence, we were doomed to begin with in trying to
(26) construct a noncompact homogeneous cosmology by embed-
ding a curved manifold in an Euclidean space. The reason
where why this approach was successful for the2embedding of
a (1+1)-dimensional manifold was the fact that the intrinsic
f(r):%(arccoﬁsecwr)])z 27 spatial curvature is always 0 for a one dimensional manifold.
Ill. PHYSICAL SCENARIO

g(r) =tanftkr) (28) In this section we discuss a number of issues regarding
wherek is an arbitrary constant ard)2= sirPadg?+dé? is the apparent causality violation attending the scenarios we

the angular metric of a 2-sphere. Consider the spatial dimer!@ve discussed.

sions of the usual observable univer8brang to be atu First, let us consider whether bulk fields in such higher
—0. The induced metric on the 3-brane is dimensional spacetimes will contradict any observations. In

order for the geodesic in the higher dimensional spacetime to
ds?=dt?—a?(t)(dr?+f(r)dQ?) (29 solve the horizon problem, causality must be apparently vio-
lated within the 3-brane, at least on cosmological scales dur-
which is isotropic only about one particular point in generaling some early time. In order for the apparent causality vio-
(i.e. inhomogeneous Classically, the causal region is lation to be hidden today while still solving the horizon
bounded by the geodesics of a massless particle satisfyingroblem, the geodesic through the extra dimension must not
the geodesic equation given in E®). be accessible today. This is possible, for example, if the form
Along the brane, the induced metric, EQ9), implies a  of the cosmological energy density early on in the universe
geodesic that is different from the geodesic implied by thehad bulk field coupling, while the form of the cosmological
higher dimensional embedding metric, E86). For the em-  energy density today in the universe has no bulk field cou-
bedding metric, the geodesics leave the brane initially angbling.
reintersect the brane at a later time. Suppose we consider a Secondly, we remark that the apparent causality violation
light signal starting from the origin at the big bang singular-during an early epoch of the universe can be understood in
ity [when dt=0)=0]. The geodesic on the brane is then terms of a higher dimensional Green function that falls off
less rapidly than one would naively expect in the absence of
(1) = tdt (30 extra dimensions. The causality violation can manifest in
b oa terms of nonlocal interactions of the effective 4-dimensional
Lagrangian. As in the last section, consider for example the
and the comoving horizon lengtfor example at the time of interaction given by
nucleosynthesjsis L,=r(t,). In the embedding higher di-
mensional spacetime, the geodesic is given by

S2 Jbrane)\ld)alp. (34)

_1| « rp(t) ttarl K rp(t) 31
ro(t)=1 Iny se it ta N (3Y)  As before, after integrating out the bulk fieltl we find the
effective interaction given by
1 rp(t) 2
t)y=cr(t)+ | k 32 N1S1—
Ul =er(O T n|co{ Vi+c? } (32 Sett 2 fbraned4xlsllT¢(X1)l//(X1)
_In{costikry(t()]} ) P ,
= arccogsechikry(t,) 1} (33 X fbraned X1 G (X1, X1) $h(X1) P(Xq). (39
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For x; that is outside of the 4-dimensional light-conexaf =~ where we normalize the stress energyTgn— 1/20unR
we would generally expect the Green functiGnto fall off =Tumn- There are no fundamental constraints on the bulk
exponentially. However, in the full 5-dimensional spacetime,stress energy tensor such that these equations cannot be sat-
the pointx; that is outside of the 4-dimensional light-cone of isfied.
x1 will still be within the 5-dimensional light-cone, and
hence the interaction will not be exponentially suppressed.
Thus at a poini; on the brane, one can get a contribution IV. CONCLUSION
from another pointx; that is farther away than usually al- ) ) ) )
lowed by causality, because the 5-dimensional Green func- !N this paper, we have demonstrated that, in theories with
tion doesn't fall off as fast outside the 4-dimensional light €xtra dimensions in which our “observable™ 4-dimensional
cone as one would naively expect in the absence of the exttdiverse is confined to a submanifold, there may generically
dimensions. One can think of this as a propagator that ca@xist a non-inflationary solution to the horizon problem. The
leave the brane and hence connect two distant points on tHrizon problem can be stated as follows. If only a finite
brane. amount of time has passed subsequent to an initial epoch of
Thirdly, let us consider what kind of stress energy tensoour universe(e.g. a singularity, then any causal signal can
gives rise to the metric presented in Sec. Il A. Note that intravel within that time period only a finite distance, referred
light of Ref. [10], because thét component and theiu  to as the horizon distance. By contrast, in the context of an
component of the metric are identical and time independenf-RW universe composed of ordinary matter and radiation,
we have a fine tuned solution. More explicitly, to support thethere is experimental evidence that patches of the universe
brane solutions, the five dimensional metric must satisfy thgyhich are separated by a distance longer than the horizon
Israel condition boundary conditiorfsee for example Refs. (istance seem causally connected.
[10-12 and references thergin With the existence of extra dimensions, however, the na-
ive horizon distance calculated by a null geodesic on the
4-dimensional submanifold does not constitute the maximum
distance a signal can travel for a given time. A causal signal
through the extra dimensions can reach a point in our uni-
for the metric of the formds®=e?’d7?—e?“dh?—du?®  verse which is many times further away than the naive hori-
wherea= —ku+loga(t) and v=0 for the metric of Eq(3).  zon distance. An example of such a higher dimensional uni-
The pressurd® and the energy density are associated with verse is described by E¢) with two 3-branes, where one of
the fields confined on the brane. As it stands, the energthe 3-branes is our observable universe and the other 3-brane
density of the fields confined to the brane is a consgant is a “hidden” universe. The field confined to our brane can
= —%P=6k/f<§. However, as is done ifil3], one can add interact with the field living on a second “hidden” brane a
perturbations to the brane energy dengityuch that one can distancel away from us in the extra dimension via a bulk
obtain a component of the energy density that dilutes as thigeld. For a given time, a causal signal can travel much fur-
universe expands. Note that since we must hdte ther on the “hidden” brane in a direction parallel to brane.
~((10) to solve the horizon problem, we must have a brang{ence, an impulse originating on our brane can take a short-
energy density ofp~O(100)MZ/L where M5 is the five  cut through the “hidden” brane and affect our brane at a
dimensional Planck’s constant defined k§=1/M2. Since  point outside of the naive “horizon.”

2 o[ 1
—6dya=kgpdyv=ks| P+ 5p

2 3 (36

we require p<M3, this scenario is viable only ifL Once “equilibration” of the energy density fluctuations is
>100M5 which is not unrealistic. We leave a more com- established, the fields confined on the brane may decay to
plete study of viable cosmologies to a future study. fields that interact less strongly with the bulk fields. Hence,

For completeness, we list the rest of the Einstein equatioany apparent causality violation occurring through the exis-
specifying the bulk stress energy tensor for this scenario: tence of an extended higher dimensional light-cone may be
hidden today.

We have also studied the construction of a metric that
solves the horizon problem by embedding a curved 3-brane
inside a Minkowskian 5-dimensional spacetime. We find
that, for a non-compact 3-brane, the universe thus obtained is

2

a
To=—6k>+3| =
a

a a inhomogeneous.
Ti=—3K2+| 2| +2= g
a a
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