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Can geodesics in extra dimensions solve the cosmological horizon problem?
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We demonstrate a non-inflationary solution to the cosmological horizon problem in scenarios in which our
observable universe is confined to three spatial dimensions~a three-brane! embedded in a higher dimensional
space. A signal traveling along an extra-dimensional null geodesic may leave our three-brane, travel into the
extra dimensions, and subsequently return to a different place on our three-brane in a shorter time than the time
a signal confined to our three-brane would take. Hence, these geodesics may connect distant points which
would otherwise be ‘‘outside’’ the four dimensional horizon~points not in causal contact with one another!.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

The universe appears to be homogeneous and isotrop
large scales. According to the Cosmic Background Explo
~COBE! measurements, the cosmic background radia
~CBR! is uniform to a part in 104 on large scales~from about
109 to 180° @1#!. Furthermore, the light element abundan
measurements seem to indicate that the observable univ
~bounded by the last scattering surface! was homogeneou
by the time of nucleosynthesis@2#. Hence, we would expec
the observable universe today~time t0) to have been in
causal contact by the time of nucleosynthesistn ; otherwise
the initial conditions of the universe would have to be e
tremely fine-tuned in order for the causally disconnec
patches to resemble one another as much as they do. H
ever, in a Friedmann Robertson Walker~FRW! universe@a
metric of ds25dt22a(t)2dx2# that is matter or radiation
dominated, upon naive extrapolation back to the singular
one finds that there is a finite horizon length at the time
nucleosynthesis. Hence, for the observable universe to h
been in causal contact by the time of nucleosynthesis,
comoving horizon length must have been larger than the
moving distance to the last scattering surface. In other wo
our observable universe today~when appropriately scale
back to the time of nucleosynthesis! must have fit inside a
causal region at the time of nucleosynthesis.

The comoving sizeLo of the observable universe today

Lo5E
tdec

t0 dt

a~ t !
~1!

where tdec is the time of the radiation decoupling andt0 is
the time today~subscript 0 refers to today!. The comoving
sizeLn of the horizon at the time of nucleosynthesis is
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tn dt

a~ t !
. ~2!

In order to explain causal contact of all points within o
observable universe at the time of nucleosynthesis, we
quire Lo,Ln . However, this condition is not met in a naiv
FRW cosmology with matter or radiation domination. Ev
if we taketn to be the the time of last scattering of CBR an
not the nucleosynthesis time, we still have a horizon probl
by a factor of 105. In both matter or radiation dominatio
cases, the time dependence of the scale factor is a powe
with the index less than 1; in a dust~matter! dominated uni-
verse,a}t2/3 and in a radiation dominated universe,a}t1/2.
Hence, in the naive FRW cosmology,L0;t0 /a0 and Ln
;tn /a(tn), such thatLo.Ln while causal connection re
quiresLo,Ln . This is the horizon problem. Inflationary cos
mology @3# solves the horizon problem by having a period
accelerated expansion, withä.0 ~a period of time when the
universe was not dust or radiation dominated!.

Here we consider a non-inflationary solution to the ho
zon problem. The argument in the previous paragraph
leads toLo.Ln has assumed that causal signals travel wit
the light-cone defined by the null geodesics of
4-dimensional manifold. If the causal signals can inste
travel through higher dimensions, the points that are se
ingly causally disconnected from the 4-dimensional point
view may in fact be causally connected. A signal along
geodesic may leave our spatially three dimensional wo
travel into the extra dimensions, and subsequently return
different place in our three dimensional world; the distan
between the initial and the final~return! point when mea-
sured along the 3-spatial dimensions may be longer than
distance that a light signal confined to our~311!-
dimensional universe would travel in the same amount
time. Such a geodesic may arise when the curvature all
the path length for a null signal~e.g., light ray! through the
higher dimensions to be shorter than any path length in
lower dimensional world alone. Such a possibility has be
alluded to before~see for example Ref.@4# and the footnote
in Ref. @5#!. In this paper, we construct explicit examples
©2000 The American Physical Society13-1
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such spacetimes. Other papers of interest relating to
topic can be found in Ref.@6#, Refs. @7,8#, and references
therein.

In this paper, we will focus on noncompact 3-branes. W
construct an example~in Sec. II A! which is compatible with
the cosmology of our universe. In this scenario, there are
separate 3-branes: one is our observable universe and
other is the hidden sector. We take these 3-branes to be ‘‘
allel’’ to one another~i.e. each of the branes is located at
constant coordinate value of the extra dimension!. A field
signal originating on our observable 3-brane travels aw
from our brane on a path perpendicular to both branes
arrives at the other 3-brane. There, it interacts with fie
confined to the hidden sector. Subsequently, due to th
interactions, the signal travels along the hidden sec
3-brane. Because of the specific metric we have construc
the signal can traverse a longer coordinate distance tha
could on our brane in the same amount of time. The sig
then returns back to our brane through a path perpendic
to the two 3-branes. As a consequence of this path, the si
has traversed an effective distance on our 3-brane tha
much longer than any distance it could have covered ha
remained on our 3-brane in the same time. Hence po
outside of the naive 3-brane ‘‘horizon’’ can be connected
this way.

In Sec. II A, we describe a class of metrics which may
used to obtain semirealistic cosmology and for which
geodesic is higher dimensional: as described in the last p
graph, this model requires interactions between our br
and the hidden sector brane. In Sec. II B, we will construc
211 dimensional example of a continuous metric~no inter-
actions required! that allows geodesics to connect seemin
distant points; expansion of the universe is not yet taken
account in this simple case. Then, in Sec. II C, we will ge
eralize such a continuous metric to 411 dimensions with
expansion. However, the continuous case in Sec. II C d
not produce a viable cosmology for our universe: first,
universe is not homogeneous~a special point is required an
in this example is singular!, and second, in this model bot
our 3-dimensional world as well as the bulk describing
extra dimensions are expanding with the same scale fa
In Sec. III we discuss some issues of causality violati
Finally, in Sec. IV, we summarize and conclude.

II. HORIZON EVADING METRICS

A. „4¿1…-dimensional example with viable cosmology

Here we consider a~411!-dimensional case which pro
duces a viable cosmology: our observable universe is ho
geneous and expanding. Consider a metric of the form

ds25dt22@e22kua2~ t !dh21du2# ~3!

with our observable brane located atu50. Hereh is a three
dimensional Euclidean vector.~Note that although this met
ric is similar to the one that was considered by@9#, there is a
crucial difference in thatdt2 term does not share the confo
mal factor multiplyingdh2.) Now, consider the null geode
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sics labeled A, B, C, and D as shown in Fig. 1. Explicitly, t
null geodesics can be written as@u5ug(t),h5hg(t)# with

ug~ t !5H A: t, 0<t<L,

B: L, L<t<t f2L,

C: t f2t, t f2L<t<t f ,

~4!

and

hg~ t !55
A: 0, 0<t<L,

B: ekLE
L

t2L dt8

a~ t8!
, L<t<t f2L,

C: L, t f2L<t<t f ,

~5!

with h chosen along a particular directionh with an initial
value of 0 without any loss of generality.

One can show that, indeed, these paths labeled A, B,
C satisfy the geodesic equations

d2xm

dt2
1Gab

m dxa

dt

dxb

dt
50 ~6!

whereGab
m is the Christoffel symbol. Here, a signal origina

ing on our observable 3-brane atu50 travels away from our
brane on a path A perpendicular to the 3-brane. Once it
rives atu5L, it follows a trajectory B with constantu. Sub-
sequently it returns to our brane via trajectory C, again p
pendicular to our brane. Hence the effective distance
traverses on our brane is approximately given by the pa
length B ~up to small corrections!.

The distance traveled by a null signal along the bra
between points 1 and 3 in timet f is

FIG. 1. Branes and geodesics for~411!-dimensional example.
Our brane is represented by the left hand vertical line withu50; a
second brane is represented by the right hand vertical line witu
5L. The geodesic in the full metric leaves our brane at point
travels along A, B, and C, and reenters our brane at point 2.
distanceh(1,3) between points 1 and 3 is the horizon distance u
ally calculated in cosmology in the absence of extra dimensio
Sinceh(1,2).h(1,3) , points traditionally ‘‘outside the horizon’’ are
here causally connected.
3-2
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h(1,3)5E
0

t f dt

a
. ~7!

As before, this is the distance that one would naively int
pret as the horizon size in Eq.~1!.1 However, for a null signal
leaving and reentering the brane via the geodesic A, B,
C, the effective distance traveled on the observable bran
time t f is the distance between points 1 and 2, i.e., the sa
as the distance traveled along path B:

h(1,2)5ekLE
L

t f2L dt

a~ t !
. ~8!

Clearly for large enoughkL,

h(1,2).h(1,3) ~9!

and regions that ordinarily would be considered out of cau
contact can be connected. In the ordinary FRW cosmolo
the surface of last scattering of photons encompasses5

causally disconnected patches. Here, however, if we takt f
to be the time of last scattering of photons, as long askL
; ln(105), then these patches can have all been in con
with one another and we can solve the horizon proble
Because the induced metric on the brane in this scenar
homogeneous, this scenario is cosmologically viable.

We have performed a numerical exploration of the so
tions to the geodesic equations in Eq.~6! resulting from the
metric in Eq.~3! for various initial conditions, in particula
for initial velocity vectors leaving the brane in a variety
directions. We indeed find that there are geodesics wit
continuous path which leave and subsequently reenter
brane, i.e., there are extra-dimensional causal paths w
connect points 1 and 2 without a need to jump from o
geodesic to another~such as turning the corner from segme
A to segment B!. However we have not found continuou
paths which return to our brane at a point more distant t
our naive ‘‘horizon,’’ i.e., the effective distance traveled o
the observable brane is shorter thanh(1,3) in the same time.

On the other hand, as shown above, the scenario
patched causal paths~without a single smooth causal geod
sic! can solve the horizon problem. Such a scenario may
effective when there is another ‘‘hidden sector’’ brane au
5L and the intersections of segments A and B or segm
B and C represent vertices of interactions of the bulk fie
with the fields confined on the brane. Hence, since the sig
jumps from one geodesic to another through interactions,
bulk fields must interact sufficiently strongly with the field
on each of the branes for this scenario to be viable.

Although naively this requirement may seem problema
in our scenario, in reality, sufficient interactions may be p
sible. For example, suppose one considers an action o
form

1Note that this does not correspond to a geodesic in
5-dimensions.
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S{E d5xAg]mf]mf1E
brane 1

l1fc̄c

1E
brane 2

l2fc̄c1E
branes 1,2

K.E.~c! ~10!

wheref is a massless bulk scalar field~with the dimensions
properly normalized! and c is a four dimensional fermion
confined to the boundary. After integrating out thef field we
obtain interactions of the form

Seff {E
brane 1

d4x1s1

3Fl1
2s1

4
c̄~x1!c~x1!E

brane 1
d4x18G~x1 ,x18!c̄~x18!c~x18!

1
l1l2s2

4
c̄~x1!c~x1!E

brane 2
d4x28G

3~x1 ,x28!c̄~x28!c~x28!G ~11!

where s15a3(t) is the ratio of thed dimensional volume
measure to the extra 1 dimensional volume measure ev
ated on brane 1 whiles25e23kLa3(t) is the same ratio on
brane 2: i.e.

si5
Augu

Aug44u
U

brane i

. ~12!

G is the Green function of a five dimensional Klein Gordo
operator: i.e.

1

2
~]a$Augugab]b%1e2!G~x,x8!5d (5)~x2x8! ~13!

where the derivatives are with respect tox and the infrared
regulating masse is arbitrarily small. Because of thes2 sup-
pression factor, one would naively expect the couplings c
necting thecs on two different branes to be suppresse
However, because in that case the Green functionG contains
a 1/s2 behavior in thee→0 limit, the s2 factors approxi-
mately cancel and the coupling is unsuppressed.2

Finally, we note that this patched geodesic model c
easily be generalized to spacetimes with dimension gre
than just five.

B. Example in 2¿1 dimensions

For pedagogical purposes we will here describe a low
dimensional example, in which our observable universe
one-dimensional surface in a spatially two-dimensio
world. We consider a Minkowski spacetime of the form

e
2A fuller exploration will be given in a related work@14#.
3-3
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d s25dt22dx22dy2. ~14!

Under the coordinate transformation

z5E A11@j8~x!#2dx ~15!

and

u5y2j~x!, ~16!

where the functionj(x) will be chosen below and the prim
operation (8) refers to derivatives with respect tox, the line
element transforms to

ds25dt22dz22du22
2j8„x~z!…dudz

A11@j8„x~z!…#2
. ~17!

We will choose the location of the brane~that is our observ-
able universe! to be atu50, such that in the~u,z! coordinate
system, the brane is merely a straight line withz as the co-
ordinate on the brane. From Eq.~16!, one can see that, in th
(x,y) coordinate system, the location of the brane is a
5j(x). Hence, in this coordinate system, the brane loo
curved. Figures 2~a!,~b! show the location of the brane in th
(x,y) and (u,z) coordinate systems respectively. Since t
(x,y) coordinate system is trivial~Minkowski!, it is obvious
that a geodesic is simply a straight line. We have he
plotted such a geodesic in Fig. 2~a! between two points 1 and
2. This same geodesic~of the full metric! becomes a curved
line in the (u,z) coordinate system, as shown in Fig. 2~b!.
For comparison, in Fig. 2~b! we have also plotted a third
point 3, which is a geodesic of the induced metric on
brane. It is the distancez(1,3) that is the usual horizon that w
calculate in cosmology when geodesics off the brane are
considered. The claim is that, in the same amount of tim
the distance traveled by a null signal~e.g., light ray! directly
along the brane from point 1 to point 3 is shorter than
effective distance on the brane traveled by a light ray trav

FIG. 2. Brane and geodesics shown in coordinate systems~x,y!
and~u,z! in ~211!-dimensional example. The location of our bra
~our observable universe! is shown asy5j(x) in ~a! and asu50 in
~b!. The geodesic of the full metric is a straight line between poi
1 and 2 in~a! and a curve in~b!. The distancez(1,3) between points
1 and 3 in~b! is the horizon distance usually calculated in cosm
ogy in the absence of extra dimensions. Note thatz(1,2).z(1,3) , such
that points traditionally ‘‘outside the horizon’’ are here causa
connected.
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ing from point 1 to point 2. Hence, while we might naive
think points 1 and 2 are causally disconnected, in fact th
are causally connected by information traveling off the bra
at point 1 and reentering the brane at point 2. This beha
can be explained because, in the trivial Minkowski metric
the (x,y) coordinates, the distance between points 1 an
can be traversed by a straight line while the distance betw
points 1 and 3 must involve a curved and hence longer p

We will illustrate the above quantitatively. In the (u,z)
coordinate system, a particle moving along the brane fr
points 1 to 3 satisfies

05ds25dt22dz2 ~18!

such that the distancez(1,3) traveled along the brane betwee
points 1 and 3 in timet f is

z(1,3)5t f . ~19!

This is the distance that one would naively calculate as
horizon size in Eq.~1!. However, let us consider a geodes
that leaves and subsequently reenters the brane. For sim
ity, we can choosey to be a constanty1 for the particular
geodesic we consider@as drawn in Fig. 2~a!#.

Then, in the~y,x! coordinate system, the geodesic is giv
by

yg5y1 , xg52c1t, ~20!

wherec is a positive constant, subscriptg refers to the geo-
desic, and we assume the signal leaves the brane at in
time t50.

Now to proceed we will choose a particular form forj(x),

j8~x!5tan~kx!, ~21!

i.e.,

j~x!52
1

k
ln„cos~kx!…, ~22!

wherek is a constant. Then, using Eqs.~15! and~16!, we can
transform the geodesic in Eq.~20! to the ~u,z! coordinate
system:

ug~ t !5y12j~ t2c!5y1
1

k
ln@cosk~ t2c!#, ~23!

zg~ t !5
1

k
ln@seck~ t2c!1tank~ t2c!#. ~24!

Hencez(1,2)5zg(t f) is the z-coordinate distance traversed
the light ray following a geodesic in the full metric from
points 1 to 2 in the timet f . It is clear that the second term i
Eq. ~24! can blow up, such that it is certainly possible tha

z(1,2).z(1,3) , ~25!

such that seemingly causally disconnected points 1 an
have in fact been in causal contact.

s
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In the next subsection, we will generalize the continuo
metric of this subsection to an expanding universe in hig
dimensions.

C. Generalization of the 2¿1 example to 4¿1 dimensions

Here we consider a~411!-dimensional generalization o
the ~211!-dimensional example and include cosmologic
expansion. However, as we will see, because the origin
comes a special~even singular! point, this example is no
homogeneous and hence does not describe the real univ
Still, it solves the horizon problem in a novel way and
such is instructive.

Consider a metric of the form

ds25dt22a2~ t !„dr21 f ~r !dV21du212g~r !dudr…
~26!

where

f ~r !5
1

k2
„arccos@sech~kr !#…2 ~27!

g~r !5tanh~kr ! ~28!

wherek is an arbitrary constant anddV25sin2udf21du2 is
the angular metric of a 2-sphere. Consider the spatial dim
sions of the usual observable universe~3-brane! to be atu
50. The induced metric on the 3-brane is

ds25dt22a2~ t !„dr21 f ~r !dV2
… ~29!

which is isotropic only about one particular point in gene
~i.e. inhomogeneous!. Classically, the causal region
bounded by the geodesics of a massless particle satisf
the geodesic equation given in Eq.~6!.

Along the brane, the induced metric, Eq.~29!, implies a
geodesic that is different from the geodesic implied by
higher dimensional embedding metric, Eq.~26!. For the em-
bedding metric, the geodesics leave the brane initially
reintersect the brane at a later time. Suppose we consid
light signal starting from the origin at the big bang singula
ity @when a~t50!50#. The geodesic on the brane is then

r b~ t !5E
0

tdt

a
~30!

and the comoving horizon length~for example at the time o
nucleosynthesis! is Ln5r b(tn). In the embedding higher di
mensional spacetime, the geodesic is given by

r g~ t !5
1

k
lnH secFk

r b~ t !

A11c2G1tanFk
r b~ t !

A11c2G J ~31!

ug~ t !5cr~ t !1
1

k
lnH cosFk

r b~ t !

A11c2G J ~32!

c5
ln$cosh@krb~ t f !#%

arccos$sech@krb~ t f !#%
~33!
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where t f is the time at which the geodesic reintersects
brane after leaving the brane at the initial timet50. If we set
t f5tn and varyk appropriately, we can makeLn5r (tn) of
Eq. ~2! arbitrarily large. Hence, points which from the bran
point of view are outside of the causal horizon are actua
causally connected.

The metric given by Eq.~26! is not realistic because th
cosmology on the brane is not homogeneous. Indeed,
result is not surprising since the spatial curvature on the n
compact brane is positive. The only homogeneous cons
curvature 4-dimensional manifolds are the 3 types of FR
metric ~positive, zero, and negative intrinsic spatial curv
ture!. The only boundariless positive curvature object of co
stant curvature in 311 dimensions is a 3-sphere, which
compact. Hence, we were doomed to begin with in trying
construct a noncompact homogeneous cosmology by em
ding a curved manifold in an Euclidean space. The rea
why this approach was successful for the 211 embedding of
a ~111!-dimensional manifold was the fact that the intrins
spatial curvature is always 0 for a one dimensional manifo

III. PHYSICAL SCENARIO

In this section we discuss a number of issues regard
the apparent causality violation attending the scenarios
have discussed.

First, let us consider whether bulk fields in such high
dimensional spacetimes will contradict any observations
order for the geodesic in the higher dimensional spacetim
solve the horizon problem, causality must be apparently v
lated within the 3-brane, at least on cosmological scales d
ing some early time. In order for the apparent causality v
lation to be hidden today while still solving the horizo
problem, the geodesic through the extra dimension must
be accessible today. This is possible, for example, if the fo
of the cosmological energy density early on in the unive
had bulk field coupling, while the form of the cosmologic
energy density today in the universe has no bulk field c
pling.

Secondly, we remark that the apparent causality violat
during an early epoch of the universe can be understoo
terms of a higher dimensional Green function that falls
less rapidly than one would naively expect in the absence
extra dimensions. The causality violation can manifest
terms of nonlocal interactions of the effective 4-dimensio
Lagrangian. As in the last section, consider for example
interaction given by

S{E
brane

l1fc̄c. ~34!

As before, after integrating out the bulk fieldf we find the
effective interaction given by

Seff {E
brane

d4x1s1

l1
2s1

4
c̄~x1!c~x1!

3E
brane

d4x18G~x1 ,x18!c̄~x18!c~x18!. ~35!
3-5
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For x18 that is outside of the 4-dimensional light-cone ofx1,
we would generally expect the Green functionG to fall off
exponentially. However, in the full 5-dimensional spacetim
the pointx18 that is outside of the 4-dimensional light-cone
x1 will still be within the 5-dimensional light-cone, an
hence the interaction will not be exponentially suppress
Thus at a pointx1 on the brane, one can get a contributi
from another pointx18 that is farther away than usually a
lowed by causality, because the 5-dimensional Green fu
tion doesn’t fall off as fast outside the 4-dimensional lig
cone as one would naively expect in the absence of the e
dimensions. One can think of this as a propagator that
leave the brane and hence connect two distant points on
brane.

Thirdly, let us consider what kind of stress energy ten
gives rise to the metric presented in Sec. II A. Note that
light of Ref. @10#, because thett component and theuu
component of the metric are identical and time independ
we have a fine tuned solution. More explicitly, to support t
brane solutions, the five dimensional metric must satisfy
Israel condition boundary conditions~see for example Refs
@10–12# and references therein!:

26]ua5k5
2r]un5k5

2S 1

2
P1

1

3
r D ~36!

for the metric of the formds25e2ndt22e2adh22du2

wherea52ku1 loga(t) andn50 for the metric of Eq.~3!.
The pressureP and the energy densityr are associated with
the fields confined on the brane. As it stands, the ene
density of the fields confined to the brane is a constanr
52 3

2 P56k/k5
2. However, as is done in@13#, one can add

perturbations to the brane energy densityr such that one can
obtain a component of the energy density that dilutes as
universe expands. Note that since we must havekL
'O(10) to solve the horizon problem, we must have a bra
energy density ofr;O(100)M5

3/L where M5 is the five
dimensional Planck’s constant defined byk5

251/M5
3. Since

we require r,M5
4, this scenario is viable only ifL

@100/M5 which is not unrealistic. We leave a more com
plete study of viable cosmologies to a future study.

For completeness, we list the rest of the Einstein equa
specifying the bulk stress energy tensor for this scenario

T0
0526k213S ȧ

a
D 2

T1
1523k21S ȧ

a
D 2

12
ä

a

T4
4523k213S ȧ

a
D 2

13
ä

a

T0
4523k

ȧ

a
~37!
06351
,

d.

c-
t
tra
n

he

r
n

t,

e

y

e

e

n

where we normalize the stress energy asRMN21/2gMNR
5TMN . There are no fundamental constraints on the b
stress energy tensor such that these equations cannot b
isfied.

IV. CONCLUSION

In this paper, we have demonstrated that, in theories w
extra dimensions in which our ‘‘observable’’ 4-dimension
universe is confined to a submanifold, there may generic
exist a non-inflationary solution to the horizon problem. T
horizon problem can be stated as follows. If only a fin
amount of time has passed subsequent to an initial epoc
our universe~e.g. a singularity!, then any causal signal ca
travel within that time period only a finite distance, referr
to as the horizon distance. By contrast, in the context of
FRW universe composed of ordinary matter and radiati
there is experimental evidence that patches of the univ
which are separated by a distance longer than the hor
distance seem causally connected.

With the existence of extra dimensions, however, the
ive horizon distance calculated by a null geodesic on
4-dimensional submanifold does not constitute the maxim
distance a signal can travel for a given time. A causal sig
through the extra dimensions can reach a point in our u
verse which is many times further away than the naive h
zon distance. An example of such a higher dimensional u
verse is described by Eq.~3! with two 3-branes, where one o
the 3-branes is our observable universe and the other 3-b
is a ‘‘hidden’’ universe. The field confined to our brane c
interact with the field living on a second ‘‘hidden’’ brane
distanceL away from us in the extra dimension via a bu
field. For a given time, a causal signal can travel much f
ther on the ‘‘hidden’’ brane in a direction parallel to bran
Hence, an impulse originating on our brane can take a sh
cut through the ‘‘hidden’’ brane and affect our brane at
point outside of the naive ‘‘horizon.’’

Once ‘‘equilibration’’ of the energy density fluctuations
established, the fields confined on the brane may deca
fields that interact less strongly with the bulk fields. Hen
any apparent causality violation occurring through the ex
tence of an extended higher dimensional light-cone may
hidden today.

We have also studied the construction of a metric t
solves the horizon problem by embedding a curved 3-br
inside a Minkowskian 5-dimensional spacetime. We fi
that, for a non-compact 3-brane, the universe thus obtaine
inhomogeneous.
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