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Lensing of the CMB: Non-Gaussian aspects
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We study the generation of cosmic microwave background~CMB! anisotropies by gravitational lensing on
small angular scales. We show these fluctuations are not Gaussian. We prove that the power spectrum of the
tail of the CMB anisotropies on small angular scales directly gives the power spectrum of the deflection angle.
We show that the generated power on small scales is correlated with the large scale gradient. The cross
correlation between the large scale gradient and the small scale power can be used to test the hypothesis that
the extra power is indeed generated by lensing. We compute the three and four point functions of the tem-
perature in the small angle limit. We relate the non-Gaussian aspects presented in this paper as well as those
in our previous studies of the lensing effects on large scales to the three and four point functions. We interpret
the statistics proposed in terms of different configurations of the four point function and show how they relate
to the statistic that maximizes theS/N.

PACS number~s!: 98.80.Es, 95.85.Bh, 98.35.Ce, 98.70.Vc
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I. INTRODUCTION

The anisotropies in the cosmic microwave backgrou
~CMB! are thought to contain detailed information about t
underlying cosmological model. In conventional models
anisotropies on most angular scales were created at the
scattering surface, at a redshift ofz;1000. At these early
times the evolution of perturbations can be calculated ac
rately with linear theory. The calculation of theoretical pr
dictions is almost straightforward, thus detailed observati
of the microwave sky can, at least in principle, greatly co
strain the cosmological model. We expect to be able to m
sure many of the parameters of the cosmological model w
percent accuracy@1#.

There are several physical processes that imprint aniso
pies on the CMB after decoupling. Some of them will d
grade our ability to learn about cosmology, such as fo
ground emission from our galaxy. Others will allow us
constrain processes that happen after decoupling and he
understand the evolution of our universe. For example
reionization of hydrogen by the ultraviolet light from the fir
generation of objects leaves a distinct mark in the polar
tion of the CMB @2#, Sunyaev-Zeldovich emission from ho
gas along the line of sight creates temperature anisotro
and the large scale structure~LSS! of the universe deflects
the CMB photons, lensing the anisotropies@3–6,9#.

When studying the lensing effect produced by the la
scale structure of the universe we are trying to detect len
produced by random mass fluctuations, the LSS, on a
dom background image, the CMB. The characteristics of
lensing effect depends on the relative size of the cohere
lengths of these two random fields. In@5,6# we studied the
limit of a rapidly fluctuating CMB background being lense
by a slowly varying mass distribution. This is the appropria
limit to recover the power spectrum of the projected m
density on scales much larger than the coherence lengt
the CMB, j;0.15°. In this paper we study the oppos
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limit, the generation of power on scales much smaller thanj.
The lensing effect is expected to be the dominant non

mordial contribution to the CMB anisotropies on sma
scales (l;3000). It has been shown@7# that an accurate
determination of the power generated by lensing can h
break some of the parameter degeneracies in the CMB.
terferometric observations of the anisotropies such as th
that will be carried out by the Cosmic Background Imag
~CBI! @8# are designed to make measurements at these a
lar scales.

To be able to use the observed power on small scale
break the degeneracies in the parameters one must be
that one is observing the lensing signal. We will show th
the small scale power generated by gravitational lensing
a very definite signature, it is correlated with the large sc
gradient. Regions of the sky where the large scale gradie
larger will have more small scale power. The physical eff
can be understood easily in the case of a cluster of gala
lensing a smooth CMB gradient.

We will also compute the general three and four po
function of the temperature field induced by lensing a
show that both the statistic discussed in this paper and th
proposed in@6# are particular subsets of the possible config
rations of the four point function. We will construct the st
tistic that maximizes the signal to noise ratio.

II. GENERATION OF POWER ON SMALL SCALES

The measured temperature fieldT(u) can be expressed in
terms of the unlensed CMB field at the last scattering surf
T̃(u) and the deflection angle of the CMB photonsdu :

T~u!5T̃~u1du!

'T̃~u!1du•¹T̃~u!1
1

2
du idu j] i j T̃~u!. ~1!

In this paper we are interested in the effect of modes of
deflection angle of spatial wavelength much smaller than
of the unlensed CMB.
©2000 The American Physical Society10-1
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A. A toy example

To understand the physics we will first consider the le
ing induced by a cluster of galaxies. We will discuss a ve
simplified example in this paper, the reader interested in
detectability of the effect for real cluster should look at R
@12#. In most cases a cluster will subtend a few arcminu
on the sky. Over such a scale the primary anisotropies
expected to have negligible power so we will treat the u
lensed temperature field as a pure gradient. Without los
generality we will take the gradient to be along they axis
with an amplitudeT̃yo . The observed temperature becom

T~u!5T̃y0~uy1duy!. ~2!

For a spherically symmetric cluster at the origin the defl
tion is of the form

du52du
u

u
. ~3!

For a singular isothermal spheredu54p(sv /c)2DLS /
DOS, with sv being the cluster velocity dispersion,DLS is
the distance from the lens to the source, andDOS is that
between the observer and the source. In an Einstein DeS
universeDLS /DOS'1/A11zL, with zL being the redshift of
the cluster and where we have assumed thatzL is much
smaller than the redshift of recombination. A singular is
thermal profile will be a good approximation for a cluster

FIG. 1. In the upper panel we show a cluster lensing a ba
ground gradient. The bottom panel shows the temperature meas
for a fixedux as a function ofuy in the presence and absence of t
cluster. Points withuy.0 get deflected to a smalleruy in the lens
plane and thus for a positive gradient they will have a lower te
perature in the lensed example than in the unlensed one. The o
site is true ifuy,0.
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to some maximum radius after which the deflection will fa
as 1/u. In the central part of the cluster there might be a co
The typical value fordu is a fraction of an arcminute.

The effect of lensing can be understood by looking at F
1. We focus on the temperature as a function ofuy for a fixed
ux . In the absence of lensing we would observe the gradi
On the other hand the cluster will deflect the light rays
that for uy.0 the rays are coming from a lower value ofuy
in the last scattering surface. If the gradient is positive t
implies that for uy.0 in the presence of the cluster w
would observe a lower temperature than what would be
served if the cluster was not there. The opposite is true
uy,0. Far away from the cluster the lensed temperat
should coincide again with the gradient. Thus the clus
creates a wiggle on top of the large scale gradient. This ef
is shown in Fig. 2. The size of this wiggle isTy0du, thus it is
proportional to the size of the gradient and the deflect
angle. For a cluster we can use the determined deflectio
infer the mass and some information about the cluster p
file.

Note that the proposed signal is directly sensitive to
deflection angle and not the shear. This is the only met
that has this property. It is usually argued that we can ne
measure the deflection angle in a lensing system becaus
do not know the original position of the background imag
In this case we avoid this argument because we do kn
what the background image is, it is a gradient which we c
measure on larger scales than the cluster. The other im
tant point is that the effect is proportional to the gradie
Ty0 ; this is the signature we will use in what follows t
identify the lensing effect by the large scale structure in
limit we are studying.

-
red

-
po-

FIG. 2. Temperature profile of a CMB gradient lensed by
cluster. We tookTy0du513 mK. The gradient part has been sub
tracted out for clarity. The cluster profile was cut off at 4 arcmin
0-2
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LENSING OF THE CMB: NON-GAUSSIAN ASPECTS PHYSICAL REVIEW D62 063510
B. Large scale structure

For simplicity we will work in the small angle approxi
mation so that we can expand the temperature field in F
rier modes instead of spherical harmonics. The Fourier c
ponents are defined as

T~ l!5E d2uei l•uT~u!,

du~ l!5E d2uei l•udu~u!. ~4!

We assume both the CMB and the deflection angle
Gaussian random fields characterized by their power spe

^T̃~ l1!T̃~ l2!&5~2p!2dD~ l12!Cl1
T̃T̃ ,

^du~ l1!•du~ l2!&5~2p!2dD~ l12!Cl1
dd , ~5!

wherel125 l11 l2 , Cl
T̃T̃ is the power spectrum of the primar

CMB anisotropies andCl
dd is the power spectrum of th

deflection angle.
To leading order in the deflection angle the Fourier co

ponents of the lensed CMB field are

T~ l!5T̃~ l!1E d2l8

~2p!2
du~ l8!•¹T̃~ l2 l8!. ~6!

We want to calculate the power spectrum of the lensed C
field (Cl

TT) on very small scales, scales much smaller th
the coherence length of the unlensed CMB gradient. We s
by considering a small patch of the sky of sizeL, with L
small enough that the gradient of the unlensed field can
considered constant so that the unlensed CMB map ca
approximated linearly. On these scales, the small scale v
tions of the deflection angle generate additional power in
lensed CMB field. We defineT̃x(u)5T̃x0 andT̃y(u)5T̃y0 so
that

T~u!5T̃x0@ux1dux~u!#1T̃y0@uy1duy~u!#. ~7!

For the Fourier modes at largel we get

T~ l!5T̃x0dux~ l!1T̃y0duy~ l!. ~8!

Thus the power spectra of the lensed temperature is give

^T~ l1!T~ l2!&5~2p!2dD~ l12!sSCl 1
dd/2, ~9!

with sS5^T̃x0
2 1T̃y0

2 &. For the standard cold dark matte
model ~SCDM! sS'23109mK rad21'13 mK arcmin21.
Note that to obtain Eq.~9! we have replacedT̃x0

2 andT̃y0
2 by

their averages. This implies that we are measuring the po
spectrum over a large enough area of the sky that there
many patches over which the gradient is averaged. Equa
~9! is a very interesting result on its own, it shows that t
power in the tail of the CMB anisotropies directly gives t
power spectrum of the deflection angle. This result can a
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be derived by taking the appropriate limit in the full expre
sion for the lensed CMB spectra as derived for example
@9#.

In Fig. 3 we show the various power spectra so as to g
some insight on the orders of magnitude. In panel~a! we
show the lensed and unlesed CMB spectra together w
sSCl

dd/2, the limiting value in the damping tail. Several co
ditions must be met for Eq.~9! to be valid. A very important
fact is that the power spectra of both the deflection angle
the CMB derivative fall withl. This means that when we
look at the power generated by lensing in a highl mode of
the temperature, it could be dominated by a nearbyl of the
temperature derivative multiplied by a lowl deflection angle
mode rather than by the power coming from a smalll tem-
perature derivative mode multiplied by a highl deflection
mode. Equation~9! is only valid in the latter case. We attai
this limit because the power spectra of the deflection an
falls more slowly withl than that of the CMB derivative. The
power in the deflection angle falls like a power law@Fig.
3~c!#, while that in the CMB derivative drops exponential
@Fig. 3~b!#. As a consequence at a high enoughl it is always
easier to produce power by multiplying low frequency te
perature modes by high frequency deflection modes. Al
.4000 this effect dominates, at lowerl both effects compete
Another condition is that we should apply Eq.~9! for l values
large enough that most of the power in the unlensed der
tive ~contributing tosS) comes from a lowerl. Figure 3~d!
shows that for SCDM most of the power in the derivati
comes from scalesl ,2000.

III. CORRELATION BETWEEN SMALL
AND LARGE SCALES

In the previous section we have shown that the powe
the CMB anisotropies at large enoughl measures the powe

FIG. 3. The panel~a! shows the lensed and unlensed tempe
ture power spectra together withsSCl

dd/2. Panel~b! the power spec-
tra of the derivative of the unlensed CMB field,~c! the spectra of
du and ~d! the cumulative power in the CMB derivative.
0-3
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MATIAS ZALDARRIAGA PHYSICAL REVIEW D 62 063510
spectrum of the deflection angledu. If we want to use the
small scale power to measure the fluctuations in the defl
tion angle we need a way to determine that the power
observe is indeed produced by lensing and is not at the
scattering surface~i.e., it is due to a different underlying
primary anisotropies spectrum! or that it is not produced by
another secondary effect. To be able to test this we nee
consider higher order statistics, we need to go beyond
power spectrum.

The crucial point we are going to use is that the pow
produced by lensing comes from large scale primary te
perature modes promoted to higherl by the small scale de
flection of the photons. We will attempt to test the hypothe
that the power we observe is generated by lensing by look
at the correlation between the large scale temperature de
tive and the small scale power. If we continue with the si
plification that the gradient of the unlensed field is consta
when we high pass filter the temperature map we obtain

TH~u!5E
l h1

l h2 d2l

~2p!2
e2 i l•uT~ l!

'T̃xdux~u!1T̃yduy~u!, ~10!

wherel h1 andl h2 define a ring inl space and we have abuse
notation and calleddu i(u) the high passed filtered deflectio
angle. We will study the behavior of the square ofTH prop-
erly smoothed:

H~u!5E d2u8WH~u2u8!TH
2 ~u8!. ~11!

If we smooth the map over a scale bigger than that of
variations in the deflection angle but over whichT̃x and T̃y

remain constant, we can replacedux
2 andduy

2 by their aver-
ages. It follows that the smoothed high passed filtered ma
approximately

H~u!'
^du2&

2
~ T̃x

21T̃y
2!~u!. ~12!

Only the modes with wave vectorsl h1, l , l h2 contribute to
the averagêdu2& in Eq. ~12!.

We now look at the anisotropies on larger scales by
plying a low pass filter to the temperature field,

TL~u!5E
0

l l d2l

~2p!2
e2 i l•uT~ l!. ~13!

We compute the square of the gradient,

L~u!5uu¹TLuu2

'~ T̃x
21T̃y

2!~u!. ~14!

Equations~12! and ~14! show the maps ofL and H trace
each other,
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H~u!'
^du2&

2
L~u!. ~15!

We have a very simple test to establish that the sm
scale power is generated by lensing, the small scale po
has to be correlated with the large scale derivative. Instea
the small scale power is Gaussian power already prese
the last scattering surface, different Fourier modes are un
related. In the Gaussian case if we constructL andH with
different modes (l h1. l l) there will be no correlation be
tween the two maps. In practice instead of smoothing
high passed temperature map we work in Fourier space
correlate the lowl modes ofTH

2 (u) with those of theL(u).
Equations~12! and ~14! were obtained under simplifying

assumptions, more general expressions can also be de
but we only show this limiting case to make the phys
more transparent. Comparison with simulations show t
these expressions are good approximations in the regim
interest. The procedure to simulate a lensed CMB map
discussed in detail in Ref.@6#. We generate realizations o
CMB and projected mass densityk and use a ray tracing
technic to produce a lensed CMB map.

We will explain the effect we are studying by first pre
senting a toy example in 1 dimension. We will consider a
dimensional universe so that the last scattering surface
comes a line. In the top panel of Fig. 4 we show the unlen
CMB field together with the low passed filtered (l l52000)
lensed anisotropies. It is clear that both curves trace e
other, although they are displaced. This is the conseque
of the large scale modes of the deflection angle, but rem
ber we are after the power generated by the small s

FIG. 4. Example of the generation of power by gravitation
lensing in one dimension. The upper panel shows the unlensed
perature and the result of filtering the lensedT. The middle panel
shows the highl power generated by lensing. In the bottom w
show the square of the small scale power and the square of the
scale gradient~arbitrarily scaled!.
0-4
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LENSING OF THE CMB: NON-GAUSSIAN ASPECTS PHYSICAL REVIEW D62 063510
modes ofdu. In the middle panel we show the high pass
( l .6000) lensed CMB, the fluctuations in this panel are
result of lensing. The power is not distributed uniformly, t
fluctuations are larger where the derivative of the CMB
the top panel is larger, as Eq.~12! indicates. This is the sam
physical effect we discussed in the cluster example. On
contrary in regions where the CMB is constant, surfa
brightness conservation implies that lensing does not cr
any power. The bottom panel shows the square of the s
scale temperature anisotropies and a scaled version o
low l gradient to ease the comparison.

We can now look at the results for a 2 dimensional las
scattering surface shown in Fig. 5. The low passed grad
map was constructed using scalesl ,2000 and the high
passed temperature was constructed with modesl .6000.
The upper left panel shows the lensed CMB map while
upper right panel has the high passed filtered field. It is c
that the small scale power in not Gaussian and is hig
where the large scale derivative is higher. To make this e
more apparent the two bottom panels show theL and H
maps, the correlation is excellent.

The L andH maps only differ by a factor̂du2&/2 @Eq.
~15!#, so their cross correlation defined as^H( l1)L( l2)&
5(2p)2dD( l12)Cl 1

HL , is simply related to the power spec

trum of theL map (Cl
LL),

Cl
HL'

^du2&
2

Cl
LL ,

Cl
HH'

^du2&2

4
Cl

LL . ~16!

FIG. 5. The upper panel on the left shows the lensed temp
ture field. The upper right panel shows the high passed tempera
Bottom left has gradient square and bottom right smoothed sq
of high passed temperature.
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In Fig. 6~a! we show the ratioCl
HL/Cl

LL obtained in simula-
tions. We have usedl ,2000 to constructL, and several
different rings at higherl for H. The order of magnitude o
the ratio is consistent with Eq.~16!, it remains constant ove
a wide range ofl but starts to fall once we approachl
;2000. The first relation in Eq.~16! is really Cl

HL

5Wl^du2&Cl
LL/2 whereWl is some window function. The

origin of the window can be understood as follows: let
call lh a high l mode of the deflection andl1 and l2 two
modes of the derivative. When we compute the gradi
square these modes combine to give power atl35 l11 l2. In
the high passed case, we recover this component of the
by looking at the modes withlh1 l1 and 2 lh1 l2 so that
when we multiply them they give thel3 variations. Asl3
becomes larger at least one ofl1 or l2 also become larger an
because we are selecting only a ring inl space for the high
passed map there are higher chances eitherlh1 l1 or 2 lh
1 l2 will fall outside the ring and we cannot reconstructl3.
So asl3 gets larger the correlation between the two maps f
This effect explains the windowWl is less important the
wider rings for the high passed maps is@compare the highl
behavior of the 4000212000 and 400028000 rings in Fig.
6~a!#.

In Fig. 6~b! we show the correlation coefficientCl

[Cl
HL/A(Cl

HHCl
LL). Note that the cross correlation for lowl

is very high, almost one. This proves our claim that on la
scales theL andH maps trace each other almost perfect
There are several reasons why the two maps do not corre
exactly. First, although most of the power in the derivative
the CMB comes froml ,2000 there is still about 5% addi
tional power coming from higherl. This degrades the cross
correlation because some of the power on the high pas
map is coming from these modes of the derivative field.
more extreme case is shown in the figure, where only mo

a-
re.
re

FIG. 6. Panel~a! shows the ratioCl
HL/Cl

LL for several different
rings used to constructH. Panel~b! shows the cross correlatio
coefficient inl space.
0-5
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MATIAS ZALDARRIAGA PHYSICAL REVIEW D 62 063510
with l ,1000 were used to construct theL map, the cross-
correlation in this case is significantly smaller. The oth
important effect is that some of the power in the highl map
is due to primary anisotropies, these modes are uncorrel
with the low l derivative and thus reduce the cross corre
tion coefficient. This effect is more important for the 400
28000 ring than for the 8000212000 so the cross correla
tion is smaller for the former. The 4000212000 rings fall
somewhere in the middle of this two cases.

We will calculateCl
LL , which can be done analytically. I

we assume that only a Gaussian component is contributin
the low pass filtered field then it is possible to calculate
power spectra of the gradient squared,L5uu¹TLuu2. The cor-
relation function in real space for two points separated
angleu in the x direction gives

^L~0!L~u!&5^L 2&212@Cxx
2 ~u!1Cyy

2 ~u!#. ~17!

We have introducedCxx(u)5^Tx(0)Tx(u)& and Cyy(u)
5^Ty(0)Ty(u)&. They are given by

Cxx~u![^T̃x~0!T̃x~u!&CMB

5~2p!22E l l
d2leil •u cosf l l 2Cl

T̃T̃ cos2f l

5E
0

l l ldl

4p
l 2Cl

T̃T̃@J0~ lu!2J2~ lu!#

[
1

2
@C0~u!2C2~u!#,

Cyy~u![^T̃y~0!T̃y~u!&CMB

5~2p!22E l l
d2leil •u cosf l l 2Cl

T̃T̃ sin2f l

5E
0

l l ldl

4p
l 2Cl

T̃T̃@J0~ lu!1J2~ lu!#

[
1

2
@C0~u!1C2~u!#,

Cxy~u![^T̃x~0!T̃y~u!&CMB

5~2p!22E l l
d2leil •u cosf l l 2Cl

T̃T̃ cosf l sinf l

50, ~18!

where C0(u) and C2(u) are defined as the integrals ov

l 3Cl
T̃T̃dl/2p weighted withJ0( lu) andJ2( lu), respectively.

The constant part in Eq.~17! only contributes to thel
50 mode. The second term issS

2NSS(u) in the notation of
@6#. The power spectra of the low pass filtered map is tha
S in @6#, but with only the lowl modes included. ForlÞ0,

Cl
LL52pE udu~Co

21C2
2!J0~ lu!. ~19!
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This calculation coincides perfectly with the results of sim
lations. In the presence of detector noise the above exp
sion generalizes toCl

LL→Cl
LL1Nl

LL , whereNl
LL is the de-

tector noise contribution calculated using Eqs.~18! and~19!
with the power spectrum of the detector noise.

Let us now considerCl
HH . If the contribution to the

power where Gaussian then the correlation function ofH in
real space would be

^H~0!H~u!&5^H 2&212C2~u!, ~20!

where

C~u![^T̃H~0!T̃H~u!&CMB

5~2p!22E d2leil •u cosf lCl
T̃T̃

5E
l h1

l h2 ldl

2p
Cl

T̃T̃J0~ lu!. ~21!

The power spectrum becomes

Cl
HH54pE uduC2~u!J0~ lu!. ~22!

This expression only coincides with the results of simu
tions when either detector noise or intrinsic CMB anisot
pies dominate the power in thel range used to constructH,
that is, if the unlensed power is Gaussian. In the ideali
detector-noise-free examples we have discussed above
corresponds tol h2,4000. Fortunately for the power gene
ated by lensing, the power spectra of theH map is a scaled
version of the power spectrum ofL, thus it can be obtained
using Eqs.~16! and ~21!. Again in the presence of nois
Cl

HH→Cl
HH1Nl

HH with Nl
HH calculated using Eq.~22! with

the detector noise power spectra.
To assess the signal to noise of our lensing signal we n

to calculate the variance in the estimator ofCl
HL :

Ĉl
HL5

Af

~2p!2E dAl

Al
H~ l!L~2 l!, ~23!

where the integral is done over a small area inl space of size
Al centered aroundl and Af5(2p)2/V is the area of the
fundamental cell inl space. We have denotedV the area of
sky observed.

If we assume thatL and H are Gaussian fields, we ca
calculate the variance as

Cov@~Ĉl
HL!2#5

Af

A
@~Cl

HL!21Cl
HHCl

LL#. ~24!

The ratioA/Af is the number of available modes one can u
to measure the cross correlation. It can be approximated
Al /Af5 f sky(2l 11) for a unit width ring. In Fig. 7 we show
the variance in the cross correlation measured in simulat
normalized to the Gaussian prediction in Eq.~24!. The agree-
ment is very good implying that we can use the Gauss
formula to compute the variance.
0-6
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To compute the totalS/N we want to combine the signa
in all the l modes of the cross correlation that we can m
sure. To do this we will computeX̂5( la l Ĉl

HL choosinga l

to maximizeS/N5@^X̂&2/Cov(X̂2)#1/2. It is straightforward

to show thata l5Cl
HL/Cov@(Cl

HL)2# @10#. We then get

S

N
5F (

l , l l

~Cl
HL!2

Cov@~Cl
HL!2#

G 1/2

5F f sky(
l , l l

~2l 11!

3
C l

2

@~11Nl
LL/Cl

LL!~11Nl
HH/Cl

HH!1C l
2#

G 1/2

. ~25!

We have implicitly assumed rings of unit width.
We want to relate Eq.~25! to theS/N with which we can

measure the small scale power generated by lensing.
straightforward to show using Eqs.~19!, ~22!, and the fact
thatCl;1 thatNl

HH/Cl
HH'(wT

21/C̄TT)2, hereC̄TT is the av-
eraged power in the bandl h1, l , l h2 andwT

21 is the power
spectrum of the detector noise, assumed to be white noi

We will consider the limit in whichwT
21 is small enough

that Nl
LL!Cl

LL but is large enough thatNl
HH@Cl

HH . If the
noise were even lower, then theS/N for detecting the cross
correlation will be largeS/N;NL

1/2 where NL is the total
number of cross correlations that can be measures,NL

' f skyl l
2 . In the limit we are considering,

S S

ND 2

5NLC l
2S C̄l

wT
21D 2

52
NL

NP
C l

2S S

ND
P

2

, ~26!

where we have introduced (S/N)P
2 5NP/2(C̄l /wT

21)2, the
signal to noise with which we can measure the power in
bandl h12 l h2. We callNP the number of modes that we ca
use to estimate the power, which is related toNL by

FIG. 7. Ratio of variance of power spectrum measured in
simulation to the predicted result assuming Gaussian fields.
06351
-

is

.

e

NL

NP
5

l l
2

l h2
2 2 l h1

2
. ~27!

Thus theS/N to measure the cross correlation is compara
although always somewhat smaller than that to detect
power directly. For example if we takel l52000, l h1

54000 andl h256000 thenS/N'A2/5C̄l(S/N)P .

IV. THREE AND FOUR POINT FUNCTIONS
IN THE SMALL ANGLE LIMIT

In this paper and in our previous studies@5,6,10# we have
investigated several ways of detecting the effect of grav
tional lensing on the CMB. As we have explained, th
amounts to trying to detect the distortions on the rand
CMB maps created by the random distributions of the d
matter in the universe. In@10# we used the integrated Sach
Wolfe ~ISW! effect as a tracer of the dark matter distributio
and combinations of the CMB derivatives to measure
effect of lensing. The cross correlation of these two effe
allowed us to gain information about the time evolution
the gravitational potential. Our method combined the inf
mation in particular configurations of the three point functi
of the temperature. Other studies have used other comb
tions of the bispectrum to detect the signal@4# and also cal-
culated the contributions to the bispectrum coming fro
other secondary procesess@4,11#.

In @6# we used the power spectrum of a quadratic com
nation of derivatives of the CMB to measure the power sp
trum of the projected mass densityk. This method was valid
in the limit in which we wanted to recover the long wav
length modes ofk from information in the small scale CMB
This regime is analogous to weak lensing of backgrou
galaxies. In essence the different estimates of the po
spectrum ofk at different scales were obtained by combini
different configurations of the four point function of th
lensed temperature.

In the present paper we studied other configurations of
four point function to illustrate the nature of the no
Gaussianities induced by lensing on small scales. The n
Gaussian nature of the generated power manifested itse
the correlations between the large scale gradient and
small scale generated power.

In order to have a unified picture of the different statist
we have proposed it is convenient to study directly the fo
point function of the temperature field and a three point fu
tion which correlates two temperatures and another fieldX.
The fieldX stands for any field that cross correlates withk.
In our paper@10# X5T but one can imagine doing this co
relation with other tracers of the mass, like the fluctuations
the far-infrared background@13#.

We define the connected three and four point functions

^X~ l1!T~ l2!T~ l3!&c5~2p!2dD~ l123!T3~ l1 ,l2 ,l3!,

^T~ l1!T~ l2!T~ l3!T~ l4!&c5~2p!2dD~ l1234!T4~ l1 ,l2 ,l3 ,l4!.

~28!

Gravitational lensing produces

e
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T3~ l1 ,l2 ,l3!52Cl1
kXFCl2

T̃T̃ l2• l1

l 1
2

1Cl3
T̃T̃ l3• l1

l 1
2 G

T4~ l1 ,l2 ,l3 ,l4!5Cl 1
T̃T̃Cl 2

T̃T̃F ~ l11 l3!• l1~ l11 l3!• l2

uu l11 l3uu2
Cl 13

dd1
~ l11 l4!• l1~ l11 l4!• l2

uu l11 l4uu2
Cl 14

dd G
1permutations~5 terms proportional toCl 1

T̃T̃Cl 3
T̃T̃ ,Cl 1

T̃T̃Cl 4
T̃T̃ ,Cl 2

T̃T̃Cl 3
T̃T̃ ,Cl 2

T̃T̃Cl 4
T̃T̃ ,Cl 3

T̃T̃Cl 4
T̃T̃!. ~29!
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The unconnected part of the four point function also g
corrections. To make the calculation of these terms fu
consistent up to second order in the deflection angle we n
to also consider the contributions coming from the seco
order in the expansion of Eq.~1!. The unconnected terms ar
not relevant for our study so we will not write them dow
here.

In our previous papers we introduced three variablesE, B,
and S. We had defined them in terms of derivatives to t
temperature field. Equivalently we can write

S~ l!5E d2l1

~2p!2
~ l2 l1!• l1T~ l2 l1!T~ l1!,

Q~ l!5E d2l1

~2p!2
@~ l x2 l 1x!l 1x2~ l y2 l 1y!l 1y#T~ l2 l1!T~ l1!,

U~ l!5E d2l1

~2p!2
@~ l x2 l 1x!l 1y1~ l y2 l 1y!l 1x#T~ l2 l1!T~ l1!,

E~ l!5Q~ l!cos~2f l!1U~ l!sin~2f l!,

B~ l!52Q~ l!sin~2f l!1U~ l!cos~2f l!. ~30!

When we average over the CMB random field we get

^S~ l!&CMB5@~2p!2dD~ l!22k~ l!#sS ,

^E~ l!&CMB522k~ l!sS ,

^B~ l!&CMB50. ~31!

We have introducedsS5* ldl /2p l 2Cl
T̃T̃ .

To extract all the information in this three point functio
we combine all possible configurations with a weightb cho-
sen to maximize the signal to noise ratio. We define

Ŷ5
Af

~2p!2E d2l1
Al

d2l2
Al

b~ l1 ,l2 ,l3!X~ l1!T~ l2!T~ l3!.

~32!

For these mildly non-Gaussian maps, the variance can
calculated by only taking the Gaussian part of the tempe
ture, so that
06351
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Var~Ŷ!5Af~2p!2E d2l1

Al
2

d2l2

Al
2

b2~S!2Cl 1
XXCl 2

T̃T̃Cl 3
T̃T̃ .

~33!

The power spectra in Eq.~33! must include the contribution
from detector noise. There are additional terms in the v
ance if the fieldX and T had some cross correlation befo
lensing. In practice these terms are unimportant if one
interested in measuring the cross correlationCl

kX at large
angular scales~low l ), as was the case in our study in@10#.
This is so because most the information of lensing is
coded in the highl modes of the temperature, so it is effe
tively as if the integral overl2 in Eq. ~32! is done over high
l modes while thel1 integral only involves lowl. Thus the
terms that would involveCl

TX are absent because there are
pair of triangles in whichX andT are evaluated on the sam
l.

The weight b that maximizes the S/N is b

}T3( l1 ,l2 ,l3)/2Cl1
XXCl 2

T̃T̃Cl 3
T̃T̃ . Finally we get

S S

ND 2

5Af
21E d2l1E d2l2

~2p!2

T3
2

2Cl 1
XXCl 2

T̃T̃Cl 3
T̃T̃

5Af
21E d2l1

4~Cl1
kX!2

Cl1
XXCl1

e f f

1

Cl1
e f f

[E d2l2

~2p!2 FCl2
T̃T̃ l2• l1

l 1
2

1Cl3
T̃T̃ l3• l1

l 1
2 G 2

3
1

2CT̃T̃~ l 2!CT̃T̃~ l 3!
. ~34!

The power spectra in the denominator include the contri
tion from detector noise~amplified by the beam respons
Cl→Cl1B2Nl ). The easiest way to calculateCl

e f f is to use
a Monte Carlo technique. We used the implementation of
VEGAS algorithm in Ref.@14#.

The above formula can be compared to what we obt
using theS andE variables@10#. Equation~7! of @10# reads

S S

ND 2

5E d2l
4~Cl

kX!2

Cl
XX

W2~ l !S 1

Nl
SS 1

1

Nl
EED , ~35!
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where W2( l ) is a window that encapsulates the effect
beam smearing. For lowl Nl

SS and Nl
EE are constant and

satisfy,Nl
SS52Nl

EE .
In Fig. 8 we compare 1/Cl

e f f to W2( l )(1/Nl
SS11/Nl

EE).
We show the results for two separate examples, an id
experiment with no noise and infinite resolution and t
Planck satellite. We focus on the large scale limit and for
ideal experiment we only consider the information comi
from modes withl ,3000. There are several salient featur
of the comparison. Although the difference between
methods is not so large for the Planck satellite it is mu
larger for the ideal experiment. This can be easily und
stood. In our previous method the power spectrum of
CMB noise in this limit was

Nl
SS5~2p!

E l 5dl~Cl
T̃T̃!2

S E l 3dlCl
T̃T̃D 2 . ~36!

It is clear from Eq.~36! that once we get into the dampin

tail where theCl
T̃T̃ fall exponentially,Nl

SS no longer changes
which means that our method does not receive any infor
tion from those modes. In contrast, Eq.~34! shows that the

amplitude of theCl
T̃T̃ cancels inCl

e f f as long as the mode
had been measured with highS/N. Thus the new method
continues to extract information from modes in the damp
tail. In most practical cases this is not very important beca
the detector noise quickly dominates in this regime and t
all methods downweight the modes. This explains why
difference between the two methods is not that large for

FIG. 8. Comparison betweenCl
e f f and the noise of our old

method. We show the results for the Planck satellite and an i
experiment. For our old method there was no difference in the n
between the Planck satellite and an ideal experiment on these
gular scales.
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Planck satellite. There is another relevant considerat
When computing the variance we assumed that the field
only mildly non-Gaussian and that we could take the u
lensed temperature power spectrum to calculate it. Thi
clearly not the case on small scales. As we have show
previous sections, on small scales the fluctuations bec
very non-Gaussian as most of the power is generated
lensing. We only consider modes withl ,3000 for the cal-
culation ofCl

e f f to partially take into account this effect.

The four point function

In the first part of this paper we have studied one parti
lar physical limit when we are trying to recover informatio
on the fluctuations of the mass distribution on scales m
smaller than the coherence length of the CMB. To reco
this limit we have to consider a quadrilateral in which tw
sides are much smaller that the other two@Fig. 9~a!#. The two
small sides correspond to the low pass filtered derivati
while the largel correspond to the high passed filtered on
We consider the case wherel 1 ,l 2! l 3; l 4. As we noted be-
fore the power spectrum of the primary anisotropies
creases exponentially, while that of the deflection angle
only as a power law. We conclude that of all the terms in E
~29! only those explicitly written dominate:

T4~ l1 ,l2 ,l3 ,l4!'2
l3• l1l3• l2

l 3
2

Cl 3
ddCl 1

T̃T̃Cl 2
T̃T̃ , l 1 ,l 2! l 3; l 4 ,

~37!

where we approximatedCl 3
dd'Cl 4

dd .

A different set of quadrilaterals dominate in the calcu
tion of E and S. Those variables extract information abo
the large scalek fluctuations from small angular scale fluc
tuations in the CMB. If we focus on modes of the tempe

ture on scales larger that the damping taill 2Cl
T̃T̃ remains

approximately constant while the power spectra of the
flection angle falls. MoreoverS andE are a combination of
the derivatives of the CMB and the extral ’s weigh the con-
tribution to smaller scales. The power spectra ofS andE are
dominated by the type of quadrilaterals shown in Fig. 9~b!.
All the l ’s are large but the quadrilaterals are thin. The th
diagonal corresponds to thel of thek mode being recovered

The terms in Eq.~29! proportional toCl 1
T̃T̃Cl 2

T̃T̃Cl 12

dd ~wherel 1

and l 2 represent the length of the sides andl 12 is the small
diagonal! dominate.

To extract all the information in the four point functio
we can add all the quadrilaterals with an appropriate weig

al
e
n-

FIG. 9. Quadrilaterals corresponding to the two limits discus
in the text. Panel~a! corresponds to configurations relevant for t
cross correlation between the large scale gradient and the s
scale power. Panel~b! shows the configurations that enter in th
calculation ofS andE.
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Ẑ5
Af

~2p!2E d2l1
Al

d2l2
Al

d2l3
Al

b~S!T~ l1!T~ l2!T~ l3!T~ l4!,

~38!

wherel452( l11 l21 l3) andAl is the area inl space we are
using. For the optimal filter that minimizesS/N one getsb

}T4 /Cl1
T̃T̃Cl2

T̃T̃Cl3
T̃T̃Cl4

T̃T̃ , where we have assumed Gaussian
to compute the variance. For theS/N we get

S S

ND 2

5
Af

21

24~2p!4E d2l1d2l2d2l3
T4

2~ l1 ,l2 ,l3 ,l4!

Cl1
T̃T̃Cl2

T̃T̃Cl3
T̃T̃Cl4

T̃T̃
, ~39!

where the power spectra in the denominator should incl
the contribution form detector noise.

We change integration variables in Eq.~39! and write

S S

N
D 2

5Af
21E d2l1S 4Cl1

kk

C̃l1
e f f D 2

S 1

C̃l1
e f fD 2

5
1

24E d2l2

~2p!2

d2l3

~2p!2

3
T4

2~ l12 l2 ,l2 ,l3 ,2 l12 l3!

Cl12 l2
T̃T̃ Cl2

T̃T̃Cl3
T̃T̃Cl11 l3

T̃T̃ ~4Cl1
kk!2

. ~40!

This is a useful change of variables because it makes
integral resemble what we had in our old method. In this w
the limit l 1→0 corresponds to quadrilaterals that have fo
large sides but a small diagonal (l1). Equation ~6! of @5#
reads

S S

ND 2

5Af
21E d2l

~4Cl
kk!2

sCl

2
, ~41!

with sCl

225sC
l
SS

22
1sC

l
EE

22
1sC

l
SE

22
.

In Fig. 10 we compare the resultsCl
e f f in Eq. ~40! with

sCl Eq. ~41!. The plot is qualitatively similar to Fig. 8 for the
three point function. While there are hardly any improv
ments in our previous method when we go from the Pla
satellite to an ideal experiment, there are significant diff
ences for the optimal filter which continues to gather inf
mation from the damping tail. For the Planck satellite t
situation is different, both the optimal method and our o
method obtain a similar amount of information from th
data. Even though the optimal method is able to get inform
tion from the damping tail in the ideal case, this is unimp
tant for the Planck satellite because the finite size of
beam makes it impossible. The fact that our previous met
seems to have slightly less noise than the optimal met
when l is a few hundred is most probably an artifact. T
noise in our old method was calculated using a Gaus
approximation which we had seen breaking down slightly
our simulations@6#. As for the three point function we only
included modes of the temperature withl ,3000 as the
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power generated by lensing is non-Gaussian so our estim

of the variance ofẐ is not valid on smaller scales.
In the limit l 1→0 the four point function becomes ap

proximately,

T4~ l12 l2 ,l2 ,l3 ,2 l12 l3!'2Cl2
T̃T̃Cl3

T̃T̃l 1
2Cl1

dd . ~42!

To obtain Eq.~42! we had to assume thatCl
kk is a decreasing

function of l and thatCl12 l2
T̃T̃ 'Cl2

T̃T̃ and the equivalent for-
mula for l 3. Both of these assumptions break down in so
range of l ’s. For example,Cl

kk has a peak atl;100 and
whenl 2 is in the damping tale range, for finitel 1 there might

be corrections due to the difference betweenCl12 l2
T̃T̃ and

Cl2
T̃T̃ . We can still use this expression as a rough estimat

try to compare how the optimalb compares with the weigh
used by our previous method. In this limit and for the qua
rilaterals relevant for this statistic, the optimalb is equiva-
lent to multiplying each of the temperatures b

(Cl
T̃T̃)1/2/(Cl

T̃T̃1Bl
2Nl

T̃T̃). Thus for a temperature power spe

tra that goes asCl
T̃T̃} l 22 and when detector noise is irre

evant, the optimal filter amounts to multiplying the tempe
tures byl, equivalent to taking derivatives. This is the reas
our previous method is not far from optimal in situatio
where we can neglect detector noise and we are not tryin
extract information from the damping tail of the CMB. A
we mention when we discussed the three point function,
small enough scales our treatment of the noise breaks d
because the power is dominated by the power generate
lensing. The Gaussian approximation for the noise will n
be valid.

FIG. 10. The result of the Monte Carlo experiment for the fo
point function together with result from the previous technique.
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V. CONCLUSIONS

We have studied the generation of power by gravitatio
lensing on small angular scales. We have shown that
power spectra of the anisotropies gives a measure of
spectrum of the deflection angle. The generated powe
correlated with the size of the large scale gradient.

The generation of power can be understood by study
the lensing of the primary anisotropies by a cluster of gal
ies. On the scales of a cluster the CMB can be assumed t
a simple gradient. Lensing generates a wiggle on top of
gradient that can be tens ofmK. This signal will be large
enough to be detected by a CMB experiment which targe
clusters with sufficient angular resolution,;1 arcmin.

The lensing effect produced by the large scale structur
the universe can be separated from other secondary effec
from intrinsic CMB anisotropies at the last scattering surfa
by measuring the cross correlation between the map of
large scale gradient and the map of the small scale po
We have shown that this statistic has only a slightly sma
signal to noise than the measurement of the small s
power itself. The power generated by lensing dominates o
the intrinsic fluctuations forl *4000.
.

n.
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We have calculated the three and four point functions
the lensing field in the small angle limit. The cross corre
tion between large and small scales as well as the stati
introduced in @6# are particular combinations of the fou
point function of the temperature field. We have calcula
explicitly the dependence of the three and four point fun
tions on the CMB and deflection angle power spectra as w
as on the shape of the configuration. It is fair to say that b
the statistic introduced here and those used in@6# can be
viewed as particular ways of compressing the information
the four point function that take into account the physic
intuition coming from our understanding of the lensing e
fect. The lensing effect predicts a particular dependence
the four point function on the configuration and scale th
can be used to separate it from other non-Gaussian sign
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