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Lensing of the CMB: Non-Gaussian aspects
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We study the generation of cosmic microwave backgro(@idB) anisotropies by gravitational lensing on
small angular scales. We show these fluctuations are not Gaussian. We prove that the power spectrum of the
tail of the CMB anisotropies on small angular scales directly gives the power spectrum of the deflection angle.
We show that the generated power on small scales is correlated with the large scale gradient. The cross
correlation between the large scale gradient and the small scale power can be used to test the hypothesis that
the extra power is indeed generated by lensing. We compute the three and four point functions of the tem-
perature in the small angle limit. We relate the non-Gaussian aspects presented in this paper as well as those
in our previous studies of the lensing effects on large scales to the three and four point functions. We interpret
the statistics proposed in terms of different configurations of the four point function and show how they relate
to the statistic that maximizes ti&N.

PACS numbegps): 98.80.Es, 95.85.Bh, 98.35.Ce, 98.70.Vc

[. INTRODUCTION limit, the generation of power on scales much smaller than
The lensing effect is expected to be the dominant nonpri-
The anisotropies in the cosmic microwave backgroundmordial contribution to the CMB anisotropies on small
(CMB) are thought to contain detailed information about thescales (~3000). It has been showjV] that an accurate
underlying cosmological model. In conventional models thedetermination of the power generated by lensing can help
anisotropies on most angular scales were created at the |d¥teak some of the parameter degeneracies in the CMB. In-
scattering surface, at a redshift of 1000. At these early terferometric observations of the anisotropies such as those
times the evolution of perturbations can be calculated accuthat will be carried out by the Cosmic Background Imager
rately with linear theory. The calculation of theoretical pre-(CBI) [8] are designed to make measurements at these angu-
dictions is almost straightforward, thus detailed observationéar scales.
of the microwave sky can, at least in principle, greatly con- To be able to use the observed power on small scales to
strain the cosmological model. We expect to be able to meabreak the degeneracies in the parameters one must be sure
sure many of the parameters of the cosmological model witfthat one is observing the lensing signal. We will show that
percent accuracjl]. the small scale power generated by gravitational lensing has
There are several physical processes that imprint anisotr@ very definite signature, it is correlated with the large scale
pies on the CMB after decoupling. Some of them will de-gradient. Regions of the sky where the large scale gradient is
grade our ability to learn about cosmology, such as forelarger will have more small scale power. The physical effect
ground emission from our galaxy. Others will allow us to can be understood easily in the case of a cluster of galaxies
constrain processes that happen after decoupling and help @9sing a smooth CMB gradient.
understand the evolution of our universe. For example the We will also compute the general three and four point
reionization of hydrogen by the ultraviolet light from the first function of the temperature field induced by lensing and
generation of objects leaves a distinct mark in the polarizashow that both the statistic discussed in this paper and those
tion of the CMB[2], Sunyaev-Zeldovich emission from hot proposed irf6] are particular subsets of the possible configu-
gas along the line of sight creates temperature anisotropiggtions of the four point function. We will construct the sta-
and the large scale structufeSS) of the universe deflects tistic that maximizes the signal to noise ratio.
the CMB photons, lensing the anisotrop[@s-6,9.
When studying the lensing effect produced by the large ||, GENERATION OF POWER ON SMALL SCALES
scale structure of the universe we are trying to detect lensing _ )
produced by random mass fluctuations, the LSS, on a ran- The measured temperature figld¢) can be expressed in
dom background image, the CMB. The characteristics of thé;erms of the unlensed CMB field at the last scattering surface
lensing effect depends on the relative size of the coherencg&(#) and the deflection angle of the CMB photof@8:
lengths of these two random fields. [If,6] we studied the
limit of a rapidly fluctuating CMB background being lensed T(O)=T(6+56)
by a slowly varying mass distribution. This is the appropriate
limit to recover the power spectrum of the projected mass
density on scales much larger than the coherence length of
the CMB, £~0.15°. In this paper we study the opposite
In this paper we are interested in the effect of modes of the
deflection angle of spatial wavelength much smaller than that
*Electronic address: matiasz@ias.edu of the unlensed CMB.
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FIG. 2. Temperature profile of a CMB gradient lensed by a

FIG. 1. lr‘ the upper panel we show a cluster lensing a baCk'(:Iuster. We tooKT,(660=13 uK. The gradient part has been sub-
ground gradient. The bottom panel shows the temperature measurgd .o oyt for clarity. The cluster profile was cut off at 4 arcmin.
for a fixed 6, as a function of, in the presence and absence of the

cluster. Points withg,>0 get deflected to a smallék, in the lens
plane and thus for a positive gradient they will have a lower tem-t0 some maximum radius after which the deflection will fall
perature in the lensed example than in the unlensed one. The oppas 18. In the central part of the cluster there might be a core.
site is true if6,<0. The typical value fordd is a fraction of an arcminute.
The effect of lensing can be understood by looking at Fig.
1. We focus on the temperature as a functiom\pfor a fixed
To understand the physics we will first consider the lens-6, . In the absence of lensing we would observe the gradient.
ing induced by a cluster of galaxies. We will discuss a veryOn the other hand the cluster will deflect the light rays so
simplified example in this paper, the reader interested in théhat for 6,>0 the rays are coming from a lower value @f
detectability of the effect for real cluster should look at Ref.in the last scattering surface. If the gradient is positive this
[12]. In most cases a cluster will subtend a few arcminutesmplies that for 6,>0 in the presence of the cluster we
on the sky. Over such a scale the primary anisotropies ar&ould observe a lower temperature than what would be ob-
expected to have negligible power so we will treat the un-served if the cluster was not there. The opposite is true for
lensed temperature field as a pure gradient. Without loss o, <0. Far away from the cluster the lensed temperature
generality we will take the gradient to be along thexxis  should coincide again with the gradient. Thus the cluster
with an amplitudeT,,. The observed temperature becomes creates a wiggle on top of the large scale gradient. This effect
~ is shown in Fig. 2. The size of this wiggleT§,56, thus it is
T(0)=Tyo(0y+66,). (20 proportional to the size of the gradient and the deflection
angle. For a cluster we can use the determined deflection to
For a spherically symmetric cluster at the origin the deflecinfer the mass and some information about the cluster pro-
tion is of the form file.
Note that the proposed signal is directly sensitive to the
50— — 5¢9f 3) deflection z_ingle and not_the shear. This is the only method
0 that has this property. It is usually argued that we can never
measure the deflection angle in a lensing system because we
For a singular isothermal spheré6=4m(a,/c)?D s/  do not know the original position of the background image.
Dos, with o, being the cluster velocity dispersioD, s is  In this case we avoid this argument because we do know
the distance from the lens to the source, @@ is that  what the background image is, it is a gradient which we can
between the observer and the source. In an Einstein DeSittefieasure on larger scales than the cluster. The other impor-
universeD, s/Dos~1/\/1+z, with z, being the redshift of tant point is that the effect is proportional to the gradient
the cluster and where we have assumed thats much  T,; this is the signature we will use in what follows to
smaller than the redshift of recombination. A singular iso-identify the lensing effect by the large scale structure in the
thermal profile will be a good approximation for a cluster uplimit we are studying.

A. A toy example
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B. Large scale structure E T T ™
For simplicity we will work in the small angle approxi- H1°°° 'f 100 & -
mation so that we can expand the temperature field in Fou 100 F— 2 F ]
rier modes instead of spherical harmonics. The Fourier com-E 10 : %
ponents are defined as > 3 \ . 108 | .
4] s \ o E 3
=~ 1 = } E 3
T(l)=f d*6e'" ’T(0), 0.1 F(a) B (Y S W
100 1000 100 1000 104
1 1
50(|):f d?ee' ?56(0). (4) . . . . .
1E
We assume both the CMB and the deflection angle are- : <66>/2 , 08 o
Gaussian random fields characterized by their power spectr&§ 1= g %ok
— r aYrL
~— 3 S L
N . 2D TT Q - foaf
(T()T(12)=(2m>28°(11)Cly Froel 1 Bt ]
- E 3 0.2 - -
(80(11)- 36(1,)) = (2m)?6°(1,) CTY (5) )t Y of L@
. 100 1000 104 10 100 1000
wherel,;,=1,+1,, C[" is the power spectrum of the primary 1 Toes

CMB anisotropies andC?° is the power spectrum of the
P ! P P FIG. 3. The panela) shows the lensed and unlensed tempera-

deflection angle. ture power spectra together withC{°/2. Panelb) the power spec-

por-:gnl'fsagf":geolrgr?sr,elz @&gef?eelgtlgpeangle the Fourier Com-tra of the derivative of the unlensed CMB fiel@) the spectra of

560 and (d) the cumulative power in the CMB derivative.

~ d2l’ B , be derived by taking the appropriate limit in the full expres-
T(')I"’('HJ (277)250“ )-VT(=1"). (6)  sion for the iensed CMB spectra as derived for example in
[9].

We want to calculate the power spectrum of the lensed CMB In F.'g' .3 we show the various power spectra so as to gain
field (C") on very small scales, scales much smaller tha some insight on the orders of magnitude. In pafelwe :
' ’ how the lensed and unlesed CMB spectra together with

the coherence length of the unlensed CMB gradient. We start ~ss o - . . )
by considering a small patch of the sky of sizewith L 0sCy°12, the limiting value in the damping tail. Several con

) X ditions must be met for Eq9) to be valid. A very important
small enough that the gradient of the unlensed field can bg, 5 that the power spectra of both the deflection angle and

considered constant so that the unlensed CMB map can Bge cMB derivative fall withl. This means that when we
approximated linearly. On these scales, the small scale varigsok at the power generated by lensing in a highode of
tions of the deflection angle generate additional power in thgne temperature, it could be dominated by a nedrbf/the
lensed CMB field. We defing,(6) =T, andT,(#)=T,oso  temperature derivative multiplied by a lovdeflection angle
that mode rather than by the power coming from a snha#m-
perature derivative mode multiplied by a higtdeflection
T(0)=T,0[ O+ 86,( 0)]+-|-y0[ Oy+56,(0)]. 7) mpdg. Equationj9) is only valid in the latter case. We attain
this limit because the power spectra of the deflection angle

For the Fourier modes at lardeve get falls more slowly withl than that of the CMB derivative. The
power in the deflection angle falls like a power ldWig.
T()=T,080x(1)+T,080,(1). (8)  3(0)], while that in the CMB derivative drops exponentially

[Fig. 3(b)]. As a consequence at a high enolighis always
Thus the power spectra of the lensed temperature is given tgasier to produce power by multiplying low frequency tem-

perature modes by high frequency deflection modesl| At

(TU)T(1R))=(2m)?8°(11) 5sC12, (9 >4000 this effect dominates, at lowioth effects compete.

Another condition is that we should apply Ef) for | values
with og= <-r)2(0+-r)2/0>_ For the standard cold dark matter large enough that most of the power in the unlensed deriva-
model (SCDM) og~2x10°uKrad '~13 uKarcmin t.  tive (contributing toos) comes from a lowet. Figure 3d)
Note that to obtain E(9) we have replaceﬁrfo andrr)z,o by shows that for SCDM most of the power in the derivative

their averages. This implies that we are measuring the pow&romes from scales<2000.

spectrum over a large _enough area of _the sky that there are Il CORRELATION BETWEEN SMALL

many patches over which the gradient is averaged. Equation AND LARGE SCALES

(9) is a very interesting result on its own, it shows that the

power in the tail of the CMB anisotropies directly gives the In the previous section we have shown that the power in
power spectrum of the deflection angle. This result can alsthe CMB anisotropies at large enougmeasures the power
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spectrum of the deflection angk®d. If we want to use the E T
small scale power to measure the fluctuations in the deflecg °% £
tion angle we need a way to determine that the power wef 3
observe is indeed produced by lensing and is not at the las 590 f
scattering surfacéi.e., it is due to a different underlying =~ -1000 = —— — T 5 "
primary anisotropies spectryror that it is not produced by o[ degrees]
another secondary effect. To be able to test this we need t
consider higher order statistics, we need to go beyond the 10F
power spectrum. T 5F
The crucial point we are going to use is that the power3 O
produced by lensing comes from large scale primary tem-* _‘12 3
perature modes promoted to highdoy the small scale de- :
flection of the photons. We will attempt to test the hypothesis
that the power we observe is generated by lensing by looking
at the correlation between the large scale temperature derive
tive and the small scale power. If we continue with the sim- g 100
plification that the gradient of the unlensed field is constant,®
when we high pass filter the temperature map we obtain &

"Tunlensed
. T}emed

Lol lenes iy

I d2| . egrees
TH(49)=flh2 e 1 0T(1) Aldcgrees]

2
s (277) FIG. 4. Example of the generation of power by gravitational

= = lensing in one dimension. The upper panel shows the unlensed tem-
~Tx00,(0)+T,66,(6), (10 perature and the result of filtering the lensedThe middle panel
shows the higH power generated by lensing. In the bottom we
show the square of the small scale power and the square of the large
scale gradientarbitrarily scalegl

wherel,; andl,, define aring il space and we have abused
notation and called#;( ) the high passed filtered deflection
angle. We will study the behavior of the squareTgf prop-

erly smoothed: (56°)
H(6)~——L(0). (19
o= [ Eowo-0The). @ | |
We have a very simple test to establish that the small

) scale power is generated by lensing, the small scale power
If we smooth the map over a scale bigger than that of théyas to be correlated with the large scale derivative. Instead, if
variations in the deflection angle but over whithandT,  the small scale power is Gaussian power already present at
remain constant, we can replaéé? and 605 by their aver-  the last scattering surface, different Fourier modes are uncor-
ages. It follows that the smoothed high passed filtered map igelated. In the Gaussian case if we constrdcind H with
approximately different modes I,;>1,) there will be no correlation be-
tween the two maps. In practice instead of smoothing the
(86?) = = high passed temperature map we work in Fourier space and
H(0)~ T(Tx+Ty)(0)- (12 correlate the low modes oﬂﬁ(ﬂ) with those of thel(6).
Equations(12) and(14) were obtained under simplifying

Only the modes with wave vectolg, <|<l,, contribute to ~@ssumptions, more general expressions can also be derived

the averagé 562 in Eq. (12). but we only show this limiting case to make the physics
We now look at the anisotropies on larger scales by apMore transparent. Comparison with simulations show that
plying a low pass filter to the temperature field, these expressions are good approximations in the regime of
interest. The procedure to simulate a lensed CMB map was
L 42 discussed in detail in Ref6]. We generate realizations of
TL(g):J e OT(1). (13) CMB and projected mass densiky and use a ray tracing
0(2m)? technic to produce a lensed CMB map.

We will explain the effect we are studying by first pre-

We compute the square of the gradient, senting a toy example in 1 dimension. We will consider a 2
dimensional universe so that the last scattering surface be-
L(O)=||VT|? comes a line. In the top panel of Fig. 4 we show the unlensed
L CMB field together with the low passed filteret] € 2000)
~(Tz+T))(0). (14 lensed anisotropies. It is clear that both curves trace each

other, although they are displaced. This is the consequence
Equations(12) and (14) show the maps ofZ and K trace  of the large scale modes of the deflection angle, but remem-
each other, ber we are after the power generated by the small scale
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FIG. 6. Panela) shows the ratiaC]*“/C|* for several different
FIG. 5. The upper panel on the left shows the lensed temperaings used to construck{. Panel(b) shows the cross correlation
ture field. The upper right panel shows the high passed temperaturgoefficient inl space.
Bottom left has gradient square and bottom right smoothed square
of high passed temperature. In Fig. 6@ we show the ratiaC/*“/C{* obtained in simula-
tions. We have usetl<2000 to constructZ, and several
modes of56. In the middle panel we show the high passeddifferent rings at highef for 4. The order of magnitude of
(I>6000) lensed CMB, the fluctuations in this panel are thethe ratio is consistent with E¢16), it remains constant over
result of lensing. The power is not distributed uniformly, thea wide range ofl but starts to fall once we approadh
fluctuations are larger where the derivative of the CMB in~2000. The first relation in Eq.16) is really C/**
the top panel is larger, as E(.2) indicates. This is the same =W,(56?)C[“/2 whereW, is some window function. The
physical effect we discussed in the cluster example. On therigin of the window can be understood as follows: let us
contrary in regions where the CMB is constant, surfacecall |, a high| mode of the deflection antf andl, two
brightness conservation implies that lensing does not creai@odes of the derivative. When we compute the gradient
any power. The bottom panel shows the square of the smadiquare these modes combine to give powdgat;+1,. In
scale temperature anisotropies and a scaled version of thie high passed case, we recover this component of the field
low | gradient to ease the comparison. by looking at the modes witl,+1; and —I,+1, so that
We can now look at the resultsrfa 2 dimensional last when we multiply them they give thk variations. Asl,
scattering surface shown in Fig. 5. The low passed gradierdecomes larger at least onelpbr |, also become larger and
map was constructed using scales2000 and the high because we are selecting only a ringl ispace for the high
passed temperature was constructed with mdde6000. passed map there are higher chances eithet; or —I,
The upper left panel shows the lensed CMB map while thet |, will fall outside the ring and we cannot reconstriigt
upper right panel has the high passed filtered field. It is cleago ad, gets larger the correlation between the two maps fall.
that the small scale power in not Gaussian and is higherhijs effect explains the windowV, is less important the
where the large scale derivative is higher. To make this evejider rings for the high passed mapg@mpare the high

more apparent the two bottom panels show thend ®  behavior of the 4008 12000 and 4006 8000 rings in Fig.
maps, the correlation is excellent. 6(a)].

The £ and’H maps only differ by a factot56%)/2 [Eq.
(15)], so their cross correlation defined a&s{(l,)L(l,))
:(277)25D(I12)C|}1‘£, is simply related to the power spec-
trum of the£ map (C[),

(567)
ce~ ek,
2\ 2
(50 e

CiHHN 4 |

(16)

In Fig. 6b) we show the correlation coefficient,
=C]**I\[(CT™'CFF). Note that the cross correlation for Idw
is very high, almost one. This proves our claim that on large
scales theC andH maps trace each other almost perfectly.
There are several reasons why the two maps do not correlate
exactly. First, although most of the power in the derivative of
the CMB comes from <2000 there is still about 5% addi-
tional power coming from highdr This degrades the cross-
correlation because some of the power on the high passed
map is coming from these modes of the derivative field. A
more extreme case is shown in the figure, where only modes
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with 1 <1000 were used to construct tfemap, the cross- This calculation coincides perfectly with the results of simu-
correlation in this case is significantly smaller. The otherlations. In the presence of detector noise the above expres-
. . . H ; LL LL LL LL ;
important effect is that some of the power in the highap ~ Sion generalizes t€;"—Ci~+ N, whereN;™ is the de-
is due to primary anisotropies, these modes are uncorrelatdgctor noise contribution calculated using E(f8) and (19)
with the low | derivative and thus reduce the cross correla-With the power spectrum of the detector noise.
tion coefficient. This effect is more important for the 4000 Let us now consideiC{"™. If the contribution to the
—8000 ring than for the 800012000 so the cross correla- power where Gaussian then the correlation functioft{ah
tion is smaller for the former. The 408012000 rings fall ~ real space would be
somewhere in the middle of this two cases. o2 5
We will calculateC, which can be done analytically. If (H(0)H(0))=(H")"+2C(0), (20)
we assume that only a Gaussian component is contributing WQhere
the low pass filtered field then it is possible tg calculate the
power spectra of the gradient squar€es || VT ||*. The cor- _/F =
relation function in real space for tonpoint! separated an CO=THOTu(D)cws
angled in the x direction gives :(277)_2f dzle”‘“OS(”IClﬁ
(L(0)L(0))=(L*)*+2[C3(0) +Cy(0)].  (17)
I 1dl ==
We have introducedCy,(6)=(Ty(0)T,(6)) and Cy(6) = flhl 5-C1 Jo(10). (21
=(T,(0)Ty(6)). They are given by
o The power spectrum becomes
Cx(0)=(Tx(0)Tx(0))cmp
HH _ 2
=(Zw)*ZJ'IleIe”'”C°S¢"I2C,ﬁ co2s, C, 47rf 0dOC=(0)Jy(16). (22
This expression only coincides with the results of simula-
_ j" ﬂlzcﬁ[‘] (16)—3,(16)] tions when either detector noise or intrinsic CMB anisotro-
4o T O 2 pies dominate the power in thaange used to construgt,
that is, if the unlensed power is Gaussian. In the idealized
— 1 [Co(6)—Ca(6)] detector-noise-free examples we have discussed above, this
2870 200 corresponds tdy,,<4000. Fortunately for the power gener-
ated by lensing, the power spectra of tHemap is a scaled

Cyy( g)zﬁy(o)’ry( 0))cmp version of the power spectrum df, thus it can be obtained
| using Eqgs.(16) and (21). Again in the presence of noise
=(277)‘2J ldzle”'“"s‘ﬁllzc,ﬁ i, Cl7— CI7H4 N[ with N[ calculated using E¢22) with
the detector noise power spectra.

To assess the signal to noise of our lensing signal we need

- fllf—l|zc|ﬁ[~]o(| 0)+3,(16)] to calculate the variance in the estimatorGff©:
04
. A dA
ne M f 2 _
= S1Ca(0)+ Co(0)] &~z & MO 23

where the integral is done over a small areaspace of size
Coy( a)zﬁ'x(oﬁ'y( 0))cme A, centered arou_ndi and A;=(2m)%/Q is the area of the
fundamental cell il space. We have denoté€ll the area of
sky observed.
If we assume that andH are Gaussian fields, we can
calculate the variance as

| . -
= (277)_2f g2l -0 cos) 2C " cos¢ sing,
=0, (18

R A
where Co(6) and C,(6) are defined as the integrals over Co\(Cl*)?]= Kf[(cfﬂz)hr cltcEA. (24)
13C TdI/27 weighted withJo(16) andJ,(16), respectively.

The constant part in Eq17) only contributes to thé  The ratioA/A; is the number of available modes one can use
=0 mode. The second term é&&N5(6) in the notation of to measure the cross correlation. It can be approximated by
[6]. The power spectra of the low pass filtered map is that o\, /A¢= f,(2] + 1) for a unit width ring. In Fig. 7 we show
S in [6], but with only the lowl modes included. Far#0, the variance in the cross correlation measured in simulations

normalized to the Gaussian prediction in E2¢). The agree-
oo PR ment is very good implying that we can use the Gaussian
Ci _ZWJ 0d6(Co+C32)Jo(16). 19 formula to compute the variance.
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FIG. 7. Ratio of variance of power spectrum measured in the

simulation to the predicted result assuming Gaussian fields.

To compute the tota®/N we want to combine the signal
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N
- (27)

Np lh2—1h1

Thus theS/N to measure the cross correlation is comparable
although always somewhat smaller than that to detect the
power directly. For example if we také =2000, |,

=4000 and ,,= 6000 thenS/N~ 2/5C,(S/N)p .

IV. THREE AND FOUR POINT FUNCTIONS
IN THE SMALL ANGLE LIMIT

In this paper and in our previous stud{és6,10 we have

investigated several ways of detecting the effect of gravita-
tional lensing on the CMB. As we have explained, this
amounts to trying to detect the distortions on the random

in all the | modes of the cross correlation that we can mearyvB maps created by the random distributions of the dark

sure. To do this we will comput¥=3,a,C** choosinga,
to maximize S/IN=[(X)2/Cov(X?)]"2 It is straightforward
to show thata, = C[*“/Co\{ (C[**)?] [10]. We then get

(C|H£)2 1/2
<l Cov (C[*)?]

S
N

={fsky2 (21+1)

1/2

ct
(25

X
[(1+NFCE) (L+NPY ) +cf

We have implicitly assumed rings of unit width.
We want to relate Eq25) to the S/N with which we can

measure the small scale power generated by lensing. It

straightforward to show using E_qélg), (22),_and the fact
thatC,~1 thatN]""//C]"'~(w; Y/CTT)2, hereC™" is the av-
eraged power in the bard;<I<l, andwT‘1 is the power

matter in the universe. IfL0] we used the integrated Sachs-
Wolfe (ISW) effect as a tracer of the dark matter distribution
and combinations of the CMB derivatives to measure the
effect of lensing. The cross correlation of these two effects
allowed us to gain information about the time evolution of
the gravitational potential. Our method combined the infor-
mation in particular configurations of the three point function
of the temperature. Other studies have used other combina-
tions of the bispectrum to detect the sigh4] and also cal-
culated the contributions to the bispectrum coming from
other secondary procesggs11].

In [6] we used the power spectrum of a quadratic combi-
nation of derivatives of the CMB to measure the power spec-
trum of the projected mass density This method was valid
in the limit in which we wanted to recover the long wave-
length modes ok from information in the small scale CMB.
This regime is analogous to weak lensing of background
galaxies. In essence the different estimates of the power
Spectrum ofk at different scales were obtained by combining
different configurations of the four point function of the
lensed temperature.

In the present paper we studied other configurations of the

spectrum of the detector noise, assumed to be white noisefour point function to illustrate the nature of the non-

We will consider the limit in whichw; ! is small enough
that NF“<C{* but is large enough that/"*>C[™". If the
noise were even lower, then ti8N for detecting the cross
correlation will be largeS/N~N? where N, is the total
number of cross correlations that can be measulgs,
~fglf. In the limit we are considering,

(26)

Gaussianities induced by lensing on small scales. The non-
Gaussian nature of the generated power manifested itself in
the correlations between the large scale gradient and the
small scale generated power.

In order to have a unified picture of the different statistics
we have proposed it is convenient to study directly the four
point function of the temperature field and a three point func-
tion which correlates two temperatures and another field
The field X stands for any field that cross correlates with
In our papef10] X=T but one can imagine doing this cor-
relation with other tracers of the mass, like the fluctuations of
the far-infrared backgrounfd.3].

We define the connected three and four point functions as

(XU TU)T(I3))e=(2m)28° (1129 Ta(l1,15,13),

; 2_ =~ =12
V\{here we have - mtrod_ucedS(N)P— Np/2(C, /wy7)%, th.e (T T T T(1,))e= (277)25D(|1234)T4(|1,|2,|3,|4).
signal to noise with which we can measure the power in the

bandl,;— 2. We callNp the number of modes that we can

use to estimate the power, which is related\o by

(28)
Gravitational lensing produces
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Ta(ly,15,13)=2C

ol gl
12 2 13 2
7 7

Tu(ly, 1 ls, 1) =ClTCrT

(|1+|3)'|1(|1+|3)'|2C55+(|1+ 1) - 11(l1+14)- |2C5‘5]

S S (R [PESTTE
+ permutations(5 terms proportional t@,TchlTST ,C|T1TC|T4T ,C|T2TC|T3T ,C|T2TC,T4T ,CLTCLT). (29
|
The unconnected part of the four point function also gets 2

, ) N d2l, d?, mx oz
corrections. To make the calculation of these terms fully  Var(¥)=Aq(2m)? | — — p4S)2Ci*clTC]T.
consistent up to second order in the deflection angle we need [ [
to also consider the contributions coming from the second (33
order in the expansion of E@l). The unconnected terms are

not relevant for our study so we will not write them down The power spectra in E¢33) must include the contribution
here. from detector noise. There are additional terms in the vari-

In our previous papers we introduced three variales, ance if the fieIdX_ and T had some cross _correlation_ before_
and S. We had defined them in terms of derivatives to thel€nsing. In practice these terms are unimportant if one is
temperature field. Equivalently we can write interested in measuring the cross correlatfi at large

angular scaleglow |), as was the case in our study/[it0].
d2l, This is so because most the information of lensing is en-
S(h= f —— (1= 1) - L T(I=1)T(y), coded in the high modes of the temperature, so it is effec-
(2m)? tively as if the integral ovel, in Eq. (32) is done over high
I modes while thd, integral only involves low. Thus the

d2l, terms that would involv€* are absent because there are no
Q(')ZJ 27T)2[(|X_|1X)|1X_(Iy_Ily)lly]T(I_ll)T(ll)’ pair of triangles in whichX and T are evaluated on the same
l.
£ The weight g that maximizes the S/IN is g
un- | Gyl 0l (=l T=ly T, *Tlla 2 J)f2CHTCL G Finally we get
v
_ S\? dal, T
£(1)= Q(1)cos24) +U(1) SN 24h), (—) it [ @ [
N (2m)? 2¢iclrclT
B(l)=—Q(l)sin(2¢y) +U(1)cod2¢). (30 “
[ MCEY?
When we average over the CMB random field we get =As d IlclxlXCielff
(8(h)eme=L(2m)?8°(N—2x(D]os, )
1 :J' d2|2 C’:I‘_’i‘_lzll—'_c’i‘.’:‘rlall
(E0))eme=—2x(l)os, cet ) am?| P2 TR g2
(B(1))cme=0. (31 1

NG R (34)

. 2CTT(1)C™(15)

We have introduced = [1d1/2712C".
To extract all the information in this three point function The power spectra in the denominator include the contribu-

we combine all possible configurations with a weightho-  tion from detector noiséamplified by the beam response

sen to maximize the signal to noise ratio. We define C,—C,+B2N,). The easiest way to calculame” is to use
o o a Monte Carlo technique. We used the implementation of the
g Ar [ d7lyd%l; (sl )X T T(L) VEGAS algorithm in Ref.[14].
S 2m?) A A Bz I X T() T(ls). The above formula can be compared to what we obtain
(320  using theS and& variables[10]. Equation(7) of [10] reads
For these mildly non-Gaussian maps, the variance can be S\2 4(CF)2 1 1
calculated by only taking the Gaussian part of the tempera- (N) =J I XX WA(1) WJr N—gg , (35
ture, so that | [ [
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0.01 7 —— 3 N e
F Montecarlo (PLANCK) . RS SO \
0001 | —————- Montecarlo (Ideal) - (a) i (b)
........... 01d (Ideal) P . FIG. 9. Quadrilaterals corresponding to the two limits discussed
- 7 in the text. Pane{a) corresponds to configurations relevant for the
0.0001 ¢ E cross correlation between the large scale gradient and the small
= scale power. Pandb) shows the configurations that enter in the
& 7] calculation ofS andé&.
\E 10-¢ | - 3
. : Planck satellite. There is another relevant consideration.
- . When computing the variance we assumed that the field was
1078 - = only mildly non-Gaussian and that we could take the un-
E 3 lensed temperature power spectrum to calculate it. This is
- e ] clearly not the case on small scales. As we have shown in
107 el = previous sections, on small scales the fluctuations become
£ T ] very non-Gaussian as most of the power is generated by
-7 ] lensing. We only consider modes witk:3000 for the cal-
108 ————— '1'0 " 0 culation ofCFff to partially take into account this effect.

FIG. 8. Comparison betwee@f'" and the noise of our old The four point function

method. We show the results for the Planck satellite and an ideal In the first part of this paper we have studied one particu-
experiment. For our old method there was no difference in the noistar physical limit when we are trying to recover information
between the Planck satellite and an ideal experiment on these aan the fluctuations of the mass distribution on scales much
gular scales. smaller than the coherence length of the CMB. To recover
this limit we have to consider a quadrilateral in which two
where W2(1) is a window that encapsulates the effect of sides are much smaller that the other . (a)]. The two
beam smearing. For low N and Nf¢ are constant and small sides correspond to the low pass filtered derivatives
satisfy, N"= 2N . while the largel correspond to the high passed filtered one.
In Fig. 8 we compare OF'" to W2(1)(1/N%5+1/N%).  We consider the case whekg,l,<I3~1,. As we noted be-
We show the results for two separate examples, an idedpre the power spectrum of the primary anisotropies de-
experiment with no noise and infinite resolution and thecreases exponentially, while that of the deflection angle is
Planck satellite. We focus on the large scale limit and for theonly as a power law. We conclude that of all the terms in Eq.
ideal experiment we only consider the information coming(29) only those explicitly written dominate:
from modes withl <3000. There are several salient features
of the comparison. Although the difference between the Uiyl )~2|3'|1|3'|2C55Cﬁcﬁ L Lol
methods is not so large for the Planck satellite it is much 4172734 12 R e
larger for the ideal experiment. This can be easily under- (37)
stood. In our previous method the power spectrum of the
CMB noise in this limit was where we approxima’[edl‘sjw Cl‘i‘s

B A different set of quadrilaterals dominate in the calcula-
f 15dI (CITT)Z tion of £ and S. Those variables extract information about
NSS=(27) (36) the large scalex fluctuations from small angular scale fluc-
! f I3dlcﬁ)2 tuations in the CMB. If we focus on modes of the tempera-
! ture on scales larger that the damping Iléi]:rT remains
approximately constant while the power spectra of the de-
It is clear from Eq.(36) that once we get into the damping flection angle falls. Moreove$ and £ are a combination of
tail where theC/" fall exponentially,NS no longer changes the derivatives of the CMB and the extra weigh the con-
which means that our method does not receive any informafibution to smaller scales. The power spectra@nd< are
tion from those modes. In contrast, E§4) shows that the dominated by the type of quadrilaterals shown in Fig)9
amplitude of theC]" cancels inC®' as long as the modes All the I's are large but the quadrilaterals are thin. The thin

had been measured with higsiN. Thus the new method diagonal cqrresponds © tlh@.f the x mg?e}?eigg recovered.
continues to extract information from modes in the damping?he terms in Eq(29) proportional toC, 'C, 'C” (wherel,

tail. In most practical cases this is not very important becausand |, represent the length of the sides dnglis the small
the detector noise quickly dominates in this regime and theliagonal dominate.

all methods downweight the modes. This explains why the To extract all the information in the four point function
difference between the two methods is not that large for theve can add all the quadrilaterals with an appropriate weight,
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A s fd2|ld2|2d2|3 S)TU)T)T(3)T(! S R AN AL
_W Al Al Al IB( ) (1) (2) (3) (4)1 X /’ 1
(39) T PLANCK S
E OLD ,:;"'
. IDEAL W ]
wherel,= — (I, +1,+13) andA, is the area ifl space we are 0.1k P 4
using. For the optimal filter that minimize¥N one getsg i 3
—~—~ ~—~ ~—~ ~—~ ,/ /./' :
«T,IC]{CJCIC[/, where we have assumed Gaussianity ¢, L /// e N
to compute the variance. For ti&N we get . 7 e E
o [ ’ 7 ]
5 0.001 Y 3
(5)2 At f g, Mtz el oo T S
S T 10°0L0% 3 =, - - e < :
N/ 242m) chlcliclclf 0.0001 F S /_/ -
[ /'/” e :
where the power spectra in the denominator should include wsl 7 yd 2
the contribution form detector noise. ./,“ i
We change integration variables in E§9) and write . f 7 // ]
10-¢ ; -
E e 3
s\? acr\® E S :
_ :Af—lf d2|1 - 107 LZ ......llo L .....l.(l)o L ....l.(.)loo L
e
N CIl 1
1 2 1 d2] 2] FIG. 10. The result of the Monte Carlo experiment for the four
=] = _J 2 3 point function together with result from the previous technique.
cef 24) (2m)? (2m)?
T2,y Iy s — 1y — 1) power generated by lensing is non-Gaussian so our estimate
4 3124513,

(40) of the variance of is not valid on smaller scales.
In the limit I,—0 the four point function becomes ap-

o ) ) proximately,
This is a useful change of variables because it makes the

integral resemble what we had in our old method. In this way
the limit I,—0 corresponds to quadrilaterals that have four
large sides but a small diagondl). Equation(6) of [5]

Cl" 2Cl Cl Ol 3(4C(7)?

Ta(li=lp 15 1, —li—ly)~—CHCHI2C?.  (42)

reads
s\2 ) (4C[*)2 To obtain Eq(42) we had to assume th&{‘“ is a decreasing
— AT 2 == e
(N) =As Jd = (4D function of | and thatC/}" ,~C/J and the equivalent for-
O'CI

mula forl;. Both of these assumptions break down in some
range ofl’s. For example C{“ has a peak at~100 and
whenl, is in the damping tale range, for finitg there might

In Fig. 10 we compare the resul@" in Eq. (40) with  pe corrections due to the difference betwe®fj ,, and
oci Eq. (41). The plot is qualitatively similar to Fig. 8 for the Cl?j We can still use this expression as a rough estimate to

three point function. While there are hardly any |mpr0ve-,[ry to compare how the optima compares with the weight

menltrs In our prgwc;us me'.thod Whﬁn we go fror:l the Pdlifndﬁsed by our previous method. In this limit and for the quad-
e o e e e Mot e aterls relevant for 1 s, h optnals e
) . : . lent to multiplying each of the temperatures by
mation from the damping tail. For the Planck satellite the "2z - 75 "5 23
situation is different, both the optimal method and our old(Ci )~7(C; "+ BiN; ). Thus for a temperature power spec-
method obtain a similar amount of information from the tra that goes a€/ |2 and when detector noise is irrel-
data. Even though the optimal method is able to get informaevant, the optimal filter amounts to multiplying the tempera-
tion from the damping tail in the ideal case, this is unimpor-tures byl, equivalent to taking derivatives. This is the reason
tant for the Planck satellite because the finite size of theur previous method is not far from optimal in situations
beam makes it impossible. The fact that our previous method/here we can neglect detector noise and we are not trying to
seems to have slightly less noise than the optimal methodxtract information from the damping tail of the CMB. As
whenl is a few hundred is most probably an artifact. Thewe mention when we discussed the three point function, on
noise in our old method was calculated using a Gaussiaesmall enough scales our treatment of the noise breaks down
approximation which we had seen breaking down slightly inbecause the power is dominated by the power generated by
our simulationg 6]. As for the three point function we only lensing. The Gaussian approximation for the noise will not
included modes of the temperature withki3000 as the be valid.

. -2 =2 -2 -2
with oc = 0'C|55+ Ucfg_'— Tese-
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V. CONCLUSIONS We have calculated the three and four point functions of

We have studied the aeneration of power b ravitationa[he lensing field in the small angle limit. The cross correla-
9 P Y9 ion between large and small scales as well as the statistics

lensing on small angular scales. We have shown that th|(?1troduced in[6] are particular combinations of the four

power spectra of the anisotropies gives a measure of thgoint function of the temperature field. We have calculated

spectrum of the deflection angle. The generated power i xplicitly the dependence of the three and four point func-

correlated with the size of the large scale gradient. tions on the CMB and deflection angle power spectra as well

The generation of power can be understood by studym%s on the shape of the configuration. It is fair to say that both

the lensing of the primary anisotropies by a cluster of galax—,[he statistic introduced here and those used6hcan be

I€s. On the SC?"GS ofa c'Iuster the CMB can be assumed to t3/‘?ewed as particular ways of compressing the information in
a simple gradient. Lensing generates a wiggle on top of th

gradient that can be tens gfK. This signal will be large the four point function that take into account the physical

4 . intuition coming from our understanding of the lensing ef-
enough to be detected by a CMB experiment which targete ect. The lensing effect predicts a particular dependence of

clusters with sufficient angular resolutior1 arcmin. O?e four point function on the configuration and scale that

The_ lensing effect produced by the large scale structure an be used to separate it from other non-Gaussian signals.
the universe can be separated from other secondary effects or

from intrinsic CMB anisotropies at the last scattering surface

by measuring thfa cross correlation between the map of the ACKNOWLEDGMENTS

large scale gradient and the map of the small scale power.

We have shown that this statistic has only a slightly smaller We are grateful to Uros Seljak and Wayne Hu for very
signal to noise than the measurement of the small scaleery useful discussions. M.Z. is supported by NASA through
power itself. The power generated by lensing dominates ovegrant HF-01116.01-98A from STScl, operated by AURA,
the intrinsic fluctuations fol=4000. Inc. under NASA contract NAS5-26555.

[1] G. Jungman, M. Kamionkowski, A. Kosowsky, and D. N. [6] M. Zaldarriaga and U. Seljak, Phys. Rev. B9, 123507
Spergel, Phys. Rev. Let?6, 1007 (1996; Phys. Rev. D54, (1999.
1332(1996; J. R. Bond, G. Efstathiou, and M. Tegmark, Mon. [7] R. B. Metcalf and J. Silk, Astrophys. J. Le#t92, L1 (1998.
Not. R. Astron. Soc291, 33 (1997; M. Zaldarriaga, D. N. [8] Information on CBI can be found at http://astro.caltech.edu/

Spergel, and U. Seljak, Astrophys.4B8, 1 (1997; M. Teg- ~tjp/CBl/abstract.html
mark, D. Eisenstein, W. Hu, and A. de Olivera Costagd. [9] U. Seljak, Astrophys. 63 1 (1996.
530, 133(2000. [10] U. Seljak and M. Zaldarriaga, Phys. Rev. &0, 043504
[2] M. Zaldarriaga, Phys. Rev. B5, 1822(1997. (1999.
[3] Fl.ggernardeu, Astron. Astrophyg32 15 (1997); 338 767 [11] A. Cooray and W. Hu, astro-ph/9910397.
4 E) M&G db dD.N. S | Phvs. Rev5B 103002 [12] U. Seljak and M. Zaldarriaga, astro-ph/9907254.
14] (1'999 oldberg and L. IN. Spergel, Fhys. Revos [13] L. Knox, Z. Haiman, and M. Zaldarriag@n preparation
[5] U. Seljak and M. Zaldarriaga, Phys. Rev. Le&2, 2636 [14] \livr;aszreésaibe::a Zugﬁng ?\l deegg)zes(Cambrldge University
(1999. ; ge, Eng ,

063510-11



