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Enlarged quintessence cosmology
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We show that the combination of a fluid with a bulk dissipative pressure and quintessence matter can
simultaneously drive an accelerated expansion phase and solve the coincidence problem of our current Uni-
verse. We then study some scenarios compatible with the observed cosmic acceleration.
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[. INTRODUCTION posed. Unfortunately it is not clear to what extent these fields
have the ability to solve the coincidence problem and, at the
In the wake of the recent measurements of distant explodsame time, drive the Universe to the current phase of accel-
ing stars, supernovae, the existence of negative-pressure d&tated expansion.
energy has begun to gain broad consideration. Using type la In any case, all these models overlook the fact that since
supernovae as standard candles to gauge the expansion of theé cosmic fluid consists in a mixture of different fluids a
Universe, observers have found evidence that the Universe f§ssipative pressure may naturally arise which, for expanding
acce|eratind1_3]_ A new component with Signiﬁcant nega- universes, is bound to further decrease the total pressure
tive pressure, called quintessence matt€ (atter for [16]. Recently it has been proposed that the CDM must self-
shord, will in fact cause the cosmic expansion to speed upjnteract to explain the structure of the halos of the galaxies
so the supernovae observations provide empirical support fad 7]—see howevef18]. This self-interaction leads naturally
a new form of energy with strong negative pres{[]_r,é_q_ to a viscous pressure whose magnitude will depend on the
Different forms for the quintessence energy have beernean free path of the CDM particles. On the other hand, it
proposed. They include a cosmological constént more has been suggested that dissipative fluids equivalently
generally a variable cosmological texna scalar field7], a  Particle production processesan drive a phase of acceler-
frustrated network of non-Abelian cosmic strings, and a frusated expansion—se@9] and references therein.
trated network of domain wallgl0,11]. All these proposals This paper investigates how the combined action of dissi-
assume th& matter behaves as a perfect fluid with a linearpative normal matter and a quintessence scalar field may lead
baryotropic equation of state, and so some effort has beel® the current accelerated expansion stage, and at the same
invested in determinating its adiabatic index at the preserfime provide a solution to the coincidence problem different
epoch—see e.g[f,12]. This new energy is to be added to from that relying on a tracker field. It is shown in Sec. Il that
the more familiar components: i.e., normal maﬂeminous the flat coincident solution is an attractor. Section Il delves
and dark plus radiation. The contribution of the radiation into the consequences brought about by a dissipative pres-
component is known to be negligible at the current epocture in the stress-energy tensor, i.e., it explores the dynamics

whereas the main contribution to the former comes from col®f quintessence-dissipative dark mat{€@DDM) models,
dark matterCDM) [13]. while Sec. IV briefly outlines some specific models. Finally,

However, QCDM modelgincluding those in which the Sec.V summarizes our findings. It should be understood that
quintessence energy is just the energy of the quantuﬁhis work mainly deals with the present and late Universe
vacuum find difficulties in explaining why the energy den- since it is precisely at these stages where the dynamic effects
sities of the CDM and) matter should be comparable today. of quintessence and dissipative pressure become important.
Since both energies redshift at different rates the condition¥/nits in whichc=8wG=kg=1 are used throughout.
of the early universe have to be set very carefully for both
energy densities to be of the same order today, though one
may always invoke some version or other of the anthropic
principle to soften the problem a bit. This is the coincidence This section shows that the Friedmann-Lamaitre-
problem[14]. Recently, a promising solution, for spatially Robertson-WalkefFLRW) universe filled with perfect nor-
flat metrics, based on the notion of “tracker fields,” fields mal matter plus quintessence fluid, corresponding to some
that roll down their potential according to an attractorlike scalar field governed by Klein-Gordon equation, cannot at
solution to the equations of motidi5,6,9, has been pro- the same time drive an accelerated expansion and solve the

coincidence problem. To solve it, without abandoning the
FLRW geometry, some additional contribution to the stress-

II. COSMOLOGICAL PROBLEMS

*Electronic address: chimento@df.uba.ar energy tensor, such as a bulk dissipative pressure, is needed.
"Electronic address: jakubi@df.uba.ar The overall stress-energy tensor of the cosmic fluid with-
*Electronic address: diego@ulises.uab.es out the dissipative pressure reads
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Tap=pUsUp+ Phap  (Nap=0ap+Ualp, URU,=—1), becomes asymptotically a constant. We shall therefore ex-
(1) plore the possibility of constant stable solutions in the
(2,Qn,,Q,) space.
wherep=py,+p4 andp=pny+p,. Herep, andp,, are the
energy density and pressure of the matter whose equation of
state isp,= (vm— 1)p, With adiabatic index in the interval
1<y,<2. Likewise p, and p,, the energy density and The combined measurements of the cosmic microwave
pressure of the minimally coupled self-interactiQgmatter  background temperature fluctuations and the distribution of
field ¢, i.e., galaxies on large scales seem to imply that the Universe may
be flat or nearly flaf4,21,23. Hence the interesting solution
@) at late times of Eq(8) is =1 (i.e., k=0), and so we
discard the solutioif)=0 as incompatible with observation.
The solutionQ=1 is asymptotically stable for expanding

are related by an equation of state similar to that of the maty hiverses H>0) provided that the conditiom/ 90 <0

ter, viz.,py=(v4=1)p,, SO that its adiabatic index is given pq\4q in 4 neighborhood d2 =1 and this impliesy< 2/3.
by Hence the matter stress violates the strong energy condition
o (SEQ p+3p=0 and as a consequence the Universe accel-
7(/):_2#, ©) erates its expansion, i.@/a=—(p+3p)/6>0.
P 12+V () Let us examine more closely the implications of the cur-
. i rent accelerated expansion for the QCDM model. Since the
where for non-negative potentialé($) one has €& y4<2.  mixture ofQ matter and perfect dark matter fluid violates the
The scalar field can be properly interpreted@matter pro-  ggc, y, must be low enough. Namely, singe<2/3, vy,
vided y,<1—see e.g[15]. As usual an overdot means de- > 1 andy,<ym, Eq.(10) implies y,<1y. Then, introduc-
rivative with respect to cosmic time. In genengj varies as  ing ) =1 in Eq.(9) we obtain
the Universe expands, and the same is trueyfgisince the
massive and massless components of the matter fluid redshift Q¢:3(y_ y4)Q4H, (11)
at different rates.
The Friedmann equation together with the energy conser- .
vation of the normal matter fluid and quintesserig#éein-  and thereforg} ,>0, i.e., (), will grow until the constraint
Gordon equationare (7) is saturated, giving),=1 in the asymptotic regime.
Thus the matter fluid yields a vanishing contribution to the
, k1 energy density of the Universe at large time. This implies
R+ = =3(mtpy) (k=10-1), (4)  that a flat FLRW universe driven by a mixture of normal
a perfect fluid and quintessence matter cannot both drive an
) accelerated expansion and solve the coincidence problem.
Pmt3HYmpm=0, () Therefore some other contribution must enter the stress-
energy tensor of the cosmic fluid, i.e., it must be “enlarged.”

A. The flatness problem and accelerated expansion

1., 1.,
Ps=50" V(D) Py=50"~V(@),

$+3Hp+V'=0, (6)
where H=a/a denotes the Hubble factor and the prime B. The coincidence problem
means derivative with respect t@. Introducing Q, As shown above we cannot have both the current accel-
=pmlpc, Ly, =pylpc, with pc.=3H? the critical den- erated expansion and the coincidence problem solved within
sity, and Q,=—k/(aH)? plus the definitionQ=Q,+,  amodel that assumes a perfect matter fluid and a quintessen-

the set of equation&})—(6) can be recast agf. [20]) tial scalar field. Things fare differently when a dissipative
pressure enters the play. Because of the FLRW metric, ve-
QutQy+Q=1, (7)  locity gradients causing shear viscosity and temperature gra-
dients leading to heat transport must be absent. Therefore the
0=0(Q-1)(3y-2)H, (8)  only admissible dissipative term corresponds to a bulk dissi-
pative pressurer. This quantity is always negative for ex-
N _ _ panding fluids(i.e., 7<0 so long asH>0) and may be
=12+ (3y=2) Q=37 JQAH, © understood either as a viscous pressure or as the effect of
wherey is the average adiabatic index given by particle production. On general grounds the former possibil-
ity is usually thought to give just a small contribution to the
YO= YOt ¥4 Q4 (100  overall pressure, however the impact of the latter is not so

much limited. The expression of the bulk stress when inter-
The following subsections investigate the flatness and copreted that way ism=—(pm+ pm)I'/3H whereI" denotes
incidence problems. The former will be solved if the solutionthe particle production rate. This process is dissipative in the
Q=1 to Eq.(8) becomes an attractor at late time. In its turn,sense that the produced particles imply an augmentation of
the coincidence problem will be solved if the rafib,/(),,  the phase space volume. A recent discussion about the inter-
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play between dissipative bulk pressure and cosmological par- _ T
ticle production can be found if23]. w=3Qm( Ym~™ Yot —

So the total stress-energy tensor of the cosmic medium, Pm
made up of a dissipative but otherwise normal fluid plus theaccordingly the solution)=1, Q4=0Q, is stable for the

H(Q 4o+ o). (18)

Q-matter fluid, reads class of models that satisfigs= yyn— v,+ (7/py,) <0 and
—0 for t—o0. Note that this coincides with the attractor
Tap=(pm+ Pyt PmT Pyt T)UaUp+ (Pt Pyt 77')9::1b(-1 é:ﬂondition (16).
In order to study the stability of the solutiors,,, and
A parallel calculation to that of the above leads to the corre{240 Whenk#0 it is advisable to derive a dynamic equation
sponding Einstein-Klein-Gordon field equations for the density ratio parameter
. s _ Qm
0=0(0-1)\3| y+ 2| -2|H, (13) “=a,

For this purpose we combine the logarithmic derivative of

and
with the definitions of(}, and(} , and the energy conserva-
) T tion equations(15) and (6)—the latter written in terms of
O4=12+|3 y-l—; -2 9—37¢]HQ¢, (149 p,. Ityields
instead of Eqs§8) and (9). The energy conservation of the gzg( Yo Vm—l) He. (19)
normal matter is Pm
] - To calculatey, we use Eq(15) together with Eqs(3), (4),
pmt3 ym+p— pmH=0. (15  and(6), obtaining
m
. ccinati _ T 1| 2H T 2 T
Owing to the presence of the dissipative bulk stress thecon;, . , * - /=° " (= _ "lq
. . . Y= Ym > T ¥m Ym k
straint y<<2/3 no longer has to be fulfilled for the solution pm Q4| 3H pm \3 Pm
Q=1 of Eq.(13) to be stable. Likewise, inspection of Eq. (20

(14) shows that wherf)=1 one can havd) ,<O0 just by

choosing the ratiomr/p sufficiently negative. Thereby the Introducing Eq.(20) in Eq. (19) we get

constraint(7) allows a nonvanishind), at large times. By 3Hel 20 - 2 -

contrast tracker fields based modélalid only when), €= — —t Yyt —+| 5= ym— —)Qk ,
=0) predict that(),,—0 asymptotically{15]. A fixed point 0y | 3H2 pm 3 Pm

solution of Eq.(13) is Q=1. Note that Eqs(7) and (14) (21

have fixed point solution& = Qo and2,=0, respec- perturbating this expression about the solutign

tively, when the partial adiabatic indices and the dissipative . - a .
pressure are related by O(1), (i.e., using the ansate=e€,+ & with |§|<1) we

obtain with the help of Eq(16)
Ymt - =Ye= T e (16) 5=— Q—¢(§— 7¢>QkH(€o+ D) (22)
The smallery,, the larger the dissipative effects. Let us near the attractor. Fof),>0 (negatively spatially curved
investigate the requirements imposed by the stability of thesaniverseg it follows that 6 decreases, i.e., the ratio
solutions. From Eq(13) we see thaty+w/p<2/3 must be  (Q,,/Q,), is a stable solution. Fof),<0 one has to go
fulfilled if the solutionQ=1 is to be asymptotically stable. beyond the linear perturbative regime and/or restrict the class
This condition, together with Eq16), leads to the additional of models as in the spatially flat case to determine the stabil-
constraint on the viscosity pressure ity of the solution. We defer this to a future research.
As we mentioned above, recently there have been some
2 claims that CDM must not be a perfect fluid because it ought
T3 7 Ym|Pm: (17 {0 self—interactwith a mean free path in the range 1 kpc
<|=<1 Mpc) if one wishes to explain the structure of the
which is negative for ordinary matter fluids. Also by virtue halos of galaxie$17]. In this light it is not unreasonable to
of Eqg. (11) and the first equality in Eq.16) we obtain from  think that this same interaction is the origin of the dissipative
Eq. (17) that y,<2/3. pressurer at cosmological scales. Bearing in mind that
In the special case of a spatially flat univerée=£1), the  =1/no, with n the number density of CDM particles awd
stability of the solutiond),, and )4, may be studied di- the interaction cross section, a simple estimation reveals that
rectly from Eq.(14). Namely, setting) ,= 40+ » and us-  at such scalesis lower than the Hubble distand¢é¢ ! and
ing Eq. (10) it follows that accordingly the fluid approximation we are using is valid.

063508-3



CHIMENTO, JAKUBI, AND PAVON PHYSICAL REVIEW D 62 063508

. QDDM ASYMPTOTIC ERA then v=(7H) ! is the number of relaxation times in a
Hubble time—for quasistatic expansionss proportional to
the number of particle interactions in a Hubble time. Perfect
fiuid behavior occurs in the limiv—, and a consistent
hydrodynamical description of the fluids requires 1. Thus

we are lead to assume thaltl is small and we propose a

Bulk viscosity arises typically in mixtures—either of dif-
ferent particles species, as in a radiative fluid, or of the sam
species but with different energies, as in a Maxwell-
Boltzmann gas. Physically, we can think @fas the internal

“friction” that sets in due to the different cooling rates in the |, asiperfect” expansion in bowers of L
expanding mixture. quasip Xpansion in powers :

Any dissipation in exact FLRW universes has to be scalar Let us show that the attractor solution of leading behavior
in nature, and in principle it may be modelled as a bulk®=1" Whe’? t—o, W'th. oa pOSItl\_/e-deflnlte constant, Is
viscosity effect within a nonequilibrium thermodynamic con5|ste.nt. n t.he guasiperfect regime. Indeed, by virtue of
theory such as Israel-Stewarf24,25. In that formulation, ~=9- (16) it implies y4=2/30 and
the transport equation for the bulk viscous pressure takes the

form 7 — i
. T
mHrm=—3{H-sm7 3H+ - T (23)  For approximately constanf,(ym=1 for CDM), we get
from Eq. (27)
where the positive-definite quantifystands for the phenom- o
enological coefficient of bulk viscosity, the temperature of T Pm
the fluid, andr the relaxation time associated to the dissipa- i 2. (28)

tive pressure—i.e., the time the system would take to reach

the thermodynamic equilibrium state if the velocity diver- yopce Eq.(24) becomes

gence were suddenly turned ¢#6]. Usually ¢ is given by

the kinetic theory of gases or a fluctuation-dissipation theo- 2

rem or both[27]. 'n'( 1- —) =—3(H, (29
Provided the factor within the square bracket in EZB) a

is small it can be approximated by the more manageable

. . 71
truncated transport equation and we get to leading order in

m+rw=—3¢H, (24) g:Qm()( Yen— %) H. (30)

widely used in the literature. This as well as EB3) meets
the requirements of causality and stability to be fulfilled by Then integration of Eq(15) yieldsp,=a %, the same scal-

any physically acceptable transport equati2]. ing law asp,,. Finally its insertion in Eq(4) leads back to
a=t“, showing the consistency of our assumptions. These
A. The quasiperfect regime results correspond to the lowest order in the quasiperfect
expansion.

Here we obtain an explicit expression for the leading be
havior of the attractor solution at late time. We begin by
writing the equation of motion for the Hubble factor that
follows from combining Eqs(13) and (15) with Eq. (24)

To go a step further we introduce the expansiorHah
powers ofy !

H=Ho(l+hpv 1+...) (31

|:|-i-3‘yHI'-|+7'7l

.3 : 3

e 2_°2 .
H+5(y+7y)H ggH} in Eq. (26), and assuming thdtr|<v 1, it follows the ap-
proximated solution

=0. (25

+ (1 3 >2H *1+3'
2 57| Tty Lol
t

3 -2 6\1
<&+_) | @2
t/ v

We next evaluate Eq10) on the attractor and insert it to-

gether with Eq(16) in Eg. (25) to obtain where 6 is an arbitrary integration constant. This expression
) reveals that the power law is an attractor solution and that for
4| H . - 3Ym., 3¢ o>1 [deceleration parametey=—(o—1)/0c<0], CDM
v ﬁ+37mH +H+ TH B ZQmOH_O' (26) viscosity provides an accelerated expansion scenario that

also solves the coincidence problem. It can be shownythat
Observation seems to rule out huge entropy productiooes not pick any correction of order! from the subdomi-
processes on large scales, otherwise the flux of gamma raysint term in Eq(32). Instead the first correction appears to
we witness should be much high@9]. Hence we shall as- the orderv~2t~2, and this fact shows the high degree of
sume that the viscous effects are not as large as that, baorrection of the approximation thag, takes a constant
however not altogether negligible. #fis the relaxation time, value in the late time regime.
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We note that this attractor solution works for any viscos- V() p2=C (37)
ity coefficient with leading behavio{30). In particular the

case/=\p, investigated 30,31, satisfies this require- \yith c>1 asy,<2/3. Potentials that satisfy this constraint

ment. have been investigated i83] and[34]. Then Eq.(6) be-
comes
B. Full causal corrections
Here we gauge the changes brought about by the full ¢ 3SH ~0 38)
transport equatioii23) on the expansion exponent obtained ¢ 1t2C
in the previous section. Using that equation and the viscosity
coefficient found in Eq(30) we get An interesting potential that meets this constraint is the
. - exponential potential
S +3 (3 rl+1 H+9 H3 | +H
VIR T2 pz 2|2 4 7m V() =V, exp —Ad), (39)
1., whereA andV, are constants. Now, integrating E§8) and
+—H*=0, (33 .
o using Eq.(37) we get
where, to estimate the corrections, we have assumed that in VoA?y,

1
the asymptotic regim@p", with r a positive-definite con- (=% |n2(Ty)+2 Int|. (40)
stant, and we have used tha},=egp/(1+ €p) in this re- ¢
gime. This power law relationship is the simplest way to
guarantee a positive heat capacity. Usually p, T and
the particle number density are equilibrium magnitudes
related by equations of state of the fopw p(T,n) andp
=p(T,n). Further the thermodynamic relation

(é’p) _ptp T

(9n_|_ n n

Hence ¢ slowly rolls down the exponential potential @s
x 1/t whent—o. Also we find thatC=(30—1)/2 with y,
=2/30<2/3 on the attractor, irrespective ¥f andA.

Perfect fluid QCDM models based on the exponential po-
tential are ruled out by observatiof§]. However we shall
ap demonstrate in the next secion that in the realm of QDDM
—) (39 models the exponential potential yields satisfactory results
It/ without any fine tuning of the parameters.

holds. This directly follows from the requirement that the
entropy is a state functiof82]. In the particular case of a
material fluid with p=p(T) and constant adiabatic index,  This section explores the dynamical evolution of a uni-
this relation imposes the constraint-(y—1)/y, so that 0 yerse filled with a viscous material fluid and a quintessence
<r<1/2 for 1=y=<2. Inserting Eq.(31) in Eq. (33), and  scalar field by resorting to models based on simple relation-
assuming thatr|<v»~1, we obtain the approximate solution ships for the nonequilibrium quantities. This allows us to
explore the large dissipative regime where the nonequilib-

IV. QDDM MODELS

o 2 3 1 3 rium pressure has a magnitude comparable with the energy
HZT 1+ - ;"' S\Yml5 =50 density. Recently tracker-field models with inverse power
potentials have attracted much intergldt,35. Here we will
14 2r+ 1) E l] (35) investigate some QDDM models with exponential potentials
30 tlvl” (39) such that for a wide range of initial conditions the scalar

field settles into an attractor solution that depends only upon
Comparison with Eq(32) shows that except whem=1, the  a few nonequilibrium thermodynamical parameters, address-
use of the complete transport equation leads to a slighting the coincidence problem.
slower rate of expansion at late time. Also, in this regime,

the equilibrium temperature decreasesTast 2 ~a 2'/7, A. Linear dissipative regime

The linear regim& = aH, with @ a constant in the inter-
val 0<a<1, arises for instance when the coefficient of bulk
By virtue of Eq.(10) the density parameter ratio can be viscosity takes the form of a radiating fluid. We further as-

C. Late Q-matter dynamics

written in terms of the adiabatic indices sume that the number of interactions of a generic CDM par-
ticle in a Hubble time is larger than unity so that the hydro-
= Y V¢ (36) dynamic regime is respected. Here we investigate models
Ym— Y with the limiting behaviory— 2/3 in the asymptotic regime.

We begin by inserting the ansatz
Since y,, is approximately constant, ify—vy, in the
asymptotic regime whea— ¢, theny,, must also approach _ E(1+ ) (41)
a constant value. Hence from E@®) we get the constraint Y73 X
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in Eq. (25). It is immediately seen that the latter splits in two Y([)
equations, namely

. ] 3 0.6 1
H+(2+v)HH+v 1—§a>H3=0, (42)
and 0.5
k. .k k
H?+ —|x+| 2H| H—— |+ 7} H*+— | |x=0.
a a a 0.4-
(43
Replacing the solution of Eq43) in Eq. (41) it follows
0.31
2 1+b a”” (44)
773 k+a?/’

whereb is an arbitrary integration constant. This expression
for y will be sensible only if it meets the restriction<Oy
<2. Then Eq.(42) can be transformed into a linear differ-
ential equation of second order whose general solution in 0.1
parametrized form is already knowW80,36. In particulara
«t?, where o is the largest root ofv(1—3a/2)o?—(2
+v)o+2=0, is an asymptotic stable solution in the limit

t—oo. Then, using Eq(10) together with the attractor con- 0 0.1 0.2 0.3 0.4 05 0.6
ditons Q=1, y=2/3 and Eq(16), we find Q
2(1— Qo) FIG. 1. The adiabatic index, of the quintessence scalar field
e To R (45 versus the matter density paramegey,, for CDM (y,=1), in the
m0 /m

asymptotic attractor regime for the model presented in Sec. IV A.

Hence the quintessence adiabatic indgx=2/30 depends

solely on the dark matter parametefs, and vy, in the Ht today[37], as they provide a lower bound far in a
asymptotic regime. Moreover, a relationship between the disdniverse that started only recently a phase of accelerated ex-
sipative parameters and v follows from Egs.(29) and(16), pansion and approaches asymptotically the attractor regime.
namely

2 2 B. Viscous speed regime
)( m 30)’

aIQmo<l—— (46)

Vo This scenario is somewhat more general than the previous

one. It arises when the bulk viscosity coefficient is given in
and the requirementw>0 implies ocv>2 or v>v,;, terms of the speed of the bulk viscous signdby [25]
=3vy4. The same condition arises from the requirement that
vy—2/3 whent—~. Equations(45) and (46) show thata
grows with v attaining amax= (3vm—2)Q/3(1— Q) in
the limit y—oo.

As it follows from Eq.(45) there will be accelerated ex-
pansion(i.e., 0>1) if Q.,0<2/3y,<2/3 and accordingly
we obtain a family of exact solutions describing a QDDM
scenario that solves the coincidence problem regardless
the value of the spatial curvature. Figure 1 depicts the depen-

gzvzympm- (47)

We further assume related toH by the same expression as
before, only that to simplify the calculations we now take
gpnstant. Hence Eq25) becomes

dence ofy, on Q,, wheny,=1. To make a rough estimate . v2Yme
of the cosmological parameters in the late time era we as- v *|h"+3yh'+3y"h—9=-—~=h/+h"+3yh=0,
sume that our Universe is currently close to the asymptotic (48)

attractor regime and use the current observational bounds.
After [6] the combination of low redshift, type la supernovae

and COBE measurements determiffes a spatially flat uni- ~ where
versg the range(),~0.3-0.4 andy,<0.6. From Fig. 1 it

is seen that our linear dissipative model satisfies comfortably K
these constraints. Fof2,,=0.3 we get from Eq.(45 o h=H2+ —, (49)
=1.27. This is fully consistent with current estimations of
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and the prime indicates derivative with respectzte Ina.
Here we have used the scale factt) as a coordinate
instead of the cosmological tintei.e., a is assumed to be a
monotonic function of.

Equation(48) is useful to study the asymptotic stability of

FLRW expansions at late time because it can be rewritten ian 0.6 1
terms of the derivative of a Lyapunov functi9¢88] ¢
d (1 3 ) 0.4
U™ Ym€
R /2+_ "4 _ 2
dn[zh IR h] 02
3 v2yme |’
- _ 1240 | A _ m 2 0 - 0
(3y+v)h +2 v'+yr—3 Tt e h<. (50) 0

If the adiabatic index does not decreases too fast in the at-
tractor era, a sufficient condition for the Lyapunov function
to have a minimum at the phase space pdmh()=(0,0) is 11

2 . - - - _
that v.>3v - Within this scenario th(_a param_eters of the mat_ FIG. 2. The adiabatic indexy,, of the quintessence scalar field
ter fluid can be taken as quasistatic, yielding an asymptoti-

Il stabl L The leading behavi fth uti versus the interaction rate parametert and the dissipative contri-
cally stable minimum. The [eading behavior of In€ SOIUoNS, oy 14 the sound speed for CDM (vy,,=1), in the asymptotic
in this quasistatic regime is given by

attractor regime, for the model presented in Sec. IV B.

2_ N A
h®=c,a™+c.a’, (52) of v andv. Note that the smalley,, the larger the dissipa-
wher tive contribution to the sound speed, and the smaller the
ere interaction rate.
1 2 2 1/
)\1’2=§{—(3y+ v) =[(3y— 1)+ 36y, °Qm] Y2 V. DISCUSSION
(52 We have proved that the coincidence problem and an ac-

) celerated expansion phase of FLRW cosmologies cannot be
and the parameters are evaluated at the asymptotic attractgnyitaneously addressed by the combined effect of a perfect
era. For large scale factor, E(51) reduces toh*=cia™  fiyid andQ matter. Nonetheless, if nonbaryonic dark matter
when —2<\;<0, and we have once again a power-lawhehaves as a dissipative fluid rather than a perfect one, both
accelerated cosmic expansion witt+ — 2/A;. Likewise Eq.  problems may find a simultaneous solution. This is so be-
(51 reduces tch®=cja™? for \;=—2, andh®=0 for \;  cause an imperfecti.e., dissipativg fluid expanding in a
< —2. These two latter cases correspond to linear evolutiong| Rw background possesses a negative pressuttet en-

at late time. ters the conservation equations of general relativity. The
Combining Eqgs(29) and(16) we get models presented here are compatible with a negative decel-
) ) eration parameter at present time. In consequence, the quin-
A+ (Bymt vIN+3y(v—3v9)=0 (53 tessence scenario becomes more robust when the dissipative

) ) ] effect of the nonequilibrium pressure arising in the CDM gas
and using Eq(10) together with the attractor constrair®s s gllowed into the picture.
=1 and Eq.(16) we find that\,=—3y, also satisfies Eq. Recently attempts have been made to constrain the state
(53). Hence we obtain equation of the cosmic fluids) matter includediby consid-
1 ering gravitational lensing effects, the mass power spectrum
_ 2 291/ and the anisotropies of the cosmic backgroud radiation
7¢_6{37m+ v=[(Bym=v)*+ 36y’ (54 [6,39]. We have sf?own specific models with a?n ample region
in the space of out-of-equilibrium thermodynamic param-
In this model the quintessence adiabatic index does deperaters satisfying this constraint in the asymptotic attractor re-
on the parameters and v while it is independent of the gime which our Universe may well be approaching. We
density parametef,,. We ploty,, in Fig. 2 for y,=1. As  would like to point out that the parameter space should be
it can be seen a wide range of the parameter spage) (s  enlarged by adding these out-of-equilibrium parameters
consistent with a spatially-flat accelerated universe and sucihen fitting the observational data. Unfortunately there is
thaty,<<0.6 for any value of},. This shows another solu- some degenerancy in the determination of these parameters
tion to the coincidence problem for any value of the spatialfrom constraints arising from the cosmological dynamics
curvature and compatible with accelerated expansion. It iglone. We hope, however, that simulations of structure for-
also seen that dissipative effects enlarge the parameter spamation that include dissipative effects will ultimately prove
where observational data have to be fitted, but global dyinstrumental in discriminating between different models.
namic information alone cannot determine the specific values In the attractor asymptotic regime the dissipative matter
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fluid and the scalar field contribute in a fixed ratio to theclustering in some degree and so it cannot be entirely
pressure and energy density along the QDDM era. This scesmooth. Therefore to respect the equivalence principle one
nario ameliorates the self-adjusting mo¢ié0] as it allows should assume that varies with position as well. Accord-

for 0<y<2 for a wide range of initial conditions. It also ingly one should be led to forsake the FLRW metric and take
improves on the tracking models as it solves the coincidencap some inhomogeneous one instead, except that in such a
problem in the late accelerated expansion phase. While keepase the computational effort is bound to be enormous and
ing a finite difference between the adiabatic indices of quinmost likely no exact solution will emerge.

tessence and matter fluid, this difference arises in the viscous Despite that th&-matter proposal cannot be regarded at
pressure. this moment with unreserved confidence, we feel this idea is

As it has been noted th@® matter proposal may entail

still worth exploring in the hope that the aforesaid difficulties

some undesirable effects such as the variation of the constamtay soon find a satisfactory answer.
of nature and the presence of unobserved long range forces.

Efforts to solve these difficulties by coupling the quintes-

sence field to the electromagnetic fi¢ll], and to the cur-

vature of the metri¢42], have been made. Further, a time
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