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Enlarged quintessence cosmology

Luis P. Chimento* and Alejandro S. Jakubi†

Departamento de Fı´sica, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

Diego Pavo´n‡

Departament de Fı´sica, Universidad Auto´noma de Barcelona, 08193 Bellaterra, Spain
~Received 28 February 2000; published 8 August 2000!

We show that the combination of a fluid with a bulk dissipative pressure and quintessence matter can
simultaneously drive an accelerated expansion phase and solve the coincidence problem of our current Uni-
verse. We then study some scenarios compatible with the observed cosmic acceleration.

PACS number~s!: 98.80.Hw, 04.20.Jb
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I. INTRODUCTION

In the wake of the recent measurements of distant exp
ing stars, supernovae, the existence of negative-pressure
energy has begun to gain broad consideration. Using typ
supernovae as standard candles to gauge the expansion
Universe, observers have found evidence that the Univer
accelerating@1–3#. A new component with significant nega
tive pressure, called quintessence matter (Q matter for
short!, will in fact cause the cosmic expansion to speed
so the supernovae observations provide empirical suppor
a new form of energy with strong negative pressure@1,4–9#.

Different forms for the quintessence energy have b
proposed. They include a cosmological constant~or more
generally a variable cosmological term!, a scalar field@7#, a
frustrated network of non-Abelian cosmic strings, and a fr
trated network of domain walls@10,11#. All these proposals
assume theQ matter behaves as a perfect fluid with a line
baryotropic equation of state, and so some effort has b
invested in determinating its adiabatic index at the pres
epoch—see e.g.,@6,12#. This new energy is to be added
the more familiar components: i.e., normal matter~luminous
and dark! plus radiation. The contribution of the radiatio
component is known to be negligible at the current epo
whereas the main contribution to the former comes from c
dark matter~CDM! @13#.

However, QCDM models~including those in which the
quintessence energy is just the energy of the quan
vacuum! find difficulties in explaining why the energy den
sities of the CDM andQ matter should be comparable toda
Since both energies redshift at different rates the conditi
of the early universe have to be set very carefully for b
energy densities to be of the same order today, though
may always invoke some version or other of the anthro
principle to soften the problem a bit. This is the coinciden
problem @14#. Recently, a promising solution, for spatial
flat metrics, based on the notion of ‘‘tracker fields,’’ field
that roll down their potential according to an attractorli
solution to the equations of motion@15,6,9#, has been pro-
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posed. Unfortunately it is not clear to what extent these fie
have the ability to solve the coincidence problem and, at
same time, drive the Universe to the current phase of ac
erated expansion.

In any case, all these models overlook the fact that si
the cosmic fluid consists in a mixture of different fluids
dissipative pressure may naturally arise which, for expand
universes, is bound to further decrease the total pres
@16#. Recently it has been proposed that the CDM must s
interact to explain the structure of the halos of the galax
@17#—see however@18#. This self-interaction leads naturall
to a viscous pressure whose magnitude will depend on
mean free path of the CDM particles. On the other hand
has been suggested that dissipative fluids~or equivalently
particle production processes! can drive a phase of accele
ated expansion—see@19# and references therein.

This paper investigates how the combined action of dis
pative normal matter and a quintessence scalar field may
to the current accelerated expansion stage, and at the s
time provide a solution to the coincidence problem differe
from that relying on a tracker field. It is shown in Sec. II th
the flat coincident solution is an attractor. Section III delv
into the consequences brought about by a dissipative p
sure in the stress-energy tensor, i.e., it explores the dyna
of quintessence-dissipative dark matter~QDDM! models,
while Sec. IV briefly outlines some specific models. Final
Sec. V summarizes our findings. It should be understood
this work mainly deals with the present and late Unive
since it is precisely at these stages where the dynamic eff
of quintessence and dissipative pressure become impor
Units in whichc58pG5kB51 are used throughout.

II. COSMOLOGICAL PROBLEMS

This section shows that the Friedmann-Lamait
Robertson-Walker~FLRW! universe filled with perfect nor-
mal matter plus quintessence fluid, corresponding to so
scalar field governed by Klein-Gordon equation, cannot
the same time drive an accelerated expansion and solve
coincidence problem. To solve it, without abandoning t
FLRW geometry, some additional contribution to the stre
energy tensor, such as a bulk dissipative pressure, is nee

The overall stress-energy tensor of the cosmic fluid wi
out the dissipative pressure reads
©2000 The American Physical Society08-1
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Tab5ruaub1phab ~hab5gab1uaub , uaua521!,
~1!

wherer5rm1rf andp5pm1pf . Hererm andpm are the
energy density and pressure of the matter whose equatio
state ispm5(gm21)rm with adiabatic index in the interva
1<gm<2. Likewise rf and pf , the energy density and
pressure of the minimally coupled self-interactingQ-matter
field f, i.e.,

rf5
1

2
ḟ21V~f!, pf5

1

2
ḟ22V~f!, ~2!

are related by an equation of state similar to that of the m
ter, viz.,pf5(gf21)rf , so that its adiabatic index is give
by

gf5
ḟ2

ḟ2/21V~f!
, ~3!

where for non-negative potentialsV(f) one has 0<gf<2.
The scalar field can be properly interpreted asQ matter pro-
vided gf,1—see e.g.,@15#. As usual an overdot means d
rivative with respect to cosmic time. In generalgf varies as
the Universe expands, and the same is true forgm since the
massive and massless components of the matter fluid red
at different rates.

The Friedmann equation together with the energy con
vation of the normal matter fluid and quintessence~Klein-
Gordon equation! are

H21
k

a2
5

1

3
~rm1rf! ~k51,0,21!, ~4!

ṙm13Hgmrm50, ~5!

f̈13Hḟ1V850, ~6!

where H[ȧ/a denotes the Hubble factor and the prim
means derivative with respect tof. Introducing Vm
[rm /rc , Vf ,[rf /rc , with rc[3H2 the critical den-
sity, and Vk[2k/(aH)2 plus the definitionV[Vm1Vf
the set of equations~4!–~6! can be recast as~cf. @20#!

Vm1Vf1Vk51, ~7!

V̇5V~V21!~3g22!H, ~8!

V̇f5@21~3g22!V23gf#VfH, ~9!

whereg is the average adiabatic index given by

gV5gmVm1gfVf . ~10!

The following subsections investigate the flatness and
incidence problems. The former will be solved if the soluti
V51 to Eq.~8! becomes an attractor at late time. In its tu
the coincidence problem will be solved if the ratioVf /Vm
06350
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becomes asymptotically a constant. We shall therefore
plore the possibility of constant stable solutions in t
(V,Vm ,Vf) space.

A. The flatness problem and accelerated expansion

The combined measurements of the cosmic microw
background temperature fluctuations and the distribution
galaxies on large scales seem to imply that the Universe
be flat or nearly flat@4,21,22#. Hence the interesting solutio
at late times of Eq.~8! is V51 ~i.e., k50), and so we
discard the solutionV50 as incompatible with observation
The solutionV51 is asymptotically stable for expandin

universes (H.0) provided that the condition]V̇/]V,0
holds in a neighborhood ofV51 and this impliesg,2/3.
Hence the matter stress violates the strong energy cond
~SEC! r13p>0 and as a consequence the Universe ac
erates its expansion, i.e.,ä/a52(r13p)/6.0.

Let us examine more closely the implications of the c
rent accelerated expansion for the QCDM model. Since
mixture ofQ matter and perfect dark matter fluid violates t
SEC, gf must be low enough. Namely, sinceg,2/3, gm
>1, andgf,gm , Eq. ~10! implies gf,g. Then, introduc-
ing V51 in Eq. ~9! we obtain

V̇f53~g2gf!VfH, ~11!

and thereforeV̇f.0, i.e.,Vf will grow until the constraint
~7! is saturated, givingVf51 in the asymptotic regime
Thus the matter fluid yields a vanishing contribution to t
energy density of the Universe at large time. This impl
that a flat FLRW universe driven by a mixture of norm
perfect fluid and quintessence matter cannot both drive
accelerated expansion and solve the coincidence prob
Therefore some other contribution must enter the stre
energy tensor of the cosmic fluid, i.e., it must be ‘‘enlarged

B. The coincidence problem

As shown above we cannot have both the current ac
erated expansion and the coincidence problem solved wi
a model that assumes a perfect matter fluid and a quintes
tial scalar field. Things fare differently when a dissipati
pressure enters the play. Because of the FLRW metric,
locity gradients causing shear viscosity and temperature
dients leading to heat transport must be absent. Therefore
only admissible dissipative term corresponds to a bulk di
pative pressurep. This quantity is always negative for ex
panding fluids~i.e., p,0 so long asH.0) and may be
understood either as a viscous pressure or as the effe
particle production. On general grounds the former possi
ity is usually thought to give just a small contribution to th
overall pressure, however the impact of the latter is not
much limited. The expression of the bulk stress when int
preted that way isp52(rm1pm)G/3H where G denotes
the particle production rate. This process is dissipative in
sense that the produced particles imply an augmentatio
the phase space volume. A recent discussion about the i
8-2
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ENLARGED QUINTESSENCE COSMOLOGY PHYSICAL REVIEW D62 063508
play between dissipative bulk pressure and cosmological
ticle production can be found in@23#.

So the total stress-energy tensor of the cosmic medi
made up of a dissipative but otherwise normal fluid plus
Q-matter fluid, reads

Tab5~rm1rf1pm1pf1p!uaub1~pm1pf1p!gab .
~12!

A parallel calculation to that of the above leads to the cor
sponding Einstein-Klein-Gordon field equations

V̇5V~V21!F3S g1
p

r D22GH, ~13!

and

V̇f5H 21F3S g1
p

r D22GV23gfJ HVf , ~14!

instead of Eqs.~8! and ~9!. The energy conservation of th
normal matter is

ṙm13S gm1
p

rm
D rmH50. ~15!

Owing to the presence of the dissipative bulk stress the c
straint g,2/3 no longer has to be fulfilled for the solutio
V51 of Eq. ~13! to be stable. Likewise, inspection of Eq

~14! shows that whenV51 one can haveV̇f,0 just by
choosing the ratiop/r sufficiently negative. Thereby th
constraint~7! allows a nonvanishingVm at large times. By
contrast tracker fields based models~valid only when Vk
50) predict thatVm→0 asymptotically@15#. A fixed point
solution of Eq.~13! is V51. Note that Eqs.~7! and ~14!
have fixed point solutionsVm5Vm0 andVf5Vf0, respec-
tively, when the partial adiabatic indices and the dissipat
pressure are related by

gm1
p

rm
5gf52

2Ḣ

3H2
. ~16!

The smallergf , the larger the dissipative effects. Let u
investigate the requirements imposed by the stability of th
solutions. From Eq.~13! we see thatg1p/r,2/3 must be
fulfilled if the solutionV51 is to be asymptotically stable
This condition, together with Eq.~16!, leads to the additiona
constraint on the viscosity pressure

p,S 2

3
2gmD rm , ~17!

which is negative for ordinary matter fluids. Also by virtu
of Eq. ~11! and the first equality in Eq.~16! we obtain from
Eq. ~17! that gf,2/3.

In the special case of a spatially flat universe (V51), the
stability of the solutionsVm0 and Vf0 may be studied di-
rectly from Eq.~14!. Namely, settingVf5Vf01v and us-
ing Eq. ~10! it follows that
06350
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v̇53VmS gm2gf1
p

rm
DH~Vf01v!. ~18!

Accordingly the solutionV51, Vf5Vf0 is stable for the
class of models that satisfiesc[gm2gf1(p/rm),0 and
c→0 for t→`. Note that this coincides with the attracto
condition ~16!.

In order to study the stability of the solutionsVm0 and
Vf0 whenk5” 0 it is advisable to derive a dynamic equatio
for the density ratio parameter

e[
Vm

Vf
.

For this purpose we combine the logarithmic derivative oe
with the definitions ofVm andVf and the energy conserva
tion equations~15! and ~6!—the latter written in terms of
rf . It yields

ė53S gf2gm2
p

rm
DHe. ~19!

To calculategf we use Eq.~15! together with Eqs.~3!, ~4!,
and ~6!, obtaining

gf5gm1
p

rm
2

1

Vf
F 2Ḣ

3H2
1gm1

p

rm
1S 2

3
2gm2

p

rm
DVkG .

~20!

Introducing Eq.~20! in Eq. ~19! we get

ė52
3He

Vf
F 2Ḣ

3H2
1gm1

p

rm
1S 2

3
2gm2

p

rm
DVkG ,

~21!

and perturbating this expression about the solutione0
;O(1), ~i.e., using the ansatze5e01d with udu!1) we
obtain with the help of Eq.~16!

ḋ52
3

Vf
S 2

3
2gfDVkH~e01d! ~22!

near the attractor. ForVk.0 ~negatively spatially curved
universes! it follows that d decreases, i.e., the rati
(Vm /Vf)0 is a stable solution. ForVk,0 one has to go
beyond the linear perturbative regime and/or restrict the c
of models as in the spatially flat case to determine the sta
ity of the solution. We defer this to a future research.

As we mentioned above, recently there have been so
claims that CDM must not be a perfect fluid because it ou
to self–interact~with a mean free path in the range 1 kp
< l<1 Mpc) if one wishes to explain the structure of th
halos of galaxies@17#. In this light it is not unreasonable to
think that this same interaction is the origin of the dissipat
pressurep at cosmological scales. Bearing in mind thatl
51/ns, with n the number density of CDM particles ands
the interaction cross section, a simple estimation reveals
at such scalesl is lower than the Hubble distanceH21 and
accordingly the fluid approximation we are using is valid.
8-3
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CHIMENTO, JAKUBI, AND PAVÓN PHYSICAL REVIEW D 62 063508
III. QDDM ASYMPTOTIC ERA

Bulk viscosity arises typically in mixtures—either of di
ferent particles species, as in a radiative fluid, or of the sa
species but with different energies, as in a Maxwe
Boltzmann gas. Physically, we can think ofp as the internal
‘‘friction’’ that sets in due to the different cooling rates in th
expanding mixture.

Any dissipation in exact FLRW universes has to be sca
in nature, and in principle it may be modelled as a bu
viscosity effect within a nonequilibrium thermodynam
theory such as Israel-Stewart’s@24,25#. In that formulation,
the transport equation for the bulk viscous pressure takes
form

p1tṗ523zH2
1

2
ptF3H1

ṫ

t
2

ż

z
2

Ṫ

T
G , ~23!

where the positive-definite quantityz stands for the phenom
enological coefficient of bulk viscosity,T the temperature o
the fluid, andt the relaxation time associated to the dissip
tive pressure—i.e., the time the system would take to re
the thermodynamic equilibrium state if the velocity dive
gence were suddenly turned off@26#. Usually z is given by
the kinetic theory of gases or a fluctuation-dissipation th
rem or both@27#.

Provided the factor within the square bracket in Eq.~23!
is small it can be approximated by the more managea
truncated transport equation

p1tṗ523zH, ~24!

widely used in the literature. This as well as Eq.~23! meets
the requirements of causality and stability to be fulfilled
any physically acceptable transport equation@28#.

A. The quasiperfect regime

Here we obtain an explicit expression for the leading
havior of the attractor solution at late time. We begin
writing the equation of motion for the Hubble factor th
follows from combining Eqs.~13! and ~15! with Eq. ~24!

Ḧ13gHḢ1t21F Ḣ1
3

2
~g1tġ !H22

3

2
zHG

1
k

a2 F S 12
3

2
g D ~2H2t21!1

3

2
ġG50. ~25!

We next evaluate Eq.~10! on the attractor and insert it to
gether with Eq.~16! in Eq. ~25! to obtain

n21S Ḧ

H
13gmḢ D 1Ḣ1

3gm

2
H22

3z

2Vm0
H50. ~26!

Observation seems to rule out huge entropy produc
processes on large scales, otherwise the flux of gamma
we witness should be much higher@29#. Hence we shall as
sume that the viscous effects are not as large as that,
however not altogether negligible. Ift is the relaxation time,
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then n5(tH)21 is the number of relaxation times in
Hubble time—for quasistatic expansionsn is proportional to
the number of particle interactions in a Hubble time. Perf
fluid behavior occurs in the limitn→`, and a consisten
hydrodynamical description of the fluids requiresn.1. Thus
we are lead to assume thattH is small and we propose
‘‘quasiperfect’’ expansion in powers ofn21.

Let us show that the attractor solution of leading behav
a.ts when t→`, with s a positive-definite constant, i
consistent in the quasiperfect regime. Indeed, by virtue
Eq. ~16! it implies gf.2/3s and

p

rm
.2S gm2

2

3s D . ~27!

For approximately constantgm (gm51 for CDM!, we get
from Eq. ~27!

ṗ

p
.

ṙm

rm
.22

H

s
. ~28!

Hence Eq.~24! becomes

pS 12
2

ns D.23zH, ~29!

and we get to leading order inn21

z.Vm0S gm2
2

3s DH. ~30!

Then integration of Eq.~15! yieldsrm.a22/s, the same scal-
ing law asrf . Finally its insertion in Eq.~4! leads back to
a.ts, showing the consistency of our assumptions. Th
results correspond to the lowest order in the quasiper
expansion.

To go a step further we introduce the expansion ofH in
powers ofn21

H5H0~11h1n211••• ! ~31!

in Eq. ~26!, and assuming thatu ṫu!n21, it follows the ap-
proximated solution

H.
s

t F11S 3gms22

s
1

u

t D 1

nG , ~32!

whereu is an arbitrary integration constant. This express
reveals that the power law is an attractor solution and that
s.1 @deceleration parameterq52(s21)/s,0#, CDM
viscosity provides an accelerated expansion scenario
also solves the coincidence problem. It can be shown thagf
does not pick any correction of ordert21 from the subdomi-
nant term in Eq.~32!. Instead the first correction appears
the ordern22t22, and this fact shows the high degree
correction of the approximation thatgf takes a constan
value in the late time regime.
8-4
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ENLARGED QUINTESSENCE COSMOLOGY PHYSICAL REVIEW D62 063508
We note that this attractor solution works for any visco
ity coefficient with leading behavior~30!. In particular the
casez}Arm, investigated in@30,31#, satisfies this require
ment.

B. Full causal corrections

Here we gauge the changes brought about by the
transport equation~23! on the expansion exponent obtain
in the previous section. Using that equation and the visco
coefficient found in Eq.~30! we get

n21H Ḧ

H
2

112r

2

Ḣ2

H2
1

3

2 FgmS 3

2
2r D11GḢ1

9

4
gmH3J 1Ḣ

1
1

s
H250, ~33!

where, to estimate the corrections, we have assumed th
the asymptotic regimeT}r r , with r a positive-definite con-
stant, and we have used thatrm.e0r/(11e0) in this re-
gime. This power law relationship is the simplest way
guarantee a positive heat capacity. Usuallyp, r, T and
the particle number densityn are equilibrium magnitudes
related by equations of state of the formr5r(T,n) and p
5p(T,n). Further the thermodynamic relation

S ]r

]nD
T

5
r1p

n
2

T

n S ]p

]TD
n

~34!

holds. This directly follows from the requirement that th
entropy is a state function@32#. In the particular case of a
material fluid with r5r(T) and constant adiabatic index
this relation imposes the constraintr 5(g21)/g, so that 0
<r<1/2 for 1<g<2. Inserting Eq.~31! in Eq. ~33!, and
assuming thatu ṫu!n21, we obtain the approximate solutio

H.
s

t H 11F2
2

s
1

3

2
XgmS 1

2
2r 2

3

2
s D

111
2r 11

3s
C1C

t G 1

nJ . ~35!

Comparison with Eq.~32! shows that except whens.1, the
use of the complete transport equation leads to a slig
slower rate of expansion at late time. Also, in this regim
the equilibrium temperature decreases asT;t22r;a22r /s.

C. Late Q-matter dynamics

By virtue of Eq. ~10! the density parameter ratio can b
written in terms of the adiabatic indices

e5
g2gf

gm2g
. ~36!

Since gm is approximately constant, ifg→g0 in the
asymptotic regime whene→e0, thengf must also approach
a constant value. Hence from Eq.~3! we get the constraint
06350
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V~f!/ḟ2.C ~37!

with C.1 asgf,2/3. Potentials that satisfy this constrai
have been investigated in@33# and @34#. Then Eq.~6! be-
comes

f̈

ḟ
1

3H

112C
.0. ~38!

An interesting potential that meets this constraint is
exponential potential

V~f!5V0 exp~2Af!, ~39!

whereA andV0 are constants. Now, integrating Eq.~38! and
using Eq.~37! we get

f~ t !.
1

A F ln
V0A2gf

2~22gf!
12 ln t G . ~40!

Hencef slowly rolls down the exponential potential asḟ
}1/t when t→`. Also we find thatC.(3s21)/2 with gf
.2/3s,2/3 on the attractor, irrespective ofV0 andA.

Perfect fluid QCDM models based on the exponential
tential are ruled out by observations@6#. However we shall
demonstrate in the next secion that in the realm of QDD
models the exponential potential yields satisfactory res
without any fine tuning of the parameters.

IV. QDDM MODELS

This section explores the dynamical evolution of a u
verse filled with a viscous material fluid and a quintesse
scalar field by resorting to models based on simple relati
ships for the nonequilibrium quantities. This allows us
explore the large dissipative regime where the nonequi
rium pressure has a magnitude comparable with the en
density. Recently tracker-field models with inverse pow
potentials have attracted much interest@15,35#. Here we will
investigate some QDDM models with exponential potenti
~39! such that for a wide range of initial conditions the sca
field settles into an attractor solution that depends only u
a few nonequilibrium thermodynamical parameters, addre
ing the coincidence problem.

A. Linear dissipative regime

The linear regimez5aH, with a a constant in the inter-
val 0,a,1, arises for instance when the coefficient of bu
viscosity takes the form of a radiating fluid. We further a
sume that the number of interactions of a generic CDM p
ticle in a Hubble time is larger than unity so that the hydr
dynamic regime is respected. Here we investigate mod
with the limiting behaviorg→2/3 in the asymptotic regime
We begin by inserting the ansatz

g5
2

3
~11x! ~41!
8-5



o

io

r-

it
-

di

ha

-

M
s
e

e
a

ot
nd
ae

b

of

ex-
ime.

ious
in

s

d

A.
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in Eq. ~25!. It is immediately seen that the latter splits in tw
equations, namely

Ḧ1~21n!HḢ1nS 12
3

2
a DH350, ~42!

and

FH21
k

a2G ẋ1F2HS Ḣ2
k

a2D 1t21S H21
k

a2D Gx50.

~43!

Replacing the solution of Eq.~43! in Eq. ~41! it follows

g5
2

3 S 11b
a22n

k1ȧ2D , ~44!

whereb is an arbitrary integration constant. This express
for g will be sensible only if it meets the restriction 0<g
<2. Then Eq.~42! can be transformed into a linear diffe
ential equation of second order whose general solution
parametrized form is already known@30,36#. In particulara
}ts, where s is the largest root ofn(123a/2)s22(2
1n)s1250, is an asymptotic stable solution in the lim
t→`. Then, using Eq.~10! together with the attractor con
ditions V51, g52/3 and Eq.~16!, we find

s5
2~12Vm0!

223Vm0gm
. ~45!

Hence the quintessence adiabatic indexgf52/3s depends
solely on the dark matter parametersVm and gm in the
asymptotic regime. Moreover, a relationship between the
sipative parametersa andn follows from Eqs.~29! and~16!,
namely

a5Vm0S 12
2

ns D S gm2
2

3s D , ~46!

and the requirementa.0 implies sn.2 or n.nmin
53gf . The same condition arises from the requirement t
g→2/3 when t→`. Equations~45! and ~46! show thata
grows with n attaining amax5(3gm22)Vm/3(12Vm) in
the limit n→`.

As it follows from Eq.~45! there will be accelerated ex
pansion~i.e., s.1) if Vm0,2/3gm,2/3 and accordingly
we obtain a family of exact solutions describing a QDD
scenario that solves the coincidence problem regardles
the value of the spatial curvature. Figure 1 depicts the dep
dence ofgf on Vm whengm51. To make a rough estimat
of the cosmological parameters in the late time era we
sume that our Universe is currently close to the asympt
attractor regime and use the current observational bou
After @6# the combination of low redshift, type Ia supernov
and COBE measurements determines~for a spatially flat uni-
verse! the rangeVm;0.320.4 andgf,0.6. From Fig. 1 it
is seen that our linear dissipative model satisfies comforta
these constraints. ForVm50.3 we get from Eq.~45! s
.1.27. This is fully consistent with current estimations
06350
n

in

s-

t

of
n-

s-
ic
s.

ly

Ht today @37#, as they provide a lower bound fors in a
universe that started only recently a phase of accelerated
pansion and approaches asymptotically the attractor reg

B. Viscous speed regime

This scenario is somewhat more general than the prev
one. It arises when the bulk viscosity coefficient is given
terms of the speed of the bulk viscous signalv by @25#

z

t
5v2gmrm . ~47!

We further assumet related toH by the same expression a
before, only that to simplify the calculations we now taken
constant. Hence Eq.~25! becomes

n21Fh913gh813g8h29
v2gme

11e
hG1h813gh50,

~48!

where

h[H21
k

a2
, ~49!

FIG. 1. The adiabatic indexgf of the quintessence scalar fiel
versus the matter density parameterVm , for CDM (gm51), in the
asymptotic attractor regime for the model presented in Sec. IV
8-6
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and the prime indicates derivative with respect toh[ ln a.
Here we have used the scale factora(t) as a coordinate
instead of the cosmological timet, i.e., a is assumed to be a
monotonic function oft.

Equation~48! is useful to study the asymptotic stability o
FLRW expansions at late time because it can be rewritte
terms of the derivative of a Lyapunov function@38#

d

dh H 1

2
h821

3

2 Fg81gn23
v2gme

11e Gh2J
52~3g1n!h821

3

2 Fg81gn23
v2gme

11e G8h2. ~50!

If the adiabatic index does not decreases too fast in the
tractor era, a sufficient condition for the Lyapunov functi
to have a minimum at the phase space point (h,h8)5(0,0) is
thatn.3v2. Within this scenario the parameters of the m
ter fluid can be taken as quasistatic, yielding an asympt
cally stable minimum. The leading behavior of the solutio
in this quasistatic regime is given by

h25c1al11c2al2, ~51!

where

l1,25
1

2
$2~3g1n!6@~3g2n!2136gmv2Vm#1/2%

~52!

and the parameters are evaluated at the asymptotic attr
era. For large scale factor, Eq.~51! reduces toh2.c1al1

when 22,l1,0, and we have once again a power-la
accelerated cosmic expansion withs522/l1. Likewise Eq.
~51! reduces toh2.c1a22 for l1522, andh2.0 for l1
,22. These two latter cases correspond to linear evoluti
at late time.

Combining Eqs.~29! and ~16! we get

l21~3gm1n!l13gm~n23v2!50 ~53!

and using Eq.~10! together with the attractor constraintsV
51 and Eq.~16! we find thatl1523gf also satisfies Eq
~53!. Hence we obtain

gf5
1

6
$3gm1n2@~3gm2n!2136gmv2#1/2%. ~54!

In this model the quintessence adiabatic index does dep
on the parametersn and v while it is independent of the
density parameterVm . We plotgf in Fig. 2 for gm51. As
it can be seen a wide range of the parameter space (n,v) is
consistent with a spatially-flat accelerated universe and s
thatgf,0.6 for any value ofVm . This shows another solu
tion to the coincidence problem for any value of the spa
curvature and compatible with accelerated expansion. I
also seen that dissipative effects enlarge the parameter s
where observational data have to be fitted, but global
namic information alone cannot determine the specific val
06350
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-
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of n andv. Note that the smallergf , the larger the dissipa
tive contribution to the sound speed, and the smaller
interaction rate.

V. DISCUSSION

We have proved that the coincidence problem and an
celerated expansion phase of FLRW cosmologies canno
simultaneously addressed by the combined effect of a per
fluid andQ matter. Nonetheless, if nonbaryonic dark mat
behaves as a dissipative fluid rather than a perfect one,
problems may find a simultaneous solution. This is so
cause an imperfect~i.e., dissipative! fluid expanding in a
FLRW background possesses a negative pressurep that en-
ters the conservation equations of general relativity. T
models presented here are compatible with a negative de
eration parameter at present time. In consequence, the q
tessence scenario becomes more robust when the dissip
effect of the nonequilibrium pressure arising in the CDM g
is allowed into the picture.

Recently attempts have been made to constrain the s
equation of the cosmic fluids (Q matter included! by consid-
ering gravitational lensing effects, the mass power spect
and the anisotropies of the cosmic backgroud radiat
@6,39#. We have shown specific models with an ample reg
in the space of out-of-equilibrium thermodynamic para
eters satisfying this constraint in the asymptotic attractor
gime which our Universe may well be approaching. W
would like to point out that the parameter space should
enlarged by adding these out-of-equilibrium paramet
when fitting the observational data. Unfortunately there
some degenerancy in the determination of these param
from constraints arising from the cosmological dynam
alone. We hope, however, that simulations of structure f
mation that include dissipative effects will ultimately prov
instrumental in discriminating between different models.

In the attractor asymptotic regime the dissipative ma

FIG. 2. The adiabatic indexgf of the quintessence scalar fiel
versus the interaction rate parametern21 and the dissipative contri-
bution to the sound speedv, for CDM (gm51), in the asymptotic
attractor regime, for the model presented in Sec. IV B.
8-7
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fluid and the scalar field contribute in a fixed ratio to t
pressure and energy density along the QDDM era. This
nario ameliorates the self-adjusting model@40# as it allows
for 0,g,2 for a wide range of initial conditions. It als
improves on the tracking models as it solves the coincide
problem in the late accelerated expansion phase. While k
ing a finite difference between the adiabatic indices of qu
tessence and matter fluid, this difference arises in the visc
pressure.

As it has been noted theQ matter proposal may enta
some undesirable effects such as the variation of the con
of nature and the presence of unobserved long range fo
Efforts to solve these difficulties by coupling the quinte
sence field to the electromagnetic field@41#, and to the cur-
vature of the metric@42#, have been made. Further, a tim
dependent but otherwise smooth scalar field such as t
studied so far, are somehow unphysical as they violate
principle of equivalence—theQ matter must experienc
rd

et

tt

il-

i-

-

s.

’’

06350
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clustering in some degree and so it cannot be entir
smooth. Therefore to respect the equivalence principle
should assume thatf varies with position as well. Accord
ingly one should be led to forsake the FLRW metric and ta
up some inhomogeneous one instead, except that in su
case the computational effort is bound to be enormous
most likely no exact solution will emerge.

Despite that theQ-matter proposal cannot be regarded
this moment with unreserved confidence, we feel this ide
still worth exploring in the hope that the aforesaid difficulti
may soon find a satisfactory answer.
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