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Gravitational waves in open de Sitter space
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We compute the spectrum of primordial gravitational wave perturbations in open de Sitter spacetime. The
background spacetime is taken to be the continuation of @) €& mmetric instanton saddle point of the
Euclidean no boundary path integral. The two-point tensor fluctuations are computed directly from the Euclid-
ean path integral. The Euclidean correlator is then analytically continued into the Lorentzian region where it
describes the quantum mechanical vacuum fluctuations of the graviton field. Unlike the results of earlier work,
the correlator is shown to be unique and well behaved in the infrared. We show that the infrared divergence
found in previous calculations is due to the contribution of a discrete gauge mode inadvertently included in the
spectrum.

PACS numbd(s): 98.80.Hw

I. INTRODUCTION gates each mode into the open universe region. In this paper
we instead compute the two-point tensor correlator in real
One appeal of inflationary cosmology is its mechanismspace. In doing so, we have obtained an infrared finite tensor
for the origin of cosmological perturbations. The de Sitterspectrum. The difference in the two approaches is related to
phase of exponentially rapid expansion quickly redshiftsthe non-uniqueness of the mode decomposition in an open
away any local perturbations, leaving behind only the quanuniverse, as we shall explain.
tum mechanical vacuum fluctuations in the various fields. As an aside, we mention in this context that also fluctua-
During inflation, these perturbations are stretched to macrations of a massless minimally coupled scalar field in de Sitter
scopic length scales and subsequently amplified, to later se&gace do not breaR(4,1). In some prior literaturésee e.g.,
the growth of the large scale structures in the present-dajp]) it is shown that there is no de Sitter invariant propagator
universe. A particularly clean example of this effect are thefor such a scalar field. However, the scalar field is not itself
gravitational wave perturbations of the spacetime itselfan observable since the action depends only on its derivative,
These tensor perturbations contribute to the cosmic microand there is a symmetrg— ¢+ constant. In fact, correla-
wave background anisotropy via the Sachs-Wolfe effectors of space or time derivatives gf are de Sitter invariant,
They may potentially provide an observational discriminantand since these are the only physical correlators in the
between different theories of opéar closed inflation be-  theory, de Sitter invariance is unbroken.
cause their long-wavelength modes strongly depend on the We implement the Hartle-Hawking no boundary proposal
boundary conditions at the instanton that describes the begih6] in our work by “rounding off” open de Sitter space on a
ning of the inflationary universgl]. compact Euclidean instanton, namely a round four sphere.
Although the tensor spectrum has been successfully comFhe fluctuations are computed in the Euclidean region di-

puted in realisticO(3,1) invariant models for an open infla- rectly from the Euclidean path integral, to first orderhn
tionary universg1], the problem of calculating the primor- around the instanton saddle point. The Euclidean two-point
dial gravitational waves in perfect open de Sitter spacetimeorrelator is analytically continued into the Lorentzian region
has remained a paradox for some time. The previous literavhere it describes the quantum mechanical vacuum fluctua-
ture claims that the spectrum of gravitational waves in pertions of the graviton field in the state described by the no
fect de Sitter space is infrared divergent for all physicallyboundary proposal initial conditions. There is no ambiguity
well-motivated initial quantum states of an eternally inflatingin the choice of initial conditions because the Euclidean cor-
universe[2—-4]. Breaking theO(4,1) invariance of de Sitter relator is unique.
space by going to a realistic inflationary model introduces a
potential barrier for the tensor fluctuation modes, and it has;, TENSOR FLUCTUATIONS ABOUT COSMOLOGICAL
been argued that the bubble wall acts to regularize the diver- INSTANTONS
gent spectrum in perfect de Sitter spség

Previous calculations of the gravitational wave spectrum In quantum cosmology the basic object is the wavefunc-
[2,3] in open de Sitter space are based on a mode-by-modenal W[h;;,¢], the amplitude for a three-geometry with
analysis. One has a prescription for the vacuum state of theetrich;; and field configuratiorp. It is formally given by a
graviton that is imposed on every mode separately, on somgath integral
Cauchy surface for the de Sitter spacetime. Then one propa-

"ij ¢ iS[g. ]
Wlhyj, ]~ [Dg]l[Dple™ 7. D
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integrating over all compact Riemannian metricand field  where the fieldsA, S and h;; are small perturbations. Be-
configurationse. If one can find a saddle point of E¢L), cause we are interested in the gravitational wave spectrum in
namely a classical solution satisfying the Euclidean nahe open slicing of de Sitter space, we will only retain
boundary condition, one can in principle at least compute th@®(3,1) invariance in our calculation.
path integral as a perturbative expansion to any desired The quantitiesS; andh;; may be uniquely decomposed as
power inf. follows [9]:

In this paper we wish to compute the two-point tensor

fluctuation correlator in open de Sitter spacetime, 1 Yij
ds?= —dt?+ sint?(t) (dx?+ sint?(x)dQ3). 2
Si=B|+V;. (6)

Open de Sitter space may be obtained by analytic continua-

tion of an @5) invariant instanton, describing the beginning Here A is the Laplacian or8® and|j the covariant deriva-

of a semi-eternally inflating universe. The analytic continua-ive on the three-sphere. With respect to reparametrizations
tion is given by setting=—io and the radial coordinatg  of the three-sphere), B and E are scalarsV; and F; are
=iQ), where(} is the polar angle on the three sphé¢see  divergenceless vectors amgl is a transverse traceless sym-
[7,8]). The instanton obtained in this way is a solution of themetric tensor, describing the gravitational waves. Because
Euclidean equations of motion with the maximal symmetrygauge transformations are scalar or vector, the perturbations
allowed in four dimensions. It takes the form of a round fourtij are automatically gauge invariant.

sphere with line elements?= do?+ sin?(0)dQ3, whered3 It is important to note that the gauge invariancetgf

is the line element 0i$°. It is useful to introduce a confor- follows from the uniqueness of the above decomposition.

mal spatial coordinatX defined by g/z(do’/sino’), sothat This is only true however for boundg@symptotically de-

the line element takes the form caying perturbationg9]. If one does not impose suitable
asymptotic conditions on the fields, a degeneracy appears

ds’=cosh 2 X(dX?+ dQ%). 3 between scalar and tensor perturbations that introduces a dis-

crete gauge mode in the tensor spectrum, which plays a cru-

On the four spher& then ranges from-oo to +o°. cial role in the divergent behavior of the correlator. We come

The principles of our method to calculate cosmologicalback to this point in Sec. V.
perturbations are described in detail[ih8]. The instanton We now substitute the decompositi) into the Lorent-

solution provides the classical background with respect taian action for gravity plus a cosmological constant,

which the quantum fluctuations are defined. In the Euclidean

region the exponeritS in the path integral becomesSg= 1 1

—(Sy+S,), whereSg is the Euclidean actiorS, is the in- S= ZJ d4x\/—_g(R—2A)—;J dx7K. @

stanton action an8, the action for fluctuations. We keep the

latter only to second order. The path integral for the two-The scalar, vector and tensor quantities decouple. Keeping

point tensor fluctuation about a particular instanton backall terms to second order, we continue the perturbed Lorent-

ground is then given by zian action to the Euclidean region. The scalar and vector
fluctuations are pure gauge in perfect de Sitter space. The

_ , tensor perturbations; yield the following well-known posi-
f [DSgIDSGle” 2t )ty (x') tive Euclidean actionile]:

f [Dégl[D¢ple >

(L0t (x")) =

1 Vy y
7 SZZaJ d4xm(t,”tij+t”|ktij\k+2t”tij)- (8)

To first order inh the quantum fluctuations are specified by Here prime denotes differentiation with respect to the con-
a Gaussian integral. The Euclidean action determines the alermal coordinateX. After performing the rescalinﬁij
lowed perturbation modes because divergent modes are sug-; j /coshX and integrating by parts we obtain

pressed in the path integral. The Euclidean two-point tensor

correlator is then analytically continued into the Lorentzian 1 4 . i

region where it describes the quantum mechanical vacuum Szzaf d X\/;”Eij(K+3_A3)t

fluctuations of the graviton field in the state described by the

no boundary proposal initial conditions. 1 ~
To find the perturbed actio$, that enters in the path +§H d*yt; Ttank(X) |, ©)
integral (4), we write the perturbed line element in open de
Sitter space as where the Schdinger operator
ds?=sinh 2(7)(— (1+2A)d?+SdxXdr ~ d2? 2 d2
. Ke——-————=——+U(X). (10
+ (i +hipdx'dxd), (5) dX? cosH(X) dx?®
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Because the fluctuations are specified by a Gaussian intepen de Sitter space without decomposing it in Fourier
gral, we can solve the path integr@) by looking for the  modes. The relation between the bitensorsSnand H?3
Green function of the operator in its exponent. The potentiatogether with some useful formulas and properties of maxi-
U (X) for the fluctuation modes is well known to be perfectly mally symmetric bitensors are given in the Appendix.
reflectionless. However, changing its shape slightly would Since the tensor eigenmodes of the LaplaciarBdform
introduce some reflection which becomes increasingly siga complete basis, we can also write
nificant at small momenta. Such a change corresponds to
breaking theO(5) invariance of Euclidean de Sitter space
and is exactly what happens in thé4Dinvariant Hawking-
Turok[11] and Coleman-De Luccid 2] instantons that de-
scribe the beginning of realistic open inflationary UniveI’SGSHence by Substituting our ans;;(ﬂzz) for the Green function
This difference between both classes of instantons has pranto Eq.(11) we obtain an equation for the X-dependent part
found implications for the tensor perturbations about themgf the Green function,
especially for their long-wavelength regirfie. The operator

K has in all three cases a positive continuum starting at ei- (R—pz)Gp(X,X’)= S(X—=X"). (15
genvalue p>=0, as well as a single bound staﬁéi
=b(X)q;; () at p=i which turns out to be a trivial gauge
mode.

+ioo

y V28l (- Q9= 2, Wi ((9,01). (19

The solution to Eq(15) is

1
Gp(x,x'):A—[qr;,(xw'p(x')@(x—x')
lll. THE EUCLIDEAN GREEN FUNCTION P |

r ’ !
To evaluate the path integrédl), we first look for the FHR)FRXDO(X = X)]. (16
Green functionGl' 1'(X, X, Q,Q') of the operator in Eq. ! b(X) is the solution to the Schdinger equation that tends
(9). The Euclidean fluctuation correlatéd) will then be to e PX as X— —o, and ¥ L(X) is the solution going as
given by coshX)coshQ(’)GEi'j'. The Euclidean Green func- €'PX asX— +x. The factorAp is the Wronskian of the two
tion satisfies solutions. Since the potential is reflectionless on the round
four sphere the left- and right-moving waves do not mix and
they equal the Jost functiomgs. ,(X) with nice analytic prop-
erties. The solutions may be found explicitly and are given
by

1
Ix —(K+3- A3)GEI (X X7,0,Q7)
=3(X=X")y Ml (Q-Q"). (1D _
Wi (X)=(tanhX—ip)e'P
If we think of the scalar product as defined by integration

over S and summation over tensor indices, then the right \If'p()():(tanhx+ip)e*ipx (17)
hand side is the normalized projection operator onto trans-
verse traceless tensors 6f. and their Wronskiam\ ,= —2ip(1+ p?), independent oK.

The Green functlorGE’l,J, can only be a function of the The zero of the Wronsklan =i corresponds to the bound
geodesic distancg.(Q,Q’) if it is to be invariant under state mentioned above. Takixg> X", we obtain the Euclid-

isometries of the three-sphere. This suggests that ean Green function as a discrete sum
i oo . r |
i UL (X)P(X")
iji’j N — __ v opr 7 'J'
E| i’ (XX = 4"2 Gp(X, X! )W(p)l gk (w), (12 Ge ~ (wX.X) 4Kr’23i 2p (1+p?) (M)
(18

WhereW(p)I ,(w) is a bitensor that is invariant under the
isometry group @). It equals the suntA2) of the normal-
ized rank-two tensor eigenmodes with elgenvam@:p
+3 of the Laplacian or§®. Note that the indices,j lie in
the tangent space over the poftwhile the indices’, |’ lie

in the tangent space over the pofdt. On S® we have

Before proceeding, let us demonstrate that the Euclidean
Green function is regular at the poles of the four sphere. This
is a nontrivial check because the coordinatesind X are
singular there, and the rescaling becomes divergent too. In
the largeX, X’ limit, Eq. (18) becomes

AW

iii it - 1 _ ! T

The motivation for the unusual labeling of the eigenvalues of

the Laplacian is that, as demonstrated in the Appendix, irf °F N=3 the Gaussian hypergeometric functidi€3+n,3
terms of the labep the bitensor or8® has precisely the same —n,7/2z) that constitute the blterISCW'(JA)J have a series
formal expression as the corresponding bitensoHdnltis  expansion that terminates, and they essentially reduce to Ge-
precisely this property that will enable us in Sec. IV to con-genbauer polynomlaI€(3)3(1 22). Using then the identity
tinue the Green function from the Euclidean instanton intg13]
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the real axis we encounter two poles in the gmhfactor,
the latter atp=i becoming a double pole due to the simple
zero of the Wronskian. For the=2i pole, it follows from

the normalization of the tensor harmonics tNH@’Z‘i')J,:O.

Indirectly, this is a consequence of the fact that spin-2 per-

turbations do not have a monopole or dipole component. At

p=i we have a double pole, but although the relevant Schro

dinger operator possesses a bound state, it does not generate

a ‘“super-curvature mode.” Instead the relevant mode is a

time-independent shift in the metric perturbation which may

be gauged awa}l,3]. We conclude that up to a term involv-

ing a pure gauge mode, we can deform the contfuinto

the contour shown in Fig. 1. For the moment, since the inte-

with g=e~ %=X, one easily sees that the sufif) indeed  grand involves a factop sinhpa which has a double pole at

converges. p=0, we leave the contour avoiding the origin on a small
We have the Euclidean Green function defined as an insemicircle in the upper haff-plane.

finite sum(18). However, the eigenspace of the Laplacian on Finally, in order to deal with the pole @i=0, we reex-

H?3 suggests that the Lorentzian Green function is most natupress the integrand in E21) as a sum of itp-symmetric

rally expressed as an integral over rpallfo do so we must andp-antisymmetric parts. Denoting the integrand Iigywe

extend the summand into the upper halplane. We have then have

already defined the wave functioNs,(X) as analytic func-

tions for all complexp but we need to extend the bitensor as

well. When the Green function is expressed as a discrete

sum, it involves the bitenst'(‘l;)'J'(,u) evaluated ap=ni
with nintegral. At these values @ the bitensor is regular at
both coincident and opposite points &3, that is atu=0
and u= 7. However, if we extengb into the complex plane
we lose regularity au=0, essentially because the bitensor
obeys the differential equatiofil) with a delta function
source atw=0. Similarly we must maintain regularity at
=1, since there is no delta function source there. The con
dition of regularity at imposed by the differential equation
for the Green function is sufficient to uniquely specify the
analytic continuation oW'(Ji'n')"(M) into the complexp-plane.
The continuation is described in the Appendix, and the ex-

’-

tended bitensow{li 1" () is defined by Eqs(A4) and(A7).

N

FIG. 1. Contour for the Euclidean correlator.

;0 Cl(x)q'=(1-2xq+q?) " (20)

. 1
6l =3 [ aptyt1 5[ dpip-1 o, 22

where the integral is taken from= —oc to « along a path
avoiding the origin above. Butdpl_, along this contour is
equal to the integral df, taken along a contour avoiding the
origin below. The second term is therefore equal to the inte-
gral of I, along a contour around the origin. Hence we have

1 .
Efdp(lp—l,p)=—w| Res(l,;p=0). (23

Now we are able to write the sum in E@.8) as an inte-
gral along a contourC; encircling the points p
=3i,4i, ...Ni, whereN tends to infinity. Forx>X" we
have

G (X X’)zxf _
E T ¢, psinhpr

qu;,(X)«If'p(x')

(1+p?) -

Wil ).
To see that Eq(21) is equivalent to the surfil8) introduce
1= coshpmn/coshp into the integral. Then note that cqihr
has residuer™! at every integer multiple of. Finally, use
Eq. (A10) to rewrite Wi,1'(u) in the form regular atu
=0 used in Eq(18). The factor of coslp7 from Eq. (A10)
cancels that in the integrand.

We now distort the contour for theintegral to run along

the realp axis (Fig. 1). At large imaginaryp the integrand

We defer a detailed discussion of this term to Sec. V,
because its interpretation is clearer in the Lorentzian region.
Hence for the time being we just keep it, but it will turn out
that it represents a non-physical contribution to the graviton
propagator.

In the p-symmetric part of the correlator, we can leave the
integrand as a sum of, andl _,. We henceforth denote the
path from—« to + avoiding the origin above bfR. This
shall turn out to be a regularised version of the integral over
the real axis. Our final result for the Euclidean Green func-
tion then reads

GE X, X! —Kf dp
i (XX =3 % psinhpm

X—
(1+p?)
+W (X)W (X))~ i Res(l,;p=0).

(Wp(X)¥ _p(X)

decays exponentially and the contribution vanishes in the

limit of large N. However as we deform the contour towards (29

063502-4



GRAVITATIONAL WAVES IN OPEN de SITTER SPACE PHYSICAL REVIEW [®2 063502

IV. TWO-POINT TENSOR CORRELATOR L(P)

IN OPEN de SITTER SPACE <tij(X),tir;r(X’)>=gJ pSiCr’]ﬁpW i (X
The analytic continuation into open de Sitter space is ® (1+p%)
given by settingr=it and the polar angl€}=—iy. With- X (e PTd(r) DL (7)
out loss of generality we may take one of the two points, say
Q' to be at the north pole of the three-sphere. Then(), +ePTdL (1) Dy(7))

and u continues to—iy. We then obtain the correlator in

open de Sitter space where one point has been chosen as the
origin of the radial coordinatg. The conformal coordinate L(p) ! ,
X continues to conformal time asX=— r—i /2 (see[8]). where the Lorentzian bitensd¥;;’;, is defined in the Ap-

Hence the analytic continuation of the Euclidean mode?€ndix, Eqs(A4) and(A13).
functions is given by In this section, we concentrate on the first term in Eq.

(24), the integral ovep, and ignore for the moment the sec-
i - | P ond, discrete term. We first extract the symmetrized part,
Vo(X)— —eP™W (7) and W (X)——e P™Wz (7) ({ti;(x),ti/;:(x")}), which is just the real part of the Feyn-
(25) man correlator. The imaginary part involves an integrand
which is analytic forp—0:

— i Res(l;;p=0), (28

where the Lorentzian mode functions are

(ti; ().t (x"))

Wi(7)=(cothr+ip)e ", (26 :5J dp WA (1)
R P(LTp?) i

'I:hey are solutions to the Lorentzian perturbation equation XCOthp’lT[q)lﬁ(T)(I)llp(T’)+<1)|:p(7')(1)|5(7")]
KW (1) =pW (7).

In order to perform the substitution= —iy, wherey is (> ILJI(p) (x) )
the comoving separation dn®, we use the explicit formula -2 fo (1+p7) — O (r)P (1)
given in the Appendix for the bitensor regularat . The
continued bitensoWi(j‘i’), ;+(x) is defined by EqsiA7), (AL1) (29
and (A12). It can be seen from EqA12) that it involves ) ) ) _
terms which behave as®Plix*7™  One must extract the It is straightforward to see that if we apply the Lorentzian

eP™-factors in order for the bitensor to correspond to theversion of the perturbation operatér to Eq. (29) with an
usual sum of rank-two tensor harmonics on the gakis.  appropriate heaviside function ef- 7', the imaginary term
To do so we use the following general identity. Fér—7  will produce the Wronskian GDEp(r) andd)b(r), which is
>0, we have(up to thep=i gauge mode proportional toip, timesd(7— 7). Then the integral ovep
produces a spatial delta function. From this one sees that our
L L, Feynman correlator obeys the correct second order partial
J@ Yp(D¥=p(1) PXE(p)=0 (27  differential equation, with a delta function source. The delta
cp (1+p?) e™F(p)=0, function source term in Eq11) goes from being real in the
Euclidean region to imaginary in the Lorentzian region be-

o o cause the factox/g continues ta /—g.
whereF (p) are thep-dependent coefficients occurring inthe  The integral in Eq.(28) diverges asp 2 for p—0, in

final (Lorentzian form of the bitensor given in EA13).  conrast with realistic models for inflationary universes
This identity follows from the analyticity of the integrand. \yhere a reflection term in Eq29) regularizes the spectrum
By inserting 1= sinhprr/sinhpw under the ir?tegral,.it is clear [1]. However, as we immediately show, even in perfect de
that the integral(27) with a factor e®”/sinhpm inserted  siter space the integral ovpris perfectly finite. We rewrite
equals that with a facta™ P/sinhp inserted. The resulting e symmetrized correlator as an integral over reslp0

identity allows us to replace the factoes P'X*™ in the < a5 follows. Because the integrand in E29) is even in
bitensor byeP( X~ ™ and vice versa in the analog integral of p, we have

| _, closed in the lower halp-plane.
For the tensor correlator we also need to restore the factor
ia~(7) to tIJ It is convenient to define the elgenmodes<{t”(x) tir (X =2k
p(T) pL p(7)/a(7). The extra minus sign hereby intro-
duced is cancelled by a change in sign of the normalization
factor Q, of the bitensor, which then becomes (p?
+4)/(30772) This corresponds to requiring the spacelike

fw dp pmcothpm
e mp® (1+p?)

XR[DH(T) D ()W (x)

2k
metric to have postive signature. We finally obtain the __‘I’(L)(T) O(r )W:‘“(OJ) (x)+0O(e),
Lorentzian tensor Feynmatime-ordered correlator, forr’ me
—-7>0, (30)
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the second term being the contribution from the small semi- ST 6T +1
circle aroundp=0. Both terms may be combined under one C(y)= <?(O)?(y)> =E 4—C,P,(003y).
integral. The resulting integrand &nalyticasp— 0 and one =2 =7

can safely take the limié— 0. The symmetrized correlator is (34)
then given by Hence, inserting the Sachs-Wolfe integral into E2#) and
substituting Eq(31) for the two-point fluctuation correlator
({ti; ()t (x)}) yields the multipole moments
= dp [ pmcothpm K[+ 70 70
:2f——mq>L ot (7' c:—fdfdfd'
“Jompt| (1apy) TLORDPE()] =3 dpf "dr| “dr
cothpm . L |
X W, (x) = @GN 5T HIWD, (x) |, o AEDPH(TIRQE
pP(1+p9)
(31) L L, s ol A0l
— () DH(7)QUQY |- (35)
where the Lorentzian bitenswhg‘,’]?, is defined in the Ap-
pendix, Eqs(A4) and(A13). In this integral it may be writ- | this expression we have written the normalized tensor har-
ten as monicsq(Y*'™(x, 6, ¢) asQP'(x)Yim(6.¢), where
WL 0=3 aP a0 @ 0= sy’ L cospy)
ijirjr\X ) iy’ : xx\X) = p2(p2+1) X sinhy dyx PX
(36)
The functionsg{P”™(Q) are the rank-two tensor eigen- and
modes with eigenvalues,= —(p?+3) of the Laplacian on
H3. HereP=eg,0 labels the parity, anlandm are the usual I—D)I(1+1)(14+2) 112
quantum numbers on the two-sphere. At lapyehe coeffi- N,(p)= ( | ( ( ] (37)
cient functionswj(p) of the bitensor(see the Appendixbe- TT (j2+p?
have like p sinpy. Hence the above integral converges at 771-22 (J7+p%)

largep, for both timelike and spacelike separations. Further-

more, the correlations asymptotically decay for large separat can readily be seen that the multipole moments are finite.

tion of the two points. With the aid of the explicit expressions and the wave func-
Equation(28), with the first term given by Eq31) is our  tions (26) they can be numerically computed.

final result for the two-point tensor correlator in open de

Sitter space, with Euclidean no boundary initial conditions. V. CONCLUSIONS

Contracting the propagator with the harmonigg)e,,, and _ _ _
integrating over the three sphere reveals that the second term We have ComF,’”ted 'the spectrum of primordial grayna-
leaves the spectrum completely unchanged apart from cafional waves predicted in open de Sitter space, according to
celling the (divergeni contribution from thep?=0 diver- Euclidean no boundary initial conditions. The Euclidean path

gence in the first term. We defer a detailed discussion of thif'tégral unambiguously specifies the tensor fluctuations with
result to the next section, in which we will also clarify the no additional assumptions. The real space Euclidean cor-

difficulties of the previous work on the graviton propagator"€/ator has been analytically continued into the Lorentzian
in open de Sitter spacetinja—4]. region without Fourier decomposing it, and we obtained an

As an illustration let us compute the Sachs-Wolfe integraifrared finite two-point tensor correlator in open de Sitter
[14] and show that all the multipole moments are finite. TheSPace, contrary to previous results in the literafi2re4]. ,
Let us now elaborate on the second, regularising term in

contribution of gravitational waves to the CMB anisotropy in " .
J Py the symmetrised correlatgB81) and the discret@=0 con-

perfect de Sitter space is given by e )
tribution to the Feynman correlator given from the last term

1 in Eq. (24). Not surprisingly, they have a similar interpreta-
(6.6)=— EJTOthXX (rox.0.8)] - (33  tion. Their angular parW!‘ji(?J?,(X) is equal to the sum of the
0 , TV A Y =TT

tensor harmonics with eigenvalag(p=0)= —3 of the La-
placian onH3. It has been known that a degeneracy appears

where 7, is the observing time. The temperature anisotropybetweenp?=0 tensor modes anpi=—4 scalar harmonics

on the sky is characterized by the two-point angular correlaf3]. ~ More specifically, one has ¢f®'"™=(V,V;

tion functionC(y), wherey is the angle between two points — 5;V?)q®@'™ where q@)'™=P ,;.Y\n. The discrete
located on the celestial sphere. It is customary to expand thg?=0 tensor harmonics are the only transverse traceless ten-

correlation function in terms of Legendre polynomials as  sor perturbations that can be constructed from a scalar quan-

oTsw
T
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tity. But as a consequence of this, they are sensitive to scalgrow exponentially with distance. The action of the above
gauge transformations. Consider now the coordinate transensor operator renders only tg€'"™ components o™
formation £*= (0,e®g(7)V'g)'™). Under this transforma- finite at infinity. The remaining components still diverge as
tion the transverse traceless part of the metric perturbation-eX and correspond to exponentially growing fluctuations at
hj; in the perturbed line elemer(6) changes exactly by large distance$.Since in cosmological perturbation theory
et{)'M=ed(7)g{”'™. Using the transverse-traceless prop-one assumes the perturbatibp to be small, one must ex-
erties oft;; it is easily seen that the action for tensor fluctua-pand correlators in bounded harmonics.
tions is invariant under such transformations. Hence this ten- We want to emphasize that the regularity of the two-point
sor eigenmode is non-physical and can be gauged awajensor correlator does not depend on the Euclidean methods
Note that since the functional form @fis completely fixed used in our work. One could have equally well computed the
this corresponds to a global transformation, analogous to theorrelator on closed Cauchy surfaces for the de Sitter space
transformation¢p— ¢+ constant for a massless field. To where the subtleties encountered here do not arise, assuming
compute the Green function for a massless field one has tihe standard conformal vacuum for that slicing. One would
project out this homogeneous mode, and it is necessary to dhen analytically continue the result to the open slicing. On
the same here. One should therefore disregard the contribthe other hand, the Euclidean no boundary principle is an
tion from the discrete term in Eq24) to the Lorentzian appealing prescription which avoids the arbitrary choice of
correlator. This was actually also done in our computation of;acuum otherwise needed. The path integral effectively de-
the tensor fluctuation spectrum abdD(4) instantong1],  fines its own initial conditions, yielding a unique and infra-
although in that case not because the mode was pure gaugg finite Green function in the Lorentzian region. The initial
but because |F couples.to the inflaton field, and is pot r_eprequamum state of the perturbation modes, defined by the no
sented by a simple action of the fort®). If a scalar field is boundary path integral, corresponds to the conformal
present, the mode is most simply treated as a part of thg,c,ym in the Lorentzian spacetime. This is in many ways
scalar perturbations, as was done & . the most natural state in de Sitter space, but the regularity of
In our result(31) for the symmetrised correlator, the dis- y6 graviton propagator is independent of this choice. The
crete gauge mode is set to zero because the second teffhst important technical advantage of our method is that we
cancels exactly the contribution from tg¥=0 mode im- eq throughout directly with the real space correlator, which

plicitly co_ntained in the continuc_)us spectrum. '_I'his automaticy skes the derivation independent of the gauge ambiguities
cancellation does not happen in the conventional mode-byz,\olved in the mode decomposition.

mode analysis where, if one chooses the most degenerate Finally, let us conclude by comparing the gravitational

continuous reprezentatlon of the isometry gr@(8,1) of \yayve spectrum in perfect open de Sitter spacetime with the
the hyperboloid®, corresponding to the rangee [0),  spectrum in realistic open inflationary universes. In both the
one obtains a divergent correlator. _Hawking-Turok and the Coleman—De Luccia model for open

It is clear that the underlying reason for these subtletiegnfiation there is an extra reflection term in the correlator
has to do with the different nature of tensor harmonics onyecause @) symmetry is broken on the instantpt]. This

compact and non-compact spaces. Hence, we could have &gym gives rise to long-wavelength bubble wall fluctuations
pected the generation of the two discrete gauge modes Sy the | orentzian region. At first sight, the wall fluctuations

ply from the analytic cc_mtinu%tion of the completeness relaseem 1o regularize the spectrum. However, adding and sub-
tion (14) of the harmonics oi$°. Apart from the sum of the  yacting the second term in E¢81) to the two-point tensor
complete set of modes that constitute the delta function ORqrelator in theO(4) modelsEq. (34) in [1]] and compar-

H3, one obtains also three extra ternw'('z'i')“(u), ing that with our result31) reveals that the wall fluctuations

Wi(jii)’j/(,u) and Wi(J(i))’i’(M). The first term is zero, and the aptuqlly appear as an extra Iongiwavelength cor_ltinuum con-
remaining two terms should respectively be viewed as sumgibution on top ofthe spectrum in perfect de Sitter space.
of vector—and scalar—harmonics. On the other hand, th&leénce in both the Hawking-Turok and Coleman—De Luccia
fact that the scalar-tensor degeneracy appears precisely at ti@del there is an enhancement of the fluctuations compared
lower bound of the continuous spectrum is a peculiar featur&® the perturbations in perfect de Sitter space. But the singu-
of three dimensions. In the analogous computation in foufarity in Hawking-Turok instantons suppresses the wall fluc-
dimensions for instancil5), this degeneracy happenspht ~ tuations because it enforces Dirichlet boundary condltlons_ on
— —1/4 and consequently, there is no regularizing term infhe perturbation moddd]. Hence we expect the spectrum in
the correlator. perfect de Sitter space to be quite similar to the spectrum
There is yet another way in which the exclusion of thePredicted by singular instantons. On the other hand,
degenerate modes from the perturbation spectrum can be ife0leman—De Luccia models typically predict large wall
terpreted. Remember that in non-compact spacetimes the dJctuations, yielding a very different CMB anisotropy spec-
composition(6) is only uniquely defined for bounded pertur-
bations. Hence, the only way there can appear a degeneracy
between the different types of fluctuations is for the degen- ‘The confusion arises because, due to the form of the metric in-
erate modes to be unbounded. Indeed, on the threeerse, scalar invariants are finite at infinity, eq;a’ ~e~2X. This
hyperboloid the scalap?=—4 modes describe divergent also explains why the coefficient functioméo)(x) in the bitensor
fluctuations because the scalar spherical harmogi€d™ W), asymptotically decay.
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trum on large angular scales. The tensor fluctuation spectrum Wi(jFiJ)/j'(lu) :W(lp)[gij —3nin1[gi/;—nyn;/]
therefore potentially provides an observational discriminant
between different theories of open inflatipt6]. +w§p)[4n(igj)(i,nj,)+4ninjni,nj,]

+W:(3p)[gii’gjj’+gji’gij’_2nigi’j’nj

—2n;,g;jn;.+6n;n;n;/n;, J. (A4)
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gium. The requirement that the bitensor be transvevéa/, ,
=0 and the eigenvalue conditiol\§—A )Wk 1'=0 im-
pose additional constraints on the remaining coefficient func-

A maximally symmetric bitensofT is one for which tion_swj(p)(/_L). To solve these co_nstraint equations it3is con-
o*T=0 for any isometryo of the maximally symmetric Vvenient to introduce the new variablgks] onS? (onH?, 1
manifold. Any maximally symmetric bitensor may be ex- is replaced by—iu)
panded in terms of a complete set of “fundamental” maxi- ® ®
mally symmetric bitensors with the correct index symme- a(uw)=wi” () +wi”(u)
tries. For instance

APPENDIX: MAXIMALLY SYMMETRIC BITENSORS

B 7 da(u) AS

Tijirjr =t (@) 9ijGirjr +ta(w)[NigjioNjr +0jgsio Ny A= (p?+9)sing  du (A5)

TGy NG M I ()i Gy T 0jir Gy ] In terms of a new argumemt= cos(/2) (or its continuation

+ta(w)ningngng +ts(w)[gijni g +nin;g;rg/] on H3) the transversality and eigenvalue conditions imply

for a(2z)
(A1)
. | daz) (7 Jda(@) _

where the coefficient functiong(u) depend only on the z2(1-2) 5 > d =(p°+9a(z)
distancew(2,Q)") along the shortest geodesic frofa to d°z z
Q. ni,(Q,Q") andn;(Q,Q") are unit tangent vectors to the (AB)

geodesics joinind) and ' andg;;.(£,Q") is the parallel

S and then for the coefficient functions
propagator along the geodesi¢,g! is the vector at()’

obtained by parallel transport &f along the geodesic from W1=Qp([2(Ap—6)2(z—1)-2]ea(2)
Qto Q' [17].
The set of tensor eigenmodes 8hor H3 forms a repre- + 7L\t 6)2(z-32)(2-1)]B(2))
sentation of the symmetry group of the manifold. It follows
in particular that their sum over the parity staes{e,o} W2 =Qp(2(1~2)[(Np—6)z+3]a(2)
and the quantum numbekrgindm on the two-sphere defines —4[(Np+6)2(z—1)(z- )1B(2) (A7)

a maximally symmetric bitensor o (or H%) [17]
W3=Qu([—2(\py—6)z(z—1)+3]a(2)
Wiyirjr ()= 2 affl (el m@Q)*. (A2) — 3N, +6)2(z-3)(z-1)1B(2))

with \p=(p?+3).
On S® the labelp=3i,4i, . ... It isrelated to the usual an-  The above conditions leave the overall normalization of
gular momentunk by p=i(k+1). The ranges of the other the bitensor undetermined. To fix the normalization constant
labels is then &<k and —l<m=I. OnH? there is a con- Q, we contract the indices in the coincident limit> 1. This
tinuum of eigenvaluep €[ 0,»). We will assume from now yields[18]
that the eigenmodes on are normalized by the condition

) WP (Q.0)= 3 gfP ()P ™I(Q)* =30Q,a(1).
f Vydxa@ql % = P Sppi B Sy - (A3) (A8)

i i o , By integrating over the three-sphere and using the normal-
The b'tensow(p)i'j'(ﬂ) appearing in our Green function j;ation condition(A3) on the tensor harmonics one obtains
has some additional properties arising from its constructiony = — (p2+4)/307%a(1).
in terms of the transverse and traceless tensor harmonics Notice that Eq.(A6) is precisely the hypergeometric dif-
qPP™ . The tracelessness Wi(ﬁ),,-, allows one to eliminate ferential equation, which has a pair of independent solutions
two of the coefficient functions in EqA1). It may then be  «(z)=,F,(3+ip,3—ip,7/2z) and a(l1-2z)=,F.(3+ip,
written as 3—ip,7/2,1-z). The former of these solutions is singular at
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z=1, i.e., for coincident points on the three-sphere, and théhe solutiona(z), rather thana(1—2z). Therefore, in order
latter is singular for opposite points. The solution 8fz) to write the Euclidean correlator as a contour integral, we

follows from Eq.(A5) and is given by first have replacedr(1—2z) by F(z)(—1)""?, by applying
_ _ (A10) to Eq.(18), and we then have continued the latter term
B(z)=,F1(4—ip,4+ip,9/22). (A9) {0 —(coshpm) LF,(3+ip,3—ip,%,2).

The hypergeometric functions are related by the transforma- We conclude that the properties of the'b|tefnsor appearing
tion formula[Eq. [15.3.6 in [19]) in the tensor correlator completely determine its form. Notice

that in terms of the labgb we have obtained a “unified”
I'(c)['(c—a—h) functional description of the bitensal " on S* and H3.
mzﬂ(a,b,aJr b—c,1-2) Its explicit form is very different in both cases however,
because the labgd takes on different values. But it is pre-
I'(c)I'(a+b—c) cab cisely this description that has enabled us in Sec. IV to ana-
T T(al(b) 1-2); lytically continue the correlator from the Euclidean instanton
into open de Sitter space without Fourier decomposing it.
XF,(c—a,c—b,c—a—b,1-z). (A10) We shall conclude this Appendix by giving the explicit for-
mulas for the coefficient functions of the bitens‘ﬁl’i‘ji(??,
appearing in our final resu(B1). With this description, they
can be obtained by analytic continuation fr@h

oFi(a,b,c,z)=

Only for the eigenvalues of the Laplacian &1, i.e., p
=in (n=3), the term on the second line vanishes for

2F1(3+ip,3~ip, 7/22). For the_se special values(z) and To perform the continuation tel® we note that the geo-
a(1—2) are no longer linearly independent but related by 3 asic separatiop. on S* continues to— iy wherey is the

n+1
factor of (—1)" ", and they are both regular fpr any angle comoving separation od 3. Hence the hypergeometric func-
on the three-sphere. In fact, the hypergeometric series termj- 3 , . ! ;
tions onH* are defined by analytic continuatigkq. 15.3.7
nates for these parameter values and the hypergeometric

functions reduce to Gegenbauer polynom'@@s(l—Zz). g‘nglrg]}u?]rézorssaége expressed in terms of associated Leg-
We have a choice between usingz) and a(1—2) in the

bitensor for these values pf SinceF(1—2z)—1 for coinci- T

dent points, it is more natural to choasél —z) in the biten- a(z)= 15\@( —sinhy) "#PZ32,;,(—coshy),
sor appearing in the Euclidean Green functid®). How-

ever, to obtain the Lorentzian correlator, we had to express -

the discrete sunil8) as a contour integral. Since the Euclid- B(z)= 15\[5(—sinh)()‘7’2P
ean correlator obeys a differential equation with a delta func-

tion source aju=0, we must maintain regularity of the in-

tegrand ajw = 7 when extending the bitensor in the complex Using the relation—coshf)=cosh{—iw), the Legendre
p-plane. In other words, for generjiz we need to work with  functions onH® may be expressed as

pP-%2 . (—coshy)= \/#(1+p2)*1(4+p2)*l —3 cothy coshp(7+ix)
~lztip —asinhy

i sinhp(iy+ )
——p

/ 2
—712 _ — — —
P_1/2+ip(—COSh)()— ?inhx(]_{— p2) 1(4+ pz) 1(9+ pz) 1

6i sinhp(ix+ )
p

~1ip(—coshy).

(A11)

((2—p?)(1+ cothly) + (4+ p?)cosecRy)

coshp(7+iy)(p?— 11— 15cosechy)

((1—p?)cothPy+ (p?+ 2)cothy cosechy)|. (A12)

In the text, we have extracted the facters"™ in these expressions in order to make contact with the usual description of the
tensor correlator in terms of tensor harmonicskbh The coefficient functions of the bitensW!‘ji(’,’},(X) in our final result
(31) for the tensor correlator are

cosecAy |[sinpy

W, = (3+ (p?+4)sintPy — p?(p?+ 1)sintfy)— cospx(3/2+ (p?+ 1)sint x)sinh 2y
4m2(p2+1)L P
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cosechy
Wo=
2 am¥(p2+1)

sinpy

5 (83+12 coshy—3p?(1+ 2 coshy)sintx + p?(p?+ 1)sintfy)

+cospy(— 12— 3 coshy+2(p2—2)sintfx + 2(p?+ 1)coshy sintfy)sinhy (A13)

cosechy
W =
* 4m(p?+1)

sinpy

0 (3—3p2?sintty + p?(p?+1)sint x)+ cospx(— 3/2+ (p?+ 1)sinttx)sinh 2y |.

As mentioned before, the bitensWiLji(‘,’?, equals the sumA2) of the rank-two tensor eigenmodes with eigenvalye
= —(p?+3) of the Laplacian orH®. For y—0 these functions converge and they exponentially decay at large geodesic
distances.
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