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Gravitational waves in open de Sitter space

S. W. Hawking,* Thomas Hertog,† and Neil Turok‡

DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
~Received 24 March 2000; published 31 July 2000!

We compute the spectrum of primordial gravitational wave perturbations in open de Sitter spacetime. The
background spacetime is taken to be the continuation of an O~5! symmetric instanton saddle point of the
Euclidean no boundary path integral. The two-point tensor fluctuations are computed directly from the Euclid-
ean path integral. The Euclidean correlator is then analytically continued into the Lorentzian region where it
describes the quantum mechanical vacuum fluctuations of the graviton field. Unlike the results of earlier work,
the correlator is shown to be unique and well behaved in the infrared. We show that the infrared divergence
found in previous calculations is due to the contribution of a discrete gauge mode inadvertently included in the
spectrum.

PACS number~s!: 98.80.Hw
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I. INTRODUCTION

One appeal of inflationary cosmology is its mechani
for the origin of cosmological perturbations. The de Sit
phase of exponentially rapid expansion quickly redsh
away any local perturbations, leaving behind only the qu
tum mechanical vacuum fluctuations in the various fiel
During inflation, these perturbations are stretched to ma
scopic length scales and subsequently amplified, to later
the growth of the large scale structures in the present-
universe. A particularly clean example of this effect are
gravitational wave perturbations of the spacetime its
These tensor perturbations contribute to the cosmic mi
wave background anisotropy via the Sachs-Wolfe effe
They may potentially provide an observational discrimina
between different theories of open~or closed! inflation be-
cause their long-wavelength modes strongly depend on
boundary conditions at the instanton that describes the be
ning of the inflationary universe@1#.

Although the tensor spectrum has been successfully c
puted in realisticO(3,1) invariant models for an open infla
tionary universe@1#, the problem of calculating the primor
dial gravitational waves in perfect open de Sitter spacet
has remained a paradox for some time. The previous lit
ture claims that the spectrum of gravitational waves in p
fect de Sitter space is infrared divergent for all physica
well-motivated initial quantum states of an eternally inflati
universe@2–4#. Breaking theO(4,1) invariance of de Sitte
space by going to a realistic inflationary model introduce
potential barrier for the tensor fluctuation modes, and it
been argued that the bubble wall acts to regularize the di
gent spectrum in perfect de Sitter space@3#.

Previous calculations of the gravitational wave spectr
@2,3# in open de Sitter space are based on a mode-by-m
analysis. One has a prescription for the vacuum state of
graviton that is imposed on every mode separately, on s
Cauchy surface for the de Sitter spacetime. Then one pr
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gates each mode into the open universe region. In this p
we instead compute the two-point tensor correlator in r
space. In doing so, we have obtained an infrared finite ten
spectrum. The difference in the two approaches is relate
the non-uniqueness of the mode decomposition in an o
universe, as we shall explain.

As an aside, we mention in this context that also fluctu
tions of a massless minimally coupled scalar field in de Si
space do not breakO(4,1). In some prior literature~see e.g.,
@5#! it is shown that there is no de Sitter invariant propaga
for such a scalar field. However, the scalar field is not its
an observable since the action depends only on its deriva
and there is a symmetryf→f1 constant. In fact, correla
tors of space or time derivatives off are de Sitter invariant,
and since these are the only physical correlators in
theory, de Sitter invariance is unbroken.

We implement the Hartle-Hawking no boundary propo
@6# in our work by ‘‘rounding off’’ open de Sitter space on
compact Euclidean instanton, namely a round four sph
The fluctuations are computed in the Euclidean region
rectly from the Euclidean path integral, to first order inh̄
around the instanton saddle point. The Euclidean two-po
correlator is analytically continued into the Lorentzian regi
where it describes the quantum mechanical vacuum fluc
tions of the graviton field in the state described by the
boundary proposal initial conditions. There is no ambigu
in the choice of initial conditions because the Euclidean c
relator is unique.

II. TENSOR FLUCTUATIONS ABOUT COSMOLOGICAL
INSTANTONS

In quantum cosmology the basic object is the wavefu
tional C@hi j ,f#, the amplitude for a three-geometry wit
metrichi j and field configurationf. It is formally given by a
path integral

C@hi j ,f#;Ehi j ,f

@Dg#@Df#eiS[g,f] . ~1!

Following Hartle and Hawking@6# the lower limit of the
path integral is defined by continuing to Euclidean time a
©2000 The American Physical Society02-1
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integrating over all compact Riemannian metricsg and field
configurationsf. If one can find a saddle point of Eq.~1!,
namely a classical solution satisfying the Euclidean
boundary condition, one can in principle at least compute
path integral as a perturbative expansion to any des
power in\.

In this paper we wish to compute the two-point tens
fluctuation correlator in open de Sitter spacetime,

ds252dt21sinh2~ t !„dx21sinh2~x!dV2
2
…. ~2!

Open de Sitter space may be obtained by analytic contin
tion of an O~5! invariant instanton, describing the beginnin
of a semi-eternally inflating universe. The analytic continu
tion is given by settingt52 is and the radial coordinatex
5 iV, whereV is the polar angle on the three sphere~see
@7,8#!. The instanton obtained in this way is a solution of t
Euclidean equations of motion with the maximal symme
allowed in four dimensions. It takes the form of a round fo
sphere with line elementds25ds21sin2(s)dV3

2, wheredV3
2

is the line element onS3. It is useful to introduce a confor
mal spatial coordinateX defined by*s

p/2(ds8/sins8), so that
the line element takes the form

ds25cosh22 X~dX21dV3
2!. ~3!

On the four sphereX then ranges from2` to 1`.
The principles of our method to calculate cosmologi

perturbations are described in detail in@1,8#. The instanton
solution provides the classical background with respec
which the quantum fluctuations are defined. In the Euclid
region the exponentiS in the path integral becomes2SE5
2(S01S2), whereSE is the Euclidean action,S0 is the in-
stanton action andS2 the action for fluctuations. We keep th
latter only to second order. The path integral for the tw
point tensor fluctuation about a particular instanton ba
ground is then given by

^t i j ~x!t i 8 j 8~x8!&5

E @Ddg#@Ddf#e2S2t i j ~x!t i 8 j 8~x8!

E @Ddg#@Ddf#e2S2

.

~4!

To first order inh̄ the quantum fluctuations are specified
a Gaussian integral. The Euclidean action determines th
lowed perturbation modes because divergent modes are
pressed in the path integral. The Euclidean two-point ten
correlator is then analytically continued into the Lorentzi
region where it describes the quantum mechanical vacu
fluctuations of the graviton field in the state described by
no boundary proposal initial conditions.

To find the perturbed actionS2 that enters in the path
integral ~4!, we write the perturbed line element in open
Sitter space as

ds25sinh22~t!„2~112A!dt21Sidxidt

1~g i j 1hi j !dxidxj
…, ~5!
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where the fieldsA, Si and hi j are small perturbations. Be
cause we are interested in the gravitational wave spectru
the open slicing of de Sitter space, we will only reta
O(3,1) invariance in our calculation.

The quantitiesSi andhi j may be uniquely decomposed a
follows @9#:

hi j 5
1

3
hg i j 12S ¹ i¹ j2

g i j

3
D3DE12F ( i u j )1t i j ,

Si5Bu i1Vi . ~6!

HereD3 is the Laplacian onS3 and u j the covariant deriva-
tive on the three-sphere. With respect to reparametrizat
of the three-sphere,h, B and E are scalars,Vi and Fi are
divergenceless vectors andt i j is a transverse traceless sym
metric tensor, describing the gravitational waves. Beca
gauge transformations are scalar or vector, the perturbat
t i j are automatically gauge invariant.

It is important to note that the gauge invariance oft i j
follows from the uniqueness of the above decompositi
This is only true however for bounded~asymptotically de-
caying! perturbations@9#. If one does not impose suitabl
asymptotic conditions on the fields, a degeneracy app
between scalar and tensor perturbations that introduces a
crete gauge mode in the tensor spectrum, which plays a
cial role in the divergent behavior of the correlator. We com
back to this point in Sec. V.

We now substitute the decomposition~6! into the Lorent-
zian action for gravity plus a cosmological constant,

S5
1

2kE d4xA2g~R22L!2
1

kE d3xAgK. ~7!

The scalar, vector and tensor quantities decouple. Kee
all terms to second order, we continue the perturbed Lore
zian action to the Euclidean region. The scalar and vec
fluctuations are pure gauge in perfect de Sitter space.
tensor perturbationst i j yield the following well-known posi-
tive Euclidean action@10#:

S25
1

8kE d4x
Ag

cosh2 X
~ t8 i j t i j8 1t i j ukt i j uk12t i j t i j !. ~8!

Here prime denotes differentiation with respect to the c
formal coordinateX. After performing the rescalingt̃ i j
5t i j /coshX and integrating by parts we obtain

S25
1

8kE d4xAg t̃ i j ~K̂132D3! t̃ i j

1
1

8kF E d3xAg t̃ i j t̃
i j tanh~X!G , ~9!

where the Schro¨dinger operator

K̂52
d2

dX2
2

2

cosh2~X!
[2

d2

dX2
1U~X!. ~10!
2-2
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Because the fluctuations are specified by a Gaussian
gral, we can solve the path integral~4! by looking for the
Green function of the operator in its exponent. The poten
U(X) for the fluctuation modes is well known to be perfec
reflectionless. However, changing its shape slightly wo
introduce some reflection which becomes increasingly
nificant at small momenta. Such a change correspond
breaking theO(5) invariance of Euclidean de Sitter spa
and is exactly what happens in the O~4! invariant Hawking-
Turok @11# and Coleman–De Luccia@12# instantons that de
scribe the beginning of realistic open inflationary univers
This difference between both classes of instantons has
found implications for the tensor perturbations about the
especially for their long-wavelength regime@1#. The operator
K̂ has in all three cases a positive continuum starting at
genvalue p250, as well as a single bound statet̃ i j
5b(X)qi j (V) at p5 i which turns out to be a trivial gaug
mode.

III. THE EUCLIDEAN GREEN FUNCTION

To evaluate the path integral~4!, we first look for the

Green functionGE
i ji 8 j 8(X, X8, V, V8) of the operator in Eq.

~9!. The Euclidean fluctuation correlator~4! will then be

given by cosh(X)cosh(X8)GE
iji 8j8 . The Euclidean Green func

tion satisfies

1

4k
~K̂132D3!GEi8 j 8

i j
~X,X8,V,V8!

5d~X2X8!g2(1/2)d i j
i 8 j 8~V2V8!. ~11!

If we think of the scalar product as defined by integrati
over S3 and summation over tensor indices, then the ri
hand side is the normalized projection operator onto tra
verse traceless tensors onS3.

The Green functionGEi8 j 8
i j can only be a function of the

geodesic distancem(V,V8) if it is to be invariant under
isometries of the three-sphere. This suggests that

GEi8 j 8
i j

~m,X,X8!54k (
p53i

1 i`

Gp~X,X8!W(p) i 8 j 8
i j

~m!, ~12!

where W(p) i 8 j 8
i j (m) is a bitensor that is invariant under th

isometry group O~4!. It equals the sum~A2! of the normal-
ized rank-two tensor eigenmodes with eigenvaluelp5p2

13 of the Laplacian onS3. Note that the indicesi , j lie in
the tangent space over the pointV while the indicesi 8, j 8 lie
in the tangent space over the pointV8. On S3 we have

D3W(p) i 8 j 8
i j

~m!5lpW(p) i 8 j 8
i j

~m!. ~13!

The motivation for the unusual labeling of the eigenvalues
the Laplacian is that, as demonstrated in the Appendix
terms of the labelp the bitensor onS3 has precisely the sam
formal expression as the corresponding bitensor onH3. It is
precisely this property that will enable us in Sec. IV to co
tinue the Green function from the Euclidean instanton i
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open de Sitter space without decomposing it in Four
modes. The relation between the bitensors onS3 and H3

together with some useful formulas and properties of ma
mally symmetric bitensors are given in the Appendix.

Since the tensor eigenmodes of the Laplacian onS3 form
a complete basis, we can also write

g2 1/2d i 8 j 8
i j

~V2V8!5 (
p53i

1 i`

W(p) i 8 j 8
i j

„m~V,V8!…. ~14!

Hence by substituting our ansatz~12! for the Green function
into Eq.~11! we obtain an equation for the X-dependent p
of the Green function,

~K̂2p2!Gp~X,X8!5d~X2X8!. ~15!

The solution to Eq.~15! is

Gp~X,X8!5
1

Dp
@Cp

r ~X!Cp
l ~X8!Q~X2X8!

1Cp
l ~X!Cp

r ~X8!Q~X82X!#. ~16!

Cp
l (X) is the solution to the Schro¨dinger equation that tend

to e2 ipX as X→2`, and Cp
r (X) is the solution going as

eipX asX→1`. The factorDp is the Wronskian of the two
solutions. Since the potential is reflectionless on the rou
four sphere the left- and right-moving waves do not mix a
they equal the Jost functionsg6p(X) with nice analytic prop-
erties. The solutions may be found explicitly and are giv
by

Cp
r ~X!5~ tanhX2 ip !eipX

Cp
l ~X!5~ tanhX1 ip !e2 ipX ~17!

and their WronskianDp522ip(11p2), independent ofX.
The zero of the Wronskian atp5 i corresponds to the boun
state mentioned above. TakingX.X8, we obtain the Euclid-
ean Green function as a discrete sum

GE
i ji 8 j 8~m,X,X8!54k (

p53i

i`
i

2p

Cp
r ~X!Cp

l ~X8!

~11p2!
W(p)

i j i 8 j 8~m!.

~18!

Before proceeding, let us demonstrate that the Euclid
Green function is regular at the poles of the four sphere. T
is a nontrivial check because the coordinatess and X are
singular there, and the rescaling becomes divergent too
the largeX, X8 limit, Eq. ~18! becomes

GE
i ji 8 j 8~m,X,X8!52k (

n53

`
1

n
e2n(X2X8)W( in)

i j i 8 j 8~m!. ~19!

For n>3 the Gaussian hypergeometric functionsF(31n,3

2n,7/2,z) that constitute the bitensorW(n)
i j i 8 j 8 have a series

expansion that terminates, and they essentially reduce to
genbauer polynomialsCn23

(3) (122z). Using then the identity
@13#
2-3
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(
l 50

`

Cl
n~x!ql5~122xq1q2!2n ~20!

with q5e2(X2X8), one easily sees that the sum~19! indeed
converges.

We have the Euclidean Green function defined as an
finite sum~18!. However, the eigenspace of the Laplacian
H3 suggests that the Lorentzian Green function is most n
rally expressed as an integral over realp. To do so we must
extend the summand into the upper halfp-plane. We have
already defined the wave functionsCp(X) as analytic func-
tions for all complexp but we need to extend the bitensor
well. When the Green function is expressed as a disc

sum, it involves the bitensorW(p)
i j i 8 j 8(m) evaluated atp5ni

with n integral. At these values ofp, the bitensor is regular a
both coincident and opposite points onS3, that is atm50
andm5p. However, if we extendp into the complex plane
we lose regularity atm50, essentially because the bitens
obeys the differential equation~11! with a delta function
source atm50. Similarly we must maintain regularity atm
5p, since there is no delta function source there. The c
dition of regularity atp imposed by the differential equatio
for the Green function is sufficient to uniquely specify t

analytic continuation ofW( in)
i j i 8 j 8(m) into the complexp-plane.

The continuation is described in the Appendix, and the

tended bitensorW(p)
i j i 8 j 8(m) is defined by Eqs.~A4! and~A7!.

Now we are able to write the sum in Eq.~18! as an inte-
gral along a contour C1 encircling the points p
53i ,4i , . . .Ni, whereN tends to infinity. ForX.X8 we
have

GE
i ji 8 j 8~m,X,X8!5kE

C1

dp

psinhpp

3
Cp

r ~X!Cp
l ~X8!

~11p2!
W(p)

i j i 8 j 8~m!. ~21!

To see that Eq.~21! is equivalent to the sum~18! introduce
15coshpp/coshpp into the integral. Then note that cothpp
has residuep21 at every integer multiple ofi. Finally, use

Eq. ~A10! to rewrite W(p)
i j i 8 j 8(m) in the form regular atm

50 used in Eq.~18!. The factor of coshpp from Eq. ~A10!
cancels that in the integrand.

We now distort the contour for thep integral to run along
the realp axis ~Fig. 1!. At large imaginaryp the integrand
decays exponentially and the contribution vanishes in
limit of large N. However as we deform the contour towar

FIG. 1. Contour for the Euclidean correlator.
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the real axis we encounter two poles in the sinhpp factor,
the latter atp5 i becoming a double pole due to the simp
zero of the Wronskian. For thep52i pole, it follows from

the normalization of the tensor harmonics thatW(2i )
i j i 8 j 850.

Indirectly, this is a consequence of the fact that spin-2 p
turbations do not have a monopole or dipole component.
p5 i we have a double pole, but although the relevant Sch¨-
dinger operator possesses a bound state, it does not gen
a ‘‘super-curvature mode.’’ Instead the relevant mode i
time-independent shift in the metric perturbation which m
be gauged away@1,3#. We conclude that up to a term involv
ing a pure gauge mode, we can deform the contourC1 into
the contour shown in Fig. 1. For the moment, since the in
grand involves a factorp sinhpp which has a double pole a
p50, we leave the contour avoiding the origin on a sm
semicircle in the upper halfp-plane.

Finally, in order to deal with the pole atp50, we reex-
press the integrand in Eq.~21! as a sum of itsp-symmetric
andp-antisymmetric parts. Denoting the integrand byI p we
then have

GE
i ji 8 j 85

1

2E dp~ I p1I 2p!1
1

2E dp~ I p2I 2p!, ~22!

where the integral is taken fromp52` to ` along a path
avoiding the origin above. But*dpI2p along this contour is
equal to the integral ofI p taken along a contour avoiding th
origin below. The second term is therefore equal to the in
gral of I p along a contour around the origin. Hence we ha

1

2E dp~ I p2I 2p!52p i Res~ I p ;p50!. ~23!

We defer a detailed discussion of this term to Sec.
because its interpretation is clearer in the Lorentzian reg
Hence for the time being we just keep it, but it will turn o
that it represents a non-physical contribution to the gravi
propagator.

In thep-symmetric part of the correlator, we can leave t
integrand as a sum ofI p andI 2p . We henceforth denote th
path from2` to 1` avoiding the origin above byR. This
shall turn out to be a regularised version of the integral o
the real axis. Our final result for the Euclidean Green fun
tion then reads

Gi ji 8 j 8
E

~m,X,X8!5
k

2ER

dp

p sinhpp

3
Wi ji 8 j 8

(p)
~m!

~11p2!
„Cp~X!C2p~X8!

1C2p~X!Cp~X8!…2p i Res~ I p ;p50!.

~24!
2-4
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IV. TWO-POINT TENSOR CORRELATOR
IN OPEN de SITTER SPACE

The analytic continuation into open de Sitter space
given by settings5 i t and the polar angleV52 ix. With-
out loss of generality we may take one of the two points,
V8 to be at the north pole of the three-sphere. Thenm5V,
and m continues to2 ix. We then obtain the correlator i
open de Sitter space where one point has been chosen a
origin of the radial coordinatex. The conformal coordinate
X continues to conformal timet asX52t2 ip/2 ~see@8#!.

Hence the analytic continuation of the Euclidean mo
functions is given by

Cp
r ~X!→2epp/2Cp

L~t! and Cp
l ~X!→2e2pp/2C2p

L ~t!
~25!

where the Lorentzian mode functions are

Cp
L~t!5~cotht1 ip !e2 ipt. ~26!

They are solutions to the Lorentzian perturbation equa
K̂Cp

L(t)5p2Cp
L(t).

In order to perform the substitutionm52 ix, wherex is
the comoving separation onH3, we use the explicit formula
given in the Appendix for the bitensor regular atm5p. The
continued bitensorWi ji 8 j 8

(p) (x) is defined by Eqs.~A7!, ~A11!
and ~A12!. It can be seen from Eq.~A12! that it involves
terms which behave ase6p( ix1p). One must extract the
epp-factors in order for the bitensor to correspond to t
usual sum of rank-two tensor harmonics on the realp-axis.
To do so we use the following general identity. Fort82t
.0, we have~up to thep5 i gauge mode!

E
C

dp

p

Cp
L~t!C2p

L ~t8!

~11p2!
eipxF~p!50, ~27!

whereF(p) are thep-dependent coefficients occurring in th
final ~Lorentzian! form of the bitensor given in Eq.~A13!.
This identity follows from the analyticity of the integrand
By inserting 15sinhpp/sinhpp under the integral, it is clea
that the integral~27! with a factor epp/sinhpp inserted
equals that with a factore2pp/sinhpp inserted. The resulting
identity allows us to replace the factorse1p( ix1p) in the
bitensor byep( ix2p), and vice versa in the analog integral
I 2p closed in the lower halfp-plane.

For the tensor correlator we also need to restore the fa
ia21(t) to t i j . It is convenient to define the eigenmod
Fp

L(t)5Cp
L(t)/a(t). The extra minus sign hereby intro

duced is cancelled by a change in sign of the normaliza
factor Qp of the bitensor, which then becomes1(p2

14)/(30p2). This corresponds to requiring the spaceli
metric to have postive signature. We finally obtain t
Lorentzian tensor Feynman~time-ordered! correlator, fort8
2t.0,
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^t i j ~x!,t i 8 j 8~x8!&5
k

2ER

dp

p sinhpp

Wi ji 8 j 8
L(p)

~x!

~11p2!

3„e2ppFp
L~t!F2p

L ~t8!

1eppF2p
L ~t!Fp

L~t8!…

2p i Res~ I p
L ;p50!, ~28!

where the Lorentzian bitensorWi ji 8 j 8
L(p) is defined in the Ap-

pendix, Eqs.~A4! and ~A13!.
In this section, we concentrate on the first term in E

~24!, the integral overp, and ignore for the moment the se
ond, discrete term. We first extract the symmetrized p
^$t i j (x),t i 8 j 8(x8)%&, which is just the real part of the Feyn
man correlator. The imaginary part involves an integra
which is analytic forp→0:

^t i j ~x!,t i 8 j 8~x8!&

5
k

2ER

dp

p~11p2!
Wi ji 8 j 8

L(p)
~x!

3cothpp@Fp
L~t!F2p

L ~t8!1F2p
L ~t!Fp

L~t8!#

22i E
0

`

dp
Wi ji 8 j 8

L(p)
~x!

~11p2!
IF1

p
Fp

L~t!F2p
L ~t8!G .

~29!

It is straightforward to see that if we apply the Lorentzi
version of the perturbation operatorK̂ to Eq. ~29! with an
appropriate heaviside function oft2t8, the imaginary term
will produce the Wronskian ofF2p

L (t) andFp
L(t), which is

proportional toip, timesd(t2t8). Then the integral overp
produces a spatial delta function. From this one sees that
Feynman correlator obeys the correct second order pa
differential equation, with a delta function source. The de
function source term in Eq.~11! goes from being real in the
Euclidean region to imaginary in the Lorentzian region b
cause the factorAg continues toiA2g.

The integral in Eq.~28! diverges asp22 for p→0, in
contrast with realistic models for inflationary univers
where a reflection term in Eq.~29! regularizes the spectrum
@1#. However, as we immediately show, even in perfect
Sitter space the integral overp is perfectly finite. We rewrite
the symmetrized correlator as an integral over real 0<p
<` as follows. Because the integrand in Eq.~29! is even in
p, we have

^$t i j ~x!,t i 8 j 8~x8!%&52kE
e

` dp

pp2

pp cothpp

~11p2!

3R@Fp
L~t!F2p

L ~t8!#Wi ji 8 j 8
L(p)

~x!

2
2k

pe
F0

L~t!F0
L~t8!Wi ji 8 j 8

L(0)
~x!1O~e!,

~30!
2-5



m
ne

s

-

a
er
ar

de
ns

te
ca

th
e

to

ra
h
in

p
la

s
t

r

ar-

ite.
c-

ta-
g to
ath
ith

cor-
ian
an

ter

in

rm
a-

ars

ten-
uan-

S. W. HAWKING, THOMAS HERTOG, AND NEIL TUROK PHYSICAL REVIEW D62 063502
the second term being the contribution from the small se
circle aroundp50. Both terms may be combined under o
integral. The resulting integrand isanalyticasp→0 and one
can safely take the limite→0. The symmetrized correlator i
then given by

^$t i j ~x!,t i 8 j 8~x8!%&

52kE
0

` dp

pp2 S pp cothpp

~11p2!
R@Fp

L~t!F2p
L ~t8!#

3Wi ji 8 j 8
L(p)

~x!2F0
L~t!F0

L~t8!Wi ji 8 j 8
L(0)

~x!D ,

~31!

where the Lorentzian bitensorWi ji 8 j 8
L(p) is defined in the Ap-

pendix, Eqs.~A4! and~A13!. In this integral it may be writ-
ten as

Wi ji 8 j 8
L(p)

~x!5(Plm
qi j

(p)Plm~V!qi 8 j 8
(p)Plm

~V8!* . ~32!

The functionsqi j
(p)Plm(V) are the rank-two tensor eigen

modes with eigenvalueslp52(p213) of the Laplacian on
H3. HereP5e,o labels the parity, andl andm are the usual
quantum numbers on the two-sphere. At largep, the coeffi-
cient functionswj

(p) of the bitensor~see the Appendix! be-
have like p sinpx. Hence the above integral converges
largep, for both timelike and spacelike separations. Furth
more, the correlations asymptotically decay for large sep
tion of the two points.

Equation~28!, with the first term given by Eq.~31! is our
final result for the two-point tensor correlator in open
Sitter space, with Euclidean no boundary initial conditio

Contracting the propagator with the harmonicsq(p)elm
i 8 j 8 and

integrating over the three sphere reveals that the second
leaves the spectrum completely unchanged apart from
celling the ~divergent! contribution from thep250 diver-
gence in the first term. We defer a detailed discussion of
result to the next section, in which we will also clarify th
difficulties of the previous work on the graviton propaga
in open de Sitter spacetime@2–4#.

As an illustration let us compute the Sachs-Wolfe integ
@14# and show that all the multipole moments are finite. T
contribution of gravitational waves to the CMB anisotropy
perfect de Sitter space is given by

dTSW

T
~u,f!52

1

2E0

t0
dttxx,t~t,x,u,f!ux5t02t , ~33!

wheret0 is the observing time. The temperature anisotro
on the sky is characterized by the two-point angular corre
tion functionC(g), whereg is the angle between two point
located on the celestial sphere. It is customary to expand
correlation function in terms of Legendre polynomials as
06350
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C~g!5 K dT

T
~0!

dT

T
~g!L 5(

l 52

`
2l 11

4p
Cl Pl~cosg!.

~34!

Hence, inserting the Sachs-Wolfe integral into Eq.~34! and
substituting Eq.~31! for the two-point fluctuation correlato
yields the multipole moments

Cl5
k

2E0

1`

dpE
0

t0
dtE

0

t0
dt8

3S cothpp

p~11p2!
R@Ḟp

L~t!Ḟp
L~t8!#Qxx

pl Qx8x8
pl

2Ḟ0
L~t!Ḟ0

L~t8!Qxx
0l Qx8x8

0l D . ~35!

In this expression we have written the normalized tensor h
monicsqxx

(p)elm(x,u,f) asQxx
pl (x)Ylm(u,f), where

Qxx
pl ~x!5

Nl~p!

p2~p211!
~sinhx! l 22S 21

sinhx

d

dx D l 11

~cospx!

~36!

and

Nl~p!5F ~ l 21!l ~ l 11!~ l 12!

p)
j 52

l

~ j 21p2! G 1/2

. ~37!

It can readily be seen that the multipole moments are fin
With the aid of the explicit expressions and the wave fun
tions ~26! they can be numerically computed.

V. CONCLUSIONS

We have computed the spectrum of primordial gravi
tional waves predicted in open de Sitter space, accordin
Euclidean no boundary initial conditions. The Euclidean p
integral unambiguously specifies the tensor fluctuations w
no additional assumptions. The real space Euclidean
relator has been analytically continued into the Lorentz
region without Fourier decomposing it, and we obtained
infrared finite two-point tensor correlator in open de Sit
space, contrary to previous results in the literature@2–4#.

Let us now elaborate on the second, regularising term
the symmetrised correlator~31! and the discretep50 con-
tribution to the Feynman correlator given from the last te
in Eq. ~24!. Not surprisingly, they have a similar interpret
tion. Their angular partWi ji 8 j 8

L(0) (x) is equal to the sum of the
tensor harmonics with eigenvaluelp(p50)523 of the La-
placian onH3. It has been known that a degeneracy appe
betweenp250 tensor modes andps

2524 scalar harmonics
@3#. More specifically, one has qi j

e(0)lm5(¹ i¹ j

2 1
3 g i j ¹

2)q(2i ) lm where q(2i ) lm5P(2i ) lmYlm . The discrete
p250 tensor harmonics are the only transverse traceless
sor perturbations that can be constructed from a scalar q
2-6
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tity. But as a consequence of this, they are sensitive to sc
gauge transformations. Consider now the coordinate tra
formation ja5„0,eF0

L(t)¹ iq(2i ) lm
…. Under this transforma-

tion the transverse traceless part of the metric perturba
hi j in the perturbed line element~5! changes exactly by
et i j

(0)lm5eF0
L(t)qi j

(0)lm . Using the transverse-traceless pro
erties oft i j it is easily seen that the action for tensor fluctu
tions is invariant under such transformations. Hence this
sor eigenmode is non-physical and can be gauged aw
Note that since the functional form ofj is completely fixed
this corresponds to a global transformation, analogous to
transformationf→f1 constant for a massless field. T
compute the Green function for a massless field one ha
project out this homogeneous mode, and it is necessary t
the same here. One should therefore disregard the cont
tion from the discrete term in Eq.~24! to the Lorentzian
correlator. This was actually also done in our computation
the tensor fluctuation spectrum aboutO(4) instantons@1#,
although in that case not because the mode was pure ga
but because it couples to the inflaton field, and is not rep
sented by a simple action of the form~8!. If a scalar field is
present, the mode is most simply treated as a part of
scalar perturbations, as was done in@8#.

In our result~31! for the symmetrised correlator, the di
crete gauge mode is set to zero because the second
cancels exactly the contribution from thep250 mode im-
plicitly contained in the continuous spectrum. This automa
cancellation does not happen in the conventional mode
mode analysis where, if one chooses the most degene
continuous representation of the isometry groupO(3,1) of
the hyperboloidH3, corresponding to the rangepP@0,̀ ),
one obtains a divergent correlator.

It is clear that the underlying reason for these subtle
has to do with the different nature of tensor harmonics
compact and non-compact spaces. Hence, we could hav
pected the generation of the two discrete gauge modes
ply from the analytic continuation of the completeness re
tion ~14! of the harmonics onS3. Apart from the sum of the
complete set of modes that constitute the delta function

H3, one obtains also three extra termsW(2i )
i j i 8 j 8(m),

W( i )
i j i 8 j 8(m) and W(0)

i j i 8 j 8(m). The first term is zero, and th
remaining two terms should respectively be viewed as su
of vector—and scalar—harmonics. On the other hand,
fact that the scalar-tensor degeneracy appears precisely a
lower bound of the continuous spectrum is a peculiar fea
of three dimensions. In the analogous computation in f
dimensions for instance@15#, this degeneracy happens atp2

521/4 and consequently, there is no regularizing term
the correlator.

There is yet another way in which the exclusion of t
degenerate modes from the perturbation spectrum can b
terpreted. Remember that in non-compact spacetimes the
composition~6! is only uniquely defined for bounded pertu
bations. Hence, the only way there can appear a degene
between the different types of fluctuations is for the deg
erate modes to be unbounded. Indeed, on the th
hyperboloid the scalarp2524 modes describe divergen
fluctuations because the scalar spherical harmonicsq(2i ) lm
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grow exponentially with distance. The action of the abo
tensor operator renders only theqx j

(0)lm components ofqi j
(0)lm

finite at infinity. The remaining components still diverge
;ex and correspond to exponentially growing fluctuations
large distances.1 Since in cosmological perturbation theo
one assumes the perturbationhi j to be small, one must ex
pand correlators in bounded harmonics.

We want to emphasize that the regularity of the two-po
tensor correlator does not depend on the Euclidean meth
used in our work. One could have equally well computed
correlator on closed Cauchy surfaces for the de Sitter sp
where the subtleties encountered here do not arise, assu
the standard conformal vacuum for that slicing. One wo
then analytically continue the result to the open slicing.
the other hand, the Euclidean no boundary principle is
appealing prescription which avoids the arbitrary choice
vacuum otherwise needed. The path integral effectively
fines its own initial conditions, yielding a unique and infr
red finite Green function in the Lorentzian region. The init
quantum state of the perturbation modes, defined by the
boundary path integral, corresponds to the conform
vacuum in the Lorentzian spacetime. This is in many wa
the most natural state in de Sitter space, but the regularit
the graviton propagator is independent of this choice. T
most important technical advantage of our method is that
deal throughout directly with the real space correlator, wh
makes the derivation independent of the gauge ambigu
involved in the mode decomposition.

Finally, let us conclude by comparing the gravitation
wave spectrum in perfect open de Sitter spacetime with
spectrum in realistic open inflationary universes. In both
Hawking-Turok and the Coleman–De Luccia model for op
inflation there is an extra reflection term in the correla
because O~5! symmetry is broken on the instanton@1#. This
term gives rise to long-wavelength bubble wall fluctuatio
in the Lorentzian region. At first sight, the wall fluctuation
seem to regularize the spectrum. However, adding and
tracting the second term in Eq.~31! to the two-point tensor
correlator in theO(4) models@Eq. ~34! in @1## and compar-
ing that with our result~31! reveals that the wall fluctuation
actually appear as an extra long-wavelength continuum c
tribution on top of the spectrum in perfect de Sitter spac
Hence in both the Hawking-Turok and Coleman–De Luc
model there is an enhancement of the fluctuations comp
to the perturbations in perfect de Sitter space. But the sin
larity in Hawking-Turok instantons suppresses the wall flu
tuations because it enforces Dirichlet boundary conditions
the perturbation modes@1#. Hence we expect the spectrum
perfect de Sitter space to be quite similar to the spectr
predicted by singular instantons. On the other ha
Coleman–De Luccia models typically predict large w
fluctuations, yielding a very different CMB anisotropy spe

1The confusion arises because, due to the form of the metric
verse, scalar invariants are finite at infinity, e.g.,qi j q

i j ;e22x. This
also explains why the coefficient functionswj

(0)(x) in the bitensor
Wi ji 8 j 8

L(0) asymptotically decay.
2-7
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trum on large angular scales. The tensor fluctuation spect
therefore potentially provides an observational discrimin
between different theories of open inflation@16#.
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APPENDIX: MAXIMALLY SYMMETRIC BITENSORS

A maximally symmetric bitensorT is one for which
s* T50 for any isometrys of the maximally symmetric
manifold. Any maximally symmetric bitensor may be e
panded in terms of a complete set of ‘‘fundamental’’ ma
mally symmetric bitensors with the correct index symm
tries. For instance

Ti ji 8 j 85t1~m!gi j gi 8 j 81t2~m!@nigji 8nj 81njgii 8nj 8

1nigj j 8ni 81njgi j 8ni 8#1t3~m!@gii 8gj j 81gji 8gi j 8#

1t4~m!ninjni 8nj 81t5~m!@gi j ni 8nj 81ninjgi 8 j 8#

~A1!

where the coefficient functionst j (m) depend only on the
distancem(V,V8) along the shortest geodesic fromV to
V8. ni 8(V,V8) andni(V,V8) are unit tangent vectors to th
geodesics joiningV andV8 andgi j 8(V,V8) is the parallel

propagator along the geodesic;Vigi
j 8 is the vector atV8

obtained by parallel transport ofVi along the geodesic from
V to V8 @17#.

The set of tensor eigenmodes onS3 or H3 forms a repre-
sentation of the symmetry group of the manifold. It follow
in particular that their sum over the parity statesP5$e,o%
and the quantum numbersl andm on the two-sphere define
a maximally symmetric bitensor onS3 ~or H3) @17#

W(p) i 8 j 8
i j

~m!5(Plm
qPlm

(p) i j ~V!qi 8 j 8
(p)Plm

~V8!* . ~A2!

On S3 the labelp53i ,4i , . . . . It is related to the usual an
gular momentumk by p5 i (k11). The ranges of the othe
labels is then 0< l<k and2 l<m< l . On H3 there is a con-
tinuum of eigenvaluespP@0,̀ ). We will assume from now
that the eigenmodes on are normalized by the condition

E Agd3xqPlm
(p) i j qP8 l 8m8 i j

(p8)* 5dpp8dPP8d l l 8dmm8 . ~A3!

The bitensorW(p) i 8 j 8
i j (m) appearing in our Green functio

has some additional properties arising from its construc
in terms of the transverse and traceless tensor harmo
qi j

(p)Plm . The tracelessness ofWi ji 8 j 8
(p) allows one to eliminate

two of the coefficient functions in Eq.~A1!. It may then be
written as
06350
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Wi ji 8 j 8
(p)

~m!5w1
(p)@gi j 23ninj #@gi 8 j 82ni 8nj 8#

1w2
(p)@4n( igj )( i 8nj 8)14ninjni 8nj 8#

1w3
(p)@gii 8gj j 81gji 8gi j 822nigi 8 j 8nj

22ni 8gi j nj 816ninjni 8nj 8#. ~A4!

This expression is traceless on either index pairi j or i 8 j 8.
The requirement that the bitensor be transverse¹ iWi j i 8 j 8

(p)

50 and the eigenvalue condition (D32lp)W(p)
i j i 8 j 850 im-

pose additional constraints on the remaining coefficient fu
tions wj

(p)(m). To solve these constraint equations it is co
venient to introduce the new variables@18# on S3 ~on H3, m

is replaced by2 i m̃)

a~m!5w1
(p)~m!1w3

(p)~m!

b~m!5
7

~p219!sinm

da~m!

dm
. ~A5!

In terms of a new argumentz5cos2(m/2) ~or its continuation
on H3) the transversality and eigenvalue conditions imp
for a(z)

z~12z!
d2a~z!

d2z
1F7

2
27zGda~z!

dz
5~p219!a~z!

~A6!

and then for the coefficient functions

w15Qp„@2~lp26!z~z21!22#a~z!

1 4
7 @~lp16!z~z2 1

2 !~z21!#b~z!…

w25Qp„2~12z!@~lp26!z13#a~z!

2 4
7 @~lp16!z~z21!~z2 3

2 !#b~z!… ~A7!

w35Qp„@22~lp26!z~z21!13#a~z!

2 4
7 @~lp16!z~z2 1

2 !~z21!#b~z!…

with lp5(p213).
The above conditions leave the overall normalization

the bitensor undetermined. To fix the normalization const
Qp we contract the indices in the coincident limitz→1. This
yields @18#

Wi j
(p) i j ~V,V!5(Plm

qi j
(p)Plm~V!q(p)Plmi j~V!* 530Qpa~1!.

~A8!

By integrating over the three-sphere and using the norm
ization condition~A3! on the tensor harmonics one obtai
Qp52(p214)/30p2a(1).

Notice that Eq.~A6! is precisely the hypergeometric dif
ferential equation, which has a pair of independent soluti
a(z)52F1(31 ip,32 ip,7/2,z) and a(12z)52F1(31 ip,
32 ip,7/2,12z). The former of these solutions is singular
2-8
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z51, i.e., for coincident points on the three-sphere, and
latter is singular for opposite points. The solution forb(z)
follows from Eq.~A5! and is given by

b~z!52F1~42 ip,41 ip,9/2,z!. ~A9!

The hypergeometric functions are related by the transfor
tion formula @Eq. @15.3.6# in @19#!

2F1~a,b,c,z!5
G~c!G~c2a2b!

G~c2a!G~c2b!2F1~a,b,a1b2c,12z!

1
G~c!G~a1b2c!

G~a!G~b!
~12z!2

c2a2b

3F1~c2a,c2b,c2a2b,12z!. ~A10!

Only for the eigenvalues of the Laplacian onS3, i.e., p
5 in (n>3), the term on the second line vanishes
2F1(31 ip,32 ip,7/2,z). For these special values,a(z) and
a(12z) are no longer linearly independent but related b
factor of (21)n11, and they are both regular for any ang
on the three-sphere. In fact, the hypergeometric series te
nates for these parameter values and the hypergeom
functions reduce to Gegenbauer polynomialsCn23

(3) (122z).
We have a choice between usinga(z) and a(12z) in the
bitensor for these values ofp. SinceF(12z)→1 for coinci-
dent points, it is more natural to choosea(12z) in the biten-
sor appearing in the Euclidean Green function~18!. How-
ever, to obtain the Lorentzian correlator, we had to expr
the discrete sum~18! as a contour integral. Since the Eucli
ean correlator obeys a differential equation with a delta fu
tion source atm50, we must maintain regularity of the in
tegrand atm5p when extending the bitensor in the compl
p-plane. In other words, for genericp, we need to work with
06350
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the solutiona(z), rather thana(12z). Therefore, in order
to write the Euclidean correlator as a contour integral,
first have replacedF(12z) by F(z)(21)n11, by applying
~A10! to Eq.~18!, and we then have continued the latter te
to 2(coshpp)21

2F1(31ip,32 ip, 7
2 ,z).

We conclude that the properties of the bitensor appea
in the tensor correlator completely determine its form. Not
that in terms of the labelp we have obtained a ‘‘unified’’
functional description of the bitensorW(p)

i j i 8 j 8 on S3 andH3.
Its explicit form is very different in both cases howeve
because the labelp takes on different values. But it is pre
cisely this description that has enabled us in Sec. IV to a
lytically continue the correlator from the Euclidean instant
into open de Sitter space without Fourier decomposing
We shall conclude this Appendix by giving the explicit fo
mulas for the coefficient functions of the bitensorWi ji 8 j 8

L(p)

appearing in our final result~31!. With this description, they
can be obtained by analytic continuation fromS3.

To perform the continuation toH3 we note that the geo
desic separationm on S3 continues to2 ix wherex is the
comoving separation onH3. Hence the hypergeometric func
tions onH3 are defined by analytic continuation~Eq. 15.3.7
in @19#! and may be expressed in terms of associated L
endre functions as

a~z!515Ap

2
~2sinhx!25/2P21/21 ip

25/2 ~2coshx!,

b~z!515Ap

2
~2sinhx!27/2P21/21 ip

27/2 ~2coshx!.

~A11!

Using the relation2cosh(x)5cosh(x2ip), the Legendre
functions onH3 may be expressed as
f the
P21/21 ip
25/2 ~2coshx!5A 2

2p sinhx
~11p2!21~41p2!21F23 cothx coshp~p1 ix!

2
i sinhp~ ix1p!

2p
„~22p2!~11coth2x!1~41p2!cosech2x…G

P21/21 ip
27/2 ~2coshx!5A 2

2p sinhx
~11p2!21~41p2!21~91p2!21Fcoshp~p1 ix!~p2211215cosech2x!

26
i sinhp~ ix1p!

p
„~12p2!coth3x1~p21 3

2 !cothx cosech2x…G . ~A12!

In the text, we have extracted the factorse6pp in these expressions in order to make contact with the usual description o
tensor correlator in terms of tensor harmonics onH3. The coefficient functions of the bitensorWi ji 8 j 8

L(p) (x) in our final result
~31! for the tensor correlator are

w15
cosech5x

4p2~p211!
Fsinpx

p
„31~p214!sinh2x2p2~p211!sinh4x…2cospx„3/21~p211!sinh2x…sinh 2xG
2-9
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w25
cosech5x

4p2~p211!
Fsinpx

p
„3112 coshx23p2~112 coshx!sinh2x1p2~p211!sinh4x…

1cospx„21223 coshx12~p222!sinh2x12~p211!coshx sinh2x…sinhxG ~A13!

w35
cosech5x

4p2~p211!
Fsinpx

p
„323p2sinh2x1p2~p211!sinh4x…1cospx„23/21~p211!sinh2x…sinh 2xG .

As mentioned before, the bitensorWi ji 8 j 8
L(p) equals the sum~A2! of the rank-two tensor eigenmodes with eigenvaluelp

52(p213) of the Laplacian onH3. For x→0 these functions converge and they exponentially decay at large geo
distances.
er
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