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Observational test of quantum cosmology
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We compute the tensor CMB anisotropy power spectrum for singular and non-singular instantons describing
the beginning of an open universe according to the Euclidean no boundary proposal. Singular instantons occur
generically, whereas non-singular instantons require more contrived scalar field potentials. For the latter, we
consider potentials in which a sharp feature, either negative or positive, is added to a gently sloping potential.
In the first case one finds a nearly divergent contribution to the low multipole CMB anisotropy, in conflict with
the COBE observations. In the second case the divergence is weaker, but matching the low multipoles forces
the added feature to be large and narrow. For singular instantons, there is a better match to the observations,
without any such contrivance. The distinction between singular and nonsingular instantons disappears in the
limit as the universe becomes flat, but is still observable for densities as high as 0.7 of the critical density.

PACS number~s!: 98.80.Hw, 04.62.1v, 98.80.Cq
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I. INTRODUCTION

In the most common approach to inflationary theory o
postulates a scalar field with a gently sloping potential, a
assumes that for some reason the field was initially displa
from the potential minimum. If the initial displacement
large, the field approaches a slowly rolling state in which
universe inflates. This state is an attractor, and in it the s
tem loses memory of the initial conditions. This scenar
which is certainly the simplest version of inflationary theo
predicts that the universe should be flat to high accur
today. It also predicts that the initial state of the unive
should be totally inaccessible to observations today, since
scales most relevant to defining the initial state w
stretched by inflation to scales currently exponentially lar
than the Hubble radius. If future measurements confirm
universe is very nearly flat, then, assuming inflation is
explanation, discussions of what came before inflation
though interesting will remain strictly academic.

Current cosmic microwave background~CMB! observa-
tions are consistent with a flat universe, for example the
cent Boomerang measurement@1# yields 0.65,V tot,1.45 at
95 percent confidence. This lends support to the hope tha
simplest version of inflation, described above, might be c
rect. However, significant space curvature is not yet exclu
by the observations. This paper is devoted to examining
observational consequences of inflationary scenarios
which significant space curvature would exist today, and
which the initial conditions for the open universe are actua
visible in the microwave sky. In an open universe, the c
vature scale of the universe on the surface of last scatte
subtends an angular scale of approximatelyAV0 radians,
about 25 degrees forV050.3. If we live in such a universe
cosmic microwave sky observations can probe the ini
conditions for the inflating universe.

Theories of open inflation were initially constructed fro
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scalar field potentials with false vacua, using instanto
known as Coleman–De Luccia instantons@2#. These can be
interpreted as describing tunnelling from a prior fal
vacuum inflationary state@3,4#, although the relevant instan
tons only exist for rather special potentials. More recen
however, it was realized that open inflation can occur
more generically through a class of singular, but finite acti
instantons@5# which exist for essentially all gently slopin
inflationary potentials. The regular instantons do have
virtue that the prediction ofV is unique in a given theory
For the Hawking-Turok instantons, the most probable u
versea priori is one with a very low value ofV, but there
are solutions for essentially all values ofV up to unity. In the
absence of a better understanding of how the actual valu
determined, which may involve some sort of anthropic co
siderations, we shall here simply treat the value ofV as a
parameter to be adjusted to fit the universe we see. The
tern of density perturbations is then, for givenV and given
scalar potential, uniquely predicted.

In this paper we exhibit an interesting observable diff
ence between non-singular and singular instantons. We
cuss a generic problem faced by non-singular instantons
show how it is alleviated in singular instantons.

II. GRAVITATIONAL INSTANTONS
AND OPEN INFLATION

Instantons are saddle point solutions of the Euclidean p
integral, and open inflationary instantons may be natura
interpreted within the framework of Euclidean quantu
gravity and the no boundary proposal@6#. The instantons
provide a saddle point, which one can expand around
compute the Euclidean path integral. Correlators of inter
are uniquely defined in the Euclidean region, and then a
lytically continued into the Lorentzian universe. We ha
recently carried this program through to leading~quadratic!
order for scalar and tensor perturbations@7,8#. ~Related cal-
culations were performed in a different approach in Re
@9–11#.! The well known problems of the non-positivity o
the Euclidean Einstein action and the non-renormalizabi
©2000 The American Physical Society01-1



la

n
th
y

nd
ac
iliz
t

he
xi
se
-

-
th
an
h
ie
e

rib
d

th
e
n
n
e
b

-

t
so

f
-

M

be
s
e
d

b
ta

re-
as

nt-
ean
ns
p-

ons
the
his
no
all

no
ap-

be-
ion.
tons

ite
tly

and
re

ase
im-
ion
his
ec-
the

s in
tter
at

po-
rge
ke
sed
ov-
be

ten-
in
p
nsor
les
the

ng,

nd
rm
ple

how
e
be-

re

h
h
th
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of quantum gravity do not enter in these low order calcu
tions.

Until recently the class of known cosmological instanto
was quite limited. Coleman and De Luccia discovered
first examples when generalizing the problem of the deca
a false vacuum in scalar field theory to include gravity@3#. In
the limit of weak gravity the decay is well understood a
occurs via bubble nucleation. In a localized region of sp
the scalar field quantum tunnels through the barrier stab
ing the false vacuum. The bubble so formed expands at
speed of light and inside it the scalar field rolls down to t
true vacuum. In the presence of gravity, instantons only e
for scalar field potentials with a sufficiently sharp fal
vacuum~as shown in Fig. 1!. The reason is that the gravita
tional instanton has finite size,;MPl /AV whereMPl is the
Planck mass andV the potential energy density. For an in
stanton to exist, in which the scalar field is not constant,
scale of variation of the field must be smaller than the inst
ton size. But this scale of variation is determined by t
second derivative of the potential in the region of the barr
uV,ffu[M2. The condition for existence of Coleman–D
Luccia instantons is therefore thatM2..V/MPl

2 .
Coleman–De Luccia instantons may be used to desc

the nucleation of bubbles in a false vacuum region of
Sitter space@3,4#. The interior of such bubbles then form
infinite open universes and with modest fine tuning of
distanceDf over which the field rolls during inflation, on
can adjust the value ofV tot to an interesting value less tha
unity today. But in order for the Coleman–De Luccia insta
ton to exist, the condition mentioned above must be satisfi
Assume for example that the potential is approximated
1
2 m2f2 in the neighborhood of the true vacuum, wherem
,,MPl . For N efolds of inflationary expansion, one re
quiresf to roll for 2ANMPl whereMPl is the reduced Planck
mass. The false vacuum has to be at least this far from
true vacuum. But existence of the Coleman–De Luccia
lution requiresM2..4Nm2, and for reasonableN.40 ~for
acceptableV today!, the scaleM must be at least an order o
magnitude larger thanm. As we show later, yet another tun
ing is required in order to suppress the large angle C
anistropies.

In open inflation, it was assumed that the scalar field
came stuck in the false vacuum, leading to large amount
inflation, in the course of which the universe approach
perfect de Sitter space. Bubbles would nucleate in this
Sitter space, as the field tunnelled through the barrier
tween the false and true vacuum states. Each bubble con
an infinite, inflating open universe@3,2#.

FIG. 1. Inflationary potentials of the types being conside
here. The left is a smooth function, likem2f2, lf4 or eef. In this
theory only Hawking-Turok singular instantons exist. On the rig
are two potentials allowing Coleman–De Luccia instantons. T
solid line shows a potential with a sharp false minimum added,
dashed line one with a sharp maximum.
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Coleman–De Luccia instantons have a different interp
tation in the no boundary proposal. There they are viewed
classical solutions describing the rounding off of the Lore
zian universe on a compact Euclidean region. The Euclid
path integral uniquely specifies the spectrum of fluctuatio
inside the bubble without the need for additional assum
tions regarding the pre-bubble era. Indeed all calculati
that have been performed to date have in effect used
instanton background to define the pre-bubble era. T
makes the calculations identical to those performed in the
boundary interpretation. To that extent one can say that
predictions of open inflation are really predictions of the
boundary proposal. The pre-bubble inflating universe
pears to be a redundant theoretical construction.

The Coleman–De Luccia instantons are interesting
cause they provide a calculable scenario for open inflat
As mentioned the potentials needed to obtain such instan
are necessarily contrived~Fig. 1!. However Hawking and
one of us recently showed that a class of singular but fin
action Euclidean instantons exists for almost every gen
sloping inflationary potential@5#. We have computed the
spectrum of fluctuations about such singular instantons
found that in spite of the singularity the correlators a
uniquely defined, just as in the Coleman–De Luccia c
@7,8#. Interesting differences arise because the singularity
poses Dirichlet boundary conditions on the perturbat
modes. We pointed out that the observational effect of t
difference is likely to be most pronounced in the tensor sp
trum and this is what we discuss here. We shall show that
part of parameter space for Coleman–De Luccia theorie
which the bubble size is much smaller than the de Si
radius, so that the tunnelling is very similar to that in fl
spacetime, is ruled out.

III. FLUCTUATIONS ABOUT SINGULAR
AND NON-SINGULAR INSTANTONS

As we shall see, Coleman–De Luccia instantons with
tentials as shown in Fig. 1 generically produce a very la
amplitude of long wavelength tensor modes. Let us ma
clear at the outset however that this constraint cannot be u
to rule out all such models. The tensor perturbations are g
erned by the height of the inflationary potential, and can
adjusted independently of the scalar perturbations by flat
ing the potential. For example potentials of the form used
hybrid inflation, with a flat plateau followed by a sharp dro
produce acceptable scalar perturbations but almost no te
component. Another way of suppressing the low multipo
is to further tune the potential so that it is steep around
values off where the bubble nucleates@12#. In the light of
our discussion above, this constitutes a third fine tuni
needed to make such models work.

In this paper we compare the predictions of singular a
Coleman–De Luccia instantons with potentials of the fo
shown in Fig. 1. In the singular case we assume a sim
monomial potential likef2 or f4, and in the Coleman–De
Luccia case we superpose a sharp false vacuum. We s
that unless V tot is rather close to unity today th
Coleman–De Luccia examples are generally ruled out
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OBSERVATIONAL TEST OF QUANTUM COSMOLOGY PHYSICAL REVIEW D62 063501
cause they predict unacceptable large angle anisotropie
the microwave sky. In contrast the singular instantons wh
occur generically in gently sloping inflationary potentials a
pear more compatible with the observations.

In previous work we have derived the two-point corre
tors of the scalar@7# and tensor@8# metric perturbations in
open inflationary universes associated with both classe
Euclidean cosmological instantons. All perturbations are
termined from correlators of the gauge-invariant Newton
potentialCN and the transverse traceless tensor perturba
t i j , which may be computed directly from the path integr

To first order in\ the Euclidean correlators are specifi
by a Gaussian integral@7,8#. For both regular Coleman–D
Luccia instantons and singular instantons the result is uniq
In the latter case the singularity enforces Dirichlet bound
conditions. The Euclidean two-point correlators are anal
cally continued into the Lorentzian region where they d
scribe the quantum mechanical vacuum fluctuations of
various fields in the state described by the no boundary
posal initial conditions.

In the present work we shall calculate the temperat
fluctuations on the microwave sky from the Lorentzian tw
point correlators. The key observable difference between
two types of instantons occurs for wavelengths of order
curvature scale. Since the long-wavelength continuum in
scalar power spectrum vanishes linearly with wavenumbep,
the differences are small there. Likewise the bound stat
the scalar perturbation potential, producing long range co
lations beyond the curvature scale in the open universe
known to have a very minor effect on the CMB anisotro
@13#. However the spectrum of primordial gravity waves h
for the regular instantons a near divergence at smallp and
therefore provides a better opportunity for a distinguish
test.

The result for the symmetrized two-point correlator ten
metric perturbation about either Hawking–Turok
Coleman–De Luccia instantons is@8#

^$t i j ~x!,t i 8 j 8~x8!%&52kRE
0

`dp

p S cothppgp~t!g2p~t8!

1r p

gp~t!gp~t8!

sinhpp DW i ji 8 j 8
L(p)

~x!

a~t!a~t8!
~1!

wherek58pG, and length units are chosen so that the
moving spatial curvature scale is unity. In this formulat is
the conformal time as defined in@7# and x the comoving
radial coordinate. The bitensorWi ji 8 j 8

L(p) (x) is the sum of nor-
malized rank-two tensor harmonics with eigenvaluelp5
2(p213) of the Laplacian onH3 @8#. The eigenmodes
gp(t) are solutions of theLorentzian tensor perturbation
equation

S 2
d2

dt2
1

a9

a
21D gp~t!5p2gp~t! ~2!

normalized to obeygp(t)→e2 ipt ast→2`.
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First note the potentialp22 divergence in the integrand
due to the 1/(p sinhpp) in the first term. This divergence, a
we shall now argue, is cancelled by the second term.
second term involvesr p which is a reflection amplitude com
puted in the Euclidean region. In conformal coordinates
metric takes the formb2(X)(dX21dV3

2). For singular in-
stantons we have 0,X,` where the singularity is located
at X50. For regular instantons we have2`,X,`. In
both cases the perturbations obey a Schro¨dinger-like equa-
tion with potential U(X)[b9(X)/b21. This potential di-
verges to1` at X50 in the singular case, but is finit
everywhere in the regular case. In fact in the latter case
close to the reflectionless potential22 sech2X. The quantity
r p is in both cases the reflection amplitude for waves in
dent fromX51`. For singular instantons it is by unitarity
phase but for non-singular instantons it is a complex num
of modulus less than unity, and it is small at highp. Both
reflection amplitudes tend to minus one asp→0 because
long-wavelength modes are completely reflected, her
yielding an infrared finite correlator. However, since t
non-singular Coleman–De Luccia instantons are much clo
to the perfectS4 non-reflecting solution, we expect the re
flection amplitude to tend to21 at much lowerp than in the
singular Hawking-Turok case.

The region of lowp in the the tensor spectrum is what
known in the literature as the bubble wall fluctuation spe
trum @13#. When the de Sitter symmetry is only weakly br
ken, with a scalar field present, the long-wavelength ten
perturbations give a substantial contribution to the CM
anisotropies. From the discussion above, we expect a la
contribution to the large angle microwave anisotropies
regular instantons. In other words, the mild breaking of
Sitter invariance in non-singular models allows for lar
long-wavelength fluctuations about the background soluti
On the contrary, in singular models the singularity impose
boundary condition which keeps such fluctuations small.

IV. NON-SINGULAR ‘‘THIN-WALL’’ INSTANTONS

The scalar field equation in the Euclidean region read

~b3f ,s! ,s5b3V,f , ~3!

wheres is the proper radial distance (ds5bdX). Following
@2# we consider the case where the potential is given
superimposing a sharp negative ‘‘bump’’ of amplitude
2DV centered aboutf f onto a smooth monotonically in
creasing function off. On a non-singular instanton, the sc
lar field rolls in the upside down potential fromf0, gaining
kinetic energy until it hits the ‘‘bump’’ and rapidly deceler
ates to an almost standstill nearf f . Effectively all of the
kinetic energy of the field is converted to potential ener
and any damping is negligible. The field then remains
proximately constant as the scale factorb turns round and
vanishes as (sm2s). f0 is fixed by the form of the poten
tial and the requirement of regularity. This generally impli
that the scalar field must have reached the ‘‘bump’’ w
before the scale factor turns round. We therefore takeb's
in Eq. ~3!, and approximatingV,f as V,f0

[V,f(f0), we
have
1-3
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~s3f ,s! ,s's3V,f0
. ~4!

We havef ,s50 at the regular pole, so we may solve to fin

f'f01
1

8
V,f0

s2. ~5!

If the field approaches the ‘‘bump’’ atsb , then its kinetic
energy just before hitting the ‘‘bump’’ is

1

2
f ,s

2 '
1

32
V,f0

2 sb
2'

1

4
V,f0

~f f2f0! ~6!

and we may equate this toDV.
As we shall discuss shortly, it is useful to rewrite th

Schrödinger equation in the Euclidean region in a for
where it involves the potentialŪ5(k/2)f82 where prime
denotes derivative with respect to conformal coordinateX.
The strength of the potential is then

C[E k

2
f82dX5E k

2
bf ,s

2 ds'
k

2

V,f0

2 sb
4

64
. ~7!

If we take the smooth part of the potential to be of the fo
lfn, we may introduce the quantitiesN[kf0

2/2n and H2

[(k/3)V(f0). N is the slow roll approximation to the num
ber of inflationary efoldings in the open universe.H is the
slow roll Hubble parameter, withb'(1/H)sinHs. Then we
can write

C5
9n~Hsb!4

256N
. ~8!

We will see below that for regular instantons the quantityC
provides an infrared cutoff for the amplitude of the bubb
wall fluctuations. From the condition that the scalar fie
must have reached the bump well before the scale fa
turns round, usingb'(1/H)sinHs we see thatHsb must
certainly be less thanp/2. As a concrete example, if we tak
n52 and N550, this yieldsC,0.01. Generically, in the
regime where the bubble radius is much smaller than
radius of the de Sitter space,C will be very much smaller
than this, since the formula involves the fourth power of t
size of the bubble,sb .

V. NON-SINGULAR ‘‘THICK-WALL’’ INSTANTONS

We now consider instantons associated with potent
with a sharppositivefeature as shown by the dashed curve
Fig. 1. In this case, the scalar field motion is confined with
the region of the feature over the instanton, and does
probe the smooth part of the potential at all. Unlike the th
wall case discussed above, the scalar field varies significa
over the whole instanton, and not just over a localized reg
of it. The starting value of the scalar field is tuned so that
field reaches the peak of the feature at approximately
same time as the scale factor rolls over. If indeed the po
tial is exactly symmetrical about the peak over the reg
probed by the instanton, these two events occur at exactly
06350
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same moment. The change in sign of the slope of the po
tial may then be able to balance the antidamping, bring
the scalar field to a halt as the scale factor again tend
zero, giving us a non-singular solution. For this to occur,
feature must be sufficiently sharp. This can be achieved
ing differentiable functions with large curvature at the pea
We can model this by introducing a kink. We model th
potential in the vicinity of the feature at sayf* as V
2V,fuf2f* u, with V andV,f constant and positive. The

we approximateb as 1/H sinHs, with H25
k

3
V, assuming

that V dominates over gradient energy in the field. In th
approximationf reachesf* at s5p/2H, and fs is odd
about s5p/2H. So in order to calculate C
5*(k/2)bf ,s

2 ds, we need only work outf ,s up to s
5p/2H and multiply by two. From the scalar field equatio
we have

f ,s5
V,f

sin3Hs
E

0

s

sin3Hsds5
V,f~cos3Hs23 cosHs12!

3H sin3Hs
~9!

and so

C523
k

2

V,f
2

9H2E0

p/2H 1

H sin5Hs

3~cos3Hs23 cosHs12!2ds

5
5

4k S V,f

V D 2

. ~10!

We can also integrate Eq.~9! to find thatDf[f* 2f(0)
51/2(112 ln 2)V,f /(kV)'1.19V,f /(kV). Inserting into Eq.
~10! we see thatC can be expressed two ways, either asC
'DfV,f /V[DV/V, or as C'0.8Df2/M Pl

2 , where M Pl
2

[k21. We have checked that the above expressions m
the numerically calculated values quite closely up toC;1.
In order to get a value ofC close to unity, one requires
large feature in the potential—i.e. a large change inV to
occur over a range off which is at least of order unity in
~reduced! Planck units. The calculations shown below e
clude small values ofC, corresponding in the thick wall cas
to small positive features on the potential.

VI. EUCLIDEAN REFLECTION AMPLITUDES AND
MODES

The primordial gravity wave spectrum is given by Eq.~1!.
In terms of the proper distances we used in the previous
section, we shall fix the integration constant involved in d
fining the conformal coordinate X by setting X
5*s

s t@ds8/b(s8)#. For non-singular instantons we follow
Refs. @7# and @8# and defines t to be that value ofs for
which b is maximum. For singular instantons it is taken i
stead to be the value ofs at the singularity.

For singular instantons, the singularity acts to impose
richlet boundary conditions in the Euclidean region. T
only allowed mode function at fixedp is given by cp
→apeipX1a2pe2 ipX asX→`. In the non-singular case, w
1-4
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OBSERVATIONAL TEST OF QUANTUM COSMOLOGY PHYSICAL REVIEW D62 063501
have left and right moving modes. The left movergp
left(X)

→e2 ipX, as X→2` and gp
left(X)→cpeipX1dpe2 ipX as X

→1`. These mode functions satisfy the differential equ
tion

S 2
d2

dX2
1U~X!D gp~X!5p2gp~X! ~11!

which has a trivial bound state solutionb(X) with p25
21. This corresponds to a constant shift in the metric p
turbation which is pure gauge. It is very convenient
project this out, since its presence means that there is
extra phase shift ofp produced by the potential even at ve
low p. The projection is simple. Rather thang one considers
ḡ[b(g/b)8 which is clearly zero for the bound state@9#.
This variable also satisfies a Schro¨dinger equation

S 2
d2

dX2
1Ū~X!D ḡp~X!5p2ḡp~X! ~12!

where Ū is the positive-definite quantity (k/2)f82 men-
tioned in the previous section. We defineḡp(X) in an iden-
tical fashion togp(X). From the constancy of the Wronskia
and using b;e2uXu at the regular poles, one find
r p5@(12 ip)/(11 ip)# r̄ p . For singular instantons the re
flection amplituder p is given by the phaseap /(a2p), and in
the non-singular case it equalscp /dp . It is straightforward to
calculater̄ p numerically for any background instanton of in
terest.

For the non-singular instantons considered in the previ
sectionsŪ(X) is sharply peaked around a value ofX, Xb say.
We can then make a very good analytic approximation
c̄p /d̄p as follows. We replaceŪ(X) by the delta function
potentialCd(X2Xb) of equivalent strength, withC as de-
fined in Eq.~7!. We can then solve analytically forḡp

left(X)
and find

c̄p

d̄p

52

S 11
2ip

C De22ipXb

11
4p2

C2

. ~13!

We approximateXb as follows. In the ‘‘thin-wall’’ caseXb
corresponds tos5sb . Then withb'(1/H)sinHs,

Xb'E
sb

s t H

sinHs
ds'2 ln tan

Hsb

2
~14!

where we have usedHs t'p/2. In the ‘‘thick-wall’’ case
Ū(X) is simply peaked arounds t and soXb'0.

VII. TENSOR CMB ANISOTROPY IN OPEN INFLATION

The Euclidean no boundary path integral allows us
compute correlation functions of any observable. If the
correlations are well approximated by a classical statist
06350
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distribution, as macroscopic observables such as the mi
wave anisotropies are, we can regard the predictions as b
characterized by the classical distribution. Our observed u
verse is one member of this classical ensemble. To com
different theories with regard to an observation carried ou
our universe, we compute how likely the given observat
is according to each theory.

We consider the microwave background anisotropy g
erated by primordial fluctuations, expanded in spherical h
monics dT/T5(almYlm(u,f). The alm’s obey alm* 5al 2m

and we have 2l 11 real observable quantities for eachl.
Rotational invariance implies that the 2l 11 quantities are
independently distributed with zero mean and common v
anceCl

th . Neglecting higher-order effects, their probabili
distributions are Gaussian. For a givenl we average over the
squares of the 2l 11 observable quantities in ou
universe to determineCl

obs. Then for a given theory of
this type, Cl

obs/Cl
th is x2-distributed over the ensemble o

universes with 2l 11 degrees of freedom.Cl
obs itself is

gamma-distributed with probability density functio
f @Cl

obs;( l 1 1
2 )/Cl

th ,l 1 1
2 # @14#. If Cl

obs is greater than the me
dian value ofCl

th , then the fraction of universes withCl less
likely than Cl

obs is given by 2G@ l 1 1
2 ,(l 1 1

2 )Cl
obs/Cl

th#/G( l
1 1

2 ). Similarly, if Cl
obs is less than the median value ofCl

th ,
then the fraction of universes withCl less likely thanCl

obs is
given by 222G@ l 1 1

2 ,(l 1 1
2 )Cl

obs/Cl
th#/G( l 1 1

2 ).
We need to obtain theCl

th’s for the different theories we
are interested in. Using the usual Sachs-Wolfe formula@15#
this is given in terms of our symmetrized tensor correla
~1! as

Cl
th5kRE

0

1`dp

2pEt lss

tnow
dtE

t lss

tnow
dt8

3S cothpp@Ḟp
L~t!Ḟ2p

L ~t8!#

1
1

sinhpp
@r pḞp

L~t!Ḟp~t8!# DQxx
pl Qx8x8

pl . ~15!

The primordial tensor power spectrum at the end of infl
tion defines inital conditions for the Sachs-Wolfe integral.
compute the multipole moments we useCMBFAST @16#,
which evolves the mode functions from the surface of l
scattering att lss up to the present timetnow, given the initial
power spectrum. Modifications were required to improve
resolution at low wave numbers, necessary for the accu
evaluation of the the lowl multipoles. We then combine th
tensor component in the correct ratio@17# with the standard
scale invariant scalar spectrum of perturbations in orde
obtain the totalCl

th to compare with experiment. To extrac
the primordial tensor power spectrum from Eq.~1!, we first
construct approximate solutions for the eigenmodesgp

L(t)
5Fp

L(t)a(t). In the inflationary phase of the open univer
the mode functions closely follow perfect de Sitter evoluti
in which they tend to a constant after the physical wa
length has been stretched outside the Hubble radius. He
to determine the amplitude and phase of this constant
1-5
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approximatea(t) as (1/H)sinhHt until V is close to one,
and introduce the associated conformal coordinate

h[2E
t

` H

sinhHt
dt5 ln tanh

Ht

2
, ~16!

h→2` being the start of inflation, andh→0 as the uni-
verse continues formally to inflate without end.t2h is a
finite constant during inflation whilst this approximation f
a(t) is a good one. The approximate Lorentzian tensor p
turbation equation is then

S 2
d2

dh2
1

2

cosh2h
D f p

L~h!5p2f p
L~h! ~17!

and the solution in whichf p
L(h)→e2 iph ash→2` is

f p
L~h!5

ip1cothh

ip21
e2 iph. ~18!

At a given value oft then, with correspondingt andh, we
havegp

L(t)'e2 ip(t2h) f p
L(h). So dividing bya and taking

the late-time limit we see that

Fp~t0!'2H
e2 ipt0

ip21
. ~19!

Heret0 is the conformal time as defined in@7# at the end of
inflation. This can be calculated numerically and isO(1) for
singular instantons andO(0.01) for ‘‘thin-wall’’ non-
fo
rm
-

-

ie
e
ls
e

tr
se
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r-

singular instantons. From Eq.~1! the primordial tensor
power spectrumPT(p) at the end of inflation is

2kR
1

p S cothppFp~t0!F2p~t0!

1
12 ip

11 ip
r̄ p

Fp~t0!Fp~t0!

sinhpp D . ~20!

For singular instantonsr̄ p5āp /ā2p is a phase factor and ca
be written ase2i ūp. So the tensor power spectrumPT

S(p) for
singular instantons is

PT
S~p!5

2kH2

p~11p2!
Xtanh

pp

2
1

1

sinhpp

3S 11
1

11p2
cos 2~ ūp2pt0!D C ~21!

in this approximation. For a given potential one evaluatesūp
numerically and obtains an empirical fit. In the lon
wavelength limitūp→2p/2 so the power spectrum is infra
red finite. Actually, it turns out that the CMB power spe
trum predicted by singular instantons differs only a litt
from the one with a perfect reflecting potential in which t
ratio ap /a2p is replaced by21 for all p.

For non-singular instantons, we haver̄ p5 c̄p /d̄p in Eq.
~20!. Using our approximations for this in the previous se
tion, we obtain
PT
NS~p!5

2kH2

p~11p2! Xtanh
pp

2
1

1

sinhpp S 12

cos 2p~Xb1t0!1
2p

C
sin 2p~Xb1t0!

11
4p2

C2

D C. ~22!
in-
po-
rge

n-
m-

all
-

the
rong
on
ve,

wall
Equations~21! and ~22! define the initial conditions for
the numerical computation of the Sachs-Wolfe integral
the different models. A Taylor expansion of the second te
aroundp50 shows that in the ‘‘thin-wall’’ case, as specu
lated earlier@8#, for typical values ofC the regimecp /dp
→21 sets in at much lowerp than in the singular Hawking
Turok case. One can see from Eq.~15! that this leads to a
larger contribution to the large angle microwave anisotrop
for regular ‘‘thin-wall’’ instantons. In the next section w
discuss to what extent this characteristic feature of fa
vacua models allows one to observationally distinguish th
from singular open inflation models.

VIII. NUMERICAL RESULTS

In Fig. 2 we compare the CMB anisotropy power spec
for singular and nonsingular instantons, in open univer
r

s

e
m

a
s

with V tot50.3 and 0.7 respectively. For the nonsingular
stantons there is a large contribution from the tensor com
nent, shown by the dashed line. The amplitude of the la
angle contribution is governed by the parameterC discussed
above. We argued above that on general groundsC has to be
smaller than 0.01 for ‘‘thin-wall’’ instantons. For ‘‘thick-
wall’’ instantonsC can be larger if the feature on the pote
tial is large. For singular instantons there is no such para
eter to vary. We have chosenC50.025 for the nonsingular
instantons which is certainly conservative for the thin w
case. The divergence at lowl would be even more pro
nounced in the allowed regime.

These calculations show that even if the curvature of
universe today is quite modest, one nevertheless sets st
constraints on the form of the inflationary potential and
the nature of the primordial instanton. As emphasized abo
C decreases as the fourth power of the size of the bubble
1-6
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FIG. 2. Cosmic microwave sky predictions o
different cosmological instantons. The upper tw
panels show predictions for an open univers
with V tot50.3 and no cosmological constant, fo
Hawking-Turok~panel A! and Coleman–De Luc-
cia instantons~panel B!. The former is for an
1
2 m2f2 potential, the latter for a model where
false vacuum has been added~see text!. The
lower panels compare the Hawking-Turok~C!
and Coleman–De Luccia~D! theories for an
Vmatter50.3, VLambda50.4, V tot50.7 cos-
mology. The difference at lowl is still marked.
These results are for a cold dark matter dom
nated universe withVCDM50.25, baryon density
VB50.05, and Hubble constanth50.65.
ra
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thickness—if the latter is much smaller than the Hubble
dius of the de Sitter space,C is much smaller than 0.01
Since the amplitude of the correlator diverges as*dpp22,
the amplitude of the quadrupole diverges roughly asC21.

In the panels shown the result for the gravity wave sp
trum explained above has been combined with the usual
lar spectrum of perturbations appropriate for an open u
verse @2#. The ratio of tensor to scalar contributons is
function of cosmological and model parameters. Howev
for medium multipoles, (l;30), the ratio approaches its we
known flat space value@17#. This value then fixes the relativ
normalization of scalar versus tensor anisotropy for all m
tipoles. For alfn inflaton potential the flat space ratioRfl
50.05n. Therefore, the higher the value ofn is, the more
important the contribution from the bubble wall tensor flu
o

k
ive
e
U

06350
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tuations. In the plots shown we have taken the ratio to be
for n52. This yields a quadrupole ratioR2'0.13 in a sin-
gular model andR2'0.57 in a regular model. Higher value
for n would allow us to exclude the nonsingular models mo
strongly.

For both singular and non-singular instantons we see
rise in Cl

th at low l, characteristic of an open universe. W
compare these different models to the Cosmic Backgro
Explorer ~COBE! Differential Microwave Radiometer
~DMR! data as follows. First of all have to set the over
normalization of each model. We do this with theRADPACK

software @18,19#. Using the DMR data alone, we find th
normalization which maximizes the likelihood for eac
model. We then compare likelihoods amongst the differ
models. The relative likelihoods are as follows:
Singular : Singular withL : Non-singular : Non-singular withL : Flat spectrum
28 : 76 : 1 : 22 : 97
the
ore
s. It
e-

we
ru-
where the flat spectrum is one with constantl ( l 11)Cl ’s,
shown for comparison. In this, Bayesian, approach, the n
singular instantons for an open universe withV tot50.3 are
strongly disfavored.

Having done the likelihood analysis above, we now ta
an hypothesis-testing approach, using the probabilities g
in Sec. VII above. The strongest constraint on the mod
comes from the quadrupole, and we focus on that here.
n-

e
n

ls
n-

fortunately the true sky quadrupole is not yet known, and
literature contains various estimates of it. We have theref
assumed a range of values taken from various reference
is to be hoped that the MAP experiment will accurately d
termine the actual value.

The model dependence of the lowl Cl ’s suggests that in
order to quantify the difference between the models
should compare the correctly-normalized predicted quad
1-7



um

STEVEN GRATTON, THOMAS HERTOG, AND NEIL TUROK PHYSICAL REVIEW D62 063501
TABLE I. Percentage of universes.

Measured value Singular Singular Non-singular Non-singular Flat spectr
VL50 VL50.4 VL50 VL50.4

3C2 /p 1.7310210 1.2310210 4.0310210 2.3310210 1.0310210 @21#

0.11310210 @20# 0.56% 1.2% 0.071% 0.27% 1.9%
0.20310210 @21# 2.3% 4.9% 0.31% 1.1% 7.0%
0.37310210 @22# 9.0% 18% 1.3% 4.6% 25%
1.0310210 @21# 61% 96% 13% 37% 83%
.
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pole moments with the measured quadrupole moment
Table I we show the percentage of universes in the ensem
associated with a given theory with a measured quadru
more extreme than that seen. We compare the results
singular and non-singular instantons with the best fit
spectrum for comparison. We have done this for a selec
of groups’ estimates for the observed quadrupole@20–22#.
We have converted all measured values to the dimension
quantity l ( l 11)Cl /2p, dividing by (2.73 K)2 where nec-
essary, to match the output ofCMBFAST. The result from@20#
is effectively a direct measurement of the quadrupole, al
with a systematic error due to the galactic cut. The ot
results are harder to interpret, having been obtained u
maximum likelihood techniques with highly non-Gaussi
likelihood functions for the quadrupole@21#. This means that
the quoted values below should have large skewed error b
We also show what a measurement of a larger quadru
~that from the best fit flat spectrum! would tell us for illus-
tration.

We note that in general the probability is several tim
larger for the singular case as compared to the the n
singular case. Both models are easier to rule out at a g
confidence level than the flat spectrum. Note that even
model is ruled out at the 98% level if the result of@20# is
taken at face value. It should be remembered that for
non-singular ‘‘thin-wall’’ model, we have assumed a val
of C even larger than the extreme best case. In situat
where the theoretical quadrupole is much larger than
measured one, the probability scales as (C2

meas/C2
th);C5/2 for

the non-singular models. The ‘‘thin-wall’’ nonsingular in
on
oh
.
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stantons appear to be strongly ruled out by the obser
quadrupole, even ifV tot is as large as 0.7.

IX. CONCLUSION

We have computed the tensor CMB anisotropy pow
spectrum for a class of singular and non-singular instanto
We showed that this provides a way to observationally d
tinguish different versions of open inflation. The ‘‘thin
wall’’ false vacuum models generate larger fluctuations
large angular scales, distinguishing them from singular m
els. Using the COBE data, we have found that this char
teristic feature strongly disfavors ‘‘thin-wall’’ Coleman–D
Luccia instantons relative to the singular Hawking-Tur
models. Non-singular ‘‘thick-wall’’ Coleman–De Luccia in
stantons are still viable, but only if the false vacuum featu
in the scalar potential is large. In this case the predictio
depend strongly on the detailed parameters describing
feature and the models are hence somewhat unattrac
These calculations have therefore enabled us to further
strain the form of the inflaton potential in open inflation.
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