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Observational test of quantum cosmology
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We compute the tensor CMB anisotropy power spectrum for singular and non-singular instantons describing
the beginning of an open universe according to the Euclidean no boundary proposal. Singular instantons occur
generically, whereas non-singular instantons require more contrived scalar field potentials. For the latter, we
consider potentials in which a sharp feature, either negative or positive, is added to a gently sloping potential.
In the first case one finds a nearly divergent contribution to the low multipole CMB anisotropy, in conflict with
the COBE observations. In the second case the divergence is weaker, but matching the low multipoles forces
the added feature to be large and narrow. For singular instantons, there is a better match to the observations,
without any such contrivance. The distinction between singular and nonsingular instantons disappears in the
limit as the universe becomes flat, but is still observable for densities as high as 0.7 of the critical density.

PACS numbsg(s): 98.80.Hw, 04.62+v, 98.80.Cq

I. INTRODUCTION scalar field potentials with false vacua, using instantons

In the most common approach to inflationary theory oneknOWn as Coleman-De Luccia instantd@3 These can be

postulates a scalar field with a gently sloping potential, andnterpreted as describing tunnelling from a prior false

. 2 E . vacuum inflationary statg8,4], although the relevant instan-
assumes that for some reason the field was initially displace, . . .
. L S ._“tons only exist for rather special potentials. More recently,
from the potential minimum. If the initial displacement is

3 ) . : however, it was realized that open inflation can occur far
large, the field approaches a slowly rolling state in which the : . . .

; . . . o more generically through a class of singular, but finite action,
universe inflates. This state is an attractor, and in it the sys-

L . . 2 Tinstantong 5] which exist for essentially all gently sloping
tem loses memory of the initial conditions. This scenario, : ) .
S : . : . . inflationary potentials. The regular instantons do have the
which is certainly the simplest version of inflationary theory,

. . . virtue that the prediction of) is unique in a given theory.
predicts that the universe shou_ld. _be flat to high ACCUTACY o the Hawking-Turok instantons, the most probable uni-
today. It also predicts that the initial state of the univers

hould b v i bl b . q X Sersea priori is one with a very low value of), but there
should be totally inaccessible to observations today, since thg.q ¢41tions for essentially all values@fup to unity. In the

scales most relevant to defining the initial state wereypsence of 4 better understanding of how the actual value is
stretched by mflatlon_ to scales currently exponentlally_ Iargerdetermined, which may involve some sort of anthropic con-
than the Hubble radius. If future measurements confirm th%iderations we shall here simply treat the valug(bks a

universe is very nearly flat, then, assuming inflation is &, ameter to be adjusted to fit the universe we see. The pat-

explanation, discussions of what came before inflation a"[ern of density perturbations is then, for givénand given
though interesting will remain strictly academic. scalar potential, uniquely predicted.’

_ Current cosmic mlc_rﬁwa;lle bat_:kgroun(l?MB) obslerv;':\- In this paper we exhibit an interesting observable differ-
tions are consistent with a flat universe, for example the reg .o peryeen non-singular and singular instantons. We dis-

cent Boomerang measuremeij yields 0.65< Q<145 at (s 4 generic problem faced by non-singular instantons and

95 percent confidence. This lends support to the hope that thg,;\v how it is alleviated in singular instantons.
simplest version of inflation, described above, might be cor-

rect. However, significant space curvature is not yet excluded
by the observations. This paper is devoted to examining the
observational consequences of inflationary scenarios in
which significant space curvature would exist today, and in
which the initial conditions for the open universe are actually |nstantons are saddle point solutions of the Euclidean path
visible in the microwave sky. In an open universe, the curintegral, and open inflationary instantons may be naturally
vature scale of the universe on the surface of last scatteringterpreted within the framework of Euclidean quantum
subtends an angular scale of approximatdl&_o radians, gravity and the no boundary propodd]. The instantons
about 25 degrees fd2,=0.3. If we live in such a universe, provide a saddle point, which one can expand around to
cosmic microwave sky observations can probe the initiakompute the Euclidean path integral. Correlators of interest
conditions for the inflating universe. are uniquely defined in the Euclidean region, and then ana-
Theories of open inflation were initially constructed from Iytically continued into the Lorentzian universe. We have
recently carried this program through to leadiugiadrati¢
order for scalar and tensor perturbatigisg]. (Related cal-

Il. GRAVITATIONAL INSTANTONS
AND OPEN INFLATION
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v v Coleman-De Luccia instantons have a different interpre-
tation in the no boundary proposal. There they are viewed as

¢ classical solutions describing the rounding off of the Lorent-
> zian universe on a compact Euclidean region. The Euclidean

FIG. 1. Inflationary potentials of the types being consideredPath integral uniquely specifies the spectrum of fluctuations
here. The left is a smooth function, like?$2, \¢* ore<®. Inthis  inside the bubble without the need for additional assump-
theory only Hawking-Turok singular instantons exist. On the righttions regarding the pre-bubble era. Indeed all calculations
are two potentials allowing Coleman—De Luccia instantons. Théhat have been performed to date have in effect used the
solid line shows a potential with a sharp false minimum added, thénstanton background to define the pre-bubble era. This
dashed line one with a sharp maximum. makes the calculations identical to those performed in the no

boundary interpretation. To that extent one can say that all
of quantum gravity do not enter in these low order calcula{redictions of open inflation are really predictions of the no
tions. boundary proposal. The pre-bubble inflating universe ap-

Until recently the class of known cosmological instantonspears to be a redundant theoretical construction.
was quite limited. Coleman and De Luccia discovered the The Coleman—De Luccia instantons are interesting be-
first examples when generalizing the problem of the decay ofause they provide a calculable scenario for open inflation.
a false vacuum in scalar field theory to include graj@} In  As mentioned the potentials needed to obtain such instantons
the limit of weak gravity the decay is well understood andare necessarily contrivetFig. 1). However Hawking and
occurs via bubble nucleation. In a localized region of spac@ne of us recently showed that a class of singular but finite
the scalar field quantum tunnels through the barrier stabilizaction Euclidean instantons exists for almost every gently
ing the false vacuum. The bubble so formed expands at theloping inflationary potentia[5]. We have computed the
speed of light and inside it the scalar field rolls down to thespectrum of fluctuations about such singular instantons and
true vacuum. In the presence of gravity, instantons only existound that in spite of the singularity the correlators are
for scalar field potentials with a sufficiently sharp false uniquely defined, just as in the Coleman—De Luccia case
vacuum(as shown in Fig. )L The reason is that the gravita- [7,8]. Interesting differences arise because the singularity im-
tional instanton has finite size; Mp/\V whereMp, is the ~ poses Dirichlet boundary conditions on the perturbation
Planck mass an¥ the potential energy density. For an in- modes. We pointed out that the observational effect of this
stanton to exist, in which the scalar field is not constant, thelifference is likely to be most pronounced in the tensor spec-
scale of variation of the field must be smaller than the instantrum and this is what we discuss here. We shall show that the
ton size. But this scale of variation is determined by thepart of parameter space for Coleman—De Luccia theories in
second derivative of the potential in the region of the barrierwhich the bubble size is much smaller than the de Sitter
|VY¢¢|EM2. The condition for existence of Coleman—De radius, so that the tunnelling is very similar to that in flat
Luccia instantons is therefore thet?>>V/M3,. spacetime, is ruled out.

Coleman—De Luccia instantons may be used to describe
the nucleation of bubbles in a false vacuum region of de
Sitter spac€3,4]. The interior of such bubbles then form
infinite open universes and with modest fine tuning of the
distanceA ¢ over which the field rolls during inflation, one As we shall see, Coleman—De Luccia instantons with po-
can adjust the value dR to an interesting value less than tentials as shown in Fig. 1 generically produce a very large
unity today. But in order for the Coleman—De Luccia instan-amplitude of long wavelength tensor modes. Let us make
ton to exist, the condition mentioned above must be satisfiedtlear at the outset however that this constraint cannot be used
Assume for example that the potential is approximated byo rule out all such models. The tensor perturbations are gov-
3 m?¢? in the neighborhood of the true vacuum, whene erned by the height of the inflationary potential, and can be
<<Mp,. For N efolds of inflationary expansion, one re- adjusted independently of the scalar perturbations by flatten-
quiresé to roll for 2\/NMp, whereM p, is the reduced Planck ing the potential. For example potentials of the form used in
mass. The false vacuum has to be at least this far from thiybrid inflation, with a flat plateau followed by a sharp drop
true vacuum. But existence of the Coleman—De Luccia soproduce acceptable scalar perturbations but almost no tensor
lution requiresM?>>4Nm?, and for reasonabld>40 (for ~ component. Another way of suppressing the low multipoles
acceptabld) today), the scaleM must be at least an order of is to further tune the potential so that it is steep around the
magnitude larger tham. As we show later, yet another tun- values of¢ where the bubble nucleatg$2]. In the light of
ing is required in order to suppress the large angle CMBour discussion above, this constitutes a third fine tuning,
anistropies. needed to make such models work.

In open inflation, it was assumed that the scalar field be- In this paper we compare the predictions of singular and
came stuck in the false vacuum, leading to large amounts d€oleman—De Luccia instantons with potentials of the form
inflation, in the course of which the universe approachedshown in Fig. 1. In the singular case we assume a simple
perfect de Sitter space. Bubbles would nucleate in this denonomial potential likep? or ¢*, and in the Coleman—De
Sitter space, as the field tunnelled through the barrier betuccia case we superpose a sharp false vacuum. We show
tween the false and true vacuum states. Each bubble contaitieat unless Q, is rather close to unity today the
an infinite, inflating open univerds,2]. Coleman—De Luccia examples are generally ruled out be-

IIl. FLUCTUATIONS ABOUT SINGULAR
AND NON-SINGULAR INSTANTONS
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cause they predict unacceptable large angle anisotropies in First note the potentiab~2 divergence in the integrand
the microwave sky. In contrast the singular instantons whichdue to the 1/ sinhpm) in the first term. This divergence, as
occur generically in gently sloping inflationary potentials ap-we shall now argue, is cancelled by the second term. The
pear more compatible with the observations. second term involves, which is a reflection amplitude com-

In previous work we have derived the two-point correla-puted in the Euclidean region. In conformal coordinates the
tors of the scalaf7] and tensof8] metric perturbations in  metric takes the fornb?(X)(dX?+dQ3). For singular in-
open inflationary universes associated with both classes @fantons we have<9X< where the singularity is located
Euclidean cosmological instantons. All perturbations are deat X=0. For regular instantons we havex<X<o. In
termined from correlators of the gauge-invariant Newtoniarhoth cases the perturbations obey a Sdhmger-like equa-
potential'?"y and the transverse traceless tensor perturbatiofion with potential U(X)=b"(X)/b—1. This potential di-
tjj , which may be computed directly from the path integral.verges to+% at X=0 in the singular case, but is finite

To first order inf the Euclidean correlators are specified everywhere in the regular case. In fact in the latter case it is
by a Gaussian integrdl,8]. For both regular Coleman—De close to the reflectionless potential secBX. The quantity
Luccia instantons and singular instantons the result is unique;‘.p is in both cases the reflection amplitude for waves inci-
In the latter case the singularity enforces Dirichlet boundaryjent fromX= + . For singular instantons it is by unitarity a
conditions. The Euclidean two-point correlators are analyti-phase but for non-singular instantons it is a complex number
cally continued into the Lorentzian region where they de-of modulus less than unity, and it is small at highBoth
scribe the quantum mechanical vacuum fluctuations of th@eﬂection amp”tudes tend to minus one Ia_s_)o because
various fields in the state described by the no boundary prqug-Wa\/e|ength modes are Comp|ete|y reﬂected, hereby
posal initial conditions. yielding an infrared finite correlator. However, since the

In the present work we shall calculate the temperaturgyon-singular Coleman—De Luccia instantons are much closer
fluctuations on the microwave sky from the Lorentzian two-tg the perfectS* non-reflecting solution, we expect the re-
point correlators. The key observable difference between thfection amplitude to tend te- 1 at much lowep than in the
two types of instantons occurs for wavelengths of order thejngular Hawking-Turok case.
curvature scale. Since the long-wavelength continuum in the The region of lowp in the the tensor spectrum is what is
scalar power spectrum vanishes linearly with wavenurmber known in the literature as the bubble wall fluctuation spec-
the differences are small there. Likewise the bound state qtym [13]. When the de Sitter symmetry is only weakly bro-
the scalar perturbation potential, producing long range corregen, with a scalar field present, the long-wavelength tensor
lations beyond the curvature scale in the open universe, igerturbations give a substantial contribution to the CMB
known to have a very minor effect on the CMB anisotropy anisotropies. From the discussion above, we expect a larger
[13]. However the spectrum of primordial gravity waves hascontribution to the large angle microwave anisotropies for
for the regular instantons a near divergence at smahd  regular instantons. In other words, the mild breaking of de
therefore provides a better opportunity for a distinguishingsitter invariance in non-singular models allows for large
test. ] ] long-wavelength fluctuations about the background solution.

The result for the symmetrized two-point correlator tensoron the contrary, in singular models the singularity imposes a
metric perturbation about either Hawking—Turok or houndary condition which keeps such fluctuations small.
Coleman—De Luccia instantons|[ig]

IV. NON-SINGULAR “THIN-WALL” INSTANTONS

=g
({tij(x),ti,j,(x’)}>=2K9%fO Fp<cothpargp( 7)G9_p(7) The scalar field equation in the Euclidean region reads
(b3¢,0),cr:b3v,¢1 (3)
p(M (7)) | WD ()
o 7= yr (1)  whereo is the proper radial distancel¢=bdX). Following
sinhpm | a(r)a(r') [2] we consider the case where the potential is given by

superimposing a sharp negative “bump” of amplitude
wherexk=8#G, and length units are chosen so that the co-— AV centered about); onto a smooth monotonically in-
moving spatial curvature scale is unity. In this formulds  creasing function otb. On a non-singular instanton, the sca-
the conformal time as defined iY] and y the comoving lar field rolls in the upside down potential frogh,, gaining

radial coordinate. The bitenswv-"),(x) is the sum of nor-  kinetic energy until it hits the “bump” and rapidly deceler-

iji’j . .
malized rank-two tensor harmonics with eigenvahig= ates to an almost standstill negy . Effectively all of the
—(p?+3) of the Laplacian onH3 [8]. The eigenmodes kinetic energy of the field is converted to potential energy

gp(7) are solutions of theLorentziantensor perturbation and any damping is negligible. The field then remains ap-
equation proximately constant as the scale factoturns round and

vanishes asd,,— o). ¢ is fixed by the form of the poten-
d2 " tial and the requirement of regularity. This generally implies
(_ R __1)9 (7)=p2g,(7) (2)  that the scalar field must have reached the “bump” well
d-2 a . P before the scale factor turns round. We therefore taker
in Eg. (3), and approximatingv , as V,¢OEV,¢(¢>0), we
normalized to obey,(7)—e 'P” as7— — . have
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(d%¢ ) ,~o°V . (4) same moment. The change in sign of the slope of the poten-

T o tial may then be able to balance the antidamping, bringing

We haves ,=0 at the regular pole, so we may solve to find the scalar field to a halt as the scale factor again tends to
' zero, giving us a non-singular solution. For this to occur, the

1 feature must be sufficiently sharp. This can be achieved us-

P~ o+ §V,¢002- (5)  ing differentiable functions with large curvature at the peak.
We can model this by introducing a kink. We model the

If the field approaches the “bump” afy,, then its kinetic  Potential in the vicinity of the feature at say, asV

energy just before hitting the “bump” is =V 4l¢— ¢, |, with V andV , constant and positive. Then
1 1 we approximateb as 1H sinHo, with szgv, assuming
2 __ T y\/2 2 _ . . .
E‘#GN 32V’¢o‘7b~ 4V'¢o(‘75f o) ®  that Vv dominates over gradient energy in the field. In this
approximation¢ reaches¢, at o==/2H, and ¢, is odd
and we may equate this V. about o=#/2H. So in order to calculate C

As we shall discuss shortly, it is useful to rewrite the = [(x/2)b¢? do, we need only work outp , up to o
Schralinger equation in the Euclidean region in a form =z/2H and multiply by two. From the scalar field equation
where it involves the potentidl = (x/2)¢'? where prime we have
denotes derivative with respect to conformal coordinéte

il i v o V ,(co$Ho—3 cosHo+2
The strength of the potential is then b =— ¢ f sitHodo = L ' )
V2 gl sirtHao Jo 3HsirHe
K K Kk V,%0 9
CEf—d)’ZdX:f—bq’)zgdo%— . 7)
2 277 2 64 and so
If we take the smooth part of the potential to be of the form 2
A ¢", we may introduce the quantitid$= k¢pg/2n and H? C=2><§ ’ 2] -
=(k/3)V(¢y). N is the slow roll approximation to the num- 9H?Jo  HsirHo
ber of inflationary efoldings in_ the open _universkda.is the X (co$Ho—3 cosHo +2)%do
slow roll Hubble parameter, with~(1/H)sinHo. Then we
can write 5 (V42
Ta\V 10
_9n(Hay)* K
C= 256N (8) We can also integrate E@9) to find thatA ¢p= ¢, — ¢(0)

=1/2(1+21In2)V ,/(kV)~1.1V ,/(xV). Inserting into Eq.
We will see below that for regular instantons the quan@ity (10) we see thatC can be expressed two ways, eitherGs
provides an infrared cutoff for the amplitude of the bubble~A ¢V ,/V=AV/V, or as C~0.8A¢?/M3,, where M3,
wall fluctuations. From the condition that the scalar field=x"'. We have checked that the above expressions match
must have reached the bump well before the scale factahe numerically calculated values quite closely upCte 1.
turns round, using~(1/H)sinHo we see thaHo, must  In order to get a value of close to unity, one requires a
certainly be less tham/2. As a concrete example, if we take large feature in the potential—i.e. a large changeVino
n=2 andN=50, this yieldsC<0.01. Generically, in the occur over a range of which is at least of order unity in
regime where the bubble radius is much smaller than théreducedl Planck units. The calculations shown below ex-
radius of the de Sitter spac€, will be very much smaller clude small values o€, corresponding in the thick wall case
than this, since the formula involves the fourth power of theto small positive features on the potential.
size of the bubbleg, .

VI. EUCLIDEAN REFLECTION AMPLITUDES AND

V. NON-SINGULAR “THICK-WALL” INSTANTONS MODES

We now consider instantons associated with potentials 1he primordial gravity wave spectrum is given by E).
with a sharppositivefeature as shown by the dashed curve in/n terms of the proper distanae we used in the previous
Fig. 1. In this case, the scalar field motion is confined withinSection, we shall fix the integration constant involved in de-
the region of the feature over the instanton, and does ndthing the conformal coordinateX by setting X
probe the smooth part of the potential at all. Unlike the thin-=J[do"'/b(c")]. For non-singular instantons we follow
wall case discussed above, the scalar field varies significantligefs. [7] and [8] and defineo, to be that value ofs for
over the whole instanton, and not just over a localized regionvhich b is maximum. For singular instantons it is taken in-
of it. The starting value of the scalar field is tuned so that thestead to be the value ef at the singularity.
field reaches the peak of the feature at approximately the For singular instantons, the singularity acts to impose Di-
same time as the scale factor rolls over. If indeed the poterrichlet boundary conditions in the Euclidean region. The
tial is exactly symmetrical about the peak over the regioronly allowed mode function at fixeg is given by #,
probed by the instanton, these two events occur at exactly the ape'px+ a_ pe*'px asX—o. In the non-singular case, we
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have left and right moving modes. The left mowf"(X)
—e PX as X——» and gg"(X)—ce'P*+de P as X
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distribution, as macroscopic observables such as the micro-
wave anisotropies are, we can regard the predictions as being

—+o. These mode functions satisfy the differential equa-characterized by the classical distribution. Our observed uni-

tion

11

d2
( et U(X) | gp(X) = p2gp(X)

which has a trivial bound state solutidn(X) with p?=

—1. This corresponds to a constant shift in the metric per-

turbation which is pure gauge. It is very convenient to : . ) - o,
P gaug y aIﬁotaﬂonal invariance implies that thd 21 quantities are

project this out, since its presence means that there is

extra phase shift ofr produced by the potential even at very

low p. The projection is simple. Rather thgrone considers

g=Db(g/b)’ which is clearly zero for the bound stafe].
This variable also satisfies a ScHinger equation

9p(X)=p%g,(X) (12)

2
(—@+U(X)

where U is the positive-definite quantity «{2)¢'? men-
tioned in the previous section. We defigg(X) in an iden-
tical fashion tog,(X). From the constancy of the Wronskian
and using b~e Xl at the regular poles, one finds
ro=[(1—ip)/(1+ip)]r,. For singular instantons the re-
flection amplitude , is given by the phasa,/(a_p), and in
the non-singular case it equals/d, . It is straightforward to
calculater , numerically for any background instanton of in-
terest.

verse is one member of this classical ensemble. To compare
different theories with regard to an observation carried out in
our universe, we compute how likely the given observation
is according to each theory.

We consider the microwave background anisotropy gen-
erated by primordial fluctuations, expanded in spherical har-
monics §T/T=2a,,Y|m(0,¢). The a,,,'s obey aji,=a,_n,
and we have P+1 real observable quantities for eath

independently distributed with zero mean and common vari-
anceC}h. Neglecting higher-order effects, their probability
distributions are Gaussian. For a givleme average over the
squares of the [2-1 observable quantities in our
universe to determin&C®®. Then for a given theory of
this type, C°PYC" is y2-distributed over the ensemble of
universes with 2+1 degrees of freedomCP™ itself is
gamma-distributed with  probability density function
fLCPPS;(1+2)/CM, I + 1] [14]. If CP™Sis greater than the me-
dian value ofC™", then the fraction of universes wit, less
likely than C** is given by A[I+%,(1+3)CPyC"/T (I
+1). Similarly, if C?*is less than the median value 6f",
then the fraction of universes wih; less likely thanC®*is
given by 2-2'[1+ £, (1+ 3)C®YCM/T (1 +1).

We need to obtain th€!™s for the different theories we
are interested in. Using the usual Sachs-Wolfe fornjlifg
this is given in terms of our symmetrized tensor correlator
(1) as

For the non-singular instantons considered in the previous

sectionsU| (X) is sharply peaked around a valueXgfx,, say.

We can then make a very good analytic approximation to

cp/d, as follows. We replacé)(X) by the delta function
potential Co(X—X,) of equivalent strength, witlC as de-
fined in Eq.(7). We can then solve analytically f@f“(X)
and find

C

4 2
1+ 2
CZ

( 1+ 2|_p) e*Zipr

13

oo

©

We approximateX,, as follows. In the “thin-wall” caseX,
corresponds t@= o,. Then withb~(1/H)sinHa,

f”t H
s, SiNHO
where we have usetioy~m/2. In the “thick-wall” case
U(X) is simply peaked around; and soX,~0.

HO'b
dow—lntanT

Xp~

(14

VII. TENSOR CMB ANISOTROPY IN OPEN INFLATION

Tnow Tnow

dr dr’

TIss

+de
cl'= mf S
PR 2p

TIss

x| cothpm{ d5(m) DY (7')]

1 . .
+W[rpcb;(r)cbp(r')])QQ‘XQQEX, (15)
The primordial tensor power spectrum at the end of infla-
tion defines inital conditions for the Sachs-Wolfe integral. To
compute the multipole moments we UusBIBFAST [16],
which evolves the mode functions from the surface of last
scattering atriss uUp to the present time,,,, given the initial
power spectrum. Modifications were required to improve the
resolution at low wave numbers, necessary for the accurate
evaluation of the the low multipoles. We then combine the
tensor component in the correct rafib7] with the standard
scale invariant scalar spectrum of perturbations in order to
obtain the totaC|th to compare with experiment. To extract
the primordial tensor power spectrum from Edj), we first
construct approximate solutions for the eigenmogbsr)
:(I)IF_)(T)a(T). In the inflationary phase of the open universe
the mode functions closely follow perfect de Sitter evolution

The Euclidean no boundary path integral allows us toin which they tend to a constant after the physical wave-
compute correlation functions of any observable. If thesdength has been stretched outside the Hubble radius. Hence,
correlations are well approximated by a classical statisticalo determine the amplitude and phase of this constant we
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approximatea(t) as (1H)sinhHt until ) is close to one,
and introduce the associated conformal coordinate

- j A = htanh 16
7=~ | SinpRtdt=intanhs-, (16

n— — being the start of inflation, angg—0 as the uni-
verse continues formally to inflate without entk-# is a

finite constant during inflation whilst this approximation for

PHYSICAL REVIEW 52 063501

singular instantons. From EqJ1) the primordial tensor
power spectrunP(p) at the end of inflation is

1
2 KSRB cothpm® ,(79) P _ (7o)

1=ip— ®p(79)Pp(70)
+— . .
1+ip P sinhpw

(20

a(t) is a good one. The approximate Lorentzian tensor perEOr Singular instantons,=a,/a_ is a phase factor and can

turbation equation is then

) fo(7)=p?f(7) (17)

2
-—+
d»? cosity
and the solution in Whicﬁg(n)aef”’” asp— —o is

|p+cothne_ipn.

ip—1 (18

fo(n)=
At a given value oft then, with corresponding and », we
have gg(7)~e ("~ 7f (7). So dividing bya and taking
the late-time limit we see that
e*ipro

q)p(To)%_H Ip—l

(19

Here 7y is the conformal time as defined [ii] at the end of
inflation. This can be calculated numerically andDigl) for
singular instantons and>(0.01) for “thin-wall” non-

be written ase? %. So the tensor power spectrud(p) for
singular instantons is

P3(p)= 2" tanhr + !
T(p)_p(1+p2) ant sinhp

X

p2cos 26,- pro))) (21)

1
1+
1+

in this approximation. For a given potential one evaluaf_;t,es
numerically and obtains an empirical fit. In the long-

wavelength limit¢,— — /2 so the power spectrum is infra-
red finite. Actually, it turns out that the CMB power spec-
trum predicted by singular instantons differs only a little
from the one with a perfect reflecting potential in which the
ratioa,/a_, is replaced by-1 for all p.

For non-singular instantons, we havg=c,/d, in Eq.
(20). Using our approximations for this in the previous sec-
tion, we obtain

2
cos (X, + 79) + —psin 2p(Xp+ 70)

pis(py = 2 | P, © (22
TP p(1+p?) 2 sinhpm L 4p?
s

Equations(21) and (22) define the initial conditions for with Q,,;=0.3 and 0.7 respectively. For the nonsingular in-
the numerical computation of the Sachs-Wolfe integral forstantons there is a large contribution from the tensor compo-
the different models. A Taylor expansion of the second termhent, shown by the dashed line. The amplitude of the large
aroundp=0 shows that in the “thin-wall” case, as specu- angle contribution is governed by the parame&atiscussed
lated earlier[8], for typical values ofC the regimec,/d,  above. We argued above that on general gro@tsas to be
— —1 sets in at much lowep than in the singular Hawking-  smaller than 0.01 for “thin-wall” instantons. For “thick-
Turok case. One can see from H@5) that this leads to a \ya|” instantonsC can be larger if the feature on the poten-
larger contribution to the large angle microwave anisotropies;g| is large. For singular instantons there is no such param-
for regular “thin-wall” instantons. In the next section we gter 1o vary. We have chosé®=0.025 for the nonsingular

discuss to what extent this characteristic feature of falSg,qtantons which is certainly conservative for the thin wall
vacua models allows one to observationally distinguish them <. The divergence at lowould be even more pro-

from singular open inflation models. . .
9 P nounced in the allowed regime.

These calculations show that even if the curvature of the
universe today is quite modest, one nevertheless sets strong
constraints on the form of the inflationary potential and on

In Fig. 2 we compare the CMB anisotropy power spectrathe nature of the primordial instanton. As emphasized above,
for singular and nonsingular instantons, in open universe€ decreases as the fourth power of the size of the bubble wall

VIII. NUMERICAL RESULTS
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FIG. 2. Cosmic microwave sky predictions of
different cosmological instantons. The upper two
panels show predictions for an open universe,
with Q,,,=0.3 and no cosmological constant, for
Hawking-Turok(panel A and Coleman-De Luc-
cia instantons(panel B. The former is for an
im?¢? potential, the latter for a model where a
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thickness—if the latter is much smaller than the Hubble ratuations. In the plots shown we have taken the ratio to be that
dius of the de Sitter spac&; is much smaller than 0.01. for n=2. This yields a quadrupole ratik,~0.13 in a sin-
Since the amplitude of the correlator divergesfapp 2, gular model and?,~0.57 in a regular model. Higher values
the amplitude of the quadrupole diverges roughlyCas. for nwould allow us to exclude the nonsingular models more
In the panels shown the result for the gravity wave specstrongly.
trum explained above has been combined with the usual sca- For both singular and non-singular instantons we see the
lar spectrum of perturbations appropriate for an open unirise in C}h at low I, characteristic of an open universe. We
verse[2]. The ratio of tensor to scalar contributons is acompare these different models to the Cosmic Background
function of cosmological and model parameters. HowevergExplorer (COBE) Differential Microwave Radiometer
for medium multipoles, I(~30), the ratio approaches its well (DMR) data as follows. First of all have to set the overall
known flat space valuel7]. This value then fixes the relative normalization of each model. We do this with tRebPACK
normalization of scalar versus tensor anisotropy for all mul-software[18,19. Using the DMR data alone, we find the
tipoles. For ax ¢" inflaton potential the flat space ratiy normalization which maximizes the likelihood for each
=0.05. Therefore, the higher the value ofis, the more model. We then compare likelihoods amongst the different
important the contribution from the bubble wall tensor fluc- models. The relative likelihoods are as follows:

Singular Singular withA Non-singular : Non-singular withh Flat spectrum
28 : 76 : 1 : 22 : 97

where the flat spectrum is one with consta(it+1)C,’s,  fortunately the true sky quadrupole is not yet known, and the
shown for comparison. In this, Bayesian, approach, the norliterature contains various estimates of it. We have therefore
singular instantons for an open universe with,,=0.3 are  assumed a range of values taken from various references. It
strongly disfavored. is to be hoped that the MAP experiment will accurately de-
Having done the likelihood analysis above, we now taketermine the actual value.

an hypothesis-testing approach, using the probabilities given The model dependence of the I0WC,’s suggests that in

in Sec. VII above. The strongest constraint on the modelsrder to quantify the difference between the models we
comes from the quadrupole, and we focus on that here. Urshould compare the correctly-normalized predicted quadru-
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TABLE |. Percentage of universes.

Measured value Singular Singular Non-singular Non-singular Flat spectrum
QA:O QA:O4 QAZO QA=O4

3C, /7w 1.7x10°1° 1.2x10°1° 4.0x10° %0 2.3x10710 1.0x 10710 [21]

0.11x10719[20] 0.56% 1.2% 0.071% 0.27% 1.9%

0.20x 107 1°[21] 2.3% 4.9% 0.31% 1.1% 7.0%

0.37x10°1°[22] 9.0% 18% 1.3% 4.6% 25%

1.0x 10710 [21] 61% 96% 13% 37% 83%

pole moments with the measured quadrupole moment. Istantons appear to be strongly ruled out by the observed
Table | we show the percentage of universes in the ensembbuadrupole, even i€}, is as large as 0.7.

associated with a given theory with a measured quadrupole

more extreme than that seen. We compare the results from IX. CONCLUSION

singular and non-singular instantons with the best fit flat .
spectrum for comparison. We have done this for a selection We have computed the tensor CMB anisotropy power
of groups’ estimates for the observed quadruf@e—23. spectrum for a class of singular and non-singular instantons.

We have converted all measured values to the dimensionle%/ge s_howe_d that this p_rovides a way _to ob_servationa‘\‘lly_dis-
quantity | (1 +1)C, /2, dividing by (2.73 K} where nec- inguish different versions of open inflation. The “thin-

essary, to match the C;utputO[f/IBFAST. The result fronj20] wall” false vacuum qu(_als generate larger flugtuations on
is effectively a direct measurement of the quadrupole, albeilﬁrgeuanguﬁr sgaOIele,Edc;st;ngwshkl]ng thfem f(rjotr;: stl?rg}].ularhmod—
with a systematic error due to the galactic cut. The othef's: “sing he ata, we have found that this charac-

results are harder to interpret, having been obtained usin?rIStIC feature strongly disfavors “thin-wall* Coleman—De

maximum likelihood techniques with highly non-Gaussian uccia instant(_)ns relativ_e to the singular Hawking-_TL_lrok
likelihood functions for the quadrupo]@1]. This means that models. Non-singular “thick-wall” Coleman—De Luccia in-
the quoted values below should have large skewed error paratantons are still viable, but only if the false vacuum feature

We also show what a measurement of a larger quadrupolI the dscatlar plotentle;Ih IS (;a;gﬁ' c!ln this catse thde prgg!ctlotn;
(that from the best fit flat spectrumvould tell us for illus- epend strongly on the detalled parameters describing the

tration feature and the models are hence somewhat unattractive.

We note that in general the probability is several timesThese calculations have therefore enabled us to further con-

larger for the singular case as compared to the the nons_train the form of the inflaton potential in open inflation.
singular case. Both models are easier to rule out at a given
confidence level than the flat spectrum. Note that even this
model is ruled out at the 98% level if the result [@0] is This work was supported by a PPARUK) rolling grant,
taken at face value. It should be remembered that for outhe EPSRC and PPARC. We thank L. Knox for providing
non-singular “thin-wall” model, we have assumed a value the RADPACK sofware used for the likelihood analysis above.
of C even larger than the extreme best case. In situationg/e thank M. Bucher, J. Garriga, X. Montes, V. Rubakov, M.
where the theoretical quadrupole is much larger than th&asaki, T. Tanaka and other participants in the Isaac Newton
measured one, the probability scales @§TICI)~C%2for  Institute programStructure Formation in the Universtor

the non-singular models. The “thin-wall” nonsingular in- very helpful discussions.

ACKNOWLEDGMENTS

[1] A. Melchiorri et al., astro-ph/9911445. [9] J. Garriga, X. Montes, M. Sasaki, and T. Tanaka, Nucl. Phys.
[2] M. Bucher, A.S. Goldhaber, and N. Turok, Phys. RevcD) B551, 317(1999.
3314(1995. [10] J. Garriga, X. Montes, M. Sasaki, and T. Tanaka, Nucl. Phys.
[3] S. Coleman and F. De Luccia, Phys. Rev2D) 3305(1980. B513 343(1998.
[4] V.A. Rubakov and S.M. Sibiryakov, Teor. Mat. Fiz20, 451 [11] J. Garriga, Phys. Rev. B4, 4764 (1996; J. Garcia-Bellido,
(1999 [Theor. Math. Phys120, 1194(1999]. ibid. 54, 2473(1996; 56, 3225(1997); M. Sasaki, T. Tanaka,
[5] S.w. Hawking and N. Turok, Phys. Lett. &5 25 (1998. and Y. Yakushigeibid. 56, 616 (1997).
[6] J.B. Hartle and S.W. Hawking, Phys. Rev.2B, 2960(1983. [12] A. Linde, M. Sasaki, and T. Tanaka, Phys. Rev5®) 123522
[7] S. Gratton and N. Turok, Phys. Rev.@D, 123507(1999. (1999.

[8] T. Hertog and N. Turok, astro-ph/9903075. For earlier work on[13] J. Garcia-Bellido, hep-ph/9803270.
the tensor power spectrum see also M. Bucher and J.D. Cohfi14] Particle Data Group, R.M. Barnett al, Phys. Rev. D54, 1
Phys. Rev. b5, 7461(1997; M. Sasaki and T. Tanaka, Prog. (1996, p. 157.
Theor. Phys97, 243(1997). [15] R.K. Sachs and A.M. Wolfe, Astrophys. 147, 73 (1967.

063501-8



OBSERVATIONAL TEST OF QUANTUM COSMOLOGY PHYSICAL REVIEW 362 063501

[16] Available at http://www.sns.ias.edu/matiasz/CMBFAST/ [21] J.R. Bond, A.H. Jaffe, and L. Knox, Phys. Rev.93, 2117

cmbfast.html (1998.
[17] A.R. Liddle and D.H. Lyth, Phys. Lett. B91, 391 (1992. [22] A. Kogut, A.J. Banday, C.L. Bennett, K.M. Gorski, G. Hin-
[18] Available at http://flight.uchicago.edu/knox/radpack.html shaw, G.F. Smoot, and E.L. Wright, Astrophys. J. Ldt4,

[19] J.R. Bond, A.H. Jaffe, and L. Knox, astro-ph/9808264 1998. L5 (1996.
[20] E.F. Bunn and M. White, Astrophys. 480, 6 (1997.

063501-9



