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Thermal Green functions in coordinate space for massless particles of any spin
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The thermal Wightman functions for free, massless particles of spin 0, 1/2, 1, 3/2, and 2 are computed
directly in coordinate space by solving the appropriate differential equation and imposing the Kubo-Martin-
Schwinger condition. The solutions are valid for real, imaginary, or complex time. The Wightman functions for
spin 1 gauge bosons and for spin 2 gravitons are directly related to the fundamental functions for spin 0. The
Wightman function for spin 3/2 gravitinos is directly related to that for spin 1/2 fermions. Calculations for spin
1, 3/2, and 2 are done in covariant gauges. In the deep space-like region the Wightman functions for bosons fall
like T/r whereas those for the fermions fall exponentially. In the deep time-like region all the Wightman
functions fall exponentially.

PACS numbd(s): 11.10.Wx, 12.38.Mh

[. INTRODUCTION over the density operatof5) Perform the integral over mo-
mentum states so as to obtaBy (x) in coordinate space.

In both zero-temperature and finite-temperature field=or higher spins this becomes tedious.
theory it is customary to perform calculations in momentum  The first four steps can be avoided if the=0 propagator
space. There are exceptions to this pattern however. Lattide already known, because the spectral functjghtf(K)
gauge theory computations are done in coordinate space. Tiggves directly the Wightman function in momentum space
short-distance operator product expansion is formulated ifi2—4]:
coordinate space. It is even possible to carry out ultraviolet
regularization and renormalization directly in coordinate
space1].

The purpose of this paper is to deduce the free Wightman
functions at finite temperature for various massless particles
directly in coordinate space. Thermal averages are performed
with respect to the equilibrium density operator However it is still necessary to Fourier transform from mo-

o pH —BH mentum space to coordinate space and ob&ir{x). This
e=e "/Trle "1, (1D was the procedure followed if5], which computed the
coordinate-space Wightman functions for massless vector
bosons in various gaugé€Eeynman, general covariant, and
. . TR . . Coulomb. However performing the Fourier transforms so as
fields the indexA only distinguishes species. For spin 1/2 to ensure the correct analyticity properties in complex time is

gg:gsgﬁzdgggﬁﬁzraai%T,C)ercltg??ﬁé;?(r- ?gllr?s;i,naZV?iC:)c:irirlr:)??/Xe;Jtc()) rrdifficult. For gauge bosons the complete answer satisfying all
indices. The Wightman functions at finite temperature are the analyticity properties was only obtained in the Feynman

gauge. It would be laborious to pursue the Fourier transform
GPB(x)=—iTr A(x) B(0 method for spin 1/2 fgrmions, for gravitinos, or for gravitons.
> (0¢7(x)4%(0)) It turns out to be simpler to deduce the thermal Wightman
functions for free fields by working directly in coordinate
(1.2 space. Sinc& - (x) solves the free field equation all that is
' necessary is that the solution have the correct zero-

Knowing the thermal Wightman function allows direct con- témperature limit and satisfy the Kubo-Martin-Schwinger
struction of the various thermal propagators in real or imagi{KMS) periodicity relation[2-4,6 undert—t—ip. It has

nary time[2—4)]. In particular the time-ordered Green func- not been generally recognized that the KMS relation is not
tion is only a necessary condition that thermal Wightman functions

must satisfy but is also sufficient condition to determine
G*8(x)=6(1)GE°(x) +6(-1)G2%(x). (1.3  them directly.
The paper is organized according to spin. Section Il deals
The canonical method for obtainir@. (x) for free fields  with bosons. The thermal Wightman function for spinless
would require the following stepg1) Solve the free field bosons is given in Eq2.10, for gauge bosons in E¢R.17),
equations and express the field operator in terms of planeand for gravitons in Eq92.22 and(2.28. Section Il deals
wave solutions weighted by creation and annihilation operawith fermions. The thermal Wightman functions for spin 1/2
tors. (2) Impose the equal-time canonical commutation rela-fermions are given by Eq$3.3) and(3.8); for spin 3/2 grav-
tions. (3) Express the Hamiltonian in terms of creation anditinos in Egs.(3.12 and(3.14). In the covariant gauges con-
annihilation operatorg4) Compute the trace in Fock space sidered here, the higher spin functions are all expressible in

AB _ _ipAB(K)
CAK) = e (1.4

where H is the appropriate Hamiltonian ang=1/T. Let
¢"(x) denote a quantum field of any spin. For spin-zero

G2B(x)=—iTr(e $5(0) p(x))(—1)%.
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terms of the basic spin 0 and 1/2 functions. Section Il dis-operators in Eq(2.1). First,D- (x) is an analytic function of

cusses the asymptotic behavior. complex time in the strip- B<Imt<0, which will be re-
Throughout the paper the fundamental functions depenéerred to as the lower strip. Similarlp - (x) is analytic in

only radial distance and timet and it is convenient to use complex time in the strip & Imt<g, referred to as the up-

variablesu andv defined as follows: per strip. The values of each Wightman functions on the
boundaries of its region of analyticity are related by the
u=sr+t, v=r—t (1.9 Kubo-Martin-SchwingeXKMS) conditions[2—4,6:
To avoid confusion with the metrig,,, in curved space, the D_(t—iB,r)=D_(t,r)

Minkowski metric will everywhere be denoted by, ,, .
D_(t+iB,r)=D-(t,r). (2.9
II. BOSONS OF SPIN 0,1,2
The special property of free fields that will be essential is
that their commutatof ¢(x),¢(0)] is a c-number at alk.
For a spinless boson field(x) the basic thermal Wight- The difference of the two Wightman functions is the thermal

A. Spinless bosons

man functions are average of this c-number and therefore the difference is in-
i dependent of temperature:
D.(x)=—=iTr(e ¢(x)$(0))
. D.(X)=Do(X)=D=(X)|t=0—D<(X)[r=0. (2.5
D ()= ~iTr(@ $(0)(x)). 2.1 : ) : )
This implies that the Wightman functions have the structure
The emphasis of the subsequent development will be to
avoid expressing the free field operator as a sum of plane D-(X)=D=(X)|7o+E(X)
waves weighted by creation and annihilation operators. It
will be more direct to solve the Klein-Gordon equation D_(X)=D_(X)|1—0+E(X).

O D.(x)=0 D_-(x)=0 subject to various conditions. One
such constraint is the normalization condition prOVIded byS|nceD>(X) is ana|yt|c in the lower stnp anﬂ)<(x) ana-
imposing the canonical value of the equal-time commutatofytic in the upper strip, the functioB(x) is actually analytic
[ &, $]. This requires in the double-width strip- B<Imt<g.
Because the fields satisfy the massless Klein-Gordon

J _ > equation, therkE(x) does tool] E(x)=0. The most general
ot (D= (x) =D <)== = 8%). 22 spherically symmetric solution has the form
The zero-temperature solution to the homogeneous differ- 1
ential equation satisfying the above initial condition is E(x)=T(Fy(u)+F(v)).
D-(X)|7_0= '_ 1 From the definitions in Eq(2.1), time translation invariance
ZVVIT=0T 2 (t—ie)2—r2 implies thatD- (t,r)=D_(—t,r). ConsequenthE(x) must
be an even function of time. This makes the two functions
i 1 the samef,=F,. Therefore the Wightman functions have
DeX)|t—0=———"—5—- the form
<CIlr=0= 15 (t+ie)?—r2
—i 1
At zero temperatur® - (x) is analytic throughout the lower- D.(X)=—— +F(v)
half of the complex plane and _(x) is analytic throughout 8mr le
the upper-half of the compleplane. For later purposes it
will be convenient to write these in terms of the variables —i 1
andv of Eq. (1.5): D.(x)= a2 |utie F(u)+ - 6+F(v) .
. 2.6
b i 1 N 1 29
>(¥)lr=0= 8nr|u—ie vtie The KMS condition Eq(2.4) requires thaF satisfy
1 +F(u) Fu-ip). 27
_ - U=-——7" u—1p). .
D<(X)|T:O_8w2r u+ie+v—ie' utie u—iB—ie

23 This fixesF(u) to have an infinite number of simple poles:

The finite-temperature Wightman functions have some o
standard propertief2—4] that are easily demonstrated by 2
inserting a complete set of energy eigenstates between the n=

1
u—i( n,8+e) u+i(nB+e)|

(2.9
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This is the complete answer and has all the correct proper- Concise notationFor later purposes it is convenient to

ties. Since Inu=1Im¢t, there are no singularities in the closed expressF(u) as a derivative. Therefore define a new func-

strip — B<Imt<p as expected. The nearest poles are outtion

side this strip au=*i(B+¢€). It is relatively easy to sum

this series and obtain a more useful expression. f(u)=T[1+T(e—iu)JT[1+T(e+iu)]. (2.12
Complex time in the open stri@ften one is interested in

complef time in the oper?strip s ThenF(u)=—JIn[f(u)}/or so that

1 19 1
—B<Imt<g, (2.9 FF(u):—Fa—rIn[f(u)]=§DIn[f(u)].

which of course includes real time. For the open strip,

on . . i
can sete—0. Then the series sums to E‘Comparlson with Eq(2.6) shows that the thermal Wightman

functions can be concisely expressed as
1 =

F(u)=——+ =T coth #Tu). D~ (x)=0d=(x) (2.133
u

D_(x)=0d-(x). (2.13b
This has no pole ai=0 but does have poles at the border . ]
u=+iB because of the limit taken. Substituting this into Eq. e lower case functiond(x) are given by
(2.6) gives

q f(wf(v)
1 >0= =TSN G iawrie @148
D-.(t,1)= g —(8(u) = 5(v))
r
T d(x)= - i n f(.u)f(v)_ '
- ﬁ(COU’(WTU)"‘COﬂ'(WTU)) 1672 |(Utie)(v—ie)
(2.14b
(2.10a
Note that the differenced- (x) —d-(x), is independent of
1 temperature.
D_(t,r)= ﬁ(_ S(u)+48(v)) Special caseFor many purposes, such as real time, it is
adequate to use the open strip given in Eq9), which re-
iT sults frome—0. In this limit
— ——(coth wTu)+coth( 7 Tv)).
8mr
) 7Tu
(2-1Ob llrrz)f(u): m (2.15

Note that it is only possible farandt—i g to both be in the This makes Eq(2.14 rather simple. Theie remaining in

open strip defined in Eq2.9) if both are complex. But if Ce - o
both are complex then the Dirac delta functions have noEq' (2.14) produce the correct light-cone singularitieg)

o S ..-and &(v) displayed earlier. In two important cases these
support. Con§equently the KMS con(_jlt_lon IS §at|sf|ed tr'.v"Dirac delta functions have no support: eitlhés complex or
ally here. It will be satisfied in a nontrivial fashion below in

tis real but not on the light-cone. In either case one can omit

Ea. (2'1.4>' . . . . . the =ie in EQ. (2.14 in which case the two functions are
Imaginary time.The imaginary time formalism usds- equal:d-(x)=d_(x)=d(x) where

—i7whereris real. Theru=r—ir andv=r+ir. The two e =

Wightman functions are equaD-(—i7,r)=D_(—irr) i

and given by d(x)=

1672

In[sinh(#Tu)sinh(7Tv)]. (2.19

—iT sinh(27Tr)

D(=i70=720 cosh2nTr)—cog2nTr)

(2.11 In this regime the two thermal Wightman functions are
equal:D-(xX)=D_(x) =0 d(x).

Naturally this is periodic under— 7=+ .

Arbitrary complex timeTo treat all the poles of(u) in B. Spin 1 gauge bosons

Eq. (2.8 correctly one cannot use the limit=0. For non- The same methods can be used to obtain the thermal

zero € the series can be summed in terms of the standar@vightman functions for massless gauge bosons directly in

function ¢(z) =d In[I'(2)]/dz to obtain coordinate space. In a general covariant gauge the Lagrang-
ian density is

Fu)=iTyY[1l+T(e—iu)]—iTY[1l+T(e+iu)].

1 1
-— — [ )2
This is analytic in the closed strip <Imt< g as expected. £ 4 FuF 2¢ (GuA%)
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whereF ,,=d,A,—d,A, and¢ is an arbitrary gauge param- P (DM (x) =D ()= — 8" 83F). (2.2
eter. The thermal Wightman functions are [Pocu(DZ"(x) = DL (X)) i-o « (). (220
) To check this, use Eq$2.17) and(2.19 to obtain
DLY(x)=—iTr(e A*(x)A"(0))

P Div(x):(ézap_gzaK_F 7]pK07V)D>(X),

DAY(x)= —iTr(e A*(0)A*(X)). e
whereD . (x) is the thermal Wightman function for scalars.
One can deduce these from first principles using the samEor the appropriate difference of Wightman functions one
arguments as employed in Sec. Il A. The subsequent discuseeds

sion will show that
Pogu(DE"(X) —DE"(X))= (8, do— 8¢ 9.+ 10,9”)

X(D>(X)_ D<(X))-

The right hand side contains both time derivatives and space
derivatives. Att=0 the spatial derivatives vanish because

whered- (x) andd_(x) are the functions already given in D=(0.r)=D_(0r). The above result simplifies to

Eq. (2.14). v v 2 -
(1) The first check of these Wightman functions is that [Pogu(DL"(X)=DL"(X))]i-0= &,[D~(X) =D <(X)]i-o-

they have the correct analyticity in complex time and satisfy, . . .
the correct KMS condition Equation(2.2) determines that the value of the right hand

side is— 5;63(F), as required. This completes the proof that
D4¥(t—iB,r)=D""(t,r). Eq. (2.17) is correct.

DE(X)= (= 7*"0+ (1= §) 9*9")d-(X)

DE'(x)= (= 7*"0+(1-¢) 9*9")d(x),
(2.17

(2) The next check is that the Wightman functions must C. Spin 2 gravitons
satisfy the correct homogeneous differential equation. The

> ) . Standard quantum gravity is based on the Einstein-Hilbert
variation of the Lagrangian gives

Lagrangian with a gauge-fixing term

aL
2
=P _ A* 2.1 = /=
(9((9PAK) PRI ( 8) L= K2 g R+ Eg_f_
where the tensoP is linear in the first derivative: in which R is the scalar curvatureg=det(g,,), and 2
vl

=327G with G Newton’s constant. A conventional gauge

1 . )
P o= Mpud = Mudp— A Ny - (2.19  fixing term is[7,8]
1
The equation of motion for the field is ﬁg.f_:ﬁnw(aa\/—gga#)(aﬁ,/—ggﬁV)_
1
0=0"P, A= =70+ 1= E) 3,60, | A*. This corresponds to the Feynman gauge in Yang-Mills theo-

ries. More general covariant gauges will be discussed later.
With »*” the Minkowski metric, the graviton field*” con-
tains all quantum fluctuations:

V—gg#"= "+ kh#?. (2.21)

Keeping only terms that are quadratichirproduces the free
Lagrangian density

Applying this differential operator to the Wightman function
in Eq. (2.17) gives

— O+ DX¥(x)=— 80 0 d=(X).

1
1- E) NIy
From Sec. 1A,C0 O d-(x)=0 D~ (x)=0 and so the equa-
tion of motion is satisfied. 1 1

(3) The third check is that the field operators in the £o=§(r9pha,3)(r7”h“5)—Z(ﬁpha“)(ﬂ”hgﬁ)—(ﬁphaﬁ)
Wightman functions satisfy the correct canonical commuta-

tion relations. The canonical momentum conjugaté\tas ><(a“hpﬁ)+(aphf’“)(aﬁhﬁa).
IT,=Pg, Ak The thermal Wightman functions to be computed are
The equal-time canonical commutation relations are D’;V“ﬁ(x)z —i Tr (0 h*"(x)h*A(0))
—i[T1,(x),A"(0)]i=o=—8; 8%(r). D27 F(x) = —iTr (e h*#(0)h*"(x)).
This requires that the Wightman functions satisfy Subsequent argument will show that these are given by

056010-4



THERMAL GREEN FUNCTIONS IN COORDINATE SPAE. .. PHYSICAL REVIEW D 62 056010

DLYeB(x) = (— p** n*B+ gt y?B+ ptB "P)D - (X) To check that the Wightman function ER.22 satisfies
this, first apply the differential operator in E(.24):

DAYP(x)= (= p*' 9P+ pten*P+ nP"P)D _(X). va va
i " 222 Ppenun (DL P (x) = DL (x))

—(5a88 Bga —
That the results are expressed in terms of the scalar Wight- (8,001 +6,6y)9,(D=(x) = D<(x))

man fgnctionsD?(x) rathgr than the potential functions _(5a5)f+ 555ﬂ)(9k(D>(x)—D<(x))
d-(x) is a peculiarity of this Feynman-like gauge. In more g P
general covariant gauges the Wightman functions for gravi- —(6Kc'5f+ 5,536p“)(9k(D>(x)— D_(x))
tons depends on the potentials(x).

(1) Because of the properties of the scalar Wightman + (M 6L+ 7 68)9(D = (X) =D ()
functions, the graviton Wightman functions in Eg.22 sat-

isfy +(77p;< N /IO 5:)‘9'8(D>(X)_D<(X))-

Now set the indexp=0 and the timet=0. The first line
obviously coincides with Eq2.27) and it is straightforward

to check that the remaining four lines will always vanish. For
example, if all of the free indices,\,u,v are spatial, the
ast four lines vanish. This, because the spatial derivatives on

the right hand side are zero sin@.(0r)=D_(0y). If

DLrR(t—iB,r)=DL""A(t,r),

and are analytic in the appropriate regions.
(2) To obtain the equation for the graviton field one need
the partial derivatives

oL three of the indices,\,u,v are spatial and one is 0, there
e~ Poauh™, (2.23  will be one non-vanishing time derivatives among the last
A(Ph' ) four lines but it will be multiplied by a tensor that vanishes.
o ] o For the remaining cases it is easy to enumerate the possible
where the tensoP is linear in the derivative operator values of the free indices,\,u,» and verify that the ca-

nonical commutation relation E@2.27) is fully satisfied.

General covariant gaugeThe results for the Wightman
function given in Eq(2.22) are for a particular gauge analo-
gous to the Feynman gauge. A more general gauge-fixing
term is

1
Ppk}\;uz: AK)\/.LV_EnKKn,MV ap_Ap)\[LVaK

Kpuv

K\pv aM+AK>\Mp (9,, (224)

and A is given by 1

Lyt "

1 7u( 9N —99") (97 —gg"")
AK)\MVZE(nK/Ln)\V+ 7IKV7I>\M)- (225)
where¢ is arbitrary. The differential equation for the gravi-
The differential equation for the graviton field operator iston field h#*(x) is then
3’P pinwrn*"(X) =0, or more concisely

Y (_ /5N 7i;w+ 77KM77)\V+ 7]KV7])\M)D h#?
(_ /5N 7],uv+ 7]K;L7])\V+ 7]1(1/77)\;1,) O h# (X):O

2.2 1

( 6) =1~ E) ( nku(?)\&v+ 77Ku‘9>\<9,u
The graviton Wightman functions E@2.22) automatically
satisfy 00 D“**#(x)=0 since the scalar functions satisfy T w0yt Mnd 3, ) DEY.

OD-(x)=0.
(33(-”)“3 third check of Eq(2.22 is that the graviton op- Following the same procedures as above one can show that

erators satisfy the correct canonical commutation relationdn€ thermal Wightman function is

The canonical momentum conjugateht® is

1
D,uvaﬁ —| - = uv aﬁ+ yraes Vﬂ+ mB vB O
I = Poy " £7P(%) gy d-(X)
The canonical equal-time commutation relations are +(1_ %){_2(nﬂuﬁa§ﬁ+ 7o) d= (x)
_i af ——(5a8B Bsa .
I[HK)\(X)lh (O)Jt:O (51( 5)\+6K 5)\)83“') _’_(,r],uaavaﬁ’+ 7]’uﬂ(9]}(9a+ nva&,uaﬁ’
Therefore the Wightman functions should satisfy + 5"Ba*9%)d= (x)}. (2.28
[POK)\M,,(D’;mﬁ(X) —D“"*F(x))]1=0 Note that the general Wightman function depends on all par-

wsBo spaa - tial derivatives of d-(x), whereas EQ.(2.22, in the

=—(860+8F6)8%r). (2.27) Feynman-like gauge, depends only ba (x)=0 d-.(X).
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Ill. FERMIONS

1
E(X)=iy-d=(G1(u)+G .
The methods employed in the previous section carry over ()=t r (Ga(U)+Go(v))

to fermions except that the KMS condition contains an addi-
tional minus sign. This change results in a completely differ-From their definitions, the Wightman functions satisfy

ent asymptotic behavior in the deep space-like region. [S-(X)]T= v4S-(—x*) y, and this makes the two functions
the sameG;=G,. Combining this with the previous zero-
A. Spin /2 fermions temperature results allows the full thermal Wightman func-

. . . . tion to be expressed as
The thermal Wightman functions for spin-1/2 fields are P

given by S.(X)=(iy-d) o=(X)

S ap(¥) = =1 TH(Q ¢a(X) §/5(0)) S0 =i y-3) o(X). 3.3

Seup(X) =1 Tr(@ ¥5(0) r,(X)).

The ordering of the spinor indices is important, but the indi-

in which the new functions have the form

ces will be suppressed in the following. The relative sign —i 1
difference between the two functions is conventional. o= (x)= a2 | U—ie +GU)+ 5 +G)
At zero temperature the Wightman functions are (3.43
S.(X)|-o=i7-d | ! 1
Xlr=o=17 9 a2 _
A7° (t—ie)°—r 0>(X)_87-r2r u+ie+G(u)+v—ie+G(v) .
1 (3.4b
S-(X)|r=0=iy d———7F5—- _ L .
A7 (t+ie) —r All the temperature dependence is contained in the single

) o ) unknown functionG. It will be determined by the fermionic
The former is analytic in the entire lower-half of the complex ks condition Eq.(3.1), which requires that— (t—i3,r)

t plane and the upper is analytic in the entire upper-half of_ — o _(t,r). For the functionG this requires that
that plane. n

At nonzero temperature the regions of analyticity are re- 1
duced. In the complex time plan8.(x) is analytic in the .—+G(u—i,8):—( - +G(u)).
lower strip— B<Imt<0 andS.(x) is analytic in the upper u=i(B+e utle
strip O<Imt=<p. On the boundaries of these regions the h lution f .
values are related by the KMS conditiof&: The solution forG is
S.(t-if,1)=-S(t1) cw=S (o, 1
. . n=1 u—i(nB+e) u+i(nB+e)|
S_(t+iB,r)=—S.(t,r). (3.1 (3.5

The difference between the Wightman functions is the antiThjs js analytic in the closed strip S<Imt< 3. The nearest
commutator of the fields. For free fields this anticommutatorygles are just above this strip &t t=i(8+ €) and just be-

is a c-number: low the strip atr +t=—i(8+ €). The alternating signs will
) — produce more rapid convergence than in the bosonic case.
So ap(X) = Scap(X)= —i{1h(x),5(0)} (3.2 Complex time in the open strifor many purposes one is
and thus the right hand side is independent of temperaturér?teresie.d in either in real time or in complex time in the
This implies open strip
S-(X) = S0 =S-(X)|r=0— S=(¥)|r=0 ~p<Imt<p. (3.6
so that the Wightman functions have the structure Fortin this open region one can set-0 in Eq.(3.5 which

allows the sum to be easily performed:
S-(X)=S=(X)|r=o+ E(X)

1 aT
= —ot . T
S<(X)=S=(X)|r=o+ E(X) G(u)=—-+ ST (3.7
The free-field equation-iy-d y=0 implies thatE(x) must
satisfy—ivy-d E=0. To solve this, let the unknown function There is, of course, no pole at=0. There are poles at=
E=iy-dF(x) where JF(x)=0. The general spherically *ing because of the limie—0. The results for-. ando -

symmetric solution is are
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! (Wg(v)
- (X)= = (8(u)— 8(v)) __ ggtv)
00 gy (O S>00=" N oW tie
iT 1 N - _
8t | SnH(aTw) * sin(aTe)| (89 S ()= — ——p| 9Wew)
= 1672 |(u+ie)(v—ie)|
1 (3.1009
7-(X)= g (= 8(u)+8(v)) o _ _
mr The next section will express the Wightman functions for
iT 1 } gravitinos in terms of these functions.
- - + — . (3.8b
Bt [sinh(#Tu)  sin(Tw) B. Spin 32 gravitinos
It is worth noting that the KMS conditiomr- (t—iB,r)= The massless Rarita-Schwinger fi¢® plays an impor-

—o(t,B) is now satisfied in a trivial manner because of thetant role in supergravity as the spin 3/2, supersymmetric
restriction to the open strip in E¢3.6). Because of this, itis partner of the graviton. In that context it is referred to as the
only possible fort andt—i 23 to lie in the open strip if both ~ gravitino. As occurred in the bosonic cases, the passage from
are complex and if both are complex then the Dirac deltahe lower spin fermior{1/2) to the higher spin fermio(3/2)
functions have no support. In the full solution E8.5 the s easily accomplished. The free Lagrangian density for the

KMS condition is satisfied nontrivially. field ¢, (x) is [10]
Imaginary time.The imaginary time formalism usds= _
—irwherer is real. As occurred for bosons, the two Wight- L=—e"" Py, y,y50,hp+ Lys..
g?\?gn Ej;ctlons are equalg.(~irnr=c-(~inr) and The gauge fixing is necessary so as to break the invariance of
the first term under transformationg— 5+ dgiy, whereys
—iT sin2#Tr)cog 7T7) is any spin-1/2 field. A convenient choice for gauge-fixing is
o(—inr)= (3.9

27 cosh2#Tr)—cog2nTr)’ i
Lot =597y )i
This is antiperiodic under— 7= 8.

Arbitrary complex timeWithout approximation one can The free Lagrangian can be rewritten as
sum the series in Eq3.5) to obtain

L=— g L, (3.1
T |1 T ) T T )
Glu=iy|5+5(etiu)|—i5 g 1+ 5 (etiu) where the tensok ,, is linear in the first derivatives:
T[1 T T T o vr ) 1 ,
—i= =+ =(e—iu)|+iz ¢ 1+ =(e—iu)|. LE=—i| v+ y" "+ 9"y 0= 5y*(y- )y )
2712 2 2 2 (3.12

Sincey(z) =dIn[I'(2)}/dz this is equivalent to Each Wightman function is a4 matrix in spinor space

and a rank 2 tensor in the Lorentz indices:

J
CW=5r o] SE(x)= =i Tr(g ##(x)1(0))

in which the lower-case functiog is SE(x)=i Tr(p JV(O) JH(X)). (3.13
1T T The spinor indices have been suppressed. The relative sign
T 2" §(€+ )| 27" E(e_'u) difference in the definitions coincides with the spin 1/2 con-
g(u)= T . vention. As in the bosonic case the most efficient way to
N1+ s(e+iu)|I[1+ —(e—iu)} proceed is to display the answer immediately and then per-
2 2 310 form checks. In this gauge the Wightman functions can be
(3.103 written in terms of the same matrix-differential operatdt”
Putting this together in Eq3.4) gives the general result SE(x) =L o (X)
o>()=0 5> SE() =L -(x), (3.14
o-(xX)=0s-(x), (3.100  where o~ (x) and o_(x) are the basic spin 1/2 functions
given in Eq.(3.10. The subsequent discussion will confirm
in which the lower-case functions are these results.
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(1) The spin 1/2 functionsr-(x) and o-(Xx) guarantee For canonical momenta, set0 and the timé=0. Because

that the gravitino Wightman functions in E(8.14) satisfy  4_(0,r)=0_(0r) only the time derivatives on the rigfite.
the KMS conditions k=0) are nonvanishing. This reduces to

S = =S () [(S27(X) — S/ ()T ok—o= 8T~ (X) — = () Tr—o.-

SL(t+ig.r)=—S(r), (3.19 Thus Eq.(3.18) is satisfied because of the properties of the
functionso~(x) ando-(x) from Sec. Il A.

General covariant gaugeThe results for the gravitino
have been displayed in a particular gauge. As was done for
the graviton in Sec. Il C, one can add a more general gauge-

and have the correct analyticity properties.
(2) The equation of motion for the gravitino which fol-
lows directly from Eq.(3.11 is

L, d*(x)=0 fixing term than used above. The Wightman functions can
o ' still be expressed in terms of two derivatives of the functions
Therefore the Wightman functions should satisfy o-(x) ando-(x) in Eq. (3.8).
LanSE (X) = L4, SE"(x)=0. IV. DISCUSSION
This is easily satisfied because of the identity It is rather surprising that the large distance effects of
massless particles are, in some sense, simplEr-&t than in
L, L*=—6/0 (3.16 vacuum. At zero temperature the Wightman function for

spinless bosons is
and the fact thatdl o~ =0 andd ¢_=0.

(3) The third check of Eq(3.14) is that the gravitino field i 1
operators must satisfy the canonical commutation relations at Do(X)|r-0=— ——5——.
equal time. For this it is convenient to express the partial 4m” (t—ie)*—r
derivative of the Lagrangian as

(4.2)

and for spin 1/2 fermions iS.(x) =iy*d,0-(x), where

£ _r
= VAp ! i 1
(" P) Y I . S

(4.2

wherel’, , is the matrix

In perturbative calculations, the slow fall-off at large dis-

tances produces long range correlations both in the deep

space-like and the deep time-like directions. B0 the
(3.17  situation is very different as indicated below.

_ _ Deep space-like region.For r—|t|>1/(#T) the
Note thatL,,=—T",,,d°. The canonical momentum conju- asymptotic behavior of Eq€2.10) is

gate toy(x) is

. 1
FV)\pEI 7V77Xp+y%77vp_ nvh’Yp_E’YVYp’Y)\ .

—iT T

IL,(X)= 4T 0. D.(X)————=—e 2""cosh2nTt)+---. (4.3
Adqr  2m7r
These momenta obey the canonical equal-time anticommuta-
tion relations This behavior can also be understood from the Matsubara
formalism, [2-4] which has discrete frequencies,
—i{*(X),T1,(0) }yeg=— 6 83(r), =2n=T. The statich=0 mode is responsible for the lead-
ing T/r behavior. Each higher mode produces an
so that the Wightman functions must satisfy exp(—wyr) fall-off. For fermions the asymptotic behavior of
Eq. (3.9 is
[(S£7(%) = S ()T poli=o=— 8¢ 8%(r).  (3.18 .
—i
—aT
To check that these are satisfied by Ej14), first multiply 0= (X)= 5 e T eosH AT + - - -. (4.4

by the matrixI" to obtain

Since fermions have odd frequencies,=(2n+1)#T, the

(S5 () =S, exponential fall-off also comes from expo,r).

— (SIS — S+ BK e MK Deep time-like regionin the deep time-like region de-
(005 = 0y O+ My 7 Ysnp ") fined by|t|—r>1/(«#T), the asymptotic behaviors of Egs.
X9, (0= (X)— o0 (X)). (2.10 and(3.9) are
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—iT pears that in comparison with zero temperature, the quanti-
D>(X)—>ﬁe_’TTMSinf(27TTF)+ i tatively large effects of massless particles at non-zero tem-
perature come predominantly from thE/r behavior of
iT bosons at large spatial separation and from the light cone
o-(X)— =—e " "lsinh27Tr)+- . (4.5  t?=r2. Subsequent publications will explore the physical
2mt consequences of these results.

It is not obvious why both Wightman functions should fall
exponentially in the time-like region and with the same ex- ACKNOWLEDGMENTS
ponent.
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