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Thermal Green functions in coordinate space for massless particles of any spin

H. Arthur Weldon
Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315

~Received 2 February 2000; published 11 August 2000!

The thermal Wightman functions for free, massless particles of spin 0, 1/2, 1, 3/2, and 2 are computed
directly in coordinate space by solving the appropriate differential equation and imposing the Kubo-Martin-
Schwinger condition. The solutions are valid for real, imaginary, or complex time. The Wightman functions for
spin 1 gauge bosons and for spin 2 gravitons are directly related to the fundamental functions for spin 0. The
Wightman function for spin 3/2 gravitinos is directly related to that for spin 1/2 fermions. Calculations for spin
1, 3/2, and 2 are done in covariant gauges. In the deep space-like region the Wightman functions for bosons fall
like T/r whereas those for the fermions fall exponentially. In the deep time-like region all the Wightman
functions fall exponentially.

PACS number~s!: 11.10.Wx, 12.38.Mh
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I. INTRODUCTION

In both zero-temperature and finite-temperature fi
theory it is customary to perform calculations in momentu
space. There are exceptions to this pattern however. La
gauge theory computations are done in coordinate space
short-distance operator product expansion is formulated
coordinate space. It is even possible to carry out ultravio
regularization and renormalization directly in coordina
space@1#.

The purpose of this paper is to deduce the free Wightm
functions at finite temperature for various massless parti
directly in coordinate space. Thermal averages are perfor
with respect to the equilibrium density operator

%5e2bH/Tr@e2bH#, ~1.1!

where H is the appropriate Hamiltonian andb51/T. Let
fA(x) denote a quantum field of any spin. For spin-ze
fields the indexA only distinguishes species. For spin 1
fieldsA denotes a spinor index; for spin 1, a vector index;
spin 3/2 a spinor and vector index; for spin 2, a pair of vec
indices. The Wightman functions at finite temperature ar

G.
AB~x!52 iTr„%fA~x!fB~0!…

G,
AB~x!52 iTr„%fB~0!fA~x!…~21!2J.

~1.2!

Knowing the thermal Wightman function allows direct co
struction of the various thermal propagators in real or ima
nary time@2–4#. In particular the time-ordered Green fun
tion is

GAB~x!5u~ t !G.
AB~x!1u~2t !G,

AB~x!. ~1.3!

The canonical method for obtainingG.(x) for free fields
would require the following steps:~1! Solve the free field
equations and express the field operator in terms of pla
wave solutions weighted by creation and annihilation ope
tors. ~2! Impose the equal-time canonical commutation re
tions. ~3! Express the Hamiltonian in terms of creation a
annihilation operators.~4! Compute the trace in Fock spac
0556-2821/2000/62~5!/056010~9!/$15.00 62 0560
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over the density operator.~5! Perform the integral over mo
mentum states so as to obtainG.(x) in coordinate space
For higher spins this becomes tedious.

The first four steps can be avoided if theT50 propagator
is already known, because the spectral functionrAB(K)
gives directly the Wightman function in momentum spa
@2–4#:

G.
AB~K !5

2 irAB~K !

16e2bk0
. ~1.4!

However it is still necessary to Fourier transform from m
mentum space to coordinate space and obtainG.(x). This
was the procedure followed in@5#, which computed the
coordinate-space Wightman functions for massless ve
bosons in various gauges~Feynman, general covariant, an
Coulomb!. However performing the Fourier transforms so
to ensure the correct analyticity properties in complex time
difficult. For gauge bosons the complete answer satisfying
the analyticity properties was only obtained in the Feynm
gauge. It would be laborious to pursue the Fourier transfo
method for spin 1/2 fermions, for gravitinos, or for graviton

It turns out to be simpler to deduce the thermal Wightm
functions for free fields by working directly in coordinat
space. SinceG.(x) solves the free field equation all that
necessary is that the solution have the correct ze
temperature limit and satisfy the Kubo-Martin-Schwing
~KMS! periodicity relation@2–4,6# under t→t2 ib. It has
not been generally recognized that the KMS relation is
only a necessary condition that thermal Wightman functio
must satisfy but is also sufficient condition to determi
them directly.

The paper is organized according to spin. Section II de
with bosons. The thermal Wightman function for spinle
bosons is given in Eq.~2.10!, for gauge bosons in Eq.~2.17!,
and for gravitons in Eqs.~2.22! and~2.28!. Section III deals
with fermions. The thermal Wightman functions for spin 1
fermions are given by Eqs.~3.3! and~3.8!; for spin 3/2 grav-
itinos in Eqs.~3.12! and~3.14!. In the covariant gauges con
sidered here, the higher spin functions are all expressibl
©2000 The American Physical Society10-1
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terms of the basic spin 0 and 1/2 functions. Section III d
cusses the asymptotic behavior.

Throughout the paper the fundamental functions dep
only radial distancer and timet and it is convenient to use
variablesu andv defined as follows:

u5r 1t, v5r 2t. ~1.5!

To avoid confusion with the metricgmn in curved space, the
Minkowski metric will everywhere be denoted byhmn .

II. BOSONS OF SPIN 0,1,2

A. Spinless bosons

For a spinless boson fieldf(x) the basic thermal Wight-
man functions are

D.~x!52 iTr„% f~x!f~0!…

D,~x!52 iTr„% f~0!f~x!…. ~2.1!

The emphasis of the subsequent development will be
avoid expressing the free field operator as a sum of pl
waves weighted by creation and annihilation operators
will be more direct to solve the Klein-Gordon equatio
h D.(x)5h D,(x)50 subject to various conditions. On
such constraint is the normalization condition provided
imposing the canonical value of the equal-time commuta

@ḟ,f#. This requires

]

]t
„D.~x!2D,~x!…u t5052d3~rW !. ~2.2!

The zero-temperature solution to the homogeneous dif
ential equation satisfying the above initial condition is

D.~x!uT505
i

4p2

1

~ t2 i e!22r 2

D,~x!uT505
i

4p2

1

~ t1 i e!22r 2
.

At zero temperatureD.(x) is analytic throughout the lower
half of the complext plane andD,(x) is analytic throughout
the upper-half of the complext plane. For later purposes
will be convenient to write these in terms of the variablesu
andv of Eq. ~1.5!:

D.~x!uT505
2 i

8p2r
F 1

u2 i e
1

1

v1 i eG
D,~x!uT505

2 i

8p2r
F 1

u1 i e
1

1

v2 i eG .
~2.3!

The finite-temperature Wightman functions have so
standard properties@2–4# that are easily demonstrated b
inserting a complete set of energy eigenstates between
05601
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operators in Eq.~2.1!. First,D.(x) is an analytic function of
complex time in the strip2b<Im t<0, which will be re-
ferred to as the lower strip. SimilarlyD.(x) is analytic in
complex time in the strip 0<Im t<b, referred to as the up
per strip. The values of each Wightman functions on
boundaries of its region of analyticity are related by t
Kubo-Martin-Schwinger~KMS! conditions@2–4,6#:

D.~ t2 ib,r !5D,~ t,r !

D,~ t1 ib,r !5D.~ t,r !. ~2.4!

The special property of free fields that will be essentia
that their commutator@f(x),f(0)# is a c-number at allx.
The difference of the two Wightman functions is the therm
average of this c-number and therefore the difference is
dependent of temperature:

D.~x!2D,~x!5D.~x!uT502D,~x!uT50 . ~2.5!

This implies that the Wightman functions have the struct

D.~x!5D.~x!uT501E~x!

D,~x!5D,~x!uT501E~x!.

SinceD.(x) is analytic in the lower strip andD,(x) ana-
lytic in the upper strip, the functionE(x) is actually analytic
in the double-width strip2b<Im t<b.

Because the fields satisfy the massless Klein-Gor
equation, thenE(x) does too:h E(x)50. The most genera
spherically symmetric solution has the form

E~x!5
1

r
„F1~u!1F2~v !….

From the definitions in Eq.~2.1!, time translation invariance
implies thatD.(t,r )5D,(2t,r ). ConsequentlyE(x) must
be an even function of time. This makes the two functio
the same:F15F2. Therefore the Wightman functions hav
the form

D.~x!5
2 i

8p2r
F 1

u2 i e
1F~u!1

1

v1 i e
1F~v !G

D,~x!5
2 i

8p2r
F 1

u1 i e
1F~u!1

1

v2 i e
1F~v !G .

~2.6!

The KMS condition Eq.~2.4! requires thatF satisfy

1

u1 i e
1F~u!5

1

u2 ib2 i e
1F~u2 ib!. ~2.7!

This fixesF(u) to have an infinite number of simple poles

F~u!5 (
n51

` F 1

u2 i ~nb1e!
1

1

u1 i ~nb1e!G . ~2.8!
0-2
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This is the complete answer and has all the correct pro
ties. Since Imu5Im t, there are no singularities in the close
strip 2b<Im t<b as expected. The nearest poles are o
side this strip atu56 i (b1e). It is relatively easy to sum
this series and obtain a more useful expression.

Complex time in the open strip.Often one is interested in
complex time in the open strip

2b,Im t,b, ~2.9!

which of course includes real time. For the open strip, o
can sete→0. Then the series sums to

F~u!52
1

u
1pT coth~pTu!.

This has no pole atu50 but does have poles at the bord
u56 ib because of the limit taken. Substituting this into E
~2.6! gives

D.~ t,r !5
1

8pr
„d~u!2d~v !…

2
iT

8pr
„coth~pTu!1coth~pTv !…

~2.10a!

D,~ t,r !5
1

8pr
„2d~u!1d~v !…

2
iT

8pr
„coth~pTu!1coth~pTv !….

~2.10b!

Note that it is only possible fort andt2 ib to both be in the
open strip defined in Eq.~2.9! if both are complex. But if
both are complex then the Dirac delta functions have
support. Consequently the KMS condition is satisfied tri
ally here. It will be satisfied in a nontrivial fashion below
Eq. ~2.14!.

Imaginary time.The imaginary time formalism usest5
2 i t wheret is real. Thenu5r 2 i t andv5r 1 i t. The two
Wightman functions are equal,D.(2 i t,r )5D,(2 i t,r )
and given by

D~2 i t,r !5
2 iT

4pr

sinh~2pTr !

cosh~2pTr !2cos~2pTt!
. ~2.11!

Naturally this is periodic undert→t6b.
Arbitrary complex time.To treat all the poles ofF(u) in

Eq. ~2.8! correctly one cannot use the limite→0. For non-
zero e the series can be summed in terms of the stand
function c(z)5d ln@G(z)#/dz to obtain

F~u!5 iTc@11T~e2 iu !#2 iTc@11T~e1 iu !#.

This is analytic in the closed strip2b<Im t<b as expected.
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Concise notation.For later purposes it is convenient t
expressF(u) as a derivative. Therefore define a new fun
tion

f ~u!5G@11T~e2 iu !#G@11T~e1 iu !#. ~2.12!

ThenF(u)52] ln@f(u)#/]r so that

1

r
F~u!52

1

r

]

]r
ln@ f ~u!#5

1

2
h ln@ f ~u!#.

Comparison with Eq.~2.6! shows that the thermal Wightma
functions can be concisely expressed as

D.~x!5hd.~x! ~2.13a!

D,~x!5hd,~x!. ~2.13b!

The lower case functionsd(x) are given by

d.~x!52
i

16p2
lnF f ~u! f ~v !

~u2 i e!~v1 i e!G ~2.14a!

d,~x!52
i

16p2
lnF f ~u! f ~v !

~u1 i e!~v2 i e!G .
~2.14b!

Note that the difference,d.(x)2d,(x), is independent of
temperature.

Special case.For many purposes, such as real time, it
adequate to use the open strip given in Eq.~2.9!, which re-
sults frome→0. In this limit

lim
e→0

f ~u!5
pTu

sinh~pTu!
. ~2.15!

This makes Eq.~2.14! rather simple. The6 i e remaining in
Eq. ~2.14! produce the correct light-cone singularitiesd(u)
and d(v) displayed earlier. In two important cases the
Dirac delta functions have no support: eithert is complex or
t is real but not on the light-cone. In either case one can o
the 6 i e in Eq. ~2.14! in which case the two functions ar
equal:d.(x)5d,(x)[d(x) where

d~x!5
i

16p2
ln@sinh~pTu!sinh~pTv !#. ~2.16!

In this regime the two thermal Wightman functions a
equal:D.(x)5D,(x)5h d(x).

B. Spin 1 gauge bosons

The same methods can be used to obtain the ther
Wightman functions for massless gauge bosons directly
coordinate space. In a general covariant gauge the Lagr
ian density is

L52
1

4
FmnFmn2

1

2j
~]mAm!2,
0-3
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H. ARTHUR WELDON PHYSICAL REVIEW D62 056010
whereFmn5]mAn2]nAm andj is an arbitrary gauge param
eter. The thermal Wightman functions are

D.
mn~x!52 iTr„% Am~x!An~0!…

D,
mn~x!52 iTr„% An~0!Am~x!….

One can deduce these from first principles using the s
arguments as employed in Sec. II A. The subsequent dis
sion will show that

D.
mn~x!5„2hmnh1~12j! ]m]n

…d.~x!

D,
mn~x!5„2hmnh1~12j! ]m]n

…d,~x!,
~2.17!

whered.(x) and d,(x) are the functions already given i
Eq. ~2.14!.

~1! The first check of these Wightman functions is th
they have the correct analyticity in complex time and sati
the correct KMS condition

D.
mn~ t2 ib,rW !5D,

mn~ t,rW !.

~2! The next check is that the Wightman functions mu
satisfy the correct homogeneous differential equation. T
variation of the Lagrangian gives

]L
]~]rAk!

5PrkmAm, ~2.18!

where the tensorP is linear in the first derivative:

Prkm5hrm]k2hkm]r2
1

j
hrk]m . ~2.19!

The equation of motion for the field is

05]rPrkmAm5F2hkmh1S 12
1

j D ]k]mGAm.

Applying this differential operator to the Wightman functio
in Eq. ~2.17! gives

F2hlmh1S 12
1

j D ]l]mGD.
mn~x!52dl

n h h d.~x!.

From Sec. II A,h h d.(x)5h D.(x)50 and so the equa
tion of motion is satisfied.

~3! The third check is that the field operators in t
Wightman functions satisfy the correct canonical commu
tion relations. The canonical momentum conjugate toAk is

Pk5P0kmAm.

The equal-time canonical commutation relations are

2 i @Pk~x!,An~0!# t5052dk
n d3~rW !.

This requires that the Wightman functions satisfy
05601
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@P0km„D.
mn~x!2D,

mn~x!…# t5052dk
n d3~rW !. ~2.20!

To check this, use Eqs.~2.17! and ~2.19! to obtain

PrkmD.
mn~x!5~dk

n]r2dr
n]k1hrk]n!D.~x!,

whereD.(x) is the thermal Wightman function for scalar
For the appropriate difference of Wightman functions o
needs

P0bm„D.
mn~x!2D,

mn~x!…5~dk
n]02d0

n]k1h0k]n!

3„D.~x!2D,~x!….

The right hand side contains both time derivatives and sp
derivatives. Att50 the spatial derivatives vanish becau
D.(0,rW)5D,(0,rW). The above result simplifies to

@P0bm„D.
mn~x!2D,

mn~x!…# t505dk
n@Ḋ.~x!2Ḋ,~x!# t50 .

Equation~2.2! determines that the value of the right han
side is2dk

nd3(rW), as required. This completes the proof th
Eq. ~2.17! is correct.

C. Spin 2 gravitons

Standard quantum gravity is based on the Einstein-Hilb
Lagrangian with a gauge-fixing term

L5
2

k2
A2g R1Lg.f.

in which R is the scalar curvature,g5det(gmn), and k2

532pG with G Newton’s constant. A conventional gaug
fixing term is @7,8#

Lg.f.5
1

k2
hmn~]aA2ggam!~]bA2ggbn!.

This corresponds to the Feynman gauge in Yang-Mills th
ries. More general covariant gauges will be discussed la
With hmn the Minkowski metric, the graviton fieldhmn con-
tains all quantum fluctuations:

A2ggmn5hmn1khmn. ~2.21!

Keeping only terms that are quadratic inh produces the free
Lagrangian density

L05
1

2
~]rhab!~]rhab!2

1

4
~]rha

a!~]rhb
b!2~]rhab!

3~]ahrb!1~]rhra!~]bhba!.

The thermal Wightman functions to be computed are

D.
mnab~x!52 i Tr „% hmn~x!hab~0!…

D,
mnab~x!52 iTr „% hab~0!hmn~x!….

Subsequent argument will show that these are given by
0-4
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D.
mnab~x!5~2hmnhab1hmahnb1hmbhnb!D.~x!

D,
mnab~x!5~2hmnhab1hmahnb1hmbhnb!D,~x!.

~2.22!

That the results are expressed in terms of the scalar Wi
man functionsD.(x) rather than the potential function
d.(x) is a peculiarity of this Feynman-like gauge. In mo
general covariant gauges the Wightman functions for gra
tons depends on the potentialsd.(x).

~1! Because of the properties of the scalar Wightm
functions, the graviton Wightman functions in Eq.~2.22! sat-
isfy

D.
mnab~ t2 ib,rW !5D.

mnab~ t,rW !,

and are analytic in the appropriate regions.
~2! To obtain the equation for the graviton field one nee

the partial derivatives

]L
]~]rhkl!

5Prklmnhmn, ~2.23!

where the tensorP is linear in the derivative operator

Prklmn5S Lklmn2
1

2
hklhmnD ]r2Lrlmn ]k

2Lkrmn ]l1Lklrn ]m1Lklmr ]n ~2.24!

andL is given by

Lklmn5
1

2
~hkmhln1hknhlm!. ~2.25!

The differential equation for the graviton field operator
]rPrklmnhmn(x)50, or more concisely

~2hklhmn1hkmhln1hknhlm! h hmn~x!50.
~2.26!

The graviton Wightman functions Eq.~2.22! automatically
satisfy h D.

mnab(x)50 since the scalar functions satis
h D.(x)50.

~3! The third check of Eq.~2.22! is that the graviton op-
erators satisfy the correct canonical commutation relatio
The canonical momentum conjugate tohkl is

Pkl5P0klmnhmn.

The canonical equal-time commutation relations are

2 i @Pkl~x!,hab~0!# t5052~dk
adl

b1dk
bdl

a!d3~rW !.

Therefore the Wightman functions should satisfy

@P0klmn„D.
mnab~x!2D,

mnab~x!…# t50

52~dk
adl

b1dk
bdl

a!d3~rW !. ~2.27!
05601
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To check that the Wightman function Eq.~2.22! satisfies
this, first apply the differential operator in Eq.~2.24!:

Prklmn„D.
mnab~x!2D.

mnab~x!…

5~dk
adl

b1dk
bdl

a!]r„D.~x!2D,~x!…

2~dr
adl

b1dr
bdl

a!]k„D.~x!2D,~x!…

2~dk
adr

b1dk
bdr

a!]l„D.~x!2D,~x!…

1~hrk dl
b1hrldk

b!]a
„D.~x!2D,~x!…

1~hrk dl
a1hrl dk

a!]b
„D.~x!2D,~x!….

Now set the indexr50 and the timet50. The first line
obviously coincides with Eq.~2.27! and it is straightforward
to check that the remaining four lines will always vanish. F
example, if all of the free indicesk,l,m,n are spatial, the
last four lines vanish. This, because the spatial derivatives
the right hand side are zero sinceD.(0,rW)5D,(0,rW). If
three of the indicesk,l,m,n are spatial and one is 0, ther
will be one non-vanishing time derivatives among the l
four lines but it will be multiplied by a tensor that vanishe
For the remaining cases it is easy to enumerate the pos
values of the free indicesk,l,m,n and verify that the ca-
nonical commutation relation Eq.~2.27! is fully satisfied.

General covariant gauge.The results for the Wightman
function given in Eq.~2.22! are for a particular gauge analo
gous to the Feynman gauge. A more general gauge-fix
term is

Lg.f.5
1

jk2
hmn~]aA2ggam!~]bA2ggbn!

wherej is arbitrary. The differential equation for the grav
ton field hmn(x) is then

~2hklhmn1hkmhln1hknhlm!h hmn

5S 12
1

j D ~hkm]l]n1hkn]l]m

1hlm]k]n1hln]k]m!hmn.

Following the same procedures as above one can show
the thermal Wightman function is

D.
mnab~x!5S 2

1

j
hmnhab1hmahnb1hmbhnbDh d.~x!

1S 12
1

j D $22~hmn]a]b1hab]m]n!d.~x!

1~hma]n]b1hmb]n]a1hna]m]b

1hnb]m]a!d.~x!%. ~2.28!

Note that the general Wightman function depends on all p
tial derivatives of d.(x), whereas Eq.~2.22!, in the
Feynman-like gauge, depends only onD.(x)5h d.(x).
0-5
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III. FERMIONS

The methods employed in the previous section carry o
to fermions except that the KMS condition contains an ad
tional minus sign. This change results in a completely diff
ent asymptotic behavior in the deep space-like region.

A. Spin 1Õ2 fermions

The thermal Wightman functions for spin-1/2 fields a
given by

S.ab~x!52 i Tr„% ca~x!c̄b~0!…

S,ab~x!5 i Tr„% c̄b~0!ca~x!….

The ordering of the spinor indices is important, but the in
ces will be suppressed in the following. The relative si
difference between the two functions is conventional.

At zero temperature the Wightman functions are

S.~x!uT505 ig•]
i

4p2

1

~ t2 i e!22r 2

S,~x!uT505 ig•]
i

4p2

1

~ t1 i e!22r 2
.

The former is analytic in the entire lower-half of the compl
t plane and the upper is analytic in the entire upper-half
that plane.

At nonzero temperature the regions of analyticity are
duced. In the complex time plane,S.(x) is analytic in the
lower strip2b<Im t<0 andS,(x) is analytic in the upper
strip 0<Im t<b. On the boundaries of these regions t
values are related by the KMS conditions@6#:

S.~ t2 ib,rW !52S,~ t,rW !

S,~ t1 ib,rW !52S.~ t,rW !. ~3.1!

The difference between the Wightman functions is the a
commutator of the fields. For free fields this anticommuta
is a c-number:

S.ab~x!2S,ab~x!52 i $ca~x!,c̄b~0!% ~3.2!

and thus the right hand side is independent of temperat
This implies

S.~x!2S,~x!5S.~x!uT502S,~x!uT50

so that the Wightman functions have the structure

S.~x!5S.~x!uT501E~x!

S,~x!5S,~x!uT501E~x!.

The free-field equation2 ig•] c50 implies thatE(x) must
satisfy2 ig•] E50. To solve this, let the unknown functio
E5 ig•] F(x) where h F(x)50. The general spherically
symmetric solution is
05601
r
i-
-

-

f

-

i-
r

re.

E~x!5 ig•]
1

r
„G1~u!1G2~v !….

From their definitions, the Wightman functions satis
@S.(x)#†5g0S.(2x* )g0 and this makes the two function
the same:G15G2. Combining this with the previous zero
temperature results allows the full thermal Wightman fun
tion to be expressed as

S.~x!5~ ig•]! s.~x!

S,~x!5~ ig•]! s,~x!, ~3.3!

in which the new functions have the form

s.~x!5
2 i

8p2r
F 1

u2 i e
1G~u!1

1

v1 i e
1G~v !G

~3.4a!

s.~x!5
2 i

8p2r
F 1

u1 i e
1G~u!1

1

v2 i e
1G~v !G .

~3.4b!

All the temperature dependence is contained in the sin
unknown functionG. It will be determined by the fermionic
KMS condition Eq.~3.1!, which requires thats.(t2 ib,r )
52s,(t,r ). For the functionG this requires that

1

u2 i ~b1e!
1G~u2 ib!52S 1

u1 i e
1G~u! D .

The solution forG is

G~u!5 (
n51

`

~21!nF 1

u2 i ~nb1e!
1

1

u1 i ~nb1e!G .
~3.5!

This is analytic in the closed strip2b<Im t<b. The nearest
poles are just above this strip atr 1t5 i (b1e) and just be-
low the strip atr 1t52 i (b1e). The alternating signs will
produce more rapid convergence than in the bosonic cas

Complex time in the open strip.For many purposes one i
interested in either in real time or in complex time in th
open strip

2b,Im t,b. ~3.6!

For t in this open region one can sete→0 in Eq.~3.5! which
allows the sum to be easily performed:

G~u!52
1

u
1

pT

sinh~pTu!
. ~3.7!

There is, of course, no pole atu50. There are poles atu5
6 inb because of the limite→0. The results fors. ands,

are
0-6
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s.~x!5
1

8pr
„d~u!2d~v !…

2
iT

8pr F 1

sinh~pTu!
1

1

sinh~pTv !G ~3.8a!

s,~x!5
1

8pr
„2d~u!1d~v !…

2
iT

8pr F 1

sinh~pTu!
1

1

sinh~pTv !G . ~3.8b!

It is worth noting that the KMS conditions.(t2 ib,r )5
2s,(t,b) is now satisfied in a trivial manner because of t
restriction to the open strip in Eq.~3.6!. Because of this, it is
only possible fort and t2 ib to lie in the open strip if both
are complex and if both are complex then the Dirac de
functions have no support. In the full solution Eq.~3.5! the
KMS condition is satisfied nontrivially.

Imaginary time.The imaginary time formalism usest5
2 i t wheret is real. As occurred for bosons, the two Wigh
man functions are equal,s.(2 i t,r )5s,(2 i t,r ) and
given by

s~2 i t,r !5
2 iT

2pr

sinh~2pTr !cos~pTt!

cosh~2pTr !2cos~2pTt!
. ~3.9!

This is antiperiodic undert→t6b.
Arbitrary complex time.Without approximation one can

sum the series in Eq.~3.5! to obtain

G~u!5 i
T

2
cF1

2
1

T

2
~e1 iu !G2 i

T

2
cF11

T

2
~e1 iu !G

2 i
T

2
cF1

2
1

T

2
~e2 iu !G1 i

T

2
cF11

T

2
~e2 iu !G .

Sincec(z)5d ln@G(z)#/dz this is equivalent to

G~u!5
]

]r
ln@g~u!#

in which the lower-case functiong is

g~u!5

GF1

2
1

T

2
~e1 iu !GGF1

2
1

T

2
~e2 iu !G

GF11
T

2
~e1 iu !GGF11

T

2
~e2 iu !G .

~3.10a!

Putting this together in Eq.~3.4! gives the general result

s.~x!5h s.~x!

s,~x!5h s,~x!, ~3.10b!

in which the lower-case functions are
05601
a

s.~x!52
i

16p2
lnF g~u!g~v !

~u2 i e!~v1 i e!G
s,~x!52

i

16p2
lnF g~u!g~v !

~u1 i e!~v2 i e!G .
~3.10c!

The next section will express the Wightman functions
gravitinos in terms of these functions.

B. Spin 3Õ2 gravitinos

The massless Rarita-Schwinger field@9# plays an impor-
tant role in supergravity as the spin 3/2, supersymme
partner of the graviton. In that context it is referred to as
gravitino. As occurred in the bosonic cases, the passage
the lower spin fermion~1/2! to the higher spin fermion~3/2!
is easily accomplished. The free Lagrangian density for
field cm(x) is @10#

L52emnab c̄mgng5]acb1Lg. f . .

The gauge fixing is necessary so as to break the invarianc
the first term under transformationscb→cb1]bc, wherec
is any spin-1/2 field. A convenient choice for gauge-fixing

Lg. f .5
i

2
c̄ngn~g•]!glcl.

The free Lagrangian can be rewritten as

L52c̄mLmncn, ~3.11!

where the tensorLmn is linear in the first derivatives:

Lmn52 i S gm]n1gn]m1hmng•]2
1

2
gm~g•]!gnD .

~3.12!

Each Wightman function is a 434 matrix in spinor space
and a rank 2 tensor in the Lorentz indices:

S.
mn~x!52 i Tr„% cm~x!c̄ n~0!…

S,
mn~x!5 i Tr„% c̄ n~0!cm~x!…. ~3.13!

The spinor indices have been suppressed. The relative
difference in the definitions coincides with the spin 1/2 co
vention. As in the bosonic case the most efficient way
proceed is to display the answer immediately and then p
form checks. In this gauge the Wightman functions can
written in terms of the same matrix-differential operatorLmn

S.
mn~x!5Lmns.~x!

S,
mn~x!5Lmns,~x!, ~3.14!

where s.(x) and s,(x) are the basic spin 1/2 function
given in Eq.~3.10!. The subsequent discussion will confir
these results.
0-7
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~1! The spin 1/2 functionss.(x) and s,(x) guarantee
that the gravitino Wightman functions in Eq.~3.14! satisfy
the KMS conditions

S.
mn~ t2 ib,rW !52S,

mn~ t,rW !

S,
mn~ t1 ib,rW !52S.

mn~ t,rW !, ~3.15!

and have the correct analyticity properties.
~2! The equation of motion for the gravitino which fo

lows directly from Eq.~3.11! is

Lamcm~x!50.

Therefore the Wightman functions should satisfy

LamS.
mn~x!5LamS,

mn~x!50.

This is easily satisfied because of the identity

LamLmn52da
m h ~3.16!

and the fact thath s.50 andh s,50.
~3! The third check of Eq.~3.14! is that the gravitino field

operators must satisfy the canonical commutation relation
equal time. For this it is convenient to express the par
derivative of the Lagrangian as

]L
]~]rcl!

5c̄nGnlr ,

whereGnlr is the matrix

Gnlr[ i S gnhlr1glhnr2hnlgr2
1

2
gngrglD .

~3.17!

Note thatLnl52Gnlr]r. The canonical momentum conju
gate tocl(x) is

Pl~x!5c̄nGnl0 .

These momenta obey the canonical equal-time anticomm
tion relations

2 i $cm~x!,Pl~0!% t5052dl
m d3~rW !,

so that the Wightman functions must satisfy

@„S.
mn~x!2S,

mn~x!…Gnl0# t5052dl
m d3~rW !. ~3.18!

To check that these are satisfied by Eq.~3.14!, first multiply
by the matrixG to obtain

„S.
mn~x!2S,

mn~x!…Gnlr

5~dl
mdr

k2dr
mdl

k1hlr hmk2 ig5elr
mk!

3]k„s.~x!2s,~x!….
05601
at
l

ta-

For canonical momenta, setr50 and the timet50. Because
s.(0,rW)5s,(0,rW) only the time derivatives on the right~i.e.
k50) are nonvanishing. This reduces to

@„S.
mn~x!2S,

mn~x!…Gnl0# t505dl
m@ṡ.~x!2ṡ,~x!# t50 .

Thus Eq.~3.18! is satisfied because of the properties of t
functionss.(x) ands,(x) from Sec. III A.

General covariant gauge.The results for the gravitino
have been displayed in a particular gauge. As was done
the graviton in Sec. II C, one can add a more general gau
fixing term than used above. The Wightman functions c
still be expressed in terms of two derivatives of the functio
s.(x) ands,(x) in Eq. ~3.8!.

IV. DISCUSSION

It is rather surprising that the large distance effects
massless particles are, in some sense, simpler atT.0 than in
vacuum. At zero temperature the Wightman function
spinless bosons is

D.~x!uT505
i

4p2

1

~ t2 i e!22r 2
, ~4.1!

and for spin 1/2 fermions isS.(x)5 igm]ms.(x), where

s.~x!uT505
i

4p2

1

~ t2 i e!22r 2
. ~4.2!

In perturbative calculations, the slow fall-off at large di
tances produces long range correlations both in the d
space-like and the deep time-like directions. AtT.0 the
situation is very different as indicated below.

Deep space-like region. For r 2utu@1/(pT) the
asymptotic behavior of Eqs.~2.10! is

D.~x!→ 2 iT

4pr
2

iT

2pr
e22pTrcosh~2pTt!1•••. ~4.3!

This behavior can also be understood from the Matsub
formalism, @2–4# which has discrete frequenciesvn
52npT. The static,n50 mode is responsible for the lead
ing T/r behavior. Each higher mode produces
exp(2vnr) fall-off. For fermions the asymptotic behavior o
Eq. ~3.8! is

s.~x!→ 2 iT

2pr
e2pTrcosh~pTt!1•••. ~4.4!

Since fermions have odd frequencies,vn5(2n11)pT, the
exponential fall-off also comes from exp(2vnr).

Deep time-like region.In the deep time-like region de
fined by utu2r @1/(pT), the asymptotic behaviors of Eqs
~2.10! and ~3.8! are
0-8
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D.~x!→ 2 iT

2pr
e2pTutusinh~2pTr !1•••

s.~x!→ iT

2pr
e2pTutusinh~2pTr !1•••. ~4.5!

It is not obvious why both Wightman functions should fa
exponentially in the time-like region and with the same e
ponent.

All the Wightman functions for higher spin are simp
related~by derivatives! to these basic functions. It thus ap
ys
n,

na

05601
-

pears that in comparison with zero temperature, the qua
tatively large effects of massless particles at non-zero t
perature come predominantly from theT/r behavior of
bosons at large spatial separation and from the light c
t25r 2. Subsequent publications will explore the physic
consequences of these results.
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