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We study the temperature dependence of thand »' meson masses within the framework 0{3),_
X U(3)g chiral perturbation theory, up to next-to-leading order in a simultaneous expansion in momenta, quark
masses and number of colors. We find that both masses decrease at low temperatures, but only very slightly.
We analyze higher order corrections and argue that lafgsuggests a discontinuous drop Mf,, at the
critical temperature of deconfinemeny, consistent with a first order transition to a phase with approximate
U(1), symmetry.

PACS numbgs): 11.10.Wx, 11.15.Pg, 12.39.Fe

[. INTRODUCTION the experimental values by a factor of about 40. This issue,

- which is obviously relevant in order to determine the shift of
The fate of theU(1), symmetry of QCD at finite tem- M,, in a pion bath, is however easily cured at next-to-

perature is a fascinating problefi—3] which could also 7 . . ;

have interesting consequences for the ongoing heavy ion coll?amm‘;l order in th_e larghle expan3|_or[18,1q. As we W!”

lisions program and, possibly, for cosmoloBy-§]. Even a show, next-to-leading order corrections are also quite impor-

partial restoration ofiJ(l) syn,1metry N the vicin.ity of the tant at finite temperature, but not to the point of dramatically
A

critical temperature of chiral symmetry breaking.(-200 changing the conglusmn of Re[f12].. at low temperatures,
. - M, stays essentially constant. Finally, we wanted to see
MeV) could dramatically change the mass and mixing pat- ,” .
) , . what the largeN; expansion could teach us about the fate of
tern of the lightest neutral mesonsry, » and »'), with

signals including enhanced strangeness production or th{geeu.(lzﬁ sy:)nr?e(taré/ a:]flnéte ]:[emcpgr?ture. At zero ttempera—
more speculative possibility of forming parity violating dis- Lfr » In the confined phase of QCD, larg argumerT S pre-

; ; ; i dict thatM?,«1/N.. On the other hand, at very high tem-
oriented’ condensates in heavy ion collisiofig9,10. 7 c , y nig

Our aim in the present paper is rather modest: we willPératures, in the quark-gluon plasma phase of QAD (
study the shift of the mass of the and »' mesons at low > #nadsr~200 MeV), instanton calculus is reliable and pre-
temperatures, in a regime in which the hadronic gas is mostiglicts an effective restoration &f(1), symmetry. Because of
composed of pions. We will work in the framework of Screening, instanton effects are suppressed at very large tem-

. 5 alde

U(3), X U(3)g chiral perturbation theoryyPT), in a simul-  Peraturesr exd —872/g(T)?]. At largeN,, the suppression is

taneous expansion in momenta, quark masses, number BIOr€ important, as 47— N, /) with fixed 't Hooft coupling
’ ’ A=0°N., and the exponential tends to vanish expk./\)
colorsN,, and temperaturé. 9 Ne, & f ic freed
Our motivation for doing this investigation was threefold. —0 as N, increases. Because of asymptotic free ’

First, the predictions ofPT in a pion thermal bath, although growths at lower temperatures and the instanton argument
o . ' : breaks down. However, foK; large enough, a natural as-
limited in scope toT<fewf ., are essentially model inde-

pendent(see for instance, the review of Smilga1] and sumption is that the exponential suppression holds all the

f thereinGi the bh logical fway down to the critical temperature of deconfinemépt
references thereinGiven the phenomenological success o ~ thoar [7]. Although we have no proof of this statement,

the largeN. expansion in vacuum, one might perhaps hopeych pehavior seems natural given the large release of en-
that the predictions of the present work are as robust. Nex{ropyoch atT, and is actually known to occur in models in
we wanted to see to which extent the results derived in Ref,, dimgnsions[ZO]. With this assumptionM,, can be
[12] could be amended. As us, the authors have computegyen as an order parameter fo¢1), symmetrynrestoration
the shift ofM,, andM,,, at low temperatures using the Di atT . |n Ref.[7], some information on the behavior bf,,
Vecchia—Veneziano-Witten effective Lagrangi@DVW)  near T, could be extracted assuming that theconfining
[13-15, but only to leading ordeAMf?,~T2, However, it  phase transition could be of second order at laXgg21].
was not clear to us whether the leading order DVW LagrangWe will argue here that largd favors a sharp drop d¥1 ,,

ian was a good approximation for this problem. Although theat T, consistent with first order transition to the phase with
parameters of the Lagrangian can be fitted to the observe@pproximate U (1), symmetry.

mass and mixing pattern of the and »' mesons to within Our paper is organized as follows. In the next section, we
10%[16,17), the decay rates predicted fgf — narar are off  briefly review U(3), XU(3)r xPT, which extends the
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framework of the largeN. DVW effective Lagrangian be- turned off by going to the limit of large number of coldxs
yond leading order. For definitiveness, we refer to the recer26—28. At infinite N, and in the chiral limit, the global
analysis of Herrera-Sikliy et al. [22]. We then discuss the symmetry becomed)(3), X U(3)g, spontaneously broken
implications of these corrections at low temperature, in presin vacuum toU(3), with nine massless Goldstone bosons.
ence of a pion thermal bath. Most formulas are relegated thike chiral symmetry breaking effects by finite quark
the Appendix. In the last section, we speculate on the effeahnasses, N suppressed contributions can be systematically
of higher order corrections in the largé, expansion and introduced as perturbations in an effective Lagrangian, an

draw the conclusions. approach which has been quite fruitfdi3,14,19,29 A sys-
tematic analysis of next-to-leading corrections, including

Il. SKETCH OF U(3), X U(3)g CHIRAL PERTURBATION O(p*) operators, has been initiated in the redgr@,22,3Q.
THEORY We refer to these latter works for more details and follow

) ) their conventions for ease of reference. We will work in
At low energies and temperatures, the dynamics of QCO:clidean spacetime with metrig,,,=3,, and use the

is governed by an approximat8U(3), XSU(3)r chiral  inaginary time formalism to compute the thermal correc-
symmetry which is spontaneously broken to the diagonaljyns.

SU(3) in vacuum. If the mass of the up, down and strange
quarks were vanishing, the symmetry would become exact
and there would be eight massless Goldstone bosons. Phe- ] ) o
nomenological Lagrangians, which treat the mass of the The leading order effective Lagrangian is well known
quarks as small perturbations, provide a powerful framel13—13. In the notation of22] it is written as

work, known as chiral perturbation theoryR®T), to study £2

the properties of the lightr, K, and » mesong23,24. The ﬁLozz(vozxz+<l?MUTf?,LU>—(UTX+XTU>), (1)

7' meson does nat priori fit in this frame. It is substan-
tially heavier than the other_ eight Il_ght mesons, and, N hereU is the U(3) matrix
vacuum, would stay so even in the chiral limit of zero quark

masses, because it receives most of its mass frord (ig, U=ei V201 @)
anomaly through non-perturbative instanton-like eff¢28.

The effect of the axial anomaly can however be convenientlyith ® the pseudoscalar meson matrix

A. Leading order

70 + +
—t =+ —= ™ K
2 6 B
0 M8 7o
d= m -——t—=t—= K° , 3
26 ©
- — 2mg Mo
K KO —-—+ —=
V6 3

andf=f_=92.4 MeV at leading order. The mass matrix is dictive power. This is where the lard&. expansion comes to
the rescue by limiting the number of operators that can con-
x=2Bdiagmy,my,ms), (49 tribute at each level of approximation. In the chiral limit
) ) ) (m,m;—0), Eq.(1) gives
but we shall neglect isospin breaking effects,&Emg
=m). The constanB is related to the value of théqq)

condensateyl>=2mB= —2m(qq)/f2 at leading order. The
combination

Miy:_?)voz, (6)

5 which is the celebrated Veneziano-Witten relation for three
X(x)=(logU (X)) +i fgcp=i \ﬁﬁo*‘ i6ocp, (5 massless flavor®7,28, with v,=—27/f2~1/N., wherer

f is the topological susceptibility of pure Yang-Mills theory.
The rationale ofU(3), X U(3)g xPT is to count powers of

is invariant underU(3)_ X U(3)g transformations{log U) 02, m,, and 1N, on the same leveD(5) [22,29;
] q C ] .

—(log(grUg))+2i(a) and Oqco— focpo— 2(a). Because of
this, any arbitrary function oX can a priori enter in the
construction of the effective Lagrangian, with thus little pre- O(6)~ p2~mq~1/NC. )
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According to this counting rule, the leading order Lagrangian Cexd 7' — pmlm0)=42.0-4.2 keV,
(1) is O(8°) becausd?~O(N,).?
At leading order, there are four unknown parameters in Pexd 7' —nm™m)=88.9:7.6 keV. (14)

the Lagrangianf, vg,, and the combinations1B and msB
(or x=m¢/m—1). On the other hand, we have at our dis-We will not speculate on the reasons for this well-known

posal seven observablds;, f, the four masses of the light discrepancysee Refs[19,31] for a more recent discussipn
mesons, and the-»' mixing angled. UsingM,, as input but simply note that within the present framework, this issue
and the formulas given for reference in the Appendix, onecan also be resolved at next-to-leading orfdes,19.>

obtains
B. Next-to-leading order

f2=f2=f%, :
. In our case, at next-to-leading ord€?(5), only a few
omB=M2, more terms can be added to the LagrandiBn 22]:
2 + T
X=24.1, Lyro=Liot Z(_U31X<U x—x'U)
002:_0-22 GE\?, (8) +U40<UT£7MU><UT(9MU>+| v50<UTa,uU>C7,u0QCD
which predict that9=—20° and +v609,00c09,00cp) —MoOp—M303+L505
M,=494.4 MeV. 9) —LgOs, (15

4 .
Remarkably, the latter number is only 10% off the experi-Vhere theOO,315,§ are O(p”) operators whose coupling con-
mental valueM,=547.3 MeV. It is however known that stants ar@d(N,):

adjusting the parameters cannot improve the prediction be- _ + t
cause the ratitv f,/Mf], has an upper bouAd16]. One has 00=(7,Ud,U10,Ud,U0),
to take into account next-to-leading order corrections to 05;=(a,U%9,Ua,U"a,U),
reach agreement.7]. pooomemrm
At leading order, the only coupling betweeyi and the 05=(a,UT9,U(UTy+xTU)),
pions is from the quark mass term in the LagrandiBnand reoH
ifw thus chirally suppressed. The amplitude igr— npm is Og=(xTUxTU+UTyUTY). (16)
then

5 The couplingw 49, V59, andvgg are not independent and

M7 . either one of them can be set to zero by an appropriate
A= FW(Z‘E cog26)—sin(26)). (12 change of variablesyo/f— 7o/f+ k 6gcp. We shall choose
v40=0. Moreover, gy andvgy Will not appear in our calcu-
The corresponding decay rates lations and can be discarded. &(65), the only coupling
related to the breaking otJ(1), symmetry is thusvg;
I'(n'—nm°7%=1.0 keV, ~O(1/N,). Note that the corresponding operator is also
chirally suppressedm; .
L(p'—pmn" 7" )=19 keV=2XTI (7' —nn°7°), At next-to-leading order, seven unknown parameters enter

(13 in the definition of the meson mass matrixv oy, v31, Lssg,
. together with the quark massesand mg (see the Appendix
are however much smaller than the experimental ones, ¢, jetaily. These can be expressed in terms of seven inde-
pendent observables$;,, fx, M., My, M, M;?, and the
n-n' mixing angle# [30]. At this level, largeN. xPT is thus
Note that the field expansion &f brings further powers of 1/ not predictive. The strategy adopted in REB0] was to
~1/JN;. The O(8) counting is to be understood to hold at the
operator level.
2AssumingM =0 to simplify, Eq.(1) gives

M2 3—y—\9+2y+y?

M2, 3—y+\9+2y+y?’
wherey=9v,,/2(M%—M?2). This ratio reaches a maximum ¥t
= —3 (note thatv(,<0) corresponding to

3Note that the amplitudéL?) is constant and vanishes in the limit
my,=my=0, for anymg. However, general argumerfts9] (and a
fit to experimental dajandicate that fom,=my=0, the amplitude
should behave liked=consi p'¥). p!® | wherep*? are the mo-
menta of the outgoing pions, and where the constant is vanishing as
the strange quark mass goes to zero. As shown in [Réf, this

(10

&<0.518, (12) behavior can be easily accommodated by introducing higher-order
M, terms, an approach that is systematized by dhexpansion[18].
to be compared with the measured raltig,/M ,,=0.571. Taking  The smallness of the leading order contribution is then considered
into accountM _# 0 improves things, but not enough. as a mere accident, related to the smallness of the Mﬁjb\/lﬁ
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FIG. 1. One-loop pion correc-
tions toM, andM ,, at low tem-
perature. The black box represents

no,n8 no,n8 no,n8 n0,n8 insertions of next-to-leading order
operators.

LO NLO

impose thatO(5) corrections are not too large so that the ~200 MeV the relative mass shifts are or}(0.1%). The
large N. expansion makes sense. For mixing angle in theeason for this is easy to understand. Thand ' mesons
range 20% #<24°, the fit giveg30] receive most of their mass from the topological susceptibility
term o«vg, and/or from the strange quark mass, while the
pion thermal corrections only modifies the tiny contribution
from the pion mass termeT. Thermal kaons could give a

0.980<2mB/M?2<0.988,

18.3<x<209, larger effectcM2 | but the density of these is exponentially
0.214 GeVW<|vy)<0.239 GeV, suppressed at low temperaturesxp(—My/T). One might
wonder whether next-to-leading order corrections could di-
1.35x 10 3<Lg=<1.57x 103, rectly affect the contribution of the leading order(1),
breaking termv,. As we have seen in the previous section,
—0.164<v3,<—0.161, (17) five extra operators appear at next-to-leading order in the

largeN. expansion and, of these, only the one with coupling

together withf =90.8 MeV andLs=2.0x10 2 which are vy, is related toU(1), symmetry breaking. Unfortunately,
fixed by f . and fx . Note that ifvy, does only change by this term is also chirally suppressedm, and its contribu-
about 10%, the shift img is quite large,~20— 25. tion is only O(v3;M2T?/f2). At temperatures of interest,

Because they have four derivatives, the operaiysind  this is small compared tog,, but of the same magnitude as
O3 do not contribute to the meson mass matrix in vacuumthe leading order thermal correction. The other four opera-
However, they give the dominant contributions to the decayors will also contribute, but in a less interesting way, as they
n' — nmm [18]. This is essentially because the extra deriva-are invariant undetJ(1),. Furthermore, their effects are
tives introduce large amplification factors,(M,?,/Mw)z, a|soo<|v|fT_

with respect to the leading order amplituti@he observed We have computed the shift of the massspfind 5’ at
decay rates are well reproduced with one-loop, at next-to-leading order in the expansioi.iwe
3 have not taken into account two-loop corrections from the
Mo=1.2x10"3,

leading order Lagrangian. Although it is not clear whether
this is legitimate numerically speaking, neglecting these is
however consistent with the rules of lartg chiral pertur-

values which can be independently inferred from the knowrPation theory. Indeed, the natural extension dfower-
L,, L,, andLs of SU(3)X SU(3) xPT (in the nomenclature counting to finite temperature is
of Gasser and LeutwyldR4]).?
Thus all the parameters of the next-to-leading order effec- O(8)~p®~mg~1N~T?. (19
tive Lagrangian are fixed by low-energy phenomenology.
At leading orderM f],=(9(5)~1/NC and the one-loop ther-
. M, IN A PION THERMAL BATH mal correction is<M2T?/f2~ 5%, At two-loop, using the
leading order Lagrangian, the shiftdgM 2T#/f4~ &% while
at one-loop using the next-to-leading order Lagrangian, the
shift is typically v3;M2T?/f2~6* (using v4;~1/N,) and
thus dominant. Consistency thus requires to neglect the two-
loop contributions. This greatly simplifies the calculations
o o which are a bit cumbersome, but otherwise straightforward.
This may actually cast some doubts on the validityy&iT for The relevant diagrams are those of Fig. 1, where the loops

such processes as one could expect higher-order effects to givg)ntain only pions. At next-to-leading order there are two
non-negligible contributions to the decgy— »m. One may nev- related thermal loops:

ertheless hope that the larjg expansion is still reliable and that
these corrections areN{/ suppressed. Whether this is true is unfor- " N
tunately hard to check as we would evidently have too few hadronic d3k 1
data to completely fit the parameters of the effective Lagrangian at |1(T):Tn=2m (277)3 K2+ M2’
higher orders in theS expansion. Of course, this is precisely why N
the largeN. expansion is invoked in the first place. N

SAccording to Ref.[18], Mo=2(L,+L,)+O(N®) andMs=L,  with K2=k3+k?, wherek,=27nT, with n integer, are the
+2My. Matsubara frequencies and

M3~ —0.4x10 3, (18

In Ref. [12], the leading order Lagrangiail) has been
used to study the shift d¥1,, andM ,, at one-loop in a pion
thermal bath. The effect they found is very tiny, asTat

(20
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FIG. 2. Leading order(solid ling) and next-to-leading order FIG. 4. Leading ordersolid line and next-to-leading order
(dashed ling contributions toM,(T). Both curves are normalized (dashed ling contributions to tan (T). Both curves are normal-
to M,(0). ized to tan (0).
o 3k 2 _ -
_ E dk K next-to-leading order. To be definite we have chosen the set
I(T)=T vy aryrl (21) : o
= J (2m)3 K+ M7 of parameters corresponding t&=—20°. The net thermal

effects are not dramatic: both masses decrease, but only
with I,(T)=—MZ2I4(T). As usual, we drop the ultraviolet slightly. As expected, the shift of the malss is more pro-
divergent part of the pion loops as these can in principle b@ounced at next-to-leading order, but the ‘effect is not very
reabsorbed in vacuum parameters, including next-to-next-tosignificant. Again, this is because, both at leading and next-
leading order counter-terms. The sum ovecan then be to-leading orders, the thermal corrections are chirally sup-

readily evaluated using standard techniql&, pressedy M2T2/f2 . For completeness, we have also plotted

@Kk 1 1 “ 1 (nM in Fig. 4 the shift of the mixing a}ngle at low temp.erature. As

|1(-|-):f = 2 K ( ) both the » and »' masses diminish, the angle is not very
(2m)3 w explw/T)—1 277 A=o N much affected. It decreases a ftéward ideal mixing®, con-

(22)  sistent with the relatively larger shift of ,,

wherew?=k?+M?2 . For instance, fof =M,
T2 IV. LESSONS FROM LARGE N_?
h(M~75 (23) _ , . _
As we have seen in the previous section, the masg o
almost not affected at low temperatures in a pion bath. This
s because, at this order, the pion thermal corrections are
%hlrally suppressed, smaller th&/h2 =0.02 GeV, and thus
essent|ally negligible compared to the contribution from the
U(1), symmetry breaking termv,=0.22 Ge\f. In par-
ticular, in the chiral limit,M _=0, all the corrections vanish
~~~~ z and M, is temperature independent up to next-to-leading
o sssl T~ ] order in yPT. In the chiral limit, the leading contribution
RN from pions to the shift oM, presumably arise frord(p*)

0.996] ~~_ | operators liké

In the sequel we simply compute E@®2) numerically. As

the relevant formula are not particularly transparent, we hav
relegated them to the Appendix. Figures 2 and 3 show the
shift of M’ » andM, at low temperature both at leading and

0.994F

10 5The O(p?) operator

0.992¢

X?
e £~f2N—§<8#UT d,U), (24)

can contribute at one-loop if and onlyM?2#0. It could contribute
0.988p ] at two-loop order in the chiral limit: T4, but does not because pion
0 >0 e 130 200 interactions are too soft. This is a well-known feature of pion ther-
mal corrections which is for instance manifest in the absend of
FIG. 3. Leading order(solid line) and next-to-leading order terms in the free energy of a pion gas in the chiral lif88], or in
(dashed lingcontributions toM ,,(T). Both curves are normalized the fact that massless thermal pions move at the speed of light to
to M, (0). orderT? [34].
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1 At large N., T.<T'<T* and the perturbative expansion

L~ N—X2<19MU 9,U%9,Uq,UT). (25 still breaks down above the temperature of deconfinement.
¢ Another set of operators could be relevant at lahye
because they’ is then rather lightM , ~ wnaa/ NE?<T.

The coupling iSO(1/N;) because there is a factor ofNE/  Thyus one should include operators that involve arbitrary
coming with X? and one ofN. from the coupling of the powers of they’ field, like

O(p*) operator. The best way to see this is to replace the

coupling My~N,; (or M3) from the next-to-leading order

Lagrangian by a function ok, My—M(X) and expand to ﬁwsz(N— (9,U%a,U)

second order inX, which brings down a factor of N?

Because there are at least four pions in the expansion of the 73 70 N

operator(25), the leading pion thermal correction kb, in WNZ + NG +--- | (d,7°)"+ pion terms, (29)

the chiral limit is a two-loop effect,
which contributes to the wave-function renormalization of
SME,(T)~ T 1T 6 ',
! Ne 10 NG puf 8Zy ~T?(NZufag) + T#(NGpthaa) + -+, (30)
We have made the largd, dependence of the pion decay or terms of the form
constantf? manifest by defining2~ Nupaqr- OF course, the X 1
sign of the correction is not known amd ,, could go up or L~N2u? - ’“hadr 2+#
cMhadC N N, 1N4 770
down. Also, if we compare witth? 1 (0)~ :u'hadr/NCv we in-
fer thatM ,, is quasi-constant for temperatures

1 6
+#2—2 7 7]O+ P (31)
T<T, NNc Mhadr- (27) Fhad

However, a common feature of these operators is that they

In the largeN, framework, the natural scale for decon- are very suppressed at lardg®,. They become important
finement is T~ wpagr, Which is also the temperature at only for T~N§’2,uhadr, much higher thanT’ so that their
which the pions from the hadronic gas overlap. It is naturakontribution is subleading compared to operators like in Eq.
to assume that chiral symmetry restoration takes place at theg).
same temperature, driven by the releasé€@N 2) gluon de- Can we conclude anything from these considerations? In
grees of freedon{11,35. The estimate in Eq(27) then all the cases discussed above, the leading thermal corrections
seems to imply thaM,, is essentially constant up to the to M, , in the chiral limit and forN, large, become impor-
temperature of deconfinement, sin€e>T_.~ upaqr for N tant for temperature which are higher than the critical tem-
large. This conclusion is however premature because the loyerature of deconfinemefit,~ wp.q by a factor ofN?. Al-
momentum expansion breaks down ndarand we must though the value o is hard to guess, as various corrections

take into account the contribution of operators with arbitrarycan get mixed up, we believe it is reasonable to conjecture
number of derivatives. We claim that the dominant operatorshat v is strictly positive. This implies that just beloW,,

at largeN, are of the form M., (T)=M,,(0) to a very good approximation. The stan-
dard lore is that the deconfining phase transitio ats of
1 first order for N, large [35].” Because the temperature at
L~—F>—X? which hadronicinteractions can affed®,, is (very much
Ne¢ uﬁédr“ larger than the temperature of deconfinement, we expect that

changes iM ,, will be instead triggered by the release of the
X<5M1U5M2UT eI U a/"lUTo"”ZU e '0“kUT>' large numberr] of gluons and will thus drdscontinuouslyat
(28)  Tc, e, that there is a first order transition to a phase with
(approximate U(1), symmetry.
This behavior is not inconsistent with various other ex-
rT}?ectations. For three light quark flavofd;=3, the transi-
' tion to the chirally symmetric phase is probably first order

These operators are irrelevant at low energies but beco
marginal foro~T,.. A six-derivative operator, for instance
first contribute at three IoopﬁMf],ochzl(Ng’Mﬁgdg. For

comparison, the contribution of a three-loop diagram with a—
four-derivatives(NLOS) and a two-derivatives verticgsO)
is o< 1/N, T8 ~1N TlO/Mhadrand is subdominant at Iarge theory (see Sec. 6.2.2 in Ref36]) and lattice simulations oN,

Nc. For generick, the operators of Eq(28) give 5M =4 pure Yang-Mills theory{37], favor a first order deconfining

~ T/ (NS ? tpsar) - The ratio of tWO consecutive terme phase transition. A case for a second order phase transition has been
andk+1 become®)(1) atT' ~ NC hadr, INdependent ofk. made in Ref[21], in light of the structure of the Columbia diagram.

Various arguments, including recent developments in string
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—_ Nc=3
- =. Nc>3

Te

FIG. 5. Plot of ther and § (a,) near the critical temperature for
N.= 3 (continuous linesand possible changes fdt.>3 (dashed

lines).

second order, in the universality class ©f4) [2]. It has

E

PHYSICAL REVIEW D 62 056004

1

N (33

c

Alternatively, if U(1), symmetry is effectively restored at
T., the largeN, behavior(32) is also consistent with a fluc-
tuation induced first order phase transition. Pdy=1 fi-
nally, chiral symmetry is broken by the anomaly at all tem-
perature and there is no chiral phase transition. However, if
instanton transitions are strongly suppressed just abgve
chiral symmetry can be effectively restored and the phase
transition is presumably first order.

V. CONCLUSIONS

We have studied the behavior of the mass of #igpseu-
doscalar meson at finite temperature using constraints from

chiral symmetry and largé&l. power counting. The main
conclusion to be drawn from this work is thisit,, is essen-

tially unchanged at low temperatures. A tentative analysis of
the effect of leading higher order corrections at lafge

suggestghat M ,, changes discontinuously at the tempera-
ture of deconfinement. The implications of these consider-

while for Ny=2, the phase transition is supposed to be ofations for the real world,e. N.=3, are not quite clear as we

would expect the suppression of instanton effects only at

been argued by Smilga that the latter behavior is not incon@Symptotically high temperatures. It is however striking that
sistent with a first order deconfining phase transition at largéecent lattice simulations, witN=2 staggere@i38] and do-

N¢ [11]. The reason is that, unlike fo,,, there is an

main wall[39] fermions, both show a strong suppression of

infinite subset of thermal corrections that contribute to theJ(1)a breaking effects at low temperaturés-1.2T;. Be-

same orderin N. to the shift of the quark condensak

)

Even though thermal corrections are suppressed Iikl%,l/
the (unknown function F(x) may be singular near, but be-
low T¢~ mhagr- If, for instance,F has a simple pole at
=To<T., F~uly/(T?—T3) and the chiral phase transi-
tion is second order with a critical region negy, that is of

=(qa),

2

T
E(T):E 1_#NZ—ZF

cMhadr

order

Nec=3

Nf=2

1st order

1st order

Nf=3
Mu =Md

T

Mhad

Nf=0

Nf=1

Nf=2

(32

cause this temperature is outside the critical region, the order

of the chiral phase transition is probably not affected. It
could be of interest to consider doing simulations with
>3, although this would probably be time consuming, or
maybe with one flavor and varioud,. Consider for ex-

ample a plot of ther and é susceptibilities near the critical

temperature as computed on the lat{i88]. LargeN, argu-
ments suggest that the curves of the susceptibilities would be

flatter below T, —because the confined phase is colder—
and that splitting betweenr and § (a.k.a.ay) should be
narrower abovel , —becausdJ (1), breaking is more sup-
pressed, maybe as in Fig. 5. The Columbia diagram could
change accordingly: the critical line around the region of

smallM =M, masses would move as in Fig. 6.

Ne>>3

Nf=3

Mu=Md

056004-7

Nf=0

Nf=1

FIG. 6. Columbia phase dia-
gram as function of M, =My
(horizontal axi$ and M4 (vertical
axes for N.=3 (left, the blue dot
is where QCD standsand how it
could evolve at largé\. (right).
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APPENDIX

A M2+3M2—4AME+3(M2, —M2)si?6
M:

AME—M?) ’
1. Useful formulas
a. Leading order 3 (Mf;/_ Mf])sin 20
2mB=M?2, (A1) AN:1+4¢§ MZ—M?2 Faw
—ZMi 2 A2 f
Pz o de=y,
f=tfa (A3) 2. Results atT=0
2M§+ M2 2.2 a. Leading order
—3vg=M?,— T+ 25 (M2—M2)tane.
0z 3 3 K Mass matrix:
(A4)
b. Next-to-leading order 1
2 _ — 2 a2
Some definitionsAy,, Ay are defined as Mgg™ 3(4MK M%),
8 2 2
Ay= 5 (Mk=M7)(2Lg—Ls), (A5) 2.2
f mi,=— ——(M2—M?2)
80 3 K w/
Ay=30g— 122 (AB) 1
=3v31— 12—-v
wTE e mgo:§(2M§+Mi)_3Uoz
Next-to-leading order parametershe next-to-leading or- 1 5 s 2 ) )
der parameters can be expressed in terms of observables =3 (2Mk+M7) = 3y (Mk=M7),
through
where
2
_ 2 _ 7"
2mB=MZ| 1 —Mﬁ—MiAM)’ (A7) - 90y
2(Mg—M?)
M2 -
XZZW(l_AM)_Z’ (A8) Mixing angle:
2mi, 22
L5 tan 20= > > 1T
fzfﬂ(1—4?5Mi_, (A9) Moo~ Mg =7
Physical masses:
2M2+M2 22 2 \12
—30g=M), — ——5——+ 5~ (M{—M%) Mi—M7

X(1+Ay—Aytand
2 2 2 2 2
- §[(MK_M77)AM_(2MK+M#)AN]1

(A10)

Mo =Mig— —5—(y+V9+2y+y?),

MZ—M?2
M2, =Mg— —=—"(y— o +2y+y?),

3

with

056004-8

(A11)

(A12)

(A13)

(A14)

(A15)

(Ale)

(A17)

(A18)

(A19)

(A20)

(A21)
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2
M3+ M7, =mig+ mig=2Mg — Zy(Mg—M?).

(A22)
b. Next-to-leading order
Mass matrix:
, 1 2 2., 4 2
Mgg= §(4MK—M,,)+ §(M -M9OAy, (A23)
2\2
Mo= = —~ (M=M2)(1+Ay—Ay),  (A24)

1 2
Mgo= 3 (2MZ+M2)—=3vgz+ 3 (MZ=M2)Ay

2
—3(2ME+MDA
1 2 2 2 2 2
=§(2MK+Mw)(l—ZAN)Jrg(MK—MW)AM
2 2 2
— 3Y(ME—M?2). (A25)
Mixing angle:
242 y
tan 20= 1+y(1+1TyAM
1 2Mi Z+M2
Physical masses:
MZ—M?2
MizMﬁ—TW(y+\/9+2y+y2)
9+y 1
+|1- —M2)Ay—=| 2M?2
( 3V9+2y+y? w Au 3 :
, 3(2Mg—3M3)—y(2MZ+M?)
" 9+2y+y? N
(A27)

PHYSICAL REVIEW D 62 056004

_Mi
— gyt 2ytyd)

9+y )

3\/9+2y+y

~M2)Ay,

-3 2MZ+M2

3(2Mg—3M7%) —y(2Mg+M?2)
_l’_

orayry?

N»

(A28)
with

2
M2+M2,=2M§—§y(M§—M§)+2(M§—M§T)AM

7 7
2 2 2
—§(ZMK+MW)AN. (A29)
3. Results atT#0
a. Leading order
Mass matrix:
M2
2 A2 __ 7
Mgg(T)=mgzg(0) 2f2|(T), (A30)
2
Mo T) =mgy(0) — N —=51(T), (A31)
2
mGo(T)=mGe(0) — 51 (T), (A32)
where
dk 1 1 ~
I(T sf — . w=\K2+M2, B=
(T (2m)% w efeo—1 P=7
1 (nM,) M0 T2
= 2 oK 1( )—>1—2 (A33)
Mixing angle:
2y2 y 3 Mm%
tan26(T)—tan26'(0)+1er 1+yZM2 M f2 I(T).
(A34)

Physical masses:

056004-9
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M2(T)=M2(0) 3M3TI(T) 1+ oty (A35)
! T4 f 3V9+2y+y?)’
M2, (T)=M2 (0)———iI(T) 1—9+—y (A36)
4 (A 3Vo+2y+y?)’
with
3 2
Mf,(T)JrMf],(T)sz](O)JrMi,(O)—Ef—;I(T). (A37)
b. Next-to-leading order
Mass matrix:
M2 2 3 M2
mag(T)=mag(0)— —= (M| 1+ ——— | Ap+ =Ay | +24—"(Mo+My) |, (A38)
212 MZ—M?2 2 f2
2 (T)=mZ(0) METI(T)(l " A 3A) 2A 24M—37(M MJ)| 1 yMﬁ_Mi)
m =m - +———|Apt = - + + 55—
80 80 \/Efi Mﬁ_Mi P 2 M N fi 0 3 3 Mi
(A39)
) ) M2 2M2 A 3A A M2 2y M2—M?2
(A40)
Mixing angle:
tan 20(T) =t 2ao+2ﬁ y 3_M, Lol M-, Aot oA N
=20+ Ty Ty amz_mz 2 D\ yzowz | AP 20 Ty Aty A
MZ—X(MZ—MZ)
3 2|\/|§—(1+y)|\/|iA ZMfTM M) KogimKk Wi (AdD)
+ + 24— (My+
Tryy  wmz_mz  onreie (MorMs M2

Physical masses:

2

3 1. 27(3+y) +(9+y)y?
2 3(9+2y+y?)*?

6y M2

ME(T) =M2(0) — & 1 (T 1+ — el ¢ e 14 5]
4 3y9+2y+y? Mi-M? 39 +2y+y?
2 2
N 3Y 4M2—M2 N _4_1(1+(3+y)[(9+y)+(3+y>ﬂ
3(9+2y+y?)¥?  M% )3 (9+2y+y")*
PP L SVIRVEN PO o SR &Y DY 5o A0 L Sk
2 3yo+r2y+y? 97\7 Jorzy+y?) wmZ |/
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M2 (T =M2.(0) SMWI(T) . 9+y ) 2m?2 . 9+y A 3 L 27(3+y) +(9+y)y?
" 742 3J9+t2y+y2 MZ-M2 3Jor2y+y? T 2 3(9+2y+y?)3?
2 2
¥ WE-MI| |4 @yl +Eyy] by LA
ser2y 1y wmz ) M]3 (@+2y+y)®  (or2yry?) i ME-mz/ "
24M_§T(M Mol 1 9+y 4 1 3+y Mi—MqZT (A43)
+ + -yl 1- :
20000 S 3J0t2yty? 9 9+2y+y?/ MZ
with
3 M2 2 3
M2(T)+M2,(T)=M2(0)+M?2,(0)— = —I(T)| 1+ T | Apt+-Ay|-2A
7 7' 7 7' 2 f2 Mi— 2 P 2 M 3 N
2 4 Mg—M2
F207 (Mot M3)| 1= gy — (A44)
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