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Green functions in coordinate space for gauge bosons at finite temperature
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The thermal Green functio® #”(x) for free, massless gauge bosons is computed exactly in a variety of
gauges(Feynman, covariant, Coulomb, and Landshoff-RebhAn large temporal separations it falls expo-
nentially. At large spatial separations it falls like'r. In contrast, the zero-temperature propagator falls
quadratically in both regimes, being proportional tot34r?).

PACS numbgs): 11.10.Wx, 12.38.Mh, 14.70.Bh

[. INTRODUCTION A further consequence of E([L.1) is that at zero tempera-
ture the quantum effects of massless particles are quite com-
Although quantum field theories are formulated in four- plicated because the effects are as important in space-like
dimensional coordinate space, calculations are almost alwayirections as in time-like directions.
performed in four-dimensional momentum space. One major
exception to the preference for momentum space is non- Thermal equilibrium

equilibrium field theory. Without equilibrium there is no in-  For 4 field theory in an equilibrium heat bath that is uni-
variance under time-translation and often no invariance unorm in space and constant in time, there is a constant tem-

der spatial translation. The dynamics of the density operatoperatureT throughout. The density operator is given by
o controls the evolution. For gauge bosons the time-orderec;e—H/T/Tr(e—H/T). The time-ordered propagator has the

propagator is structure[10—12
DI (xy)=—iTr e T(A*(X)A"(Y))]. DE(X)= 6(t) DX (X) + O(—t) DH(X). 1.2

In non-equilibrium the correlations depend not just on theThe thermal Wightman function is defined by
separatiorx—y but also on the effective age of the system )
x+y. For situations in which the dynamical evolution de- D,;V(X):_iE ef/;Er,(nlAM(X)A (0)[m)

pends rapidly ox—y and slowly onx+Yy, it is standard to n Tre AH]

Fourier transform from the separatian-y to the conjugate

four-momentumK. The transformed propagator is then aand D_(x)=D-(—x). Appendix A summarizes how all
function of K and ofx+y. It has long been knowfl—4]  other propagatorécontour-ordered, retarded, advancedn
how to use the Schwinger-Dyson equation for the nonbe expressed in terms @f.(x).

equilibrium propagator to extract a kinetic equation for the The thermal Wightman function satisfies two important
non-equilibrium distribution functiorf(K) that depends on conditions: Egs. (1.4 and (1.5 below. Both condi-
x+y . This approach has been extended to modern fieltions come from the Heisenberg relatiod“(t,r)
theories containing gauge bosons particularly for QCD= exp(Ht)A*(0,r)exp(~iHt). This implies that for complex

[5-9. - - < N s £
. ' . time the field satisfieA*(t,r)'=A*(t*,r). Consequently

In ordinary vacuum field theory, or zero-temperature field : ; ’ :
theory, the density operator g=|0){(0|. Translation invari- the Wightman function enjoys the reflection property

ance is automatic and calculations are almost always per- [DEY(x)]* = —D(—x*). (1.4)
formed in momentum space. In momentum space the time-
ordered propagator for free gauge bosons in the Feynmanyrthermore, by inserting a complete set of energy eigen-
gauge isD47(K)=—g*"/(K?>+i 7). This can easily be Fou- states between the two field operators in Ef.3), it is
rier transformed to give the coordinate-space propagator simple to show that at complex tin‘ié’;”(t,i) is analytic in

. the strip— B<Imt=<0. A similar argument shows that the
—r g"r 11 Wightman function must satisfy the Kubo-Martin-Schwinger
A7 XP—ie (1.9) (KMS) relation[13]

. (13

lef(X)H:o:

Even though for fixed this falls like 12 asr—, it does DE(t=iBn)=D(—tr). 1.5
contain the correct Coulomb potential, which comes from the
light-cone singularitys(t=r)/r. At large time-like separa-
tions the 1% behavior causes the electron propagator to hav
a branch point at the electron mass shell instead of a pole. —iph(K)
The 1k? behavior often leads to processes that are divergent priy— P

: _ rocess D4"(K) —, (1.6
both in the ultraviolet x—0) and in the infraredX— ). 1—e ko

In momentum space the Wightman function is given by in
éerms of the momentum-space spectral funcpéti(K) by
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which is derived in Appendix A. The free spectral function is —ikt ikt

. _ e
independent of temperature and only has supporkat fi(t,r)=[ek —e k] " o
=+ |k|. Thus only the on-shell particles contribute to the 1-e 1-e
free ng_htman fun_ctlon. The coordinate-space Wightmanrpis function satisfies the conditions

function is the Fourier transform

= (t,r)* = (—t*,r),
d*K
(2m)*

D’;”(X)=f e KX DL(K). 1.7 f(t—iB,r)="f(—t,r), (2.3
_ _ ) which guarantee thaD- (x) will satisfy the reflection and
As shown in Appendix A, the properties of the spectral func-Kubo-Martin-Schwinger(KMS) conditions given in Egs.
tion guarantee thab£"(x) will automatically satisfy the re- (1.4) and(1.5).
flection condition in Eq(1.4) and the KMS relation in Eq.
(1.9. . . . A. Unregularized Dx.(x)

The remainder of the paper will perform the computation , )
of Eq. (1.7) for free gauge bosons in various gauges. Section For any real value of, except fort=*r, the rapid oscil-
Il deals entirely with the Feynman gauge. The complete relations of the integrand ds—c guarantee convergence.tlf
sult as a function of arbitrary complex time is displayed in"as @ negative imaginary part then convergence is improved
Eq. (2.14), but a simpler form is the specialization to real provided the r_legat|ve imaginary part is smaller in magnitude
time shown in Eq(2.15. Section IIl performs the calcula- thanp. Thus in the region
tion in a general covariant gauge and leads to the results _
summarized in Eq¥3.6) and(3.7). Section IV computes the p=Imt=0, t#=xr, (2.4

Wightman function in the Coulomb gauge, which is a bit the integral is convergent without any regularization. To per-
more subtle, and the results are given in E@s6), (4.7),  form the integration, it is convenient to use the fact that

(4.10, and (4.11. Section V contains a comparison of f (t r) is an even function ok in order to extend the inte-
propagators with Bose-Einstein, Fermi-Dirac, and Boltzmargration range to the fuk axis:

statistics. Appendix A provides some general formulas. Ap-

pendix B performs the same calculation in the Landshoff- —1 (=

Rebhan quantization scheni&4] in which the physical, D>(X)=—2J dk fi(r,t). (2.5
transverse gauge fields are thermalized but not the longitudi- 16mer J -~

nal and time-like components. This can now be evaluated by contour integration over com-

plex k. The integrand (t,r) is finite atk=0. It has poles at
. DY (x) IN FEYNMAN GAUGE k==*i27nT, for integern=1.

It is easiest to compute the thermal Wightman function in . HOV\:‘ tf;{eacontgur sf;oulddb?_ c_Itosed depl)etnoFI: on tr]rehrelatlve
the Feynman gauge, in which the spectral function is propor§Ize of R& andr. For definiteness, let Re-r. en
tional to the constant metric tensgt": exp(xikt) is the determining factor. For the term containing
' exp(—ikt) the contour should be closed in the lower-half of
BVK) = — g™ 2 re(ka) S(K2). the complexk plane; for the term exp(ikt), the contour
prI(K) g 2me(ko) 5K should be closed above. Cauchy’s theorem gives the result as

The thermal Wightman function has the form a sum of the residues of the poles:

v v —iT -
DE(X)=—g*"D=(x), 21 D= 3, [(2)"(2)",
47Tr n=1
where . .
where the variableg.. are defined by
4 2
D>(X):—if d*K e*iK-XG(kO)(S(K ) Z+:e*2ﬂ'T(t+r), 27:e72ﬂ'T(tfr). (26)
(2m)3 1—-e Pk

This sum is only convergent in the region Rer. Perform-

The scalar functioD- (x) is, in addition, the thermal Wight- ing the sum gives

man function for a spinless field of zero mass. To compute
the integral, first perform the integrals ovey and over the D_(t,r)=

angles ofk to obtain

—iT 1 1
4qr | @27T(t+N _ 1 @27T(t-1)_1

. (27

1 (= This result is valid for all complex satisfying Eq.(2.4) and
Do(X)= _f dk fi(r,t), (2.2 Is analytic in this region. The poles & *r and att=*r
8m?rJo —iB (limit points of the open regionwill be shifted slightly
when the integration is regularized. It is convenient to ex-
where thek dependence is contained in the function pressD- (x) in the alternate form
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—iT second term with the fourth. Using(z) = #(1+ z) — 1/z this
D-(t,r)= g_—-[coth(@T(r+1))+coth(mT(r —t))]. can be written so as to isolate the zero-temperature contribu-
(2.9 tion:
Note that this is an even function df The regularized T .
D~ (x) will include the domairt=zxr and will not be even D>(X):8772r {1+ T(emi(r+1))]
undert— —t.
Deep time-like regionFor |t| —r>1/#T, the asymptotic — Y1+ T(e+i(r+t)]+y[1+T(e—i(r—t))]
behavior is .
— {1+ T(e+i(r—t))]}
T —2aT(t|—r1) _ a—27T(|t| +1) :
D-()— 5 e t=n_e +.-1. (2.9 i 1 (214

42 (r+t—ie)(r—t+ie)’

Deep space-like regiorforr —|t|> 1/oT, the asymptotic
behavior is not exponentially small. This is the complete and general result. It is analytic in the
closed region given in Eq2.11). The nearest poles to this
region are the zero-temperature poles just above the strip at
t==*r+ie and the the poles just below the striptat =r

(2.10 —i(B+€) from the first and fourth term.
Real time:For real values of one can safely set=0 in

The dominant tern¥/r is present in all gauges and will be a]| four ¢ functions since their poles are are at least a dis-

- i[e—zﬂ(r—hnJr e =271+,

D)= 4™ G

discussed further. tance=iB from the realt axis. Whene=0 the psi functions
have complex conjugate arguments and can be simplified
B. Regularized D~ (x) using[17]
The true Wightman function should be analytic in the i
closed region ¢(1—iy)—¢(1+iy)=y—iwcotl”(wy).
—B<Imt=<0, (2.11

The Wightman function is
which includes the points==*r andt==*=r—ig at which
Eq. (2.7) has poles. The problem is that at these values of
the integrandf(t,r)—1 without oscillation ak—o. The
simplest way to regularize the integral in a way that will

satisfy Egs.(1.4) and(1.5) is to define i Y
+ e [8(r+t)—a8(r—1)]. (2.1

D-(X)= %{coﬂ{aﬂ(r +t)]+cot #T(r—t)]}

_ 1 o
D-(X)= _2f dk f(t,r) e <k, (2.12  This, of course, agrees with E@.8) whent+ *+r. Note that
8m=Jo undert— —t, the coth terms are symmetric but the Dirac
delta terms are antisymmetric. The other Wightman function

where € is positive and real. Now the range of integration D_(x) for realt is

cannot be extended to negatikeHowever, the integral can
be evaluated using the relatiph6] —iT
D_(x)= g—{cot{ #T(r +t)]+cotf =T (r —t
Lo gk gk <()=g_A{cotfmT(r+t)]+cot{#T(r—t)J}
?fo de:—lﬂ(l'i‘alT)‘l'lﬂ(l‘FazT), 1
+—87Tr[5(r—t)—5(r+t)]. (2.19
which holds whenever the real parts &f anda, are posi-
tive. Herey(z) =dInI'(2)/dz . The result is Since Eqgs(2.195 and(2.16) hold only for realt, one cannot
pass from one to the other by the KMS relation.
T : .
D-(x)= 8m2r LT HIT=n)] = YleTHIT(t+r)] C. Time-ordered propagator
_ i . The Wightman function satisfies the homogeneous equa-
YL+ eT—iT(t=r)]+ yf1+ eT—iT(t+ )]} tion O D~ (x)=0. The time-ordered propagator is
(2.13

This satisfies the reflection condition Ed..4), which inter-

changes the first term with the second and interchanges the whichD_(t,r)=D-(—t,r). This is a true Green function
third term with the fourth. It satisfies the KMS condition in that it satisfies the inhomogeneous equatidrD,4(X)
(1.5), which interchanges the first term with the third and the= — 6*(x). Using Eq.(2.14 gives

D11(X)=6(t) D~ (x) + 6(—t) D (X),

056003-3



H. ARTHUR WELDON PHYSICAL REVIEW D62 056003

Q
Dyy(x)= —i(r+t)] AdX)= 7 (2.18
— 1+ T(e+i(r+t)]+ {1+ T(e—i(r—1))] It is perhaps worth emphasizing that this not a large distance
approximation. A more difficult calculation, which does con-
—y[1+T(e+i(r—0)]} tain temperature-dependence, is the potential due to a point

) 1 charge moving with constant velocity, wherd’(x’)
| )
s (2.17) =Q&(r'—vt).
472 t2—r2—je
) ] ) . DY”(x) IN COVARIANT GAUGES
This representation has the nice feature that the zero- ) ) )
temperature limit is isolated in the last term. The The nextcase in which to compute the thermal Wightman

temperature-dependent terms are each annihilated by tddnctions are the general covariant gauges. The tedious regu-
d’Alembertian operatof] . larization performed in Sec. Il will not be attempted. The
result given in Eqs(3.6) and(3.7) is therefore valid for real
t not on the light cone.
In a general covariant gauge the time-ordered propagator
In the limit r —co at fixedt, the Wightman function and at zero temperature is
the time-ordered propagator have the behavib(x)

D. Potential produced by a static charge

— —IiT/(47r). This contribution suggests that at large dis- v —g’” KH*K”
tance the potential produced by a charge at rest would be DI (K)r=o=—5—+(1-8)———.
g e K2+ (Ke+ie)
temperature-dependent. This inference is incorrect as the fol-
lowing calculation demonstrates. The spectral function, extracted using E47), is
Let J*(x) be a classical current. In the Feynman gauge,
H(X)=—g""D14(x) and so the classical vector potential 9
is pH"(K)=2me(ko) —g’“’+(1—§)K“K”% 8(K?).
AL(X)= —f d*x’ Dyy(x—x")IH(X"). When the thermal Wightman functiocR4"(x) is expressed
in terms of the spectral function using E@.7) the result is
For a point chargeQ at restJ%(x’)=Q4&%(r’) and J(x') 92
=0. Thus the three-vector potential vanishes and the scalar ~ DPX"(x)= 9" D= (X)+ (1= &) ——d-(X), (3.9
1 v

potential requires integrating over the static charge density:
whereD- (x) with no superscripts is the Wightman function
A% (x) = _wa dt’ Dy(t—t'.r) from Sec. Il and the new functiod. (x) is
c )

4K e 1K -Xx
It is convenient to use Ed2.17) for the Green function. At d>(x)=|f (2m)° me(kO)ﬁ 8(K?).
large complext the combination of psi functions falls like
1/?. Thus one can integrate over complex time by integratit will be important later thatD”(x) is not affected if a
ing over a contouC that is closed in the upper half-plane: constant is added to the valuedf (x). The integration over
ko and over the angles gives

©

Ad(X)=—-Q 3@ dt’ Dyy(t—t',r).
C

d
(x)— Lz 9t (3.2
The first and fourthy functions in Eq.(2.17) are analytic in
the upper-half of the complexplane and make no contribu- \yhere
tion. The second and thirgs functions have poles in the
upper half-plane att==*r+i(NB+e) for N=1,23.... _ .
These poles all have the same residvig —iB) and their g(t,r)=k[e +e k"]
contributions to the potential cancel exactly. Thus the entire
potential comes from the zero-temperature term:

—ikt e|kt

1—e B 1|

The functiong,(t,r) equals & at k=0. Consequently, the
. integral in Eq.(3.2) does not converge &t=0. However, the
Ag.(x)= — E dt’ ; fact thatag,(t,r)/at and ag,(t,r)/dr both vanish likek? as
472 Jeo (t—t")%—r?—ie k—0 guarantees thatd..(x)/dx,, is finite, which is all that
is necessary for Ed3.1). Since the behavior &=0 is awk-
This is easily integrated and gives the usual Coulomb potenaard, it is convenient to subtract a constant from 32
tial: and redefinal- (x) as
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fOOdk
o k2

The integrand now has no singularitylat 0. A real param-

2

k2+ ,uz .

do(x)= 1672

9k(t,r) —9«(0,0 (3.3

PHYSICAL REVIEW D 62 056003

=i
d (X)_)_[6727TT(|t|7r)+e72ﬂ'T(\t|+r)],
T

with an irrelevant term linear ih omitted. Consequently all

eteru has been introduced so that the subtracted integratiodomponents o #”(x) fall exponentially as was the case in

converges ak= for non-exceptional values of Since it is

the Feynman gauge.

not regulated as was done in Sec. Il B, it does not converge Deep space-like regionif r—|t|>1/xT, then Eq.(3.6)

fort==r orfort=*=r—ig.
It is simple to integrate Eq3.3). The integrand is even in
k and thus the range may be extended-t®:

i [» dk
| e

3272

2
t,r)—9x(0,0 —|.
Ok(t,r) — 9wl )k2+,u2

do(x)=

has the behavior
iTr i
- 8w 1672

d>(X) [e72wt(r7|t|)+e*ZfrrT(rJr\t\)],

omitting additive constants. The asymptotic behavior of
DYx) is

The integral can be evaluated by closing the contour in the

complexk plane and using Cauchy’s theorem. How the con-

tour is closed depends upon the relative sizé ahdr. For
example, if Ré>r the contour for the terms containing
exp(—ikt) should be closed in the lower half-plane; those
containing expkt) should be closed in the upper half-plane.
The integrand of Eq3.3) is not singular ak=0. The poles
atk==*i27nT for n=1,2,3 ... give the result

)n),

n
where the constant terms independent ahdr are omitted
and z.. are the same as in E@2.6). The summation dis-
played is only convergent if the magnitudeszf are less
than one: i.e., Re>r. Performing the sum in this region
gives

B i < [(Z)" (z
o|>(x)_16772 nZl( ——+ (3.4

d-(X)=
~(X) To7?

[In(1-z,)+In(1-z_)]. (3.5

This result can now be extended to fRer. Since it was not
regularized, it is not valid precisely at, =1 or atz_=1.
The result is not symmetric undér- —t, but it can be re-
written as

i
d-(x)=
(x) 6

5 In[sinh(7r T(r +t))sinb(z7 T(r —t))]
T

iT
— g—t+const.

- (3.6)

The term linear int and the constant do not have second
derivatives and thus do not affect the valueDsf”(x). The
functiond. (x) is related to the scalar Wightman function by
O d-(X)=D~(x). Therefore Eq(3.1) can be summarized
by
DL (x)=(—g""0+(1—§) 9*9")d=(x). (3.7

The form of this in various limits will now be examined.

Deep time-like region: When |[t|—r>1/=T the
asymptotic behavior of EJ3.6) is

iT
DY(x)— y—— O(e™27T), (3.8a
The leading term, being independentéfcoincides with the
Feynman gauge result. It was only this leading term that
contributed to the calculation of the Coulomb potential in
Sec. 11 D. Of the remaining componen2 (x) is exponen-
tially small:

#*G-(X)

—27Tr
x0T

DU(x)=(1-¢) (3.8

For the spatial components of the propagator, the term in
d-(x) that is linear inr contributes a term from

(92
&Xi&Xj

1 . ..
rzF(é”—x'xJ).

The asymptotic form of the spatial propagator is

ij T ij iy =27Tr
DL 5[~ (£+ 18T+ (£- DX+ O 2.
(3.80

Zero-temperature limit:At zero temperatured. (x) is
proportional to lfir’—t?] and Eq.(3.7) gives

g’

DE"(X)|1=0= 2

(1) —

87 X

i xex”

an? (x3)?

+(é—1) (3.9

The combinationx,,x,D%"(x)|t_o=i(£—3)/8x* and thus
vanishes in the Yennie gauge.

IV. DU(x) IN COULOMB GAUGE

In the Coulomb gauge the time-like component of the
gauge potential is instantaneous and does not propagate in
time. Consequently
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Time-like region:When t>r the contour for thee !
contribution may may be closed in the lower half-plane and
that for thee'*! contribution closed in the upper half-plane.

and there are no thermal corrections. For transverse gauddthough the full integrand has no poles let0, each of

bosons the zero-temperature propagator is

DE<K>=<
and the transverse spectral function is
P (K)=2me(ko) S(K?)[ 81— Kk,
Using Eq.(1.7), the two-point function can be written
DU (x)=81D-(x)+V'VI Ho(x), (4.

where the first termD- (x), is the same as in Sec. Il and the
new function is

d*K e KX g(ky) 8(K?)
(2m)P1-e o K2

H>(x)=—if

By construction,D-.(x) = — V?H-(x).
To computeH - (x) the first step is to integrate ovég
and the angles to obtain

dk

_1 o
H>(X)=§JO — h(t,r),

% 4.2

where

—ikt elkt

h (t r)zl[eikr_e—ikr] _
T 1-e P 1-efk

For later reference note thét. (x) is analytic for complex
time in the open region- B<Imt<0.

The functionh,(t,r) equals 4T at k=0. Consequently
the integral overk does not converge dt=0. However

these pieces has a double polé&kat0. The more important
contribution comes from the simple poleskat £i27nT for
n=1. The result is

—i ) . i 1
63T [Lio(z_)—Liy(zy)]+ 4—Tt— -—

T 8w’

(4.9

Ho(x)=

The last two terms in come from the double pol&at0 and

do not contribute t&)H~. (x)/dr. The variablez.. are given

in Eq. (2.6) and L, is the dilogarithm function, which for
z<1 has the series expansipt,1§|

* n
Liz(z)zn§=)l % (4.5
WhenH- (x) is substituted into Eq4.1) the result is

DU (x)=(81—XX)D(x)+ (81— 3XXHNE(x), (4.6)
where the new functio(x) is

i
872r?

E(x) [IN(l—z_)+In(1—2z,)]

T[Liz(z,)—Liz(z+)]. (4.7)

_|_ e
167°r3

In the deep time-like regionyT(|t|—r)>1, bothz, and
z_ are exponentially small and so B(x). Since D~ (x)
vanishes exponentially as shown in ER.9), this means that
all terms in the Wightman functio® ! (x) fall exponentially
in the deep time-like region.

Space-like regionWhenr > [t| it is best to return to the
defining integral Eq(4.3). In that integration, the contour for

dH-(x)/ar is convergent, which is all that is necessary for e ek contribution may be closed in the upper half-plane

Eq. (4.1). To improve thek=0 behavior it is convenient to
subtract arx-independent constant from E@t.2) and rede-
fine H- (x) as

=dk w?
H>(X)=8—f hk(tyr)_hk(oyo)sz’uZ

mJo K2

where i is an unimportant mass parameter. The integral is

now convergent ak=0 and atk=o. Since the integrand is
even ink, the range may be extended over negakve

2

- = dk
H-(x)= 16772wa

hk(t,r)_ hk(0,0)

“
k2+ ,uz '

4.3

This will now be calculated explicitly for red| without the
regularization that was performed in Sec IlI.

and the contour for the %" contribution closed in the lower
half-plane. As previously noted the full integrand has no
poles atk=0. However each of these pieces has a triple pole
at k=0. The simple poles at==*i2#nT give an infinite
series:

i 1
H_o(x)=———]Li,| —|+Lis(z
(%) WM[ 2(2 A(2))
+ | T +t2 +'t ! 4.8
g7 T r T e 48

The last term proportional to ¥ is particularly unusual.

As mentioned previously, the original integral is analytic
in complex time provided- 8<Imt<0. However it is not
obvious that Eq.(4.8) is the analytic continuation of Eq.
(4.4), and this provides an important check. In both results
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the arguments of the dilogarithm functions are smaller thamplicated than in covariant gauges, which behave@/asvith
one. For|z|]<1 the dilogarithm has the integral representa-exponentially small corrections. Here the corrections are

tion [17,18

. 1 1
le(z)zfods(lns)s_ —  (|7]<2).

When the time is made complex by—t—io then z.
=¢'2719|z,|. Thus if 0<o<p/2 thenz. has a positive
imaginary part. Fotz|>1 the analytic continuation is
|z|>1,
Arg(z)>0.

1 P _
Liy(2)= Jo ds(Ins) p— +imin(z)

powers ofr: the second line being of orderr#/at fixedt but
order 1f if the ratiot/r is fixed asr —.

Zero-temperature limitlt is straightforward to evaluate
the T=0 limit Coulomb-gauge Wightman function. AB
—0 the arguments of the dilogarithm functions in E4.7)
approach unityz— 1. A useful expansion in this region is
[17,18

Omission of the imaginary part, as is usually done in text-

books, would prevent the function from being analytic. From

the integral representation it follows that foz/|>1 and
Arg(z)>0 the dilogarithm satisfies

2

Liz(z)=% virinz). (4.9

1I 2 i 1
5(In2)"=Lis|

Using this relation one can analytically continue E4.4)
from the time-like region where_<1 to the space-like re-
gion wherez_>1 and obtain Eq(4.8). Thus the two results
agree despite their appearance.

The Wightman function in the space-like region results

from substituting Eq(4.8) into Eq. (4.1):

DY (x)=(8"—XX)D-(x)+ (8= 3xX)E(x), (4.10
whereE(x) is now given by
£ iT i T 1
(x)= G_gwﬁ t+|t_ﬁ
| In| 1 ! In(1
+m n —Z + n( _Z+)
i
— —— | Li,| —| +Lisx(zy)|. 4.1
16773r3T[ 2 z 2( +) ( :D

Naturally this is the analytic continuation of E@.7). It is
easy to check that; D" (x)=0.

In the deep space-like region defined By (r —|t|)>1,
both 1z andz, are exponentially small. The asymptotic
behavior of the Wightman function is

—iT
8mr

+(5”—3>‘<i§<i)(8_—

ar

DI (x)— (8T +xx))

Tt2+it !
Tl

(4.12

Despite its complicated appearance this still satisfies the

transverse conditioV; DY (x)=0. The result is more com-

2 * n
T (1-2z
Liz(2)= & ~In(z)in(1-2) E ) (4.13
n=1
The Wightman function becomes
Dl|r_o= (5”—XXJ)i—
A2(t2—r?)
4 5ij_3Ai“J’)i_ 2_ e
( g2 |t
(4.19

Naturally this agrees with the direct Fourier transform of the
zero-temperature propagator.

V. DISCUSSION

The thermal Wightman function for free gauge bosons has
been computed in various gauges. Knowing the Wightman
function is the same as knowing the time-ordered propaga-
tors as shown in Appendix A(The free retarded and ad-
vanced propagators are unchanged by the temperature since
the free-field commutator is @number and thermal averag-
ing does not change ttenumber)

The rather surprising result is that the large-distance ef-
fects of massless gauge bosons are simpldr=ad than in
vacuum. In vacuum the free Green functions fall liket3/(
—r?). The thermal Green functions in covariant gauges and
in the Coulomb gauge are exponentially small at large time-
like separations. At large space-like separations the leading
behavior isT/r, with exponentially small corrections in co-
variant gauges and power-law corrections in the Coulomb
gauge. Appendix B computes the Wightman functions for
the Landshoff-Rebhan approach to thermalizafib.

Since the calculations presented all involve the Bose-
Einstein distribution function, it is not apparent how much
the asymptotic behavior depends on that particular distribu-
tion function. The three examples below with different sta-
tistics will show that the results obtained in Secs. II-IV are a
consequence of quantum Bose statistics.

Bose-Einstein statistics=or Bose-Einstein statistics the
simplest case is that of a massless scalar boson. The time-
ordered propagator in momentum-space is

1 2 8(K?)

B

(5.9
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The Fourier transform of this has been computed in theAt zero temperature this is the same as the Bose or Fermi
Feynman gauge discussion Sec. Il. For real times not on thease. However at #0 it is quite different. For large time-

light cone, a useful representation is that of E2|9): like separations it falls like 17. For large space-like separa-
T tions it also falls like 17°. Thus, for classical statistics the

—i . ) )

D_(x)= 47Tr[cotr‘(7rT(r 1) +coth(mT(r—1)]. (5.2 Learcip())erzrature does not substantially change the asymptotic be

Subsequent publications will explore the physical conse-

The asymptotic behavior as—c> can be understood by con- quences of the space-time behavior. It should be possible to
sidering the propagator in the Matsubara formulation, whichunderstand the hard thermal loop approximafibsi directly
has discrete frequencies,=2n7T because of the periodic- in coordinate space. In that approximation the high tempera-
ity condition in imaginary time[10-12. As observed by ture corrections come entirely from one-loop diagrams. The
Linde[19,2Q then=0 modes produce the dominant behav-number of external lines determines the number of internal
ior in the deep space-like region. The=0 mode contribu-  propagators. The important effects come from thermal cor-
tion is exactly—iT/(4xr). However the large time-like be- rections on one internal propagator with all others kept at
havior does not come from a single mode in the Matsubargheir zero-temperature value. A coordinate-space analysis
formalism, but requires summing a series and analyticallyshould explain why only one loop diagrams are important
continuing from complex time to real time. The complete and why only one propagtor in the loop enjoys thermal cor-
result is the same as E(p.2). rections. In addition, since non-equilibrium processes almost

Fermi-Dirac statistics:A convenient way to display the demand a coordinant space treatment, it may be possible to
role of statistics is to change the distribution function in Eq.deduce an extension of the hard loop approximation to non-
(5.1 from Bose-Einstein to Fermi-Dirac: equilibrium processes.

1 . 2mi 8(K?) 5.3 ACKNOWLEDGMENTS
K2+ip eflkliq '
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has been changed toa1 and also the overall sign of the _
second term has been changed. This is done so that the APPENDIX A: GENERAL STRUCTURE

propagator for a massless spin 1/2 fermion is the product of This appendix summarizes some standard properties of

Eg. (5.3 with y*K , [10-12. The Fourier transform of Eq. gauge boson propagators at finite temperaftife-12. The
(5.3) can be easily computed along the lines indicated in Segyasic thermal Wightman function is
II. For real times not on the light cone, the result is
, : _ e (N[A*(x)A"(0)[n)
Sl 1 1 DE)=—iX e /& . (A1

Aqr | SinN(wT(r +1t)) * sinh(#wT(r—1t))|° Trle "]

D.(x)=

(5.4 It is customary to introduce a special notatiba (x) for the

L _ function with inverted space-time arguments:
At zero temperature this is the same as for Bose-Einstein

statistics. At large time-like separations it falls exponentially DM (X)=D (—X). (A2)
as in the Bose-Einstein case. At large space-like separations
it also falls exponentially in contrast to E(.2). The space- In terms of the field operators this means that
like behavior can be understood in the Matsubara formalism, AY(O)AK
since the fermion frequencies,=(2n+1)7T can never DE(x)=—i S e*BEn<n| (0) (X)|n>. (A3)
vanish. n Tr[e "]

Classical statisticsClassical Boltzman statistics gives a
very different result. In the classical limit the thermal distri- The retarded and advanced propagators are given by
bution function in Eq.5.1) is no longer singular at,=0:

DR'(x)=0(O[DE"(x)=DL(x)],
1 2mi 5(K?)

= nv — _ y1ag _ y72%
Du(K)= a1, ek (5.5 DAY(X)= 6~ [ DL(X) ~ DL'(x)].
, . For any parametar in the range 6 o< g3, the four parts of
The Fourier transform of this gives the contour-ordered propagator are
-1 1 1 (34 = 124 _ mv
D.(X)=— R— : DE(x)=0(t)DL"(x)+ 6(—t) DL (x),
472 | r2—(t—ie)? r?—(t—ip)? R
D3 (x)=D(t+io.X),
1
+ . v v : v
r2—(t+i,8)2] DE/(X)=DL"(t—ia,X),
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DEI(X)=60(t) DL (X)+ 0(—t)DLY(X). i —3)t2 2
52 (X)=6(1)DE (x)+ 6(—t)DL"(x) D‘;O(x):'—z (& 3)t2+.(§—21)r | B
With respect to real time, the first of these is time-ordered; ™ (x“—in)
the fourth is anti-time-ordered.
The spectral function is the thermal average of the com- . i tx)
mutator DU =—(é-1)——. (B2)
A (x“—in)

uv E _BEn<n|[A“(X),A”(O)]|n> N
prr(X)= . € Trle AH] : To separate the physical component®\pfearrange the spa-
tial components of th& =0 propagator as

Its Fourier transformp#”(K) has the properties o o
ST—KiKkIIK?  (k3— ek?)KKkI/Kk?
+ .

PV K\ — VI 1 =
P (—K)= = p"(K), (A4) DY) =— 7 — Kot
P (K)* = p"H(K). (AS) _ _ _ _
The first term describes physical, transversely polarized, par-
The Fourier transform of EqAL) is ticles and is heated. The second term comes from gauge-
dependent, longitudinally polarized particles and is not
v - p*(K) heated. From the previous results the finite-temperature two
DEA(K) = T e Ao (AB)  point function is
This is the starting point in Eq1.6). The spectral function is DL(x)=DLcou(X)+FL(X), (B3)
most easily obtained from the propagator in momentum
space by the relation where the temperature-dependent Coulomb part is given by
Eqgs.(4.6) and(4.7) in the time-like region and by Eq$4.10
p*"(K)=i[DR"(K)—D&"(K)]. (A7)  and (4.11) in the space-like region. The new temperature-

independent contributioR! (x) is
APPENDIX B: LANDSHOFF-REBHAN PROPAGATOR

i 2
Landshoff and Rebhan have advocated heating only theFQ(x):((sii_)“(i;(i) 1 Ai‘J'_t—

two physical (i.e. spatially transvergecomponents of the 167 t2—r2 4 (12—-r?)?

gauge potential even in a general covariant gdudé The )

procedure is to begin with th€=0 propagator in a general + (8 —3%i%)) ( §-3 i+ Eln t+r )

covariant gauge, 1672\ t2—r2 2 3 |[t—r

—gH KHK Y

+(1-9) The Landshoff-Rebhan propagator clearly has a very

(K2+i€)?’ complicated asymptotic behavior. In the deep space-like re-
gion,r—, Eq.(B1) falls like 142, Eq.(B2) falls like 1/ 3,

As explained in[14], the D°(K) and D%(K) components Wwhereas the Coulomb part of E@3) still falls like 1/r. In

are unaffected by temperature and therefore the corresponthe deep time-like regiort—«, Egs.(B1), (B2), and(B3)

ing Wightman functions in space-time may be read off fromare all dominated by the zero-temperature contributions and

DI7(K)=

K2+ie

Eq. (3.9 fall like 1/t rather than exponentially.
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