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Green functions in coordinate space for gauge bosons at finite temperature

H. Arthur Weldon
Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315

~Received 27 January 2000; published 28 July 2000!

The thermal Green functionD mn(x) for free, massless gauge bosons is computed exactly in a variety of
gauges~Feynman, covariant, Coulomb, and Landshoff-Rebhan!. At large temporal separations it falls expo-
nentially. At large spatial separations it falls likeT/r . In contrast, the zero-temperature propagator falls
quadratically in both regimes, being proportional to 1/(t22r 2).

PACS number~s!: 11.10.Wx, 12.38.Mh, 14.70.Bh
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I. INTRODUCTION

Although quantum field theories are formulated in fou
dimensional coordinate space, calculations are almost alw
performed in four-dimensional momentum space. One m
exception to the preference for momentum space is n
equilibrium field theory. Without equilibrium there is no in
variance under time-translation and often no invariance
der spatial translation. The dynamics of the density oper
% controls the evolution. For gauge bosons the time-orde
propagator is

D 11
mn~x,y!52 iTr@% T„Am~x!An~y!…#.

In non-equilibrium the correlations depend not just on
separationx2y but also on the effective age of the syste
x1y. For situations in which the dynamical evolution d
pends rapidly onx2y and slowly onx1y, it is standard to
Fourier transform from the separationx2y to the conjugate
four-momentumK. The transformed propagator is then
function of K and of x1y. It has long been known@1–4#
how to use the Schwinger-Dyson equation for the n
equilibrium propagator to extract a kinetic equation for t
non-equilibrium distribution functionf (K) that depends on
x1y . This approach has been extended to modern fi
theories containing gauge bosons particularly for QC
@5–9#.

In ordinary vacuum field theory, or zero-temperature fie
theory, the density operator is%5u0&^0u. Translation invari-
ance is automatic and calculations are almost always
formed in momentum space. In momentum space the ti
ordered propagator for free gauge bosons in the Feyn
gauge isD11

mn(K)52gmn/(K21 ih). This can easily be Fou
rier transformed to give the coordinate-space propagator

D 11
mn~x!uT505

2 i

4p2

gmn

x22 i e
. ~1.1!

Even though for fixedt this falls like 1/r 2 as r→`, it does
contain the correct Coulomb potential, which comes from
light-cone singularityd(t6r )/r . At large time-like separa-
tions the 1/t2 behavior causes the electron propagator to h
a branch point at the electron mass shell instead of a p
The 1/x2 behavior often leads to processes that are diverg
both in the ultraviolet (x→0) and in the infrared (x→`).
0556-2821/2000/62~5!/056003~10!/$15.00 62 0560
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A further consequence of Eq.~1.1! is that at zero tempera
ture the quantum effects of massless particles are quite c
plicated because the effects are as important in space
directions as in time-like directions.

Thermal equilibrium

For a field theory in an equilibrium heat bath that is un
form in space and constant in time, there is a constant t
peratureT throughout. The density operator is given by%
5e2H/T/Tr(e2H/T). The time-ordered propagator has th
structure@10–12#

D 11
mn~x!5u~ t !D .

mn~x!1u~2t !D ,
mn~x!. ~1.2!

The thermal Wightman function is defined by

D .
mn~x!52 i(

n
e2bEn

^nuAm~x!An~0!un&

Tr@e2bH#
, ~1.3!

and D,(x)5D.(2x). Appendix A summarizes how al
other propagators~contour-ordered, retarded, advanced! can
be expressed in terms ofD.(x).

The thermal Wightman function satisfies two importa
conditions: Eqs. ~1.4! and ~1.5! below. Both condi-
tions come from the Heisenberg relationAm(t,rW)
5exp(iHt)Am(0,rW)exp(2iHt). This implies that for complex
time the field satisfiesAm(t,rW)†5Am(t* ,rW). Consequently
the Wightman function enjoys the reflection property

@D .
mn~x!#* 52D .

nm~2x* !. ~1.4!

Furthermore, by inserting a complete set of energy eig
states between the two field operators in Eq.~1.3!, it is
simple to show that at complex timeD .

mn(t,xW ) is analytic in
the strip2b<Im t<0. A similar argument shows that th
Wightman function must satisfy the Kubo-Martin-Schwing
~KMS! relation @13#

D .
mn~ t2 ib,rW !5D .

nm~2t,rW !. ~1.5!

In momentum space the Wightman function is given by
terms of the momentum-space spectral functionrmn(K) by

D.
mn~K !5

2 irmn~K !

12e2bk0
, ~1.6!
©2000 The American Physical Society03-1
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which is derived in Appendix A. The free spectral function
independent of temperature and only has support atk0

56ukW u. Thus only the on-shell particles contribute to t
free Wightman function. The coordinate-space Wightm
function is the Fourier transform

D .
mn~x!5E d4K

~2p!4
e2 iK •x D.

mn~K !. ~1.7!

As shown in Appendix A, the properties of the spectral fun
tion guarantee thatD .

mn(x) will automatically satisfy the re-
flection condition in Eq.~1.4! and the KMS relation in Eq.
~1.5!.

The remainder of the paper will perform the computati
of Eq. ~1.7! for free gauge bosons in various gauges. Sec
II deals entirely with the Feynman gauge. The complete
sult as a function of arbitrary complex time is displayed
Eq. ~2.14!, but a simpler form is the specialization to re
time shown in Eq.~2.15!. Section III performs the calcula
tion in a general covariant gauge and leads to the res
summarized in Eqs.~3.6! and~3.7!. Section IV computes the
Wightman function in the Coulomb gauge, which is a
more subtle, and the results are given in Eqs.~4.6!, ~4.7!,
~4.10!, and ~4.11!. Section V contains a comparison o
propagators with Bose-Einstein, Fermi-Dirac, and Boltzm
statistics. Appendix A provides some general formulas. A
pendix B performs the same calculation in the Landsho
Rebhan quantization scheme@14# in which the physical,
transverse gauge fields are thermalized but not the longit
nal and time-like components.

II. DÌ
µn
„x… IN FEYNMAN GAUGE

It is easiest to compute the thermal Wightman function
the Feynman gauge, in which the spectral function is prop
tional to the constant metric tensorgmn:

rmn~K !52gmn 2pe~k0! d~K2!.

The thermal Wightman function has the form

D .
mn~x!52gmnD.~x!, ~2.1!

where

D.~x!52 i E d4K

~2p!3
e2 iK •x

e~k0!d~K2!

12e2bk0
.

The scalar functionD.(x) is, in addition, the thermal Wight
man function for a spinless field of zero mass. To comp
the integral, first perform the integrals overk0 and over the
angles ofkW to obtain

D.~x!5
21

8p2r
E

0

`

dk fk~r ,t !, ~2.2!

where thek dependence is contained in the function
05600
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f k~ t,r ![@eikr2e2 ikr #F e2 ikt

12e2bk
2

eikt

12ebkG .

This function satisfies the conditions

2 f k~ t,r !* 5 f k~2t* ,r !,

f k~ t2 ib,r !5 f k~2t,r !, ~2.3!

which guarantee thatD.(x) will satisfy the reflection and
Kubo-Martin-Schwinger~KMS! conditions given in Eqs.
~1.4! and ~1.5!.

A. Unregularized DÌ„x…

For any real value oft, except fort56r , the rapid oscil-
lations of the integrand ask→` guarantee convergence. Ift
has a negative imaginary part then convergence is impro
provided the negative imaginary part is smaller in magnitu
thanb. Thus in the region

2b,Im t<0, tÞ6r , ~2.4!

the integral is convergent without any regularization. To p
form the integration, it is convenient to use the fact th
f k(t,r ) is an even function ofk in order to extend the inte
gration range to the fullk axis:

D.~x!5
21

16p2r
E

2`

`

dk fk~r ,t !. ~2.5!

This can now be evaluated by contour integration over co
plex k. The integrandf k(t,r ) is finite atk50. It has poles at
k56 i2pnT, for integern>1.

How the contour should be closed depends on the rela
size of Ret and r. For definiteness, let Ret.r . Then
exp(6ikt) is the determining factor. For the term containin
exp(2ikt) the contour should be closed in the lower-half
the complexk plane; for the term exp(1ikt), the contour
should be closed above. Cauchy’s theorem gives the resu
a sum of the residues of the poles:

D.~x!5
2 iT

4pr (
n51

`

@~z1!n2~z2!n#,

where the variablesz6 are defined by

z15e22pT(t1r ), z25e22pT(t2r ). ~2.6!

This sum is only convergent in the region Ret.r . Perform-
ing the sum gives

D.~ t,r !5
2 iT

4pr F 1

e2pT(t1r )21
2

1

e2pT(t2r )21
G . ~2.7!

This result is valid for all complext satisfying Eq.~2.4! and
is analytic in this region. The poles att56r and att56r
2 ib ~limit points of the open region! will be shifted slightly
when the integration is regularized. It is convenient to e
pressD.(x) in the alternate form
3-2
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D.~ t,r !5
2 iT

8pr
@coth„pT~r 1t !…1coth„pT~r 2t !…#.

~2.8!

Note that this is an even function oft. The regularized
D.(x) will include the domaint56r and will not be even
undert→2t.

Deep time-like region:For utu2r @1/pT, the asymptotic
behavior is

D.~x!→ iT

4pr
@e22pT(utu2r )2e22pT(utu1r )1•••#. ~2.9!

Deep space-like region:For r 2utu@1/pT, the asymptotic
behavior is not exponentially small.

D.~x!→ 2 iT

4pr
2

iT

4pr
@e22pT(r 2utu)1e22pT(r 1utu)#.

~2.10!

The dominant termT/r is present in all gauges and will b
discussed further.

B. RegularizedDÌ„x…

The true Wightman function should be analytic in t
closed region

2b<Im t<0, ~2.11!

which includes the pointst56r and t56r 2 ib at which
Eq. ~2.7! has poles. The problem is that at these valuest
the integrandf k(t,r )→1 without oscillation ask→`. The
simplest way to regularize the integral in a way that w
satisfy Eqs.~1.4! and ~1.5! is to define

D.~x!5
21

8p2E0

`

dk f~ t,r ! e2ek, ~2.12!

wheree is positive and real. Now the range of integratio
cannot be extended to negativek. However, the integral can
be evaluated using the relation@16#

1

TE0

`

dk
e2a1k2e2a2k

ebk21
52c~11a1T!1c~11a2T!,

which holds whenever the real parts ofa1 anda2 are posi-
tive. Herec(z)5dlnG(z)/dz . The result is

D.~x!5
T

8p2r
$c@eT1 iT~ t2r !#2c@eT1 iT~ t1r !#

2c@11eT2 iT~ t2r !#1c@11eT2 iT~ t1r !#%.

~2.13!

This satisfies the reflection condition Eq.~1.4!, which inter-
changes the first term with the second and interchanges
third term with the fourth. It satisfies the KMS conditio
~1.5!, which interchanges the first term with the third and t
05600
he

second term with the fourth. Usingc(z)5c(11z)21/z this
can be written so as to isolate the zero-temperature contr
tion:

D.~x!5
T

8p2r
$c@11T„e2 i ~r 1t !…#

2c@11T„e1 i ~r 1t !…#1c@11T„e2 i ~r 2t !…#

2c@11T„e1 i ~r 2t !…#%

2
i

4p2

1

~r 1t2 i e!~r 2t1 i e!
. ~2.14!

This is the complete and general result. It is analytic in
closed region given in Eq.~2.11!. The nearest poles to thi
region are the zero-temperature poles just above the str
t56r 1 i e and the the poles just below the strip att56r
2 i (b1e) from the first and fourth term.

Real time:For real values oft one can safely sete50 in
all four c functions since their poles are are at least a d
tance6 ib from the realt axis. Whene50 the psi functions
have complex conjugate arguments and can be simpli
using @17#

c~12 iy !2c~11 iy !5
i

y
2 ip coth~py!.

The Wightman function is

D.~x!5
2 iT

8pr
$coth@pT~r 1t !#1coth@pT~r 2t !#%

1
1

8pr
@d~r 1t !2d~r 2t !#. ~2.15!

This, of course, agrees with Eq.~2.8! whentÞ6r . Note that
under t→2t, the coth terms are symmetric but the Dira
delta terms are antisymmetric. The other Wightman funct
D,(x) for real t is

D,~x!5
2 iT

8pr
$coth@pT~r 1t !#1coth@pT~r 2t !#%

1
1

8pr
@d~r 2t !2d~r 1t !#. ~2.16!

Since Eqs.~2.15! and~2.16! hold only for realt, one cannot
pass from one to the other by the KMS relation.

C. Time-ordered propagator

The Wightman function satisfies the homogeneous eq
tion h D.(x)50. The time-ordered propagator is

D11~x!5u~ t !D.~x!1u~2t !D,~x!,

in which D,(t,r )5D.(2t,r ). This is a true Green function
in that it satisfies the inhomogeneous equationh D11(x)
52d4(x). Using Eq.~2.14! gives
3-3
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D11~x!5
T

8p2r
$c@11T„e2 i ~r 1t !…#

2c@11T„e1 i ~r 1t !…#1c@11T„e2 i ~r 2t !…#

2c@11T„e1 i ~r 2t !…#%

1
i

4p2

1

t22r 22 i e
. ~2.17!

This representation has the nice feature that the z
temperature limit is isolated in the last term. Th
temperature-dependent terms are each annihilated by
d’Alembertian operatorh .

D. Potential produced by a static charge

In the limit r→` at fixed t, the Wightman function and
the time-ordered propagator have the behaviorD(x)
→2 iT/(4pr ). This contribution suggests that at large d
tance the potential produced by a charge at rest would
temperature-dependent. This inference is incorrect as the
lowing calculation demonstrates.

Let Jm(x) be a classical current. In the Feynman gau
D 11

mn(x)52gmnD11(x) and so the classical vector potenti
is

Acl
m~x!52E d4x8 D11~x2x8!Jm~x8!.

For a point chargeQ at rest J0(x8)5Qd3(rW8) and JW (x8)
50. Thus the three-vector potential vanishes and the sc
potential requires integrating over the static charge dens

Acl
0 ~x!52QE

2`

`

dt8 D11~ t2t8,r !.

It is convenient to use Eq.~2.17! for the Green function. At
large complext the combination of psi functions falls like
1/t2. Thus one can integrate over complex time by integr
ing over a contourC that is closed in the upper half-plane

Acl
0 ~x!52Q R

C
dt8 D11~ t2t8,r !.

The first and fourthc functions in Eq.~2.17! are analytic in
the upper-half of the complext plane and make no contribu
tion. The second and thirdc functions have poles in the
upper half-plane att56r 1 i (Nb1e) for N51,2,3 . . . .
These poles all have the same residue~viz 2 ib) and their
contributions to the potential cancel exactly. Thus the en
potential comes from the zero-temperature term:

Acl
0 ~x!52

iQ

4p2 RC
dt8

1

~ t2t8!22r 22 i e
.

This is easily integrated and gives the usual Coulomb po
tial:
05600
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Acl
0 ~x!5

Q

4pr
. ~2.18!

It is perhaps worth emphasizing that this not a large dista
approximation. A more difficult calculation, which does co
tain temperature-dependence, is the potential due to a p
charge moving with constant velocity, whereJ0(x8)
5Qd3(rW 82vW t8).

III. DÌ
µn
„x… IN COVARIANT GAUGES

The next case in which to compute the thermal Wightm
functions are the general covariant gauges. The tedious r
larization performed in Sec. II will not be attempted. Th
result given in Eqs.~3.6! and~3.7! is therefore valid for real
t not on the light cone.

In a general covariant gauge the time-ordered propag
at zero temperature is

D11
mn~K !uT505

2gmn

K21 i e
1~12j!

KmKn

~K21 i e!2
.

The spectral function, extracted using Eq.~A7!, is

rmn~K !52pe~k0!F2gmn1~12j!KmKn
]

]k2Gd~K2!.

When the thermal Wightman functionD .
mn(x) is expressed

in terms of the spectral function using Eq.~1.7! the result is

D .
mn~x!52gmnD.~x!1~12j!

]2

]xm]xn
d.~x!, ~3.1!

whereD.(x) with no superscripts is the Wightman functio
from Sec. II and the new functiond.(x) is

d.~x!5 i E d4K

~2p!3

e2 iK •x

12e2bk0
e~k0!

]

]k2
d~K2!.

It will be important later thatD .
mn(x) is not affected if a

constant is added to the value ofd.(x). The integration over
k0 and over the angles gives

d.~x!5
2 i

16p2E0

`dk

k2
gk~ t,r !, ~3.2!

where

gk~ t,r !5k@eikr1e2 ikr #F e2 ikt

12e2bk
2

eikt

12ebkG .

The functiongk(t,r ) equals 4T at k50. Consequently, the
integral in Eq.~3.2! does not converge atk50. However, the
fact that]gk(t,r )/]t and]gk(t,r )/]r both vanish likek2 as
k→0 guarantees that]d.(x)/]xm is finite, which is all that
is necessary for Eq.~3.1!. Since the behavior atk50 is awk-
ward, it is convenient to subtract a constant from Eq.~3.2!
and redefined.(x) as
3-4
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d.~x!5
2 i

16p2E0

`dk

k2 Fgk~ t,r !2gk~0,0!
m2

k21m2G . ~3.3!

The integrand now has no singularity atk50. A real param-
eterm has been introduced so that the subtracted integra
converges atk5` for non-exceptional values oft. Since it is
not regulated as was done in Sec. II B, it does not conve
for t56r or for t56r 2 ib.

It is simple to integrate Eq.~3.3!. The integrand is even in
k and thus the range may be extended to2`:

d.~x!5
2 i

32p2E2`

` dk

k2 Fgk~ t,r !2gk~0,0!
m2

k21m2G .

The integral can be evaluated by closing the contour in
complexk plane and using Cauchy’s theorem. How the co
tour is closed depends upon the relative size oft and r. For
example, if Ret.r the contour for the terms containin
exp(2ikt) should be closed in the lower half-plane; tho
containing exp(ikt) should be closed in the upper half-plan
The integrand of Eq.~3.3! is not singular atk50. The poles
at k56 i2pnT for n51,2,3 . . . give the result

d.~x!5
2 i

16p2 (
n51

` S ~z1!n

n
1

~z2!n

n D , ~3.4!

where the constant terms independent oft and r are omitted
and z6 are the same as in Eq.~2.6!. The summation dis-
played is only convergent if the magnitudes ofz6 are less
than one: i.e., Ret.r . Performing the sum in this regio
gives

d.~x!5
i

16p2
@ ln~12z1!1 ln~12z2!#. ~3.5!

This result can now be extended to Ret,r . Since it was not
regularized, it is not valid precisely atz151 or at z251.
The result is not symmetric undert→2t, but it can be re-
written as

d.~x!5
i

16p2
ln@sinh„pT~r 1t !…sinh„pT~r 2t !…#

2
iT

8p
t1const. ~3.6!

The term linear int and the constant do not have seco
derivatives and thus do not affect the value ofD.

mn(x). The
functiond.(x) is related to the scalar Wightman function b
h d.(x)5D.(x). Therefore Eq.~3.1! can be summarized
by

D .
mn~x!5„2gmnh1~12j! ]m]n

… d.~x!. ~3.7!

The form of this in various limits will now be examined.
Deep time-like region: When utu2r @1/pT the

asymptotic behavior of Eq.~3.6! is
05600
n

e
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.

d.~x!→ 2 i

16p2
@e22pT(utu2r )1e22pT(utu1r )#,

with an irrelevant term linear int omitted. Consequently al
components ofD .

mn(x) fall exponentially as was the case
the Feynman gauge.

Deep space-like region:If r 2utu@1/pT, then Eq.~3.6!
has the behavior

d.~x!→ iTr

8p
2

i

16p2
@e22pt(r 2utu)1e22pT(r 1utu)#,

omitting additive constants. The asymptotic behavior
D .

00(x) is

D .
00~x!→ iT

4pr
1O~e22pTr!. ~3.8a!

The leading term, being independent ofj, coincides with the
Feynman gauge result. It was only this leading term t
contributed to the calculation of the Coulomb potential
Sec. II D. Of the remaining components,D .

0 j (x) is exponen-
tially small:

D .
0 j~x!5~12j!

]2G.~x!

]t]xj
→O~e22pTr!. ~3.8b!

For the spatial components of the propagator, the term
d.(x) that is linear inr contributes a term from

]2

]xi]xj
r 5

1

r
~d i j 2 x̂i x̂ j !.

The asymptotic form of the spatial propagator is

D .
i j ~x!→ iT

8pr
@2~j11!d i j 1~j21!x̂i x̂ j #1O~e22pTr!.

~3.8c!

Zero-temperature limit:At zero temperature,d.(x) is
proportional to ln@r22t2# and Eq.~3.7! gives

D .
mn~x!uT5052~j11!

i

8p2

gmn

x2

1~j21!
i

4p2

xmxn

~x2!2
. ~3.9!

The combinationxmxnD .
mn(x)uT505 i (j23)/8p2 and thus

vanishes in the Yennie gauge.

IV. DÌ
i j
„x… IN COULOMB GAUGE

In the Coulomb gauge the time-like component of t
gauge potential is instantaneous and does not propaga
time. Consequently
3-5
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D 00~x!5
d~ t !

4pr
,

and there are no thermal corrections. For transverse ga
bosons the zero-temperature propagator is

DF
i j ~K !5S d i j 2

kikj

k2 D 1

K21 i e
,

and the transverse spectral function is

r i j ~K !52pe~k0!d~K2!@d i j 2 k̂i k̂ j #.

Using Eq.~1.7!, the two-point function can be written

D .
i j ~x!5d i j D.~x!1¹ i¹ j H.~x!, ~4.1!

where the first term,D.(x), is the same as in Sec. II and th
new function is

H.~x!52 i E d4K

~2p!3

e2 iK •x

12e2bk0

e~k0!d~K2!

k2
.

By construction,D.(x)52¹2H.(x).
To computeH.(x) the first step is to integrate overk0

and the angles to obtain

H.~x!5
21

8p2E0

`dk

k2
hk~ t,r !, ~4.2!

where

hk~ t,r !5
1

r
@eikr2e2 ikr #F e2 ikt

12e2bk
2

eikt

12ebkG .

For later reference note thatH.(x) is analytic for complex
time in the open region2b,Im t,0.

The functionhk(t,r ) equals 4iT at k50. Consequently
the integral overk does not converge atk50. However
]H.(x)/]r is convergent, which is all that is necessary f
Eq. ~4.1!. To improve thek50 behavior it is convenient to
subtract anx-independent constant from Eq.~4.2! and rede-
fine H.(x) as

H.~x!5
21

8p2E0

`dk

k2 Fhk~ t,r !2hk~0,0!
m2

k21m2G ,

wherem is an unimportant mass parameter. The integra
now convergent atk50 and atk5`. Since the integrand is
even ink, the range may be extended over negativek:

H.~x!5
21

16p2E2`

` dk

k2 Fhk~ t,r !2hk~0,0!
m2

k21m2G .

~4.3!

This will now be calculated explicitly for realt, without the
regularization that was performed in Sec II.
05600
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Time-like region:When t.r the contour for thee2 ikt

contribution may may be closed in the lower half-plane a
that for theeikt contribution closed in the upper half-plan
Although the full integrand has no poles atk50, each of
these pieces has a double pole atk50. The more important
contribution comes from the simple poles atk56 i2pnT for
n>1. The result is

H.~x!5
2 i

16p3rT
@Li2~z2!2Li2~z1!#1

i

4p
Tt2

1

8p
.

~4.4!

The last two terms in come from the double pole atk50 and
do not contribute to]H.(x)/]r . The variablesz6 are given
in Eq. ~2.6! and Li2 is the dilogarithm function, which for
z<1 has the series expansion@17,18#

Li2~z![ (
n51

`
zn

n2
. ~4.5!

WhenH.(x) is substituted into Eq.~4.1! the result is

D .
i j ~x!5~d i j 2 x̂i x̂ j !D.~x!1~d i j 23x̂i x̂ j !E~x!, ~4.6!

where the new functionE(x) is

E~x!5
i

8p2r 2
@ ln~12z2!1 ln~12z1!#

1
i

16p3r 3T
@Li2~z2!2Li2~z1!#. ~4.7!

In the deep time-like region,pT(utu2r )@1, bothz1 and
z2 are exponentially small and so isE(x). Since D.(x)
vanishes exponentially as shown in Eq.~2.9!, this means that
all terms in the Wightman functionD .

i j (x) fall exponentially
in the deep time-like region.

Space-like region:When r .utu it is best to return to the
defining integral Eq.~4.3!. In that integration, the contour fo
the eikr contribution may be closed in the upper half-pla
and the contour for thee2 ikr contribution closed in the lowe
half-plane. As previously noted the full integrand has
poles atk50. However each of these pieces has a triple p
at k50. The simple poles atk56 i2pnT give an infinite
series:

H.~x!5
i

16p3rT
FLi2S 1

z2
D1Li2~z1!G

1
i

8p FTS r 1
t2

r D1 i
t

r
2

1

6rT G . ~4.8!

The last term proportional to 1/rT is particularly unusual.
As mentioned previously, the original integral is analy

in complex time provided2b,Im t,0. However it is not
obvious that Eq.~4.8! is the analytic continuation of Eq
~4.4!, and this provides an important check. In both resu
3-6
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the arguments of the dilogarithm functions are smaller th
one. Foruzu,1 the dilogarithm has the integral represen
tion @17,18#

Li2~z!5E
0

1

ds~ lns!
1

s2z21
~ uzu,1!.

When the time is made complex byt→t2 is then z6

5ei2pTsuz6u. Thus if 0,s,b/2 then z6 has a positive
imaginary part. Foruzu.1 the analytic continuation is

Li2~z!5E
0

1

ds~ ln s!
P

s2z21
1 ip ln~z!

uzu.1,

Arg~z!.0.

Omission of the imaginary part, as is usually done in te
books, would prevent the function from being analytic. Fro
the integral representation it follows that foruzu.1 and
Arg(z).0 the dilogarithm satisfies

Li2~z!5
p2

3
2

1

2
~ ln z!22Li2S 1

zD1 ip ln~z!. ~4.9!

Using this relation one can analytically continue Eq.~4.4!
from the time-like region wherez2,1 to the space-like re
gion wherez2.1 and obtain Eq.~4.8!. Thus the two results
agree despite their appearance.

The Wightman function in the space-like region resu
from substituting Eq.~4.8! into Eq. ~4.1!:

D .
i j ~x!5~d i j 2 x̂i x̂ j !D.~x!1~d i j 23x̂i x̂ j !E~x!, ~4.10!

whereE(x) is now given by

E~x!5
iT

8pr
2

i

8pr 3 S Tt21 i t 2
1

6TD
1

i

8p2r 2 F lnS 12
1

z2
D1 ln~12z1!G

2
i

16p3r 3T
FLi2S 1

z2
D1Li2~z1!G . ~4.11!

Naturally this is the analytic continuation of Eq.~4.7!. It is
easy to check that¹ iD .

i j (x)50.
In the deep space-like region defined bypT(r 2utu)@1,

both 1/z2 and z1 are exponentially small. The asymptot
behavior of the Wightman function is

D .
i j ~x!→~d i j 1 x̂i x̂ j !S 2 iT

8pr D
1~d i j 23x̂i x̂ j !S 2 i

8pr 3D S Tt21 i t 2
1

6TD .

~4.12!

Despite its complicated appearance this still satisfies
transverse condition¹ iD .

i j (x)50. The result is more com
05600
n
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plicated than in covariant gauges, which behaved asT/r with
exponentially small corrections. Here the corrections
powers ofr: the second line being of order 1/r 3 at fixedt but
order 1/r if the ratio t/r is fixed asr→`.

Zero-temperature limit:It is straightforward to evaluate
the T50 limit Coulomb-gauge Wightman function. AsT
→0 the arguments of the dilogarithm functions in Eq.~4.7!
approach unity:z→1. A useful expansion in this region i
@17,18#

Li2~z!5
p2

6
2 ln~z!ln~12z!2 (

n51

`
~12z!n

n2
. ~4.13!

The Wightman function becomes

D .
i j uT505~d i j 2 x̂i x̂ j !

i

4p2~ t22r 2!

1~d i j 23x̂i x̂ j !
i

8p2 S 2

r 2
2

t

r 3
lnF t1r

t2r G D .

~4.14!

Naturally this agrees with the direct Fourier transform of t
zero-temperature propagator.

V. DISCUSSION

The thermal Wightman function for free gauge bosons
been computed in various gauges. Knowing the Wightm
function is the same as knowing the time-ordered propa
tors as shown in Appendix A.~The free retarded and ad
vanced propagators are unchanged by the temperature
the free-field commutator is ac-number and thermal averag
ing does not change thec-number.!

The rather surprising result is that the large-distance
fects of massless gauge bosons are simpler atT.0 than in
vacuum. In vacuum the free Green functions fall like 1/(t2

2r 2). The thermal Green functions in covariant gauges a
in the Coulomb gauge are exponentially small at large tim
like separations. At large space-like separations the lead
behavior isT/r , with exponentially small corrections in co
variant gauges and power-law corrections in the Coulo
gauge. Appendix B computes the Wightman functions
the Landshoff-Rebhan approach to thermalization@14#.

Since the calculations presented all involve the Bo
Einstein distribution function, it is not apparent how mu
the asymptotic behavior depends on that particular distri
tion function. The three examples below with different s
tistics will show that the results obtained in Secs. II–IV are
consequence of quantum Bose statistics.

Bose-Einstein statistics:For Bose-Einstein statistics th
simplest case is that of a massless scalar boson. The t
ordered propagator in momentum-space is

D11~K !5
1

K21 ih
2

2p i d~K2!

ebuk0u21
. ~5.1!
3-7
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The Fourier transform of this has been computed in
Feynman gauge discussion Sec. II. For real times not on
light cone, a useful representation is that of Eq.~2.8!:

D.~x!5
2 iT

4pr
@coth„pT~r 1t !!1coth„pT~r 2t !…]. ~5.2!

The asymptotic behavior asr→` can be understood by con
sidering the propagator in the Matsubara formulation, wh
has discrete frequenciesvn52npT because of the periodic
ity condition in imaginary time@10–12#. As observed by
Linde @19,20# the n50 modes produce the dominant beha
ior in the deep space-like region. Then50 mode contribu-
tion is exactly2 iT/(4pr ). However the large time-like be
havior does not come from a single mode in the Matsub
formalism, but requires summing a series and analytic
continuing from complex time to real time. The comple
result is the same as Eq.~5.2!.

Fermi-Dirac statistics:A convenient way to display the
role of statistics is to change the distribution function in E
~5.1! from Bose-Einstein to Fermi-Dirac:

D11~K !5
1

K21 ih
1

2p i d~K2!

ebuk0u11
. ~5.3!

This differs from Eq.~5.1! in that the21 in the denominator
has been changed to a11 and also the overall sign of th
second term has been changed. This is done so tha
propagator for a massless spin 1/2 fermion is the produc
Eq. ~5.3! with gmKm @10–12#. The Fourier transform of Eq
~5.3! can be easily computed along the lines indicated in S
II. For real times not on the light cone, the result is

D.~x!5
2 iT

4pr F 1

sinh„pT~r 1t !…
1

1

sinh„pT~r 2t !…G .
~5.4!

At zero temperature this is the same as for Bose-Eins
statistics. At large time-like separations it falls exponentia
as in the Bose-Einstein case. At large space-like separa
it also falls exponentially in contrast to Eq.~5.2!. The space-
like behavior can be understood in the Matsubara formali
since the fermion frequenciesvn5(2n11)pT can never
vanish.

Classical statistics:Classical Boltzman statistics gives
very different result. In the classical limit the thermal dist
bution function in Eq.~5.1! is no longer singular atk050:

D11~K !5
1

K21 ih
2

2p i d~K2!

ebuk0u
. ~5.5!

The Fourier transform of this gives

D.~x!5
2 i

4p2 F 1

r 22~ t2 i e!2
1

1

r 22~ t2 ib!2

1
1

r 22~ t1 ib!2G .
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At zero temperature this is the same as the Bose or Fe
case. However atTÞ0 it is quite different. For large time-
like separations it falls like 1/t2. For large space-like separa
tions it also falls like 1/r 2. Thus, for classical statistics th
temperature does not substantially change the asymptotic
havior.

Subsequent publications will explore the physical con
quences of the space-time behavior. It should be possibl
understand the hard thermal loop approximation@15# directly
in coordinate space. In that approximation the high tempe
ture corrections come entirely from one-loop diagrams. T
number of external lines determines the number of inter
propagators. The important effects come from thermal c
rections on one internal propagator with all others kept
their zero-temperature value. A coordinate-space anal
should explain why only one loop diagrams are importa
and why only one propagtor in the loop enjoys thermal c
rections. In addition, since non-equilibrium processes alm
demand a coordinant space treatment, it may be possib
deduce an extension of the hard loop approximation to n
equilibrium processes.
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APPENDIX A: GENERAL STRUCTURE

This appendix summarizes some standard propertie
gauge boson propagators at finite temperature@10–12#. The
basic thermal Wightman function is

D .
mn~x!52 i(

n
e2bEn

^nuAm~x!An~0!un&

Tr@e2bH#
. ~A1!

It is customary to introduce a special notationD,(x) for the
function with inverted space-time arguments:

D ,
mn~x![D .

nm~2x!. ~A2!

In terms of the field operators this means that

D ,
mn~x!52 i(

n
e2bEn

^nuAn~0!Am~x!un&

Tr@e2bH#
. ~A3!

The retarded and advanced propagators are given by

D R
mn~x!5u~ t !@D .

mn~x!2D ,
mn~x!#,

D A
mn~x!5u~2t !@D ,

mn~x!2D .
mn~x!#.

For any parameters in the range 0<s<b, the four parts of
the contour-ordered propagator are

D 11
mn~x!5u~ t !D .

mn~x!1u~2t !D ,
mn~x!,

D 12
mn~x!5D ,

mn~ t1 is,xW !,

D 21
mn~x!5D .

mn~ t2 is,xW !,
3-8
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D 22
mn~x!5u~ t !D ,

mn~x!1u~2t !D .
mn~x!.

With respect to real time, the first of these is time-order
the fourth is anti-time-ordered.

The spectral function is the thermal average of the co
mutator

rmn~x!5(
n

e2bEn
^nu@Am~x!,An~0!#un&

Tr@e2bH#
.

Its Fourier transformrmn(K) has the properties

rmn~2K !52rnm~K !, ~A4!

rmn~K !* 5rnm~K !. ~A5!

The Fourier transform of Eq.~A1! is

D.
mn~K !52 i

rmn~K !

12e2bk0
. ~A6!

This is the starting point in Eq.~1.6!. The spectral function is
most easily obtained from the propagator in moment
space by the relation

rmn~K !5 i @DR
mn~K !2DA

mn~K !#. ~A7!

APPENDIX B: LANDSHOFF-REBHAN PROPAGATOR

Landshoff and Rebhan have advocated heating only
two physical ~i.e. spatially transverse! components of the
gauge potential even in a general covariant gauge@14#. The
procedure is to begin with theT50 propagator in a genera
covariant gauge,

D11
mn~K !5

2gmn

K21 i e
1~12j!

KmKn

~K21 i e!2
.

As explained in@14#, the D00(K) and D0 j (K) components
are unaffected by temperature and therefore the corresp
ing Wightman functions in space-time may be read off fro
Eq. ~3.9!:
s

05600
;
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e

d-

D .
00~x!5

i

8p2

~j23!t21~j11!r 2

~x22 ih!2
, ~B1!

D .
0 j~x!5

i

4p2
~j21!

txj

~x22 ih!2
. ~B2!

To separate the physical components ofAW , rearrange the spa
tial components of theT50 propagator as

D11
i j ~K !5

d i j 2kikj /k2

K21 i e
1

~k0
22jk2!kikj /k2

~K21 i e!2
.

The first term describes physical, transversely polarized,
ticles and is heated. The second term comes from gau
dependent, longitudinally polarized particles and is n
heated. From the previous results the finite-temperature
point function is

D .
i j ~x!5D.Coul

i j ~x!1F.
i j ~x!, ~B3!

where the temperature-dependent Coulomb part is given
Eqs.~4.6! and~4.7! in the time-like region and by Eqs.~4.10!
and ~4.11! in the space-like region. The new temperatu
independent contributionF.

i j (x) is

F.
i j ~x!5~d i j 2 x̂i x̂ j !

i

16p2

j11

t22r 2
1 x̂i x̂ j

i

4p2

t2

~ t22r 2!2

1~d i j 23x̂i x̂ j !
i

16p2 S j23

t22r 2
2

4

r 2
1

2t

r 3
lnF t1r

t2r G D .

The Landshoff-Rebhan propagator clearly has a v
complicated asymptotic behavior. In the deep space-like
gion, r→`, Eq. ~B1! falls like 1/r 2, Eq. ~B2! falls like 1/r 3,
whereas the Coulomb part of Eq.~B3! still falls like 1/r . In
the deep time-like region,t→`, Eqs. ~B1!, ~B2!, and ~B3!
are all dominated by the zero-temperature contributions
fall like 1/t2 rather than exponentially.
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@7# S. Mrówczyński and U. Heinz, Ann. Phys.~N.Y.! 229, 1

~1994!.
@8# P. Danielewicz, Ann. Phys.~N.Y.! 229, 1 ~1994!.
@9# J.P. Blaizot and E. Iancu, Nucl. Phys.B557,
193 ~1999!.

@10# N.P. Landsman and Ch. G. van Weert, Phys. Rep.145, 141
~1987!.

@11# M. Le Bellac, Thermal Field Theory~Cambridge University
Press, Cambridge, England, 1996!.

@12# A. Das, Finite Temperature Field Theory~World Scientific,
Singapore, 1997!.

@13# R. Kubo, J. Phys. Soc. Jpn.12, 570 ~1957!; P. Martin and J.
Schwinger, Phys. Rev.115, 1342~1959!.

@14# P.V. Landshoff and A. Rebhan, Nucl. Phys.B383, 607~1992!;
B410, 23 ~1993!.

@15# E. Braaten and R.D. Pisarski, Nucl. Phys.B337, 569 ~1990!;
B339, 310 ~1990!.
3-9



,

l
.

H. ARTHUR WELDON PHYSICAL REVIEW D62 056003
@16# I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series
and Products~Academic, New York, 1980!.

@17# M. Abramowitz and I.A. Stegun,Handbook of Mathematica
Functions~National Bureau of Standards, Washington, D.C
1964!.
05600
,

@18# L. Lewin, Dilogarithms and Associated Functions~Mac-
Donald, London, 1958!.

@19# A.D. Linde, Phys. Lett.96B, 289 ~1980!.
@20# D.J. Gross, R.D. Pisarski, and L.G. Yaffe, Rev. Mod. Phys.53,

43 ~1981!.
3-10


