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Partially quenched chiral perturbation theory and the replica method

P. H. Damgaard and K. Splittorff
The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark

~Received 30 March 2000; published 4 August 2000!

We describe a novel framework for partially quenched chiral perturbation theory based on the replica
method. The computational rules are exceedingly simple. We illustrate these rules by computing the partially
quenched chiral condensate to one-loop order. By considering arbitrary chiralk-point functions we show
explicitly to one-loop order the equivalence between this method and the one based on supersymmetry. It is
possible to go smoothly from the conventional replica method to a supersymmetric variant by choosing the
number of valence quarks to be negative.

PACS number~s!: 12.38.Gc, 11.30.Rd
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I. INTRODUCTION

The question of non-perturbative analytical predictio
for quenched or partially quenched lattice gauge theory c
putations has been thoroughly studied in the context of
fective chiral Lagrangians@1–4#. So far the most systemati
framework has been the supersymmetric formulation of B
nard and Golterman@1,2#, which builds on an idea first in
troduced in the context of staggered lattice fermions@5#.
Here one introducesk additional quark species~of conven-
tional statistics! on top of theNf physical ‘‘sea’’ quarks, and
k ‘‘ghost’’ quarks of opposite statistics to cancel the effe
of the additional quarks. WhenNf is taken to vanish this
gives the fully quenched theory, while forNf non-zero it
gives the partially quenched theory. Both are accessible
study by Monte Carlo techniques in lattice gauge theory. T
chiral flavor symmetry group is in that formulation extend
to a super Lie group which in perturbation theory can
taken as SU(Nf1kuk). ~For this reason it is commonly
known as the supersymmetric method although it, as app
has nothing to do with space-time supersymmetry, but ra
is a graded symmetry.! Based on the usual assumption
spontaneous chiral symmetry breaking~here extended to the
super group case! the effective low-energy theory of th
lowest-lying hadronic excitations is that of a chiral Lagran
ian, now with fields living on the coset of super Lie group
This effective Lagrangian can be studied by the conventio
methods of chiral perturbation theory. In what follows w
denote fully and partially quenched chiral perturbati
theory by QChPT and PQChPT, respectively.

The supersymmetric framework has also proven to be
efficient means of deriving analytical results for the soft p
of the Dirac operator spectrum in finite volume, by taking
appropriate discontinuity of the partially quenched chi
condensate@6–8#. This has brought earlier results derive
entirely from universal random matrix theory@9# ~for a very
recent comprehensive review, see Ref.@10#! in direct contact
with the effective Lagrangian of QCD. In particular, a ser
of very compact relations that described generalk-point
spectral correlation functions of low-lying Dirac operator e
genvalues in terms of effective partition functions with ad
tional quark species@11# can now be understood as due
the cancelling pairs of fermionic and bosonic valence qua
When taking the same discontinuity near the origin
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PQChPT it has also been shown that one recovers am
other terms the analytical prediction for the slope of the sp
tral density of the Dirac operator at the origin@6,7#, a for-
mula first derived in the QCD case by Smilga and Stern@12#.
The same analysis has recently been extended to the
other major chiral symmetry breaking classes by Toub
and Verbaarschot@8#. There are thus also plenty ofphysical
applications of PQChPT that have nothing to do with t
artifacts of the quenched approximation at all.

While the supersymmetric approach to QChPT a
PQChPT has been well tested, and is by now quite w
understood, it is still of interest to find alternative means
formulating the same problem. In particular, the supersy
metry itself is not fundamental and not an inherent prope
of QChPT and PQChPT. Indeed, it has recently been sh
in the context of the finite-volume effective chiral Lagran
ian related to the soft part of the Dirac operator spectrum@9#
that the so-called replica method can provide a useful al
native technique@13#. Here full or partial quenching is in-
stead achieved by addingNv valence quarks~of usual statis-
tics!, and then taking the limitNv→0 at the end of the
calculation. In ordinary QCD perturbation theory this proc
dure trivially kills all valence quark loops. In the framewor
of the effective Lagrangian of Goldstone bosons it is far fro
obvious that such a procedure can be carried out explicitly
entails an extension of the chiral symmetry group U(N) to
non-integerN, and integrals over such a group are not kno
in closed form. Nevertheless, it turns out that in series
pansions the required analytical continuation can be car
out explicitly @13#, and results agree with what was earli
established by the supersymmetric method@6,7#. This sug-
gests that also conventional QChPT and PQChPT can
performed by simply taking the limitNv→0. In this paper
we shall show that this is indeed the case. We shall give
very simple Feynman rules, and explain the intimate re
tionship to QChPT and PQChPT in the supersymmetric f
mulation. As a simple illustration we show how to derive t
partially quenched chiral condensate to one-loop order us
this replica method. This fully or partially quenched chir
condensate is a particularly convenient observable on wh
to test the non-perturbative finite-volume scaling results d
cussed above@14,15#. The way partially quenched chiral pe
turbation theory smoothly matches this regime has been
plained in Ref.@6#.
©2000 The American Physical Society09-1
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After providing the Feynman rules, it becomes quite o
vious how the replica method in perturbation theory
equivalent to the supersymmetric method. We illustrate
few of the counting rules by considering a chiralk-point
function below. Mainly out of curiosity, we also show how
variant of the replica method that is supersymmetric can
used to provide identical results. This supersymmetric v
ant is however slightly more cumbersome than the conv
tional Nv→0 replica method, and we do not propose to u
that particular variant for practical calculations.

II. THE REPLICA METHOD

As explained above, with the replica method one addsNv
valence quarks to the QCD Lagrangian, which here can
taken as any SU(Nc>3) gauge theory withNf physical~sea!
quark flavors. Depending on the applications, it can be c
venient to introducek sets of such valence quarks withk
different massesmv j

, each set containingNv new quark fla-

vors. The physical quark masses are denoted bymf . The
QCD partition function with thesekNv additional quark spe-
cies reads

Z (Nf1kNv)5E @dA#)
j 51

k

det~ iD” 2mv j
!Nv

3)
f 51

Nf

det~ iD” 2mf !e
2SYM[A] . ~1!

This partition function can be viewed as an unnormaliz
average ofk sets ofNv identical replicas of the following
partition functions of quarks in a fixed gauge field bac
groundAm :

Zv j
[E @dc̄ jdc j #expF E d4xc̄ j~ iD” 2mv j

!c j G ~2!

in the sense that

Z (Nf1kNv)5E @dA#)
j 51

k

@Zv j
#Nv)

f 51

Nf

det~ iD” 2mf !e
2SYM.

~3!

Clearly, if we setNv50 this just reproduces the origina
QCD partition function. But the theory extended withkNv
additional quark species in this way is a generating fu
tional for partially quenched averages ofc̄ jc j and mixed
averages also involving physical quark fields. One sim
setsNv to zeroafter having performed the functional differ
entiations

x~mv1
, . . . ,mvk

,mf 1
, . . . ,mf l

,$mf%!

[ lim
Nv→0

1

Nv
k

1

Nf
l

]

]mv1

•••

]

]mvk

]

]mf 1

•••

]

]mf l

ln Z (Nf1Nv).

~4!
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Technically, it can be convenient to add local sources
both scalar and pseudoscalar quark bilinearsc̄ j (x)c j (x) and
c̄ j (x)g5c j (x) and similarly for the vector and axial vecto
currents~for simplicity taken flavor diagonal!. If needed, one
can of course introduce corresponding sources in the ph
cal quark sector. Because such terms have no bearing on
arguments presented below, we shall for simplicity om
them here.

Adapting the replica method to the chiral Lagrangian

For Nv integer, andNf1kNv small enough, chiral sym-
metry is assumed to be spontaneously broken accordin
the standard pattern of SUL(Nf1kNv)3SUR(Nf1kNv)
→SU(Nf1kNv). The effective low-energy theory can ther
fore be described in the entirely conventional framework o
chiral Lagrangian based on SU(Nf1kNv), with no new as-
sumptions about the pattern of chiral symmetry breakin1

The casesNf50 andNf51 are obviously very special here
For Nf51 there is not any spontaneous breaking of ch
symmetry in the theory after takingNv to zero, and the case
Nf50 ~which would correspond to full quenching! is so un-
usual that we shall discuss it separately.

Having in mind a possibly non-trivial role played by th
flavor singlet meson, the lowest-order effective chiral L
grangian is taken to be the usualO(p2) expression

L5
F2

4
Tr~]mU]mU†!2

S

2
TrM~U1U†!

1
m2

2Nc
F0

21
a

2Nc
]mF0]mF0 . ~5!

Here the fieldU[exp@iA2F/F# is an element of SU(Nf
1kNv), and we have kept the flavor-singlet fieldF0
[TrF. As in the supersymmetric method@1#, it proves con-
venient to work in a ‘‘quark basis’’ whereF i j corresponds to
c̄ ic j . With all external sources set to zero, this gives
simple propagator for the ‘‘off-diagonal’’ mesons corr
sponding toF i j ;c̄ ic j ,iÞ j :

Di j ~p2!5
1

p21Mi j
2

, ~6!

while for the ‘‘diagonal’’ mesonsF i i ;c̄ ic i the propagator
can be written in the form@2#

1The reader might worry about the assumption thatNf1kNv
should be taken small enough for the theory to support spontan
chiral symmetry breaking. Actually, there will be no new constra
from this. We simply analyze the chiral Lagrangian for arbitra
Nf1kNv even though this Lagrangian is only the low-ener
theory of QCD forNf1kNv sufficiently small. However, we take
the limit Nv→0 in the end. Then we must meet only the usu
constraint that the number ofphysical light quarksNf should be
small enough to lead to spontaneous chiral symmetry breaking
9-2
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TABLE I. The propagators for replica PQChPT, SU(Nf1kNv), and supersymmetric PQChPT, SU(Nf

1kuk). The signe i is defined ase i[1 for i 51, . . . ,Nf1k ande i[21 for i 5Nf1k11, . . . ,Nf12k. Note
that F coincides in the partially quenched limit of the two approaches.

Propagator Replica PQChPT Supersymmetric PQCh

Di j (p2) 1

p21Mij
2

e i

p21Mi j
2

Gi j (p2) dij

~p21Mii
2!

2
~m21ap2!/Nc

~p21Mii
2!~p21Mjj

2 !F~p2!

e id i j

~p21Mii
2 !

2
~m21ap2!/Nc

~p21Mii
2 !~p21M j j

2 !F~p2!

F(p2)
11

m21ap2

Nc
S(

j51

k
Nv

p21Mvjvj

2
1(

f51

Nf 1

p21Mff
2 D 11

m21ap2

Nc
(
f51

Nf12k
ei

p21Mii
2
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Gi j ~p2!5
d i j

~p21Mii
2 !

2
~m21ap2!/Nc

~p21Mii
2 !~p21M j j

2 !F~p2!
. ~7!

HereMi j
2 [(mi1mj )S/F2 and

F~p2![11
m21ap2

Nc
S (

j 51

k
Nv

p21M v jv j

2
1(

f 51

Nf 1

p21M f f
2 D .

~8!

Note thatNv enters as a parameter due to the mass de
eracy of the valence quarks in each of thek sets. This is
exactly what is required in order to apply the replica meth
We remark that the unusual form of the propagator~7! just
stems from using the quark basis and including the fla
singlet fieldF05TrF, and not from any peculiarities of par
tial quenching. Although we borrow the result~7! from Ref.
@2#, it is also unrelated to the supersymmetry of the meth
discussed there.

By including theF0 field in the Lagrangian we have kep
open the possibility of studying various expansion schem
~see, e.g., the second reference of@1#!. The F0 terms affect
only Gi j . For Gii the flavor-singletF0 can give rise to
double poles in the partially quenched limit, but the appe
ance of such double poles is not special to the rep
method. Indeed such double poles are also present in
supersymmetric formulation where a thorough study
been done@1–3#. As we prove in the next section the tw
formulations have equivalent perturbative expansions.
appearance of the double pole in the replica method is th
fore completely analogous to the case of the supersymm
formulation. In particular, we note that also in the repli
formalism the caseNf50 is quite special since in that cas
F(p2) simply becomes unity, and the double pole inGii is
unavoidable. Moreover, in just that case there is no dec
pling as the scalem is sent to infinity.

In Table I we give the explicit relation between the Fey
man rules based on the replica method, and those base
the supersymmetric formulation. The supersymmetry Fe
man rules are supplemented by the standard relative m
sign between boson and fermion loops. Despite the a
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tional minus signs in the Feynmann rules of the supersy
metric formulation, the Green functions are identical in t
two formulations. As we show below, the signs due tocom-
binatorics in the replica method match those arising fro
statistics and the supertrace in the supersymmetric form
tion.

III. THE EQUIVALENCE BETWEEN REPLICA
AND SUPERSYMMETRIC PQChPT

In this section we formulate the equivalence between
generating functional of PQChPT in the replica and sup
symmetric formulations. The equivalence proof is by defa
restricted to perturbation theory~expressed in terms of th
Feynman rules!, and we can in principle not make any stat
ments at the non-perturbative level. But this is as it sho
be, as our whole framework in any case is restricted to ch
perturbation theory. The Lagrangian itself contains an in
nitely long string of interactions that become relevant w
increasing loop order, and we shall only demonstrate
equivalence at the one-loop level. However, seeing how
equivalence proof proceeds, it is pretty obvious how to g
eralize this to arbitrarily high order.

Our claim is: The generating functional of replic
PQChPT for Nf1kNv flavors with k sets of Nv mass-
degenerate quarks is in perturbation theory equivalent to
generating functional of supersymmetric PQChPT forNf
1k fermionic andk bosonic quarks.

By equivalence between the SU(Nf1kNv) and the
SU(Nf1kuk) generating functionals is meant that the chi
expansions are equivalent order by order. Of course, the
spective limits,Nv→0 and mass degeneracy between thk
bosons andk of the fermions, are to be introduced at the e
of the calculations. While we believe that this statemen
true we will as mentioned above only address the equ
lence at the one-loop level. At this one-loop level the con
butions from theO(p4) chiral Lagrangian act as counte
terms and we can base the discussion on the Lagrangia
Eq. ~5!.

Let us first consider the sea sector.~The term sea sector i
used when only sea quark masses are involved in diffe
9-3
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tiations of the generating functional.! For this sector both
methods are equivalent to SU(Nf) ChPT. In the replica for-
mulation the contributions from the valence quarks at o
loop to any of the correlators

x~mf 1
, . . . ,mf l

,$mf%![
1

Nf
k

]

]mf 1

•••

]

]mf k

ln Z (Nf1Nv),

~9!

are necessarily proportional to positive powers ofNv . Hence
the dependence on the valence quarks vanishes asNv→0,
leaving the sea sector equivalent to SU(Nf) ChPT. The
analogous statement in supersymmetric PQChPT was pr
in Ref. @2#. This equivalence was formulated as three th
rems in that reference. At the risk of making some overs
plifications we state them compactly as follows:

~I! The sea sector of SU(Nf1kuk) PQChPT is equivalen
to SU(Nf) ChPT.

~II ! The super-h8 is equivalent to the conventionalh8 of
SU(Nf) ChPT.

~III ! The double pole ofGii arise at a given fermionic
quark mass if and only if all fermionic quarks with this ma
are paired up by bosonic quarks.

In the supersymmetric formalism theorem I is establish
by noting thatk of the fermionic quarks and thek bosonic
quarks only appear as virtual loops in the sea sector. S
these 2k quarks are paired up in masses the virtual loo
cancel explicitly. This cancellation is also responsible
establishing theorem~II ! in the supersymmetric formalism
only now it takes place in the quark loop corrections to
h8-propagator. Finally theorem~III ! follows directly from
the structure of the last term inGii . We emphasize here tha
the obvious analogs of both theorems~I! and ~II ! are com-
pletely trivial in the present replica formalism. Theore
~III !, when re-stated in the language of the replica formalis
stipulate under what circumstances the potential double
of Gii is canceled: By inspection this occurs whenMii
5M f f for at at least one physical meson labeled byf f . The
proof of theorem~III ! is then almost identical in the replic
and supersymmetric formulations. In the phrasing of Re
@1–3# the double poles can only occur at mass scales tha
completely quenched.

In the remaining quark sectors the equivalence is far
trivial. However, the supersymmetric bosonic Green fu
tions equal the fermionic ones up to a well defined sign.
we can focus on the sectors involving fermionic valen
quarks.

The equivalence in these sectors is not just of acade
interest. As mentioned in the Introduction, differentiatio
with respect to valence quark masses may be relate
physical quantities. For instance the partially quenched ch
condensate for the valence quarks,

S~mv ,$mf%![ lim
Nv→0

1

Nv

]

]mv
ln Z (Nf1Nv), ~10!
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can be used to determine the Dirac spectral density. T
density is given by the discontinuity of the partial
quenched chiral condensate across a cut on the imagi
axis @6#:

r~l;$mf%!5
1

2p
Discumv5 ilS~mv ,$mf%!

5
1

2p
lim
e→0

@S~ il1e,$mf%!2S~ il2e,$mf%!#.

~11!

@This identification holds when one considersS(mv ,$mf%)
as a function of areal massmv , and then replacesmv→ il
6e.#

In the valence sector and the mixed sector the equivale
is established in two steps.First, notice that the propagato
~7! of replica PQChPT forNv50 is identical to the one for
the fermionic sector of the corresponding supersymme
PQChPT in the limit where each of the boson masses
paired up with a fermion mass; see Table I.~This equiva-
lence holds trivially for the off-diagonal quark anti-qua
propagators.! Second, the signs arising from combinatorics i
the replica method is exactly matched by the opposite si
of boson and fermion loops occurring in the supersymme
formulation.

In order to see exactly how the signs come to match in
two approaches, we explicitly give the derivation of th
k-point function in the valence sector. The generalization
the mixed sector follows in complete analogy.

A. The one-point function in the valence sector

In this first example we give the contributions to the v
lence quark mass dependent chiral condensate defined in
~10!. We show how the cancellations that occur exac
match those of the supersymmetric formulation. It turns
that this simple 1-point function actually is ideally suited f
illustrating the equivalence between the replica method
the supersymmetric method, as all essential properties o
propagators and of the combinatorics come into play.

To evaluate the one-point function we need to introdu
just one set of replica fermions. Explicitly performing th
differentiation of the generating functional, see Eq.~10!, or
alternatively counting the number of realizations of qua
flow diagrams we have, to one loop,

S~mv ,$mf%!

S
5 lim

Nv→0

1

Nv
FNv2

1

F2 S Nv(
f 51

Nf

D~M v f
2 !

1Nv~Nv21!D~M vv
2 !

1Nv

1

V (
p

Gvv~p2!D G , ~12!

where
9-4
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D~Mi j
2 ![

1

V (
p

1

p21Mi j
2

[
1

V (
p

Di j ~p2! ~13!

is a one-loop integral of the standard diagonal propagator
the off-diagonal mesons,F i j ;c̄ ic j , iÞ j . ~We write every-
thing in finite-volume notation, having also in mind applic
tions of the kind discussed in Refs.@6–8#.! The first term in
(1/V)(pGvv(p2) is simply D(M vv

2 ). For arbitraryNv this
term is seen to cancel against the term just beforeGvv . In
the Nv→0 limit we also get rid of the term proportional t
Nv , leaving simply

S~mv ,$mf%!

S
512

1

F2 S (
f 51

Nf

D~M v f
2 !

2
1

V (
p

~m21ap2!/Nc

~p21M vv
2 !~p21M vv

2 !F~p2!
D .

~14!

This is completely analogous to the result obtained in
supersymmetric formulation. In that case a similar cance
tion takes place between the first term in (1/V)(pGvv(p) and
the loop of the meson built up by the fermionic and boso
valance quark. It is also instructive to trace the cancellat
of valence quark loops. In the supersymmetric formulat
this cancellation occurs because of a matching boson lo
while in the present formulation it is due tothe lack of a
replica fermion. Pictorially speaking, this lack of a replic
fermion acts like a boson.

B. The k-point function in the valence sector

As for the condensate, thek-fold derivative, k>2, of
ln Z (Nf1kNv) with respect to each of the valence qua
masses is related to the spectralk-point function. The evalu-
ation of thek-fold derivative is quite simple but we need
treat the casek52 separately. The reason is simple: T
product

(
j ,k51

Nf12Nv

F i j ~x1!F j i ~x1!F lk~x2!Fkl~x2!, iÞ l ~15!

occurring in the two point function includes two connect
terms, namely

Fv1v1
~x1!Fv2v2

~x2!Fv2v2
~x2!Fv1v1

~x1!

and

Fv1v2
~x1!Fv2v1

~x2!Fv1v2
~x2!Fv2v1

~x1!.

For k.2 there is no connected analogue of the lat
‘‘crossed diagram,’’ sincek of the indices must be differen
~we differentiate with respect to different masses!. The
2-point function is thus different from higherk-point func-
05450
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e
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tions because meson loops correspond to just qu
antiquark lines. In terms of the propagators the two-po
function is2

x~mv1
,mv2

,$mf%!

S2
5 lim

Nv→0

1

Nv
2

1

F4

3S Nv
2 1

V (
p

Dv1v2
~p2!Dv2v1

~p2!

1Nv
2 1

V (
p

Gv1v2
~p2!Gv2v1

~p2! D ,

~16!

whereas fork.2 there is no crossed diagram, and we are
with

x~mv1
, . . . ,mvk

,$mf%!

Sk

5 lim
Nv→0

1

Nv
k

~21!k
1

F2k
Nv

k 1

V (
p

Gv1v2
~p2!•••Gvkv1

~p2!.

~17!

We observe that in both cases theNv dependence is such tha
the limit Nv→0 becomes trivial. The corresponding expre
sions in the supersymmetric formalism are identical. N
that sea fermion and ‘‘ghost’’ loops only appear in the on
point function.

IV. FROM REPLICAS TO SUPERSYMMETRY

Interestingly, in perturbation theory it is possible to use
peculiar variant of the replica method that is supersymmet
This is because allNv dependence in the propagators a
vertices is entirely parametric. We can thus make replica
an arbitrary real number of valence quarks. Moreover, par
quenching can be achieved not only by takingNv→0, but
also by takingNv to any fixed number of quarksNv8 , and
re-interpreting the remainingNf1Nv8 as physical quarks~of
which it just happens that at leastNv8 are degenerate in mass!.
Because theNv dependence is parametric in perturbati
theory, we can trivially go one step further and conside
partially quenched theory ofNf physical fermions as the
limit Nv→2Ñv of a theory based onNf1Ñv1Nv quarks,
out of which theÑv1Nv quarks are degenerate in massm̃v
5mv . This corresponds to considering the effective theo
of a fundamental partition function that is partially supe
symmetric~for simplicity considering only one such set o
replica quarks!:

2This chiral 2-point function has been analyzed in the supers
metric formulation by Osborn, Toublan, and Verbaarschot~private
communication!.
9-5
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Z (Nf1Ñv1Nv)uNv52Ñv
5E @dA# det~ iD” 2mv!Nv )

f 51

Nf1Ñv

det~ iD” 2mf !e
2SYM[A] uNv52Ñv

5E @dA#
det~ iD” 2m̃v!Ñv

det~ iD” 2mv!Ñv
)
f 51

Nf

det~ iD” 2mf !e
2SYM[A] . ~18!

At this level the partition function is exactly as the starting point of the supersymmetric method. However, when we c
the effective partition function in terms of the Goldstone bosons, the working rules are entirely different. We ke
Feynman rules of Table I, and just remember to take the limitNv→2Ñv in the end. The fact that this procedure works is
course a direct consequence of the fact that in perturbation theory we can get bosons from fermions by letting the n
~degenerate! species go from positive to negative~also the ‘‘statistics’’ sign of closed fermion loops relative to closed bo
loops comes out right in this way!.

It is instructive to see how this supersymmetric variant of the replica method works in detail. Consider again our pr
of a Green function, that of the partially quenched chiral condensate. Using the notation of above, we find

S~mv ,$mf%!

S
[ lim

Nv→2Ñv

mv→m̃v

]

]mv
lnZ (Nf1Ñv1Nv)

5 lim
Nv→2Ñv

mv→m̃v

1

Nv
FNv2

1

F2 S NvF (
f 51

Nf

D~M v f
2 !1ÑvD~M vṽ

2
!G1Nv~Nv21!D~M vv

2 !1Nv

1

V (
p

Gvv~p2!D G , ~19!

whereM vṽ
2

[(mv1m̃v)S/F2, andGvv(p2) is as in Table I, except for the obvious change that now

F~p2![11
m21ap2

Nc
S Nv

p21M vv
2

1
Ñv

p21M ṽ ṽ
2 1(

f 51

Nf 1

p21M f f
2 D . ~20!
re
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Taking the degenerate mass limitm̃v5mv and letting Nv

→2Ñv we note that terms cancel out exactly as in the p
vious Nv→0 replica method. For instance, inF(p2) the

terms linear inNv andÑv just cancel each other. In Eq.~19!
the term proportional toNv

2 , which previously dropped ou
trivially in the Nv→0 limit, is now precisely canceled by

similar term proportional toNvÑv→2Ñv
2 . All ‘‘unwanted’’

terms thus exactly cancel as they should, and we are left
the correct one-loop result~14!. As we mentioned earlier
this example of the one-point function is actually the m
instructive for illustrating the cancellations. The oth
k-point functions clearly proceed analogously.

Although it is thus possible to make a supersymme
variant of the replica method, it is obviously rather pointle
to do so. The simplest Feynman rules come from using
the conventionalNv→0 limit. We also note that although th
starting partition function~18! is identical to that forming the
basis for the supersymmetric chiral Lagrangian@1,2#, the ef-
fective theory one works with in the analogous supersy
metric replica scheme is of a very different nature, and ha
fact here only been defined by means of the perturba
expansion.
05450
-
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t

c
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-
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V. CONCLUSIONS

We have shown how the replica method can be adapte
chiral perturbation theory. This provides a new and syste
atic realization of quenched and partially quenched ch
perturbation theory. We have demonstrated how the rep
method is equivalent to the supersymmetric formulation
perturbation theory. This equivalence is quite trivial in t
sector of physical quarks, and has allowed us to extend
three theorems of@2# to the present replica formulation o
PQChPT. The equivalence between the replica and the
persymmetric formalisms also extends outside the sea se
The complete agreement~at least to one-loop order! of the
two approaches offers a non-trivial consistency check.
particular, the assumed extension of the standard symm
breaking pattern to the supergroup case is avoided in
present context. The fact that results agree can be take
independent confirmation of the validity of both approach

As an equivalent but nevertheless independent form
tion of PQChPT the replica method illustrates the fact t
supersymmetry is a technical tool for quenching rather th
of fundamental nature. For practical purposes the usefuln
of the replica method as compared to the supersymme
formulation is perhaps a matter of taste. The advantage
9-6
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having fewer sign-rules using the replica method is to so
extent traded for the marginally simpler combinatorics in
supersymmetric formulation.

Finally, the replica method presented here gives the ba
ground and the justification for the rules observed by Col
gelo and Pallante in@4#. Within the supersymmetric formu
lation they studied fully quenched chiral perturbation theo
to one loop. Based on an explicit calculation of the diverg
parts of the generating functional for both SU(kuk) @and the
additional U~1! of the F0# and standard SU(Nf) chiral per-
turbation theory~without the F0), they proposed a set o
rules for writing down large parts of the SU(kuk) generating
functional from that of SU(Nv). The equivalence betwee
the SU(kuk) and SU(Nv→0) theories~when theF0 is in-
cluded in both!, is a special case of the general equivalen
established here. This formally establishes the rules s
gested in@4# and furthermore shows that the terms missing
,

uc

e

ev

05450
e
e

k-
-

y
t

e
g-

SU(Nf→0) chiral perturbation are just those produced
including the F0. The procedure to compute in partiall
quenched chiral perturbation theory to any order is now
tremely simple. One must take a usual chiral SU(Nf1Nv)
chiral Lagrangian and add the contributions fromF0. For
example, to orderp6 the whole list of divergent contribution
in the case of a degenerate SU(Nv) theory is provided in Ref.
@16#. This can form the basis for a fully quenched calculati
once the contributions from the flavor singlet have been
cluded~for a discussion of the large-Nc limit, see e.g., Ref.
@17#!.
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