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Hamiltonian lattice quantum chromodynamics at finite chemical potential
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At sufficiently high temperature and density, quantum chromodynamics~QCD! is expected to undergo a
phase transition from the confined phase to the quark-gluon plasma phase. In the Lagrangian lattice formula-
tion the Monte Carlo method works well for QCD at finite temperature; however, it breaks down at finite
chemical potential. We develop a Hamiltonian approach to lattice QCD at finite chemical potential and solve
it in the case of free quarks and in the strong coupling limit. At zero temperature, we calculate the vacuum
energy, chiral condensate, quark number density and its susceptibility, as well as mass of the pseudoscalar,
vector mesons and nucleon. We find that the chiral phase transition is of first order, and the critical chemical
potential ismC5mdyn

(0) ~dynamical quark mass atm50). This is consistent withmC'MN
(0)/3 ~whereMN

(0) is the
nucleon mass atm50).

PACS number~s!: 12.38.Gc, 11.10.Wx, 11.15.Ha, 12.38.Mh
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I. INTRODUCTION

A. Motivation

According to the big bang model in cosmology, the ea
universe underwent a series of drastic changes. For s
time it was a hot and dense quark-gluon plasma~QGP!,
where quarks and gluons were deconfined. Today it is
low temperature and low density hadronic phase, wh
quarks are confined. The ultimate goal of machines suc
the Relativistic Heavy Ion Collider~RHIC! at BNL and the
Large Hadron Collider~LHC! at CERN is to create the QG
phase. The QGP may also exist in the core of very de
stars such as neutron stars. Quantum chromodyna
~QCD! is the fundamental theory of quarks and gluons.
precise determination of the QCD phase structure at fi
temperatureT and chemical potentialm will provide valu-
able information in the experimental search for the QG
The lattice gauge theory~LGT! proposed by Wilson in 1974
is a very reliable technique for the investigation of pha
transitions. There are no free parameters in LGT when
continuum limit is taken, in contrast with other nonperturb
tive techniques. Although the standard lattice Lagrang
Monte Carlo method works very well for QCD at finite tem
perature, it unfortunately breaks down at finite chemical
tential ~due to the so-called complex action problem!. This is
briefly summarized in Sec. I B. On the other hand, latt
QCD at finite chemical potential formulated in the Ham
tonian approach does not encounter a complex action p
lem. In Sec. II we develop a Hamiltonian approach to latt
QCD at finite chemical potentialm. We solve this in the case
of free quarks and in the strong coupling limit.

B. Present status

LGT is an approach to QCD from first principles. How
ever, it is not free of problems:~a! First, there are lattice

*Corresponding author. Email address: stslxq@zsu.edu.cn
†Mailing address.
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artifacts: A finite volume and a finite lattice spacing intr
duce errors.~b! There is a no-go theorem for chiral fermion
There is species doubling of any local fermionic theory w
continuous symmetries. For naive fermions, chiral symme
is preserved, but the species are doubled and the c
anomaly is wrong. Kogut-Susskind fermions preserve
continuous U~1! chiral symmetry, but break explicitly flavo
symmetry. For Wilson fermions, the flavor symmetry exis
but chiral symmetry is explicitly broken. Kogut–Susskin
fermions and Wilson fermions have been extensively use
numerical simulations. Recently, there has been evide
showing that those two approaches may give the topolog
charge or anomaly incorrectly@1# on a finite lattice. There-
fore, it is far from clear whether correct results in the co
tinuum can be obtained using those fermion formulatio
Kaplan’s domain wall fermions@2# and Neuberger’s overlap
fermion formulation@3# have attracted much attention, b
cause they give the correct chiral modes, they also prod
the correct anomaly and topological charge. For domain w
fermions there is an extra dimension and the lattice size
this dimension has to be very large. Thus algorithms suita
for those new fermion approaches need to be developed
this paper, we do not address those problems.

Here we would like to investigate lattice QCD at fini
chemical potential. In the continuum, the grand canoni
partition function of QCD at finite temperatureT and chemi-
cal potentialm is given by

Z5Tr e2b(H2mN), b5~kBT!21, ~1.1!

wherekB is the Boltzmann constant,H is the Hamiltonian,
andN is particle number operator

N5E d3x c†~x!c~x!. ~1.2!

The energy density of the system with free quarks is giv
by @4#
©2000 The American Physical Society08-1
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e5
1

V

1

Z
Tr He2b(H2mN)52

1

V

] ln Z

]b U
mb

. ~1.3!

Going over toT→0, the energy density~where the contri-
bution of m50 is subtracted! becomes

esub5
4p

~2p!4E2`

`

d3p

3QS m2A(
j 51

3

pj
21m2DA(

j 51

3

pj
21m2. ~1.4!

Here Q is the step function. In the chiral limitm→0 one
obtains

esub5
1

4p3E
2`

`

d3p Q~m2upW u!upW u5
1

p2E
0

m

upW u3dupW u5
m4

4p2 .

~1.5!

In the Hamiltonian formulation of LGT, Eq.~1.1! in well
defined. For Wilson fermions or Kogut–Susskind fermio
the relation Eq.~1.5! is satisfied~see below!. However, if one
constructs the fermionic lattice Lagrangian via Legen
transformation of the Hamiltonian, one cannot reproduce
continuum relation Eq.~1.5!. Let us take the naive fermion
as an example. The action obtained via Legendre transfor
tion of H reads

Sf5a4(
x

mc̄~x!c~x!1
a3

2 (
x

(
k561

64

c̄~x!gkc~x1 k̂!

1a4m(
x

c†~x!c~x!, ~1.6!

whereg2k52gk . This action gives the following result fo
the subtracted energy density:

esub5
2a24

4p4 E
2p

p

d4p

(
j 51

3

sin2 pj1~ma!2

~sinp42 ima!21(
j 51

3

sin2 pj1~ma!2

2@m50#. ~1.7!

Taking the limit m→0 and the continuum limita→0, esub
}(m/a)2, i.e., becoming quadratically divergent, and the
fore it is inconsistent with the continuum result of Eq.~1.5!.
This problem is not due to the species doubling of na
fermions, because the case of Kogut–Susskind fermion
Wilson fermions is similar.

Hasenfratz and Karsch@5# proposed the following solu
tion: If (sin p42im)2 is replaced by sin2(p42im) the con-
tinuum result Eq.~1.5! is reproduced, except for a factor o
16. Correspondingly in the action, the chemical potentia
introduced in the following way:
05450
,
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Sf5a4(
x

mc̄~x!c~x!1
a3

2 (
x

(
j 51

3

@c̄~x!g jc~x1 ĵ !

2c̄~x1 ĵ !g jc~x!#1
a3

2 (
x

@emac̄~x!g4c~x14̂!

2e2mac̄~x14̂!g4c~x!#. ~1.8!

The chemical potential can be introduced analogously
KS as well as for Wilson fermions. Such treatment of t
chemical potential is numerically feasible in the quench
approximation~where the fermionic determinant detD is
constraint to be 1, and quark loops are suppressed!. How-
ever, there is evidence@6# that the quenched approximatio
produces an unphysical onset of the critical chemical pot
tial at the valuemC5Mp(mÞ0)/2, being in conflict with
other theoretical predictionsmC'MN

(0)/3 @MN
(0) is the

nucleon mass atm50 andMp(mÞ0) is the pion mass a
finite bare quark massm. A finite bare quark mass must b
introduced in most of the numerical simulations#. The un-
physical onset ofmC is considered as a defect of th
quenched approximation.

For full QCD, the fermionic degrees of freedom have
be integrated out. In the measure occurs the fermionic de
minant detD. For finite chemical potential detD becomes
complex~complex action problem!, which renders numerica
simulations extremely difficult. Much effort has been ma
to solve the notorious complex action problem.~1! The Glas-
gow group has suggested to treat detD as observable@7#.
This method requires a very large number of configuratio
in particular for m'mC . Even on a very small latticeV
544, the computational costs exceed the current comp
capacity@8#. ~2! In the imaginary chemical potential metho
@9# detD becomes real, which works well for numeric
simulations at high temperature and low density. But it mig
not work at low temperature and high density.~3! It has been
proposed to utilize a special symmetry@10#. This is the only
successful method in Lagrangian lattice QCD, but it wor
only for the SU~2! gauge group.~4! Recently, a new ap-
proach has been proposed in@11#, using quantum spin vari-
ables. It remains to be seen whether this can be applie
QCD.

II. HAMILTONIAN APPROACH

A. Free fermions at zero chemical potential

The lattice Hamiltonian describing noninteracting Wilso
fermions ind11 dimensions atm50 reads

H5(
x

mc̄~x!c~x!1
1

2a (
x,k56 j

c̄~x!gkc~x1 k̂!

1
r

2a (
x,k56 j

@c̄~x!c~x!2c̄~x!c~x1 k̂!#. ~2.1!

We want to diagonalizeH so that the fermionic fieldc can
be expressed in terms of up and down 2-spinorsj andh†,
8-2
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c5S j

h†D . ~2.2!

We define the bare vacuum stateu0& as

ju0&5hu0&50. ~2.3!

Since the up and down components are coupled via thegk
matrices, the bare vacuum is not an eigenstate ofH. Let
uV. denote the physical vacuum state, andEV the vacuum
energy. One can use a unitary transformation to decouple
up and down components@12#,

H85exp~2 iS!H exp~ iS!. ~2.4!

Such a transformation is similar to the Foldy-Wouthuys
transformation@13#. Then the physical vacuum state ofH
can be expressed as

uV&5exp~ iS!u0&. ~2.5!

The operatorS can be computed explicitly. For Wilson (r
Þ0) or naive (r 50) fermions it reads@12#

S5(
p

upSp ,

Sp52
1

Ap
(
j 51

d

cp
†g jcp

sinpja

a
, ~2.6!

Ap5F (
j 51

d S sinpja

a D 2G1/2

,

and p is the momentum. The transformed Hamiltonian b
comes

H85(
p

F Fm1
2r

a (
j 51

d

sin2~pja/2!Gcos 2up

1Ap sin 2upG c̄pcp1Fcos 2up2Fm1
2r

a

3(
j 51

d

sin2~pja/2!Gsin 2up

Ap
G(

j 51

d

c̄pig j

sinpja

a
cp .

~2.7!

The vacuum energy is given by

EV5^VuHuV&5^0uH8u0&

522NcNf(
p

F Fm1
2r

a (
j 51

d

sin2~pja/2!Gcos 2up

1Ap sin 2upG , ~2.8!

whereNc andNf , respectively, are the number of colors a
number of flavors. The vacuum energyEV is minimized un-
der variation of the parametersup if
05450
he

n

-

tan 2up5
Ap

m1
2r

a (
j 51

d

sin2~pja/2!

. ~2.9!

This condition also leads to the cancellation of the seco
term in Eq.~2.7! coupling the up and down components su
that

H8u0&5(
p

Ap8c̄pcpu0&5EVu0&, ~2.10!

where we denote

Ap85F Fm1
2r

a (
j 51

d

sin2~pja/2!G2

1Ap
2G1/2

. ~2.11!

The vacuum energy becomes

EV522NcNf(
p

Ap8 . ~2.12!

It can be easily seen thatuV& is the eigenstate ofH andEV

is its eigenvalue. For Wilson fermions, in the continuu
limit a→0, for any finite momentump, we have

Ap8→Am21p2, ~2.13!

giving the correct dispersion relation.

B. Free fermions at nonzero chemical potential

We follow the same steps as in the casem50. According
to Eq. ~1.1!, the role of the Hamiltonian is now played by

Hm5H2mN, ~2.14!

whereH is given by Eq.~2.1! and N is given by Eq.~1.2!.
Let us define the stateunp ,n̄p& by

jpu0p ,n̄p&50, jp
†u0p ,n̄p&5u1p ,n̄p&,

jpu1p ,n̄p&5u0p ,n̄p&, jp
†u1p ,n̄p&50,

~2.15!
hpunp ,0p&50, hp

†unp ,0p&5unp ,1p&,

hpunp ,1p&5unp ,0p&, hp
†unp ,1p&50.

The numbersnp and n̄p take the values 0 or 1 due to th
Pauli principle. By definition, the up and down componen
of the fermion field are decoupled. Obviously, this is not
eigenstate ofHm due to the nondiagonal form ofH. How-
ever, they are eigenstates ofHm8 , which are related toHm by
a unitary transformation

Hm8 5exp~2 iS!Hm exp~ iS!5H82mN. ~2.16!

For the vacuum eigenstate ofHm we make an ansatz of th
following form:
8-3
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uV&5exp~ iS!(
p

f np ,n̄p
unp ,n̄p&. ~2.17!

S is given by Eq.~2.6! and the parameterup is given by Eq.
~2.9!. Both S andup do not depend onm because the quar
number operatorN commutes withS. H8 is given by Eq.
~2.7!. The vacuum energy thus obeys

EV5^VuHmuV&5 (
p8,p

f np8 ,n̄p8
f npn̄p

^np8n̄p8uHm8 unp ,n̄p&

5(
p

Cnp ,n̄p
^np ,n̄puH82mNunp ,n̄p&, ~2.18!

where we have introduced the notationCnp ,n̄p
5 f np ,n̄p

2 . From

Eq. ~2.15! follows

EV5(
p

Cnp ,n̄p
~Ap8^np ,n̄puc̄pcpunp ,n̄p&

2m^np ,n̄pucp
†cpunp ,n̄p&!

52NcNf(
p

Cnp ,n̄p
@~Ap82m!np1~Ap81m!n̄p2Ap82m#.

~2.19!

We have not yet specified the functionCnp ,n̄p
. For this pur-

pose we use the condition of stability of the vacuum. B
causem.0, the vacuum energy increases withnp . This
means the vacuum is unstable unlessn̄p50. This simplifies
Eq. ~2.19! to

EV52NcNf(
p

Cnp
@~Ap82m!np2Ap82m#, ~2.20!

where we use the abbreviationCnp
5Cnp,0 . From the nor-

malization conditionC0p
1C1p

51, we obtain

EV52NcNf(
p

@C1p
~Ap82m!2Ap82m#. ~2.21!

C1p
depends on the value ofm and its dependence can b

seen by inspection of the derivative

]EV

]C1p

52NcNf~Ap82m!. ~2.22!

For m.Ap8 , the right-hand side is negative. MaximizingC1p

means minimizing the vacuum energy. Therefore,C1p
51.

On the other hand, form,Ap8 , the right-hand side is positive
and for anyC1p

the vacuum is unstable. Therefore,C1p
50.

We can summarize these properties by writing

C1p
5Q~m2Ap8!. ~2.23!

Thus the vacuum energy becomes
05450
-

EV52NcNf(
p

~C1p
Ap82Ap8!. ~2.24!

The subtracted energy density reads

esub5
EV2EVum50

NcNfNs
5

2

Ns
(

p
C1p

Ap8

5
2

~2p!3E
2`

`

d3p Ap8Q~m2Ap8!. ~2.25!

Here Ns is the number of spatial lattice sites. In case
Wilson fermions, form50 and in the continuuma50, for
any finite momentump, one hasAp85upu. In 311 dimen-
sions, at the corners of the Brillouin zonepja5(p,0,0),
(0,p,0), (0,0,p), (p,p,0), (0,p,p), (p,0,p), (p,p,p),
one hasQ(m2Ap8)50. Therefore, in the continuum we fin

esub5
8p

~2p!3E
0

m

p d3p5
m4

4p2 . ~2.26!

Thus we have proven that we can reproduce in the Ham
tonian formulation the continuum result of the vacuum e
ergy density, Eq.~1.5!. For naive fermions, in the continuum
limit a50, there will be an extra factor of 2d.

C. Strong coupling QCD at nonzero chemical potential

1. Structure of the Hamiltonian

As is well known, lattice QCD atm50 confines quarks
and spontaneously breaks chiral symmetry. For a sufficie
large chemical potential, this picture may change. At latt
spacingaÞ0, as discussed in Sec. I B, none of the stand
approaches to lattice fermions is satisfactory. Here we set
to investigate finite density QCD in the strong coupling r
gime 1/g2!1, using the Hamiltonian formulation. One of th
goals is to get a better understanding of the mechanism
chiral phase transition. According to Ref.@12#, H8 in Eq.
~2.16! now is replaced by

H85Fm@12~2u0!2d#1
~2u0!d

a G(
x

c̄~x!c~x!

1
g2CN~2u0!2

8aNc
(

x
(

k56 j
cc1 , f 1

† ~x!gkcc2 , f 1
~x1 k̂!

3cc2 , f 2

† ~x1 k̂!gkcc1 , f 2
~x!, ~2.27!

whered53 denotes the spatial dimension,c1 , c2 are color
indices andf 1 , f 2 are flavor indices~summation over re-
peated indices is understood!, u051/(4ma1g2CN), and
CN5(Nc

221)/(2Nc). The four-fermion interaction is in-
duced by gauge interactions with fermions. A very simi
Hamiltonian has been derived in Ref.@14# using strong cou-
pling and largeNc expansion. After a Fierz transformation
H8 becomes@12#
8-4
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TABLE I. G matrices and coefficients.

GA 1 g j g4 g5 ig4g5 ig4g j i e j j 1 j 2
g j 1

g j 2
i e j j 1 j 2

g4g j 1
g j 2

LA 1 2112dk, j 21 21 1 122dk, j 2112dk, j 122dk, j
-

to

ch
s-

ion
H85Fm@12~2u0!2d#1
~2u0!d

a G(
x

c̄~x!c~x!

1
g2CNd~2u0!2

4a (
x

c†~x!c~x!

2
g2CN~2u0!2

32aNc
(

x
(

k56 j
LAc f 1

† ~x!GAc f 2
~x!c f 2

† ~x1k!

3GAc f 1
~x1k!. ~2.28!

The matricesGA andLA are given in Table I.
Let us define the following operators@12,15#:

P~x! f 1f 2
5

1

2A2 v̄
c f 1

† ~x!~12g4!g5c f 2
~x!,

~2.29!

Vj~x! f 1f 2
5

1

2A2 v̄
c f 1

† ~x!~12g4!g jc f 2
~x!,

where

v̄5
1

NfNs
(

p
Cnp ,n̄p

^np ,n̄puc̄pcpunp ,n̄p&

5
2Nc

Ns
(

p
Cnp ,n̄p

~np1n̄p21!. ~2.30!

Using mean field approximation, one can show that@15#

@P~x!,P†~x8!#5dx,x8 ,
~2.31!

@Vj~x!,Vj
†~x8!#5dx,x8 .

Thus the operatorsP andVj , defined in Eq.~2.29!, behave
like pseudoscalar and vector operators. In Ref.@15# it has
been shown that the operatorc̄c satisfies the same commu
tation relations asv̄12P†P12( jVj

†Vj . Therefore,H8 in
Eq. ~2.28! can be written in terms of pseudoscalar and vec
particle operators in the following way:

H85EV
(0)1G1(

x
S P†~x!P~x!1(

j
Vj

†~x!Vj~x! D
1

G2

2 (
x,k

S P†~x!P†~x1k!1(
j

Vj
†~x!Vj

†~x1k!

3~122d jk!1H.c.D , ~2.32!

where
05450
r

EV
(0)5NfNsFm@12~2u0!2d#1

~2u0!d

a G v̄
1NfNs

g2CNd~2u0!2

4a
v†2NfNs

g2CN~2u0!2d

16aNc

3~v2
†2 v̄2!,

G152Fm@12~2u0!2d#1
~2u0!d

a G1
g2CNd~2u0!2

4aNc
v̄,

G252
g2CN~2u0!2

8aNc
v̄,

~2.33!
v†5

1

NfNs
(

p
Cnp ,n̄p

^np ,n̄pucp
†cpunp ,n̄p&

5
2Nc

Ns
(

p
Cnp ,n̄p

~np2n̄p11!,

v2
†5

1

NfNs
(

p
Cnp ,n̄p

3^np ,n̄puc f 1 ,p
† c f 2 ,pc f 2 ,p

† c f 1 ,punp ,n̄p&

5
~2Nc!

2

Ns
(

p
Cnp ,n̄p

~np2n̄p11!2,

v̄25
1

NfNs
(

p
Cnp ,n̄p

3^np ,n̄puc̄ f 1 ,pc f 2 ,pc̄ f 2 ,pc f 1 ,punp ,n̄p&

5
~2Nc!

2

Ns
(

p
Cnp ,n̄p

~np1n̄p21!2.

In Eq. ~2.32!, we have ignored the nonmeson terms whi
give no contribution to the energy. Making a Fourier tran
formation, one obtains

H85EV
(0)1G1(

p
S P†~p!P~p!1(

j
Vj

†~p!Vj~p! D
1G2(

p
~P†~p!P†~2p!1H.c.!(

j
cospja

1G2(
p, j

~Vj
†~p!Vj

†~2p!1H.c.!

3S (
j 8

cospj 8a22 cospjaD . ~2.34!

This can be diagonalized by a Bogoliubov transformat
@12#
8-5
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P~p!5coshu~p!a~p!1sinhu~p!a†~2p!,
~2.35!

Vj~p!5coshv j~p!b~p!1sinhv j~p!b†~2p!,

where

tanh 2u~p!5
22G2

G1
(

j
cospja,

~2.36!

tanh 2v j~p!5
22G2

G1
S (

j 8
cospj 8a22 cospjaD .

This condition also minimizes the vacuum energy. The B
goliubov transformed Hamiltonian eventually becomes

H95EV
(0)1

Nf
2

2
G1(

p
@A12tanh2 2u~p!21#

1
Nf

2

2
G1(

p, j
@A12tanh2 2v j~p!21#

1G1(
p

A12tanh2 2u~p!a†~p!a~p!

1G1(
p, j

A12tanh2 2v j~p!bj
†~p!bj~p!. ~2.37!

2. Vacuum energy

The vacuum energy is given by

EV5^VuHmuV&5EV
(0)2NfNsmv†

1
Nf

2

2
G1(

p
@A12tanh2 2u~p!21#

1
Nf

2

2
G1(

p, j
@A12tanh2 2v j~p!21#. ~2.38!

From Eqs.~2.33!–~2.37!, we get form50

EV

2NfNc
5 (

np ,n̄p

Cnp ,n̄p
@~mdyn

(0)2m!np1~mdyn
(0)1m

12mdyn
(0)np!n̄p#2~m1mdyn

(0) ! (
np ,n̄p

Cnp ,n̄p

1
Nf

2
G1(

p
@A12tanh2 2u~p!21#

1
Nf

2
G1(

p, j
@A12tanh2 2v j~p!21#. ~2.39!

Here mdyn
(0)5d/(ag2CN) is the dynamical quark mass atm

50. It is obvious thatn̄p50, otherwise, the vacuum is un
stable. Using the notation and normalization condition
the coefficient as in Sec. II B, we obtain
05450
-

r

EV

2NcNf
5(

p
C1p

~mdyn
(0)2m!2(

p
~mdyn

(0)1m!

1
Nf

2
G1(

p
@A12tanh2 2u~p!21#

1
Nf

2
G1(

p, j
@A12tanh2 2v j~p!21#.

~2.40!

Again, using the same argument as in Sec. II B, the coe
cient C1p

must be

C1p
5Q~m2mdyn

(0) !. ~2.41!

Substituting into Eq.~2.40! yields

EV

2NcNfNs
5~mdyn

(0)2m!Q~m2mdyn
(0) !2mdyn

(0)2m

1
Nf

2Ns
G1(

p
@A12tanh2 2u~p!21#

1
Nf

2Ns
G1(

p, j
@A12tanh2 2v j~p!21#.

~2.42!

3. Chiral condensate and critical µ

According to the Feynman–Hellmann theorem, the ch
condensate is related to the ground state energy by

^c̄c&5
1

NfNs
lim

m→0

]EV~mÞ0!

]m
5^c̄c& (0)@12Q~m2mdyn

(0) !#,

~2.43!

where^c̄c& (0) is the chiral condensate atm50

^c̄c& (0)522NCS 12
4d

g4CN
2 D S 12

Nf

Nc
I 12

Nf

Nc
I 2D

~2.44!

and ford53

I 15
1

2~2p!3E
2p

p

d3p8S 1

A12S 1

3
(

j
cospj8D 2

21D
50.078 3546231026,
8-6
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I 25
1

2~2p!3 (
j
E

2p

p

d3p8

3S 1

A12S 1

3S (j 8 cospj 8
8 22 cospj8D D 2

21D
50.235 0756431026. ~2.45!

According to Eq.~2.43!, for m,mdyn
(0) , ^c̄c&5^c̄c& (0)

Þ0, i.e., chiral symmetry is spontaneously broken. Form

.mdyn
(0) , ^c̄c&50, i.e., chiral symmetry is restored. Ther

fore, there is a first order chiral phase transition and
critical value ofm is given by

mC5mdyn
(0)5

d

g2CNa
. ~2.46!

The critical chemical potentialmC is equal to the dynamica
quark mass atm50, which agrees with the result from a
entirely different method@16#. ~The authors argued this wa
a second order phase transition, in contrast we clearly
serve a first order transition.! Our result is consistent with
other theoretical predictionsmC'MN

(0)/3, because~see be-
low! at m50 holdsMN

(0)'3mdyn
(0) .

4. Quark number density and susceptibility

We can compute now the quark number density in
chiral limit m50, which yields

nq5
21

2NcNfNs

]EV

]m
21

5

^Vu(
x

c†~x!c~x!uV&

2NcNfNs
215Q~m2mC!, ~2.47!

which is consistent with theb50 simulation results de
scribed in@17#, and however, is different from the largem
behavior in the continuum~i.e., the Stefann–Boltzmann law
nq}m3). It remains to be seen whether higher order 1g2

calculations will improve this behavior.
The quark number susceptibility, standing for the

sponse of the quark number density to infinitesimal chan
in m, is

xq5
]nq

]m
5d~m2mC!. ~2.48!

5. Mass spectrum

Finally, let us look at some implications on the therm
mass spectrum of the pseudoscalar meson, vector meso
nucleon. The thermal mass is defined byMh

!5^huH
2mNuh&2EV . For the pseudoscalar meson, in the chi
limit m50,
05450
e

b-

e

-
s

l
and

l

Mp
! 5G1A12tanh2 2u~p50!5H 0 for m,mC ,

4mdyn
(0) for m.mC .

~2.49!

Therefore, in the broken phase, the pseudoscalar is a G
stone boson (Mp

! }Am→0), and in the symmetric phase, it
no longer a Goldstone boson. For the vector meson,

MV
!5G1A12tanh2 2v j~p50!5H MV

(0) for m,mC ,

4mdyn
(0) for m.mC ,

~2.50!

whereMV
(0)54Ad21/(ag2CN) is the vector mass atm50.

Therefore, ]M /]m}d(m2mC) for the pseudoscalar an
vector mesons. It is worth mentioning in Ref.@18#, the au-
thors found]M /]m50 outside the critical region. To see th
critical behavior at zero temperature, one should be v
close tomC . This behavior is consistent with that of th
quark number density discussed in Sec. II C 4. To
whether the meson thermal masses depend onm, higher or-
der 1/g2 corrections must be included.

For the nucleon, we obtain the expected behavior

MN
! 5MN

(0)23m ~2.51!

for m,mC , where MN
(0)'3mdyn

(0) . This leads toMN
! 50 at

m5mC .

III. OUTLOOK

In this paper, we have developed a Hamiltonian appro
to lattice QCD at finite density. It avoids the usual proble
of either an incorrect naive continuum limit or a prematu
onset of the transition to nonzero quark density asm is
raised. The main result in the free case is given by Eq.~2.26!,
and those in the strong coupling regime are given by E
~2.42!–~2.51!. We have seen that the approach works well
the free case and also in the strong coupling regime.
predict that at strong coupling, the chiral transition is of fi
order, and the critical chemical potentialmC'MN

(0)/3.
Here we have only considered zero temperature. In

case of finite temperature, contributions from thermal ex
tations will make the calculations quite complicated. W
plan to address this issue in a future paper.

We are also aware that the strong coupling limit is n
compatible with the continuum limit wherea→0 and 1/g2

→`. For pure gauge theory, within a Hamiltonian approa
we can extend to the intermediate coupling and obtain me
ingful results for the glueballs@19#. For fermions, the calcu-
lation is far from trivial. Recently we proposed a Mon
Carlo technique in the Hamiltonian formulation@20# for the
purpose to do nonperturbative numerical simulations,
combining the virtues of the Monte Carlo algorithm wi
importance sampling and the Hamiltonian approach.
hope to apply it to QCD and with the aim to obtain use
information for RHIC physics.
8-7
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