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Hamiltonian lattice quantum chromodynamics at finite chemical potential
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At sufficiently high temperature and density, quantum chromodynaf@€D) is expected to undergo a
phase transition from the confined phase to the quark-gluon plasma phase. In the Lagrangian lattice formula-
tion the Monte Carlo method works well for QCD at finite temperature; however, it breaks down at finite
chemical potential. We develop a Hamiltonian approach to lattice QCD at finite chemical potential and solve
it in the case of free quarks and in the strong coupling limit. At zero temperature, we calculate the vacuum
energy, chiral condensate, quark number density and its susceptibility, as well as mass of the pseudoscalar,
vector mesons and nucleon. We find that the chiral phase transition is of first order, and the critical chemical
potential isuc=m{), (dynamical quark mass at=0). This is consistent witi.c~M (/3 (whereM { is the
nucleon mass gt =0).

PACS numbgs): 12.38.Gc, 11.10.Wx, 11.15.Ha, 12.38.Mh

[. INTRODUCTION artifacts: A finite volume and a finite lattice spacing intro-
duce errors(b) There is a no-go theorem for chiral fermions:
There is species doubling of any local fermionic theory with
According to the big bang model in cosmology, the earlycontinuous symmetries. For naive fermions, chiral symmetry
universe underwent a series of drastic changes. For some preserved, but the species are doubled and the chiral
time it was a hot and dense quark-gluon plast@GP,  anomaly is wrong. Kogut-Susskind fermions preserve the

where quarks and gluons were deconfined. Today it is in @ontinuous 1) chiral symmetry, but break explicitly flavor
low temperature and low density hadronic phase, wherg

N : X mmetry. For Wilson fermions, the flavor symmetry exists,
qguarks are confined. The ultimate goal of machines such % y y y

L : t chiral symmetry is explicitly broken. Kogut—Susskind
the Relativistic Heavy lon Collide(RHIC) at BNL and the - . . . .
Large Hadron CollidefLHC) at CERN is to create the QGP fermions and Wilson fermions have been extensively used in

phase. The QGP may also exist in the core of very Olensgumerlcal simulations. Recently, there has been evidence

stars such as neutron stars. Quantum chromodynami@%m’ving that those two approaches may give 'ghe topological
(QCD) is the fundamental theory of quarks and gluons. acharge or anomaly incorrectid] on a finite Iattlce_. There-
precise determination of the QCD phase structure at finitdOr it is far from clear whether correct results in the con-
temperaturel and chemical potentigk will provide valu- tinuum can be_ obtained using those fermion formulations.
able information in the experimental search for the QGPKaplan's domain wall fermionf2] and Neuberger's overlap
The lattice gauge theor. GT) proposed by Wilson in 1974 fermion formulation[3] have attracted much attention, be-
is a very reliable technique for the investigation of phasef@use they give the correct chiral modes, they also produce
transitions. There are no free parameters in LGT when th&1€ correct anomaly and topological charge. For domain wall
continuum limit is taken, in contrast with other nonperturba-férmions there is an extra dimension and the lattice size in
tive techniques. Although the standard lattice Lagrangiaﬁh's dimension has to be very large. Thus algorithms suitable
Monte Carlo method works very well for QCD at finite tem- fo_r those new fermion approaches need to be developed. In
perature, it unfortunately breaks down at finite chemical pohiS paper, we do not address those problems. o
tential (due to the so-called complex action probleffhis is Here we would like to investigate lattice QCD at finite
briefly summarized in Sec. IB. On the other hand, latticecheémical potential. In the continuum, the grand canonical
QCD at finite chemical potential formulated in the Hamil- Partition function of QCD at finite temperatuileand chemi-
tonian approach does not encounter a complex action prot§@l potentialu is given by

lem. In Sec. Il we develop a Hamiltonian approach to lattice _ ~ B(H—uN) _ 1

QCD at finite chemical potential. We solve this in the case z=Tre » B=keT) (1.0
of free quarks and in the strong coupling limit.

A. Motivation

wherekg is the Boltzmann constanH is the Hamiltonian,

B. Present status andN is particle number operator

LGT is an approach to QCD from first principles. How-
ever, it is not free of problemsa) First, there are lattice N=f d3x " (X) (). (1.2

*Corresponding author. Email address: stsixq@zsu.edu.cn The energy density of the system with free quarks is given
"Mailing address. by [4]
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Going over toT—0, the energy densitywhere the contri- —E(xﬁ)y- W(x)]+ a z [e“aE(x) ya(x+4)
bution of u=0 is subtractedbecomes ! 2 X

dn (= — e MA(x+ ) yup(x)]. (18

— 3
Esub_(ZT)Alfmd p

The chemical potential can be introduced analogously for
3 3 KS as well as for Wilson fermions. Such treatment of the
w— \/2 pj2+ m?2 \/2 p1.2+ m2. (1.4  chemical potential is numerically feasible in the quenched
i=1 i=1 approximation (where the fermionic determinant detis
constraint to be 1, and quark loops are suppresdedw-
Here O is the step function. In the chiral limih—0 one  ever, there is evidend®)] that the quenched approximation
obtains produces an unphysical onset of the critical chemical poten-
tial at the valueuc=M (m+#0)/2, being in conflict with
. _ 1 d3p®(,u—|5|)|[3|=i ﬂ|5|3d|5|:M—. other theoretical _predictionmcwMﬁ_”B [MFNO) is the
subT 43 7)o 4 nucleon mass g=0 andM (m#0) is the pion mass at
(1.5 finite bare quark mass:. A finite bare quark mass must be
introduced in most of the numerical simulatign3he un-

X0

4

In the Hamiltonian formulation of LGT, Eq(1.1) in well ~ Physical onset ofuc is considered as a defect of the
defined. For Wilson fermions or Kogut—Susskind fermions,duenched approximation.
the relation Eq(1.5) is satisfiedsee below. However, if one For full QCD, the fermionic degrees of freedom have to

constructs the fermionic lattice Lagrangian via Legendreb€ integrated out. In the measure occurs the fermionic deter-
transformation of the Hamiltonian, one cannot reproduce th&ninant det. For finite chemical potential dét becomes
continuum relation Eq(1.5). Let us take the naive fermions cOmplex(complex action problemwhich renders numerical

as an example. The action obtained via Legendre transform&imulations extremely difficult. Much effort has been made
tion of H reads to solve the notorious complex action probld). The Glas-

gow group has suggested to treat Mleas observablé¢7].

23 +4 This method requires a very large number of configurations,
Si=a%>, my(X)P(X)+ = > D (X) yh(X+K) in particular for u~uc. Even on a very small lattic&/
X 2 X =44 the computational costs exceed the current computer
capacity[8]. (2) In the imaginary chemical potential method
+atnY, v w(x), (1.6)  [9] detA becomes real, which works well for numerical
X

simulations at high temperature and low density. But it might

not work at low temperature and high densi§). It has been
wherey_,= — y. This action gives the following result for proposed to utilize a special symmef0]. This is the only
the subtracted energy density: successful method in Lagrangian lattice QCD, but it works

only for the SUW2) gauge group(4) Recently, a new ap-

3 proach has been proposed[itl], using quantum spin vari-
Cata 2, s pj+(ma)2 ables. It remains to be seen whether this can be applied to
S A & il qeo.
4t )=

(sinps—ipna)?+ >, sir?p;+(ma)?
i=1 II. HAMILTONIAN APPROACH

—[n=0]. (1.7 A. Free fermions at zero chemical potential

The lattice Hamiltonian describing noninteracting Wilson

Taking the limitm—0 and the continuum limia—0, egy, fermions ind+1 dimensions at.=0 reads

x(ula)?, i.e., becoming quadratically divergent, and there-
fore it is inconsistent with the continuum result of Ed.5). _ 1 _ ~
This problem is not due to the species doubling of naive ~ H= >, my(x)g(x)+ %a > () yp(x+k)
fermions, because the case of Kogut—Susskind fermions or X k==
Wilson fermions is similar. r _ _ .

Hasenfratz and Karscfs] proposed the following solu- t g > [0 () — () p(x+k)]. (2.1
tion: If (sinpy—iw)? is replaced by siffp,—iu) the con- & k=]

4

tinuum result Eq(1.5) is reproduced, except for a factor of
16. Correspondingly in the action, the chemical potential isWe want to diagonalizél so that the fermionic fields can
introduced in the following way: be expressed in terms of up and down 2-spiroend 7",
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3
')

A
2.2 tan 260, = 5 P . (2.9

r
_ m+— >, sir’(p;a/2)
We define the bare vacuum sta@® as a =1

1,0:

£|0y=7|0)=0. (2.3 This condition also leads to the cancellation of the second

term in Eq.(2.7) coupling the up and down components such
Since the up and down components are coupled viaythe a.2.7 pling P P

matrices, the bare vacuum is not an eigenstatédol et
|Q2> denote the physical vacuum state, @l the vacuum

energy. One can use a unitary transformation to decouple the H'|0)=2 Appih|0)=Eq|0), (2.10
up and down componenf4?2], P
H'=exp(—iS)H exa(iS). (2.4  where we denote
Such a transformation is similar to the Foldy-Wouthuysen , or & ] 2 ) 2
transformation[13]. Then the physical vacuum state Hf Ap=||m+— ‘21 sir(p;a/2) | +A; (2.1
can be expressed as
10)=exp(iS)|0). (2.5 The vacuum energy becomes
The operatorS can be computed explicitly. For Wilsorr ( __ ,
#0) or naive ¢=0) fermions it read$12] Eq=—2NcNr 2 Ap. (212
S=2 0.S It can be easily seen thi) is the eigenstate dfl andE,,
AL is its eigenvalue. For Wilson fermions, in the continuum
§ limit a—0, for any finite momentunp, we have
1 sin sinp;a
Sp=— A, Z ot a (2.6 Ap—m*+p?, (213
2712 giving the correct dispersion relation.

sinp;a

MR

B. Free fermions at nonzero chemical potential

and p is the momentum. The transformed Hamiltonian be- We follow the same steps as in the case 0. According

comes to Eqg. (1.1, the role of the Hamiltonian is now played by
d H,=H—uN (2.149
2r © M,
H'=2 || m+=— X sirf(p;al2)|cos 24,
p aj=1 whereH is given by Eq.(2.1) andN is given by Eq.(1.2).
}_ o Let us define the stat@,,n,) by
+A,sin 20, |y, +| cos20,—| m+— _ _ _
P p|¥p¥p p
€pl0p.Np) =0, §£|Op'np>:|1p*np>’
d .
sin 26, — . sinp;a — — _
xE sirf(p;a/2) P2 iy . £ol1p.np)=105.Np),  &115,n5)=0,
Ao =2 , (2.15
2.7 7]p|npiop>:01 7]p|np10p>:|np11p>|
The vacuum energy is given by 7olNp, 1p) =[Ny, 0,), 7]1;;|npvlp>:0-
Eq=(Q[H|Q)=(0[H"|0) The numbers, andn, take the values 0 or 1 due to the
or Pauli principle. By definition, the up and down components
= _ZNCNfE m+— 2 sinz(pja/Z) cos 26, of the fermion field are decoupled. Obviously, this is not an
p aj=1 eigenstate oH, due to the nondiagonal form df. How-
ever, they are eigenstatestdf, , which are related téi , by
+A,sin 294 , (2.8  aunitary transformation

H,=exp(—iS)H, expiS)=H'—uN. (2.19
whereN. andN;, respectively, are the number of colors and
number of flavors. The vacuum enerBy, is minimized un-  For the vacuum eigenstate bif, we make an ansatz of the
der variation of the parametets, if following form:
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|Q)=exr(iS)2p fnp;p|np,ﬁp>. (2.17

Sis given by Eq.(2.6) and the parametet,, is given by Eq.
(2.9). Both Sand ¢, do not depend o because the quark
number operatoN commutes withS H’ is given by Eg.
(2.7). The vacuum energy thus obeys

Eo=(QH,Q)=2 f, 5 for(npmylH N, np)
p'p

:% Cn i (Np.NplH' = uN[ny . np), (2.18

2

where we have introduced the notati@np ;pzfn . From
pp

Eq. (2.15 follows
Eq=2 Cn, (AN Mol 5l 1)
= 1N Nl htolng .np))
=2NoN12 Co, [(AL= )N+ (Ap+ pnp=Ap—u].

(2.19
We have not yet specified the functimp - For this pur-

pose we use the condition of stability of the vacuum. Be-

causeu>0, the vacuum energy increases with. This

means the vacuum is unstable unlegs-0. This simplifies
Eqg.(2.19 to

Eq=2NcNi 2 Cy[(Ag=winp=Ap=ul, (2:20

where we use the abbreviaticﬁhpzcnp,o. From the nor-
malization conditiorCOer C1p= 1, we obtain

Eq=2NcNi 2 [Cr (Ap=w)~Ay-—pl. (22D

Clp depends on the value qf and its dependence can be
seen by inspection of the derivative

(9EQ

iCy,

2NN¢(Ap— ). (2.22
For u>A/, the right-hand side is negative. Maximiziﬁgp
means minimizing the vacuum energy. Therefdﬁqfl.

On the other hand, far <A/, the right-hand side is positive
and for anyClID the vacuum is unstable. Therefo(élp=0.

We can summarize these properties by writing
C1p=®(,u—A£,). (2.23

Thus the vacuum energy becomes

PHYSICAL REVIEW D62 054508

EQ:ZNCNfEp (CLA—AY. (2.24

The subtracted energy density reads

Ea—Eol.-o
NcNst

€sub—

_N_sp P

2 ©
=Wf_md3p ALO(u—Ay). (2.25

Here Ng is the number of spatial lattice sites. In case of
Wilson fermions, form=0 and in the continuuna=0, for
any finite momentunp, one hasA;=|p|. In 3+1 dimen-
sions, at the corners of the Brillouin zomga=(,0,0),
(0,7,0), (0,047), (7r,m,0), (Ogr,7), (7,0), (7,7, m),
one has@(,u—AF’,)zo. Therefore, in the continuum we find

8w

4
_ O | o= P
€sub (ZW)SJO pd p 47T2. (22@

Thus we have proven that we can reproduce in the Hamil-
tonian formulation the continuum result of the vacuum en-
ergy density, Eq(1.5. For naive fermions, in the continuum
limit a=0, there will be an extra factor 0f%2

C. Strong coupling QCD at nonzero chemical potential
1. Structure of the Hamiltonian

As is well known, lattice QCD af.=0 confines quarks
and spontaneously breaks chiral symmetry. For a sufficiently
large chemical potential, this picture may change. At lattice
spacinga# 0, as discussed in Sec. | B, none of the standard
approaches to lattice fermions is satisfactory. Here we set out
to investigate finite density QCD in the strong coupling re-
gime 14?<1, using the Hamiltonian formulation. One of the
goals is to get a better understanding of the mechanism of
chiral phase transition. According to Réfl2], H' in Eq.
(2.16 now is replaced by

26q)d —
(200) PORTELZE

H'=| m[1—(260)%d]+ 2

2Cp(26p)2
+g N( 0) E

t .
8aN, < k% e, 1,0 Vit 1, (XTK)

K==

Xt 1, (0 K) Vi, 1, (%), (2.27)

whered=3 denotes the spatial dimensian,, ¢, are color
indices andf,, f, are flavor indicegsummation over re-
peated indices is understoodd,=1/(4ma+g>Cy), and
CN:(Ng—l)/(ZNC). The four-fermion interaction is in-
duced by gauge interactions with fermions. A very similar
Hamiltonian has been derived in RgL4] using strong cou-
pling and largeN. expansion. After a Fierz transformation,
H’ becomeg12]
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TABLE I. I matrices and coefficients.

Ca 1 i Va ¥s ivays i Y4 1€55.1,71, i, 1 €55.,i,7471,7i,
La 1 —1+28, -1 -1 1 1-26,;  —1+428 1-26,
(260)d — o)d
=|m[1-(26,)%d]+ g Y(X) P(X) EO=N¢NJ m[1— (200)2d]+
9°Cnd(260)° + AN g°Cnd(260)° NeN g°Cn(26,)%d
4—2 P (X)p(X) fNs 4a v~ N¢lNg 16aN,
_ g°Cn(260)? X(v5=vy),

X

TN, 2 2, LAt 00T abr,00 U, (x+K)

G,=2|m[1—(26,)%d]+

(26’0)0|}Jr g°Cnd(260)° —
a

va
X T aths, (X+K). (2.28 4aN,

9°Cn(260)*—

The matriced”, andL 5 are given in Table I. Gyo=— g8aN Us
C

Let us define the following operatof$2,15:

. B B (2.33
1 vl= 2 Co i (Np Nl Yl Np 1)
— f N¢Ns “p plp
H(X)t,1,= ==t (X) (1= ya) v5ib1,(X),
2N-v _2NCE - —
. (2.29 N, 2 Chyny(Np=Npt+1),
Vi(0)1,1,= —= 1 00 (1= 74) ¥jih1,(%), s
2N -v vz_NfNS 5 Moo

where — —
X (N Mol ¢ ot o, ot plNp M)

_ 1 - o o ,
U:Nst Ep Cnp,np<np,np|¢p'//p|np,np> _ (2N,) 2

— _n 2
Ns 5 np,np(np np+1) ’
2N, —
= S (np+n,—1). . — 1
N, 2 Cnp (Mot Mp=1) (230 e S
s P

Using mean field approximation, one can show {1 — — — —
) X<npanpl‘pfl,p¢f2,p¢f2,p¢fl,p|npvnp>
[H(X),H (X )]:8)(,)(" (2 3]) _(ZNC)22 C - +_ 1 )

[V} 00,V (X)]= 8 TN, Sl L

Thus the operatorHl andV;, defined in Eq(2.29, behave In Eq. (2.32, we have ignored the nonmeson terms which
like pseudoscalar and vector operators. In R&§] it has ~ 9V€ NO contribution to the energy. Making a Fourier trans-

been shown that the operat@// satisfies the same commu- formation, one obtains
; i g - T AVAAV2 T
tation relations as)J_rZH_HJrZEJVJ V;. Therefore,H" in +G12 ( (p)TI( p)+2 VT(p)V (p)
Eq. (2.28 can be written in terms of pseudoscalar and vector
particle operators in the following way:

+G,>, (IMM(p)ITT(—p)+H.c)> cospa
H' =E®+G, >, (HT H(x)+2 VI (x)V;(x) P '

G +Gy2, (V/(p)VI(—p)+H.c)
+722k (HT(x)HT(x+ K+ > VIOV (x+k) P
X, ]

X| 2 cosp;;a—2 cosp;a (2.34
i’

X (1—-28,)+H.c.|, (2.32

This can be diagonalized by a Bogoliubov transformation
where [12]
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P(p)=coshu(p)a(p) +sinhu(p)a'(—p), E
(2.39 2N3\|f=2 Cy (MGh— )~ E (miO+ )

Vj(p)—COS|lvj(p)b(p)+Sill|lvj(p)bT(—p), f
G,>, [V1—tani 2u(p)—1
14 [ (p)—1]

+ %612 [\/1—tanI:? 2vi(p)—1].
P
(2.40

where

tanh 2u(p)= _G
1

(2.36

-2G,
tanh2(p)=—5— G, 2 cospj-a—2 cosp;a Again, using the same argument as in Sec. Il B, the coeffi-

cient Clp must be

This condition also minimizes the vacuum energy. The Bo-

goliubov transformed Hamiltonian eventually becomes ©)
Clpz O(p—mgp). (2.4)

NZ
H”:ES))‘I' %Glz [ 1—tank? 2u(p)—1]
p

Substituting into Eq(2.40 yields

N2
+ %612 [VI—tanR 2u,(p)—1]
p.J

Eo
- 0) _ —_m(0)y _ m(0) _
2N_N;N; (mdyn m)O(u mdyn) Mgyn— X
+G; >, V1-tani 2u(p)a'(p)a(p)
P L6, [Vi-tan 2u(p)—1]
P
+G1% V1-tani? 2v;(p)b/(p)bj(p). (2.37)
‘ LGy, [VI-tanif 2u;(p)—1].
2. Vacuum energy s P
o (2.42
The vacuum energy is given by
ES!Z(QlHM|Q>: Eg))— NfNS/.LUT 3. Chiral condensate and critical p
N2 According to the Feynman—Hellmann theorem, the chiral
+ %Glz [Vi—tanif 2u(p)—1] condensate is related to the ground state energy by
P
2
: 1 Eq(m#0) —
G [Vi-tanif 2v(p)~1]. (239  (yy)= = () OL1-0(u—m{)],
P N NS m_}@ am
(2.43
From Egs.(2.33—(2.37), we get form=0
Eo where(y¢)© is the chiral condensate at=0
o= 2 oy (M (i i a
C
NpNp
©)n V. (0) o\ (0) — 4d Ny Ny
+2mingIng1— (s +mi) 2 Cnp e ()™= —2Nc 1__94Cr%1 1_N_c|1_N_c|2
(2.449
N¢
+ 7612 [V1—tantf 2u(p)—1]
p and ford=3
N
+ 5 G, [V1-tanf 20;(p)—1]. (2.39
2 p.J 1 1
l1= 3f Spl -1
Here m{p)=d/(ag®Cy) is the dynamical quark mass at 2(2m)°) -= \/ 1 )2
=0. It is obvious than,=0, otherwise, the vacuum is un- - 521‘4 COSp;

stable. Using the notation and normalization condition for
the coefficient as in Sec. Il B, we obtain =0.078354-2x 1076,
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1 m 0 for u<pc,

l,= f d®p’ M*=G,y1—tanlf 2u(p=0)=
2 2(2m)3 2 L 9P 7=GuV (P=0) {4m§§31 for pu>puc.

1 (2.49
-1
1 2 Therefore, in the broken phase, the pseudoscalar is a Gold-
1- ( —( E cospj’, -2 cospj’> ) stone bosonN! ;o Jm—0), and in the symmetric phase, it is
i’ no longer a Goldstone boson. For the vector meson,
=0.2350754x10 6. (2.45

MO for u<uc,

My=G,J1—tantf 2v;(p=0)=

According to Eq.(2.43, for w<m(@), (yip)=(y)® am@, for p>pc,
#0, |.e.,£h|ral symmetry is spontaneously broken. [or (2.50
>m{), (44)=0, i.e., chiral symmetry is restored. There- '

fore, there is a first order chiral phase transition and thevhereM{?=4./d—1/(ag?Cy) is the vector mass ai=0.

critical value ofu is given by Therefore, IM/dux 8(u— uc) for the pseudoscalar and
vector mesons. It is worth mentioning in R¢L8], the au-
. 0)_ d 24 thors founddM/dpu=0 outside the critical region. To see the
He=Mayn= g’Cha’ (249 critical behavior at zero temperature, one should be very

close touc. This behavior is consistent with that of the
The critical chemical potentigk is equal to the dynamical quark number density discussed in Sec. 1IC4. To see
quark mass aj.=0, which agrees with the result from an whether the meson thermal masses depeng ohigher or-
entirely different method16]. (The authors argued this was der 142 corrections must be included.
a second order phase transition, in contrast we clearly ob- For the nucleon, we obtain the expected behavior
serve a first order transitionOur result is consistent with

. . ~ (0) _ N
other theoretical pre?ol)ctlon,a(g) My’I3, becausdsee be MN=I\/I§\1°)—3M (2.50)
low) at =0 holdsMy’~3mg;,.
0)__ 0 : * __
4. Quark number density and susceptibility for u<pc, WhereM§\,)~3mgy%. This leads toMy=0 at
We can compute now the quark number density in the’u_'uc'
chiral limit m=0, which yields
Ill. OUTLOOK
nq:_—l ‘9E_“_ 1 In this paper, we have developed a Hamiltonian approach
2NcNiNg to lattice QCD at finite density. It avoids the usual problem
of either an incorrect naive continuum limit or a premature
Q2 ") ()| Q) onset of the transition to nonzero quark density ads
_ x _ raised. The main result in the free case is given by(E@6
—1= - . . . ; ; ’
2N:N¢Ng 1=0(u=pe), (247 and those in the strong coupling regime are given by Egs.

(2.42-(2.51). We have seen that the approach works well in
which is consistent with the8=0 simulation results de- the free case and also in the strong coupling regime. We
scribed in[17], and however, is different from the large  predict that at strong coupling, the chiral transition is of first
behavior in the continuuri.e., the Stefann—Boltzmann law order, and the critical chemical potenti@t~M§\,°)/3.
nqocM3). It remains to be seen whether higher ordegy?1/ Here we have only considered zero temperature. In the
calculations will improve this behavior. case of finite temperature, contributions from thermal exci-

The quark number susceptibility, standing for the re-tations will make the calculations quite complicated. We
sponse of the quark number density to infinitesimal changeplan to address this issue in a future paper.

in w,is We are also aware that the strong coupling limit is not
compatible with the continuum limit wher@—0 and 1¢?
ang —oo, For pure gauge theory, within a Hamiltonian approach,
quﬁz S(p—pc)- (248 \ve can extend to the intermediate coupling and obtain mean-

ingful results for the glueballgl9]. For fermions, the calcu-
lation is far from trivial. Recently we proposed a Monte
Carlo technique in the Hamiltonian formulati¢20] for the

Finally, let us look at some implications on the thermal purpose to do nonperturbative numerical simulations, by
mass spectrum of the pseudoscalar meson, vector meson agsinbining the virtues of the Monte Carlo algorithm with
nucleon. The thermal mass is defined W;=(h[H importance sampling and the Hamiltonian approach. We
—uN|h)—Eq. For the pseudoscalar meson, in the chiralhope to apply it to QCD and with the aim to obtain useful
limit m=0, information for RHIC physics.

5. Mass spectrum
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