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Fermion-scalar interactions with domain wall fermions
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Domain wall fermions are defined on a lattice with an extra direction, the size of which controls the chiral
properties of the theory. When gauge fields are coupled to domain wall fermions the extra direction is treated
as an internal flavor space. Here it is found that this is not the case for scalar fields. Instead, the interaction
takes place only along the link that connects the boundaries of the extra direction. This reveals a richness in the
way different spin particles are coupled to domain wall fermions. As an application, 4-fermion models are
studied using largél techniques and the results are supported by numerical simulationdlwith It is found
that the chiral properties of domain wall fermions in these models are good across a large range of couplings
and that a phase with parity-flavor broken symmetry can develop for negative bare masses if the number of
sites along the extra direction is finite.

PACS numbgs): 11.15.Ha, 11.30.Rd, 12.40y, 71.10.Fd

[. INTRODUCTION lems where good control of the chiral symmetries is needed.

Domain wall fermiong 1] provide an alternative to stan- For example, DWFs have been used in studies of the finite
dard lattice fermions and have already been used to formuemperature QCD phase transitiph-8].
late lattice gauge theoridfor reviews se¢2] and references One would have expected that the formulation of theories
therein. Here domain wall fermions are used to study latticewith DWFs coupled to scalar fields should closely follow
theories of fermions and scalars. Such theories can be studid¢idat of DWFs coupled to gauge fields. However, this is not
analytically using largeN methods and applications of these the case and as a result an interesting difference between the
theories requiring enhanced control over the chiral symmeway the scalar and gauge fields are coupled to DWFs
tries may be of interest. For example, such applications magmerges. The formulation and a discussion of this difference
involve 4-fermion models or models with Higgs fields inter- is presented in Sec. Il. Two 4-fermion models, one with a
acting via Yukawa couplings. Z,XZ, and one with arBU(2) X SU(2) chiral symmetry in

Domain wall fermiongDWFs) are defined on the sites of three dimensions, are studied in Sec. Il using laxgch-
a space-time lattice with one extra direction. The dimensiomiques. In Sec. IV these models are studied using hybrid
of this lattice will be denoted ad+ 1. In the method of3] Monte Carlo simulations witiN=2. Conclusions are pre-
the boundary conditions along the extra direction are freeented in Sec. V.
and as a result light fermion surface states develop on the Using DWFs in 4-fermion models was also suggested in
boundary. The plus chirality components of the Dirac spinof9]. For a recent implementation of overlap fermions to the
are exponentially localized on one wall while the minus onegjauged Gross-Neveu model d€)].
are on the other. If the extra direction hiagsites, then the
two chiralities overlap only by an amount that is exponen- Il. FERMION-SCALAR INTERACTION
tially small inLg. Therefore, the extra parametey controls
the amount by which the regulator breaks the chiral symme- The free DWF action in the formulation ¢8] is
try at any lattice spacing. As a result, and contrary to stag-
gered or Wilson fermions, the chiral and continuum limits s=— 3 \E(x S)D(x,5:x',8 )W(x’,s') 1)
are separated. Furthermore, in numerical applications the x5’ ’ T ’
cost for recovery of the chiral symmetry is only linearLig.
These properties make DWFs an attractive regulator in probaith Dirac operator

D(x,s:X’,s")=8(s—s YD (x,x')+D*(s,s")S(x—x")+E*(s,8":X) S(Xx—X") (2
where
13 . .
D(X,X')=§ 21 [(1+y,) X+ pu—=X")+ (1= 7y,) (X" +pu—=x)]+(My—d) S(X—x") (©)
=
Pré(1—5s")—8(s—s'), s=0,
Dt (s,s')=4 Prd(s+1-s")+P d(s—1-s")—d8(s—s"), 0<s<Ls—1, (4)
P o(Ls—2—58")—68(s—5'), s=L¢—1,
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E*(s,s")=—m[Qg(s,s") +Qu(s,s")] 5

1+
Pru=—g ©)
Qr(s,8")=Pro(Lg—1-5)5(0—5s"), Q.(s,s8')=P. 8(0—s)d(L—1—5"). (7)

In the above equations is a five-dimensional mass rep- theory of a scalar field coupled to a fermion bilinear, one
resenting the “height” of the domain wall. Among other would couple the scalar field to all internal fermion flavors
things, the parameten, controls the number of light species the same way, as was done for the case of a gauge field.
[1]. For example, in four dimensions the theory is symmetricHowever, this choice will not result in the desired theorgin
aroundmg=5 and for 0<my<2 corresponds to a theory dimensions. To see this consider the simple example of a
with one light species, for 2my<4 to a theory with four target theory of fermions coupled to a real valued scalar field
and for 4<my<6 to a theory with si11]. The parameter o in d dimensions with continuum action
m; explicitly mixes the two chiralities and as a result it con-
trols the bare fermion mass of tltedimensional effective _ | a o 2
theory in a linear fashion. The DWF Dirac operator satisfies S_J 47u9ua+Maq+ oaq+ fo. 12

the identity[3
yIs] If m=0, this model has @, X Z, chiral symmetry. It is clear

ysRDgysR= DE (8) that a largeN or mean field analysis of this model will indi-
cate that the propagator mass wouldbe (o) where(o) is
with R the reflection operator along the fifth direction. As athe vacuum expectation value of thefield. Clearly a lattice
result, the two species determinant is real and non-negativéormulation of this model using DWFs should at least repro-
) ‘ duce this simple result. However, if thefield is coupled to
deDg=deDgDe. ) all fermion degrees of freedom the same way, as is the mass

From a calculation of the propagator or from the lowest ei-To: i-€- ¥ (X,8)a(x)¥(x,s), a similar analysis will result in

genvalue of the fermion matrix the fermion mass for the one? Propagator mass as in E@.0), but with m, replaced by
flavor free theory i§12] mo+ (o). This is obviously the wrong result. Even if one

were to accept this exponential behavior by redefiningsthe
Mefr= Mo(2—My)[Ms+(1—mg)'s], 0<my<2. (10) field, this theory would have the peculiar property of chang-
ing the number of light species depending on the value.of
From the free action one can see that there is more thaglearly, in order to get the correct result one has to couple
one way one could couple a gauge field to DWFs in a gaugehe o field in the same fashion as tihg mass and not as the
invariant way. The most straightforward choice of introduc-d+1 massm,. Then the Dirac operator is as in E@) but
ing a gauge field is to also define it @+ 1 dimensions and  with E*:
couple it in the standard gauge invariant way. However, it
turns out that this choice does not lead to the correct theory E*(s,s';x)=—[m+a(x)][Qr(s,s") +Q(s,s")].
in d dimensions. The correct way to couple the gauge field
was arrived at by thinking of the extra dimension as yet . . . .
another internal flavor spadd,13. Then one has to intro- In the resulting action ther field couples with the fer-

duce the gauge field only in the dimensional space and Mion fields only across the boundary links of the 1 di-
couple it the same way to all fermion “flavors.” Obviously, mension. That this is the correct action can be seen by ob-

this also results in a manifestly gauge invariant formulation.f’:vmagntgzt the interaction term in the action can be

In particular, the Dirac operator is as in H§) but with D

defined as — _
Y (x,Ls—1)o(X)PrY (X,0)+ W (x,000(X)P W(x,Ls—1)

12 . —

D(x,x’)=§;1 [(1+ y,)U (X)X + =X ) +(1-,) =q(x)a(x)q(x) (14
- with
XUL(X) (X + pm=x) ]+ (Mo —d) 8(x—x').
(11) g(x)=Pr¥(x,00+ P ¥(x,Ls—1)

Therefore, although one can think of the extra direction as E(x) =\I_f(x,LS— 1)Pg+ \I_f(x,O) P.. (15

a new space-time dimension, it is more natural to think of it _
as an internal flavor space. From this point of view, if oneThe fieldsq, g correspond to the light-dimensional fields
wishes to formulate a theory that@dimensions would be a [3]. Since these are the only propagating fieldslidimen-
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sions and since, in terms of these fields the correct globatition of the DWF interaction with the scalar and gauge

symmetry is in place, the above action should describe théelds. However, this appears not to be the case. The DWF

desired target theory. formalism and symmetry requirements seem to have natu-
Another way to see that this is the correct action is torally forced the interaction terms to be of this specific form.

consider adding such an interaction to Neuberger fermions (3) A picture with some richness seems to develop with

[14]. In that formulation the fermion fields are standatd different spin fields coupled to domain wall fermions in dif-

dimensional fields and the interaction can be added unanferent ways.

biguously. Then, if the discrete finite flavor version of that

formulation is used, one can directly recover the DWF ac- IIl. LARGE N ANALYSIS

tion. Since ther field is added as a mass term, one can see o . o

by simple inspection that the above action is recovered. Fur- The analysis in this section closely follows the analysis in

thermore, the connection can also be made exact by using thé7] of the same model using Wilson fermions. Also see

results of[15] where thed-dimensional action arrived at by [18—21 for studies of 4-fermion models with staggered fer-

integrating all heavy fermion degrees of freedom is ex-mions. _ _ _ _
pressed solely in terms of the  fields. Consider a 4-fermion model in the continuum with

It should also be noted that scalar fields were used in §U(2)><SU(2) chiral symmetry and Lagrangian:
different context[1,16] in an attempt to formulate chiral

gauge theories using DWFs. There, in order to maintain L=q(id—m)q+ E[(EQ)ZWL(E ys70)2]. 17
gauge invariance, the scalar fields were defined on a “slice” 2

in the extra direction. . -
In the above expression all indices have been suppressed.

With the interaction defined as in E¢L3) the transfer S )
matrix of the model along thd+ 1 direction[13,3] is inde- The fermionic fieldg is a flavorS(2) do_uble_t an(_j a coIor_
SU(N) N-column vector. The Lagrangian is diagonal in

pendent of ther field and is therefore the free field transfer ; - ) 8 L
matrix. The o field is defined only on the boundary and golor, n contrast with the full QCD Lagranglan Wh'Ch IS
therefore only affects the boundary operatdof [3]. In the dla?pnal Zn_ﬂa:(?”:{gl’fz':ﬁ} aE)re the thrlfe |52§pln:gull
case of a gauge theory the extra fermion degrees of freedo arices,g=y"c,, ahdmis the baré quark mass m

e chiral symmetry is explicitly brokenAs is well known,

are heavy but numerous as thg— limit is taken. For this . d . o S
reason it was shown that they need to be subtracted and t@%aaggaggg_nn gggs'%:rhﬁ 'i.guid;ig?;];he.Ifg:mf'%rl‘:ngelds
way to do that for each gauge field background is to divide ! yi ucing uxiiary Tk

out a bulk factor[13] of the form f(U)‘s where f(U) is three pseudoscalar au.xiliary fields={, 2,73} coupled
some function of the gauge field determined by the trans- to the fermion bilinear.

fer matrix[in the formulation of( 3] f(U) =\ ,,,,deB]. Here

the same bulk factor is present but unlike the gauge theory it
does not depend on the background field. Therefore it can be
factored out from ther path integral and as a result it be-
comes an irrelevant factor that will cancel out with the same,, . n; is the number of flavors ang,=1/2n,G,. Tran-

factor appearing by dividing by the partition function when- scribing this to a Euclidian lattice, using DWFs with a

everan expect_at.ion value is calculated._ Therefore, ur!like th?ermion-scalar interaction as described in Sec. Il and an even
gauge theory, it is unnecessary to explicitly subtract it out.

. . : - number of “colors” N one obtains
The extension to more general interaction terms is

straightforward. The interaction is written in terms of tpe

g fields and using Eq15) is transcribed for th&’, W fields.

For example, a target theory witBU(2)xSU(2) chiral

symmetry has Dirac operator as in E8) but with E*:

L£=qDq—nBy(o?+ =)

D=id—m—o—iys7 7. (18

zzf [d¥d¥dodnmle S

N/2
S:E {@iD\Pi+@i+N/2DT@i+N/2}

EL(s,8;x)=—[mi+ o(X)+i ysm(X) - 7I[Qr(S,S') =1
+Q.(s,8")] (16) +n¢By(o?+ ) (19)

. ) . S
where(X) is the pion field andr are the Pauli matrices. whereD is deflngd in Eq(2) with E as in Eq(16) and use
of the property in Eq(9) has been made.

The above results, although contrary to naive expecta- . ) .
g Y P Following the standard largd analysis, the saddle point

tions, are straightforward. However, the following observa- X . ;
tions can be m%de' g equationg SPES$ are calculated by assuming uniform saddle

(1) For the case of scalar fields it is not natural to in'[erpreterIdS and small fluctuations of the form
the extra DWF direction as an internal flavor space since the
interaction takes place only at the boundary of the extra di- 60 (X) w(X) = m+ dm(X)
N *OUN

. 20
rection. 20
extra dimension would have lent some freedom to the defiThe saddle point equations are

o(X)=o4t+

(2) One could have thought that the introduction of an
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1 1 _ 1.0 771 | — I I —
vReT'[Ds (Qr+tQu)]+2n¢B10s=0 (21 R ]
08— ]
vReT'[D QR+QL)|75T]+2nf,31775 (22 B g
or, in terms of they, q fields of Eq.(15), 06— _
1 — o L i
deqq>s+2nfﬁlas:o (23 N8 B s
04— —
VRQQ'75ﬂ>+2”f,317Ts:0 (24) . i
02— |
where L _
— B 1 = _

ﬂl Nl 2n NG (25) 0.0 | | | | | | | | | L1 1 | | | |
e 0 2 4 6 8

The L=< and the finiteL; cases need to be studied mg

separately since each case has a different symmetry group. .
FIG. 1. The largeN critical valueB;_versusm, for a 6° lattice
A. L= case with antiperiodic boundary conditions along the time direction.

If m{=0, then the DWF Dirac operator has exact chlralf e Eq. (30) has the solution exp(a)=b if [b|<1 and

symmetry. If there is spontaneous symmetry breaking, one |s
xp(—a)=1/b if |b|>1. Therefore, from Eq(28), one can
therefore free to choose the direction of breaking at will. The ee thatz(p)=1—b? if |b|<1 andz(p)=0 if |b|>1. For

standard choice iss# 0 and#,=0. For this choice the sec- example if 0cmy<2, thenz(p) is non-zero only in the

ond SPE, Eq(22), is trivially satisfied since the non-trivial one with momentum components around zero. The condi
flavor part ofD;1 is proportional tormg. This case is iden- z Wi u pone una z€ro. !
tion for non-zeroz(p) at the origins of a Brillouin zone,

tical to the case of a simpler model withostfields andn;

=1. Such a theory ha&, X Z, chiral symmetry. Therefore, d
the following analysis can be trivially extended for t& _ _
X2, model. 8 |b|<1lemy—2< 21 [1-cogp,)]<m,, (31
Using the free propagator results[df2] after some alge-
bra the first SPE, Eq21), for L= results in is the same as the condition for the existence of normalizable
stateq 1]. For zero momentura(p=0)=my(2—mg).
— Z(Us+ m;) z(p)? One can see that E¢26) for m;=0 can have two solu-
osB1— 2 0 (260 fions: one withas=0 corresponding to a chirally symmetric

24 (oot mp2z(p)2
P (o5 Me)"2(p) phase and one witlors# 0 corresponding to a phase with

where spontaneously broken chiral symmetry. The critical value of
. é%l is obtained from Eq(26) in the limit 03— 0 and is given
_ ) y
= 21 sin(p,,)? 27
2
_ = Z (32
z(p)=1—be ? (29 Y 5

¢ It is interesting to notice the rather strong dependence of

=1-my+ - — . .

b=1-mo ;::1 [1-cosp,)] 29 B1, on my. A similarly strong dependence of the critical

o coupling onmy was found for the QCD finite temperature
cosha 1+ b2+ p? o=a 30 phase trangitioM]. As gn e>.<an_r1ple,31C is plotted \_/_ersusno
2b for a 6° lattice with antiperiodic boundary conditions along
the time direction in Fig. 1. In the next section such lattices
The factorz(p) plays the role of “selecting” Brillouin  will be used to compare the lar@}eexpressions with numeri-
zones. For a given range of; the factorz(p) is nonzero at  cal simulations. A similar graph can be obtained for a four-
the orgins of only certain Brillouin zones. To see this ob-dimensional lattice but it extends fromy=0 tomy=10 and
serve that at the orgin of any Brillouin zorpr—:wo and there- is symmetric arounany=>5.
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FIG. 3. The largeN o as a function oL for a 6° lattice with
FIG. 2. The real part of the maximum and minimum lafge antiperiodic boundary conditions along the time direction=0
decay rates as a function af, for a 6° lattice with antiperiodic ~ and variousm, at 8;=0.3 above the transition. The diamonds,
boundary conditions along the time direction. squares, crosses, circles, and stars correspond nig

=0.2,0.4,0.6,0.8, 1.0.
B. Finite L4 case

When L is finite the DWF Dirac operator breaks chiral range 0<my<2. The “spikes” of the maximum value are
symmetry explicitly even fom;=0. Thereforess#0 and the singularities that occur whem=0. As can be deduced
the remaining symmetry is tH8U(2) flavor symmetry. This  from Eq.(30) the peak of the minimum decay occursnag
symmetry can break spontaneously, resulting in a nonzera.p _ /2-0.586 and is—In(2—+2)=0.535. The decay
ms. If this happens, then from Eq24) one can see that (5165 hetween the minimum and the maximum values have
(qiys7q)#0 and parity as well as flavor symmetries areno gaps. Ad_, increases eventually the only chiral symmetry
broken. This is the Aoki phag@2]. This phase has also been yjglations that remain will be controlled by the minimum
observed for this model with Wilson fermiofi23,24. The  gecay rate unless the observable is dominated solely by
existence of this phase for DWFs was also suggesté#5  erms with the decay rate close to the maximum. Since the
and it may be present in QCD with DW26)]. minimum decay rate is approximately constant across the

First consider the phase withs=0. Again the second ¢ 1ange ofmy, there is no valuable option of tuning, in

SPE, Eq.(22), is trivialy satisfied and the following analysis order to achieve better characteristics exce
) ) . . pt perhaps around
is also valid for thez, X Z, model at finitel ;. The first SPE, my=0.586. As an exampler, versusL. is plotted in Fig. 3

Eqg. (22) is _ — o
for m;=0 and variousm, at 8;=0.3 which is above the
transition for all them, values. The slopes obtained from the
largerL points are slightly faster than the minimum decay
rates of Fig. 2 and the largest slope is fog=0.6.
X[(Mi+ o) Aptb(B+A;+Ay)]+e 2albs™D) Next consider the phase witi,# 0. The first SPE is as in
X[ (M + o)A+ bA, T} =0 33) the #=0 casgi Eq(33). H.owever, since the non-trivia! flg-
vor part of D - is proportional tormg, one can now elimi-
whereAq, A;, A,, A, are functions of the momenturm) nate s from the second SPE and obtain a second non-trivial
+0s ande 3%, and are the same as ji2] but with m; equation. These two equations can be used to determine
rep|aced by‘nf+a-s_ This equation can be used to Ca|cu|ateand s The full form of these equations is Complicated and
o5 as a function of the other parameters of the theory. ~ not particularly illuminating. However, if only the leading
It is interesting to see how chiral symmetry is restored a®rder inm; ande™?"s is kept, these equations can be written
L, increases. As can be seen from E80) the decay coef- in the form
ficientais independent of8; and it only depends omg and
the momenta. In Fig. 2 the minimum and maximum values
of Re(@) (if b<0 a has imaginary partti#) obtained for E :E
different momenta are plotted as a functionmaf in the Y

_ 2
Ty Ep) [(Mi+ 00 (Ag+Ay) +bA,+e ats™D)

+0(1) (34)
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<o>

0.0 01 0.2 0.0 0.2 0.4
B 1c 6 1
FIG. 4. The largeN phase boundary of the parity-flavor broken
phase of th&sU(2) X SU(2) model on a 8 lattice with antiperiodic
boundary conditions along the time direction witiy=1 and for

variousL ¢ values. From bottom to top the, values are 2, 3, 4, and
5. The parity-flavor symmetry is broken inside the oval-looking

FIG. 6. (o) as a function ofg; for the Z,x Z, model on a 8
lattice with antiperiodic boundary conditions along the time direc-
tion, m;=0.02, Ly=12, my=0.4 (diamond$, my=1.0 (squarep
andmy=1.6 (crosses The solid lines are the largd predictions
for the same parameters and the dotted lines are the aedic-

regions. tions form;=0 andL¢=o».
2452
+
E e als z
p D
my=— = +0(2) (39
] T T T T T T T ] Ep D
10°)— 8 PS _
o °
- o _ o
102l o i o . ] D=p4(1+[ms+ osle 3)2+Z2([ms+ o] + & 3ks)?
88 . _ O 5 <© & N ] + | 71.S|2(22_|_62e*221LS). (36)
107 — o —
o) o
! — o ©o o — If Lgis an even number or ify is such that 8&<b(p) (and
1078 |— °, o, — therefore Gse M) for all momenta, thee s is positive
K - o ¢ | and m; must be negative in order to have a phase with
E 1078 — © o —] #0. The phase boundamfc([g’l) can be obtained from the
— © o — above equations by settings—0 and eliminatingx=m;
10710 o — +0s. From these equations it can be deduced that|
— — ecreases exponentially withs. Furthermore, for a given
° 6 d p tially Furth f g
107 — 0 — B, the width of themrs# 0 region also decreases exponen-
— o — tially with Lg. In Fig. 4 the phase boundary of the,#0
0 10 20 phase is given for a %lattice with antiperiodic boundary
L conditions along the time directiomy=1, and for various

® L values. From bottom to top tHe, values are 2, 3, 4, and

FIG. 5. For fixed8;=0.05 the origin—m;_ (diamond$ and 5. This has been calculated using the full form of the SPE
width sm;_(circles of the largeN parity-flavor broken phase of the and not just the truncated form, E¢84) and(35). However,
SU(2)x SU(2) model are plotted versus for my=1 and fora @  the two are nearly the same ford 5. Also different values

lattice with antiperiodic boundary conditions along the time direc-0f My produce similar results. As can be seen from Fig. 4
tion. whenLg is increased the phase boundary moves to smaller
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- T T T | T T T : 3 I T T T T ‘ T T T T | T T T ]
4 ] L (b) i
3 - %= - _.q_), 21— —
L B o L 4
A [ 1 = L _
b 2 — B FIG. 7. The decay and decay
v L 1 8 [ i rate of{o) as a function ot for
r . ] the Z,XZ, model on a 8 lattice
1= ] Sl } s : i with antiperiodic boundary condi-
C i L i tions along the time direction and
ol , ] r . m;=0.02. In(a), my=1.0 andB;
N T 0 L ] =0.05 (diamonds, B3;=0.1
0 5 10 0.0 0.1 0.2 0.3 (squarebgnd B1=0.25 (crosses
I, E In (c), B;=0.05 and my=0.6
s 1 (diamond$, my=0.8 (squarel
T S L L B mo=1.0 (crossel and my=1.1
- - (d) ] (circles. The solid lines in(a) and
41— 5 (c) are fits tocy+ c e~ %2s and the
5 C dotted lines are the lardé predic-
i S tions. The decay rates, from the
i o [ fits in (@) and(c) are shown inb)
/é s :3 E and (d) respectively. The solid
v L o . lines in these figures are the large
L 8 C ] N predicted minimum and maxi-
i o R - mum decay rates.
L1 0 C 111 | L1l | L1 | L1
0 0.0 0.5 1.0 1.5 2.0
Mg

|m;| with decreasing width. In Fig. 5 for fixe8,=0.05 the
origin of the phase boundary; my , and width om;_are
plotted versug ¢ for my=1.0 and a 8 lattice with antiperi-
odic boundary conditions along the time direction.

The effective fermion mass, is identified from the zero
of Eq. (36) for momentap~0 and is

(37

My=2(p=0)[ M+ os+(1—mg)*s].

The continuum limit is reached ah,=0 and the lattice
spacing is set tae~~m,. This point corresponds to the larg-

estﬁlC value of the phase boundary curves in Fig.m, (is

Finally, it is interesting to observe thatiifi, is such that
b(p)=<0 for some momenta and, is odd, then thers#0
phase can occur even for positive . If the ,#0 phase
needs to be avoided for amyg,, then one should set<Om;
andL to an even numbdion the other hand, ify<1, then
0=<b(p) for any momenta and any value bf can be usef

IV. HYBRID MONTE CARLO SIMULATIONS

In this section standard hybrid Monte CafleMC) simu-
lations are performed foN=2. These simulations support
the largeN results of the previous section. For all simulations
the trajectory length is set to=1 and the step size tér
=0.1. The acceptance rate4s90% and the conjugate gra-
dient inverter iterations are=50—-100. Typically 100—-200

positive on the upper part of the phase boundary and negdhermalization sweeps were followed by 300—400 sweeps

tive on the lower one The width of the Aoki phase close to
my=0 can be obtained from E(35). To lowest order irm,
itis dm¢= mq(amf/amq)|mq:o. The derivative is not zero at

mg=0 and thereforédm;~m,~ «. For an analysis concern-

with measurements. The lattice size for all simulationsds 6
with antiperiodic boundary conditions along the time direc-
tion. All simulations were done on workstations.

The Z,X Z, model with action as in Eq.l) and interac-

ing the width of the Aoki phase in QCD with Wilson fermi- tion term as in Eq(13) was simulated first. The initial con-
ons SedZ?] The above features are not particu|ar to threeﬂgurauon for all simulations was a uniform Confl_guratlon
dimensions and similar results have been obtained for fouwith o=1. In Fig. 6,(c) is plotted as a function oB, for

dimensional lattices.

m;=0.02, Lg=12, my=0.4 (diamond$, my=1.0 (squarep
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47 — \ [ — I In that case the conjugate gradient inverter would not con-
B 7 verge. Furthermore, in the small lattices considered here
spontaneous breaking cannot really take place anéartield
would always average to zero for sufficiently large statistics.
In [22,28,29 these problems were treated by adding a small
external fieldh that breaks th&U(2) flavor symmetry and
therefore not only gives mass to the two pions but also pro-
vides a “preferred” orientation for ther field. Such an ex-
ternal field is used here by adding a term that is exactly the
same as ther term in Eq.(16) but with 7 replaced byh. The
initial configuration for all simulations was a uniform con-
figuration with (o, 71, 7,,73)=(1,0,0,1). In Fig. 8 the av-
erage value ofr is plotted versusn; for a 6° lattice with
antiperiodic boundary conditions along the time direction,
h=(0,0,0.1), 8;=0.05, Lg=2 andmy=1.0. The “outer”
solid line is the largeN prediction forh=(0,0,0.1) and the
“inner” one for h=(0,0,0). The diamonds are the results of
the numerical simulations. As can be seen they are in fairly
good agreement with the lardéresults supporting the pres-
ence of this phase. A finite volume analysis together with an
analysis involving decreasing values lofas in[29] is still
needed in order to unequivocally establish the presence of

FIG. 8. The average value of the third component of the pionth® Parity-flavor broken phase fbr=2, but this is not in the

field versusm; for the SU(2)x SU(2) model on a & lattice with ~ Scope of this paper.
antiperiodic boundary conditions along the time directidn,
=(0,0,0.1),8,=0.05,L,=2 andmy=1.0. The “outer” solid line

is the largeN prediction forh=(0,0,0.1) and the “inner” one for
h=(0,0,0). The diamonds are the results of the numerical simula-
tions.

<>

me

V. CONCLUSIONS

The interaction of domain wall fermions with scalar fields
was formulated. It was found that contrary to naive expecta-

B . tions this interaction takes place only at the boundary of the
and my=1.6 (crosseps The solid lines are the largd pre- extra direction. This is in contrast with the interaction of

dictions for the same parameters and the dotted lines are the, \,~i \wall fermions with gauge fields which is the same
large N predictions form;=0 andLs=. The agreement 551 the extra direction. This seems to indicate a picture

with the largeN predictions is good away from the critical \\it some richness where different spin fields couple to do-
region where the approximation of a uniform saddle is good,5in wall fermions in different ways.

The decay and decay rate ¢f) as a function ot for Large N techniques were used to study two 4-fermion
m;=0.02 are shown in Fig. 7. In Fig. 7a3,=1.0 andB;  models, one witlZ,x Z, and one withSU(2)x SU(2) chi-
=0.05 (diamond$, B;=0.1 (squares and B;=0.25 ral symmetry. It was found that at the limit of infinite extra
(crosses In Fig. 7c, B;=0.05 andm,=0.6 (diamonds,  direction chiral symmetry breaks spontaneously in the stan-
mo=0.8 (squarel my= 1.0 (crossel andmy= 1.1 (circles. d_a_rd fashion. However, if t_he size of the_ extra_d_lrectlon is
The solid lines in Figs. 7a and 7¢ are fitstpr c,e ©2'sand  finite, theSU(2)x SU(2) chiral symmetry is explicitly bro-
the dotted lines are the lardé predictions. The decay rates Xen by the regulator down to flav&U(2). It wasfound that
c, from the fits in Figs. 7a and 7c are shown in figures 7bthis remaining flavor symmetry can break spontaneously if
and 7d respectively. The solid lines in these figures are thf® bare quark mass is negative, resulting in a parity-flavor
large N predicted minimum and maximum decay rates. AsProken phase of the Aoki type. Hybrid Monte Carlo simula-
can be seen, the agreement with the lakggredictions is ~ tions were performed for those models with=2 on 6
good and the decay rates are fairly independelﬁloiﬁndmo lattices with antiperiodic boundary conditions along the extra

and close to the minimum predicted value. This is in contrasg:r?gr']zn‘ The results were found to support the lakgere-
to gauge theories where the dependence of the decay rates %ﬁ '

the gauge coupling is significapt2,4].
Finally the SU(2)XSU(2) model with action as in Eq.

(1) and i_rlteraqtion term as in EQL6) was sir_nulated in an ACKNOWLEDGMENTS
effort to investigate the presence of the parity-flavor broken
phase. The lattice Lagrangian has exati(2) flavor sym- We thank G. Fleming for useful comments. This research

metry and as a result when this symmetry is spontaneoushyas supported in part by NSF under grant NSF-PHY96-
broken there will be two exactly massless Goldstone pions05199.
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