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Fermion-scalar interactions with domain wall fermions

P. Vranas, I. Tziligakis, and J. Kogut
Physics Department, University of Illinois, Urbana, Illinois 61801

~Received 25 May 1999; published 31 July 2000!

Domain wall fermions are defined on a lattice with an extra direction, the size of which controls the chiral
properties of the theory. When gauge fields are coupled to domain wall fermions the extra direction is treated
as an internal flavor space. Here it is found that this is not the case for scalar fields. Instead, the interaction
takes place only along the link that connects the boundaries of the extra direction. This reveals a richness in the
way different spin particles are coupled to domain wall fermions. As an application, 4-fermion models are
studied using largeN techniques and the results are supported by numerical simulations withN52. It is found
that the chiral properties of domain wall fermions in these models are good across a large range of couplings
and that a phase with parity-flavor broken symmetry can develop for negative bare masses if the number of
sites along the extra direction is finite.

PACS number~s!: 11.15.Ha, 11.30.Rd, 12.40.2y, 71.10.Fd
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I. INTRODUCTION
Domain wall fermions@1# provide an alternative to stan

dard lattice fermions and have already been used to for
late lattice gauge theories~for reviews see@2# and references
therein!. Here domain wall fermions are used to study latt
theories of fermions and scalars. Such theories can be stu
analytically using largeN methods and applications of thes
theories requiring enhanced control over the chiral symm
tries may be of interest. For example, such applications m
involve 4-fermion models or models with Higgs fields inte
acting via Yukawa couplings.

Domain wall fermions~DWFs! are defined on the sites o
a space-time lattice with one extra direction. The dimens
of this lattice will be denoted asd11. In the method of@3#
the boundary conditions along the extra direction are f
and as a result light fermion surface states develop on
boundary. The plus chirality components of the Dirac spin
are exponentially localized on one wall while the minus on
are on the other. If the extra direction hasLs sites, then the
two chiralities overlap only by an amount that is expone
tially small in Ls . Therefore, the extra parameterLs controls
the amount by which the regulator breaks the chiral symm
try at any lattice spacing. As a result, and contrary to st
gered or Wilson fermions, the chiral and continuum lim
are separated. Furthermore, in numerical applications
cost for recovery of the chiral symmetry is only linear inLs .
These properties make DWFs an attractive regulator in p
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lems where good control of the chiral symmetries is need
For example, DWFs have been used in studies of the fi
temperature QCD phase transition@4–8#.

One would have expected that the formulation of theor
with DWFs coupled to scalar fields should closely follo
that of DWFs coupled to gauge fields. However, this is n
the case and as a result an interesting difference betwee
way the scalar and gauge fields are coupled to DW
emerges. The formulation and a discussion of this differe
is presented in Sec. II. Two 4-fermion models, one with
Z23Z2 and one with anSU(2)3SU(2) chiral symmetry in
three dimensions, are studied in Sec. III using largeN tech-
niques. In Sec. IV these models are studied using hyb
Monte Carlo simulations withN52. Conclusions are pre
sented in Sec. V.

Using DWFs in 4-fermion models was also suggested
@9#. For a recent implementation of overlap fermions to t
gauged Gross-Neveu model see@10#.

II. FERMION-SCALAR INTERACTION

The free DWF action in the formulation of@3# is

S52 (
x,x8,s,s8

C̄~x,s!D~x,s;x8,s8!C~x8,s8! ~1!

with Dirac operator
D~x,s;x8,s8!5d~s2s8!D” ~x,x8!1D”'~s,s8!d~x2x8!1E'~s,s8;x!d~x2x8! ~2!

where

D” ~x,x8!5
1

2 (
m51

d

@~11gm!d~x1m̂2x8!1~12gm!d~x81m̂2x!#1~m02d!d~x2x8! ~3!

D”'~s,s8!5H PRd~12s8!2d~s2s8!, s50,

PRd~s112s8!1PLd~s212s8!2d~s2s8!, 0,s,Ls21,

PLd~Ls222s8!2d~s2s8!, s5Ls21,

~4!
©2000 The American Physical Society07-1
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E'~s,s8!52mf@QR~s,s8!1QL~s,s8!# ~5!

PR,L5
16g5

2
~6!

QR~s,s8!5PRd~Ls212s!d~02s8!, QL~s,s8!5PLd~02s!d~Ls212s8!. ~7!
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In the above equationsm0 is a five-dimensional mass rep
resenting the ‘‘height’’ of the domain wall. Among othe
things, the parameterm0 controls the number of light specie
@1#. For example, in four dimensions the theory is symme
aroundm055 and for 0,m0,2 corresponds to a theor
with one light species, for 2,m0,4 to a theory with four
and for 4,m0,6 to a theory with six@11#. The parameter
mf explicitly mixes the two chiralities and as a result it co
trols the bare fermion mass of thed-dimensional effective
theory in a linear fashion. The DWF Dirac operator satisfi
the identity@3#

g5RDFg5R5DF
† ~8!

with R the reflection operator along the fifth direction. As
result, the two species determinant is real and non-nega

detDF
25detDF

†DF . ~9!

From a calculation of the propagator or from the lowest
genvalue of the fermion matrix the fermion mass for the o
flavor free theory is@12#

meff5m0~22m0!@mf1~12m0!Ls#, 0,m0,2. ~10!

From the free action one can see that there is more
one way one could couple a gauge field to DWFs in a ga
invariant way. The most straightforward choice of introdu
ing a gauge field is to also define it ind11 dimensions and
couple it in the standard gauge invariant way. However
turns out that this choice does not lead to the correct the
in d dimensions. The correct way to couple the gauge fi
was arrived at by thinking of the extra dimension as
another internal flavor space@1,13#. Then one has to intro
duce the gauge field only in thed dimensional space an
couple it the same way to all fermion ‘‘flavors.’’ Obviously
this also results in a manifestly gauge invariant formulati
In particular, the Dirac operator is as in Eq.~2! but with D”
defined as

D” ~x,x8!5
1

2 (
m51

d

@~11gm!Um~x!d~x1m̂2x8!1~12gm!

3Um
† ~x8!d~x81m̂2x!#1~m02d!d~x2x8!.

~11!

Therefore, although one can think of the extra direction
a new space-time dimension, it is more natural to think o
as an internal flavor space. From this point of view, if o
wishes to formulate a theory that ind-dimensions would be a
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theory of a scalar field coupled to a fermion bilinear, o
would couple the scalar field to all internal fermion flavo
the same way, as was done for the case of a gauge fi
However, this choice will not result in the desired theory ind
dimensions. To see this consider the simple example o
target theory of fermions coupled to a real valued scalar fi
s in d dimensions with continuum action

S5E q̄gm]mq1mq̄q1sq̄q1bs2. ~12!

If m50, this model has aZ23Z2 chiral symmetry. It is clear
that a largeN or mean field analysis of this model will indi
cate that the propagator mass would bem1^s& where^s& is
the vacuum expectation value of thes field. Clearly a lattice
formulation of this model using DWFs should at least rep
duce this simple result. However, if thes field is coupled to
all fermion degrees of freedom the same way, as is the m

m0, i.e. C̄(x,s)s(x)C(x,s), a similar analysis will result in
a propagator mass as in Eq.~10!, but with m0 replaced by
m01^s&. This is obviously the wrong result. Even if on
were to accept this exponential behavior by redefining ths
field, this theory would have the peculiar property of chan
ing the number of light species depending on the value os.
Clearly, in order to get the correct result one has to cou
thes field in the same fashion as themf mass and not as th
d11 massm0. Then the Dirac operator is as in Eq.~2! but
with E':

E'~s,s8;x!52@mf1s~x!#@QR~s,s8!1QL~s,s8!#.
~13!

In the resulting action thes field couples with the fer-
mion fields only across the boundary links of thed11 di-
mension. That this is the correct action can be seen by
serving that the interaction term in the action can
rewritten as

C̄~x,Ls21!s~x!PRC~x,0!1C̄~x,0!s~x!PLC~x,Ls21!

5q̄~x!s~x!q~x! ~14!

with

q~x!5PRC~x,0!1PLC~x,Ls21!

q̄~x!5C̄~x,Ls21!PR1C̄~x,0!PL . ~15!

The fieldsq̄, q correspond to the lightd-dimensional fields
@3#. Since these are the only propagating fields ind dimen-
7-2
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sions and since, in terms of these fields the correct glo
symmetry is in place, the above action should describe
desired target theory.

Another way to see that this is the correct action is
consider adding such an interaction to Neuberger fermi
@14#. In that formulation the fermion fields are standardd
dimensional fields and the interaction can be added un
biguously. Then, if the discrete finite flavor version of th
formulation is used, one can directly recover the DWF
tion. Since thes field is added as a mass term, one can
by simple inspection that the above action is recovered. F
thermore, the connection can also be made exact by usin
results of@15# where thed-dimensional action arrived at b
integrating all heavy fermion degrees of freedom is e
pressed solely in terms of theq̄, q fields.

It should also be noted that scalar fields were used
different context@1,16# in an attempt to formulate chira
gauge theories using DWFs. There, in order to maint
gauge invariance, the scalar fields were defined on a ‘‘slic
in the extra direction.

With the interaction defined as in Eq.~13! the transfer
matrix of the model along thed11 direction@13,3# is inde-
pendent of thes field and is therefore the free field transf
matrix. The s field is defined only on the boundary an
therefore only affects the boundary operatorO of @3#. In the
case of a gauge theory the extra fermion degrees of free
are heavy but numerous as theLs→` limit is taken. For this
reason it was shown that they need to be subtracted and
way to do that for each gauge field background is to div
out a bulk factor@13# of the form f (U)Ls where f (U) is
some function of the gauge fieldU determined by the trans
fer matrix @in the formulation of@3# f (U)5lmaxdetB]. Here
the same bulk factor is present but unlike the gauge theo
does not depend on the background field. Therefore it ca
factored out from thes path integral and as a result it be
comes an irrelevant factor that will cancel out with the sa
factor appearing by dividing by the partition function whe
ever an expectation value is calculated. Therefore, unlike
gauge theory, it is unnecessary to explicitly subtract it ou

The extension to more general interaction terms
straightforward. The interaction is written in terms of theq̄,

q fields and using Eq.~15! is transcribed for theC̄, C fields.
For example, a target theory withSU(2)3SU(2) chiral
symmetry has Dirac operator as in Eq.~2! but with E':

E'~s,s8;x!52@mf1s~x!1 ig5p~x!•t#@QR~s,s8!

1QL~s,s8!# ~16!

wherep(x) is the pion field andt are the Pauli matrices.
The above results, although contrary to naive expe

tions, are straightforward. However, the following observ
tions can be made:

~1! For the case of scalar fields it is not natural to interp
the extra DWF direction as an internal flavor space since
interaction takes place only at the boundary of the extra
rection.

~2! One could have thought that the introduction of
extra dimension would have lent some freedom to the d
05450
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nition of the DWF interaction with the scalar and gau
fields. However, this appears not to be the case. The D
formalism and symmetry requirements seem to have n
rally forced the interaction terms to be of this specific for

~3! A picture with some richness seems to develop w
different spin fields coupled to domain wall fermions in d
ferent ways.

III. LARGE N ANALYSIS

The analysis in this section closely follows the analysis
@17# of the same model using Wilson fermions. Also s
@18–21# for studies of 4-fermion models with staggered fe
mions.

Consider a 4-fermion model in the continuum wi
SU(2)3SU(2) chiral symmetry and Lagrangian:

L5q̄~ i ]”2m!q1
G1

2
@~ q̄q!21~ q̄ig5tq!2#. ~17!

In the above expression all indices have been suppres
The fermionic fieldq is a flavorSU(2) doublet and a color
SU(N) N-column vector. The Lagrangian is diagonal
‘‘color,’’ in contrast with the full QCD Lagrangian which is
diagonal in flavor.t5$t1 ,t2 ,t3% are the three isospin Pau
matrices,]”5gm]m , andm is the bare quark mass~if mÞ0
the chiral symmetry is explicitly broken!. As is well known,
a Lagrangian density that is quadratic in the fermionic fie
can be obtained by introducing a scalar auxiliary fields and
three pseudoscalar auxiliary fieldsp5$p1 ,p2 ,p3% coupled
to the fermion bilinear:

L5q̄Dq2nfb1~s21p2!

D5 i ]”2m2s2 ig5t•p. ~18!

Here nf is the number of flavors andb151/2nfG1. Tran-
scribing this to a Euclidian lattice, using DWFs with
fermion-scalar interaction as described in Sec. II and an e
number of ‘‘colors’’ N one obtains

Z5E @dCdC̄dsdp#e2S

S5(
i 51

N/2

$C̄ iDC i1C̄ i 1N/2D†C i 1N/2%

1nfb1~s21p2! ~19!

whereD is defined in Eq.~2! with E' as in Eq.~16! and use
of the property in Eq.~9! has been made.

Following the standard largeN analysis, the saddle poin
equations~SPEs! are calculated by assuming uniform sadd
fields and small fluctuations of the form

s~x!5ss1
ds~x!

AN
, p~x!5ps1

dp~x!

AN
. ~20!

The saddle point equations are
7-3
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1

V
Re Tr@Ds

21~QR1QL!#12nf b̄1ss50 ~21!

1

V
Re Tr@Ds

21~QR1QL!ig5t#12nf b̄1ps50 ~22!

or, in terms of theq̄, q fields of Eq.~15!,

1

V
Rê q̄q&s12nf b̄1ss50 ~23!

1

V
Rê q̄ig5tq&12nf b̄1ps50 ~24!

where

b̄15
b1

N
5

1

2nfNG1
. ~25!

The Ls5` and the finiteLs cases need to be studie
separately since each case has a different symmetry gro

A. L sÄ` case

If mf50, then the DWF Dirac operator has exact chi
symmetry. If there is spontaneous symmetry breaking, on
therefore free to choose the direction of breaking at will. T
standard choice isssÞ0 andps50. For this choice the sec
ond SPE, Eq.~22!, is trivially satisfied since the non-trivia
flavor part ofDs

21 is proportional totps . This case is iden-
tical to the case of a simpler model withoutp fields andnf
51. Such a theory hasZ23Z2 chiral symmetry. Therefore
the following analysis can be trivially extended for theZ2
3Z2 model.

Using the free propagator results of@12# after some alge-
bra the first SPE, Eq.~21!, for Ls5` results in

ssb̄12
2~ss1mf !

V (
p

z~p!2

p̄21~ss1mf !
2z~p!2

50 ~26!

where

p̄25 (
m51

d

sin~pm!2 ~27!

z~p!512be2a ~28!

b512m01 (
m51

d

@12cos~pm!# ~29!

cosha5
11b21 p̄2

2b
, 0<a. ~30!

The factorz(p) plays the role of ‘‘selecting’’ Brillouin
zones. For a given range ofm0 the factorz(p) is nonzero at
the orgins of only certain Brillouin zones. To see this o
serve that at the orgin of any Brillouin zonep̄'0 and there-
05450
p.

l
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e

-

fore Eq. ~30! has the solution exp(2a)5b if ubu,1 and
exp(2a)51/b if ubu.1. Therefore, from Eq.~28!, one can
see thatz(p)512b2 if ubu,1 andz(p)50 if ubu.1. For
example, if 0,m0,2, then z(p) is non-zero only in the
zone with momentum components around zero. The co
tion for non-zeroz(p) at the origins of a Brillouin zone,

ubu,1⇔m022, (
m51

d

@12cos~pm!#,m0 , ~31!

is the same as the condition for the existence of normaliza
states@1#. For zero momentumz(p50)5m0(22m0).

One can see that Eq.~26! for mf50 can have two solu-
tions: one withss50 corresponding to a chirally symmetri
phase and one withssÞ0 corresponding to a phase wit
spontaneously broken chiral symmetry. The critical value
b̄1 is obtained from Eq.~26! in the limit ss→0 and is given
by

b̄1c
5

2

V (
p

z~p!2

p̄2
. ~32!

It is interesting to notice the rather strong dependence
b̄1c

on m0. A similarly strong dependence of the critica

coupling onm0 was found for the QCD finite temperatur
phase transition@4#. As an example,b̄1c

is plotted versusm0

for a 63 lattice with antiperiodic boundary conditions alon
the time direction in Fig. 1. In the next section such lattic
will be used to compare the largeN expressions with numeri
cal simulations. A similar graph can be obtained for a fo
dimensional lattice but it extends fromm050 to m0510 and
is symmetric aroundm055.

FIG. 1. The largeN critical valueb̄1c
versusm0 for a 63 lattice

with antiperiodic boundary conditions along the time direction.
7-4
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B. Finite L s case

When Ls is finite the DWF Dirac operator breaks chir
symmetry explicitly even formf50. ThereforessÞ0 and
the remaining symmetry is theSU(2) flavor symmetry. This
symmetry can break spontaneously, resulting in a nonz
ps . If this happens, then from Eq.~24! one can see tha

^q̄ig5tq&Þ0 and parity as well as flavor symmetries a
broken. This is the Aoki phase@22#. This phase has also bee
observed for this model with Wilson fermions@23,24#. The
existence of this phase for DWFs was also suggested in@25#
and it may be present in QCD with DWFs@26#.

First consider the phase withps50. Again the second
SPE, Eq.~22!, is trivialy satisfied and the following analysi
is also valid for theZ23Z2 model at finiteLs . The first SPE,
Eq. ~22! is

ssb̄12
2

V (
p

$~mf1ss!~A01A2!1bAm1e2a(Ls21)

3@~mf1ss!Am1b~B1A11A2!#1e22a(Ls21)

3@~mf1ss!A11bAm#%50 ~33!

whereA0 , A1 , A2 , Am are functions of the momentum,mf
1ss and e2aLs, and are the same as in@12# but with mf
replaced bymf1ss . This equation can be used to calcula
ss as a function of the other parameters of the theory.

It is interesting to see how chiral symmetry is restored
Ls increases. As can be seen from Eq.~30! the decay coef-
ficient a is independent ofb̄1 and it only depends onm0 and
the momenta. In Fig. 2 the minimum and maximum valu
of Re(a) ~if b,0 a has imaginary part6 ip) obtained for
different momenta are plotted as a function ofm0 in the

FIG. 2. The real part of the maximum and minimum largeN
decay rates as a function ofm0 for a 63 lattice with antiperiodic
boundary conditions along the time direction.
05450
ro

s

s

range 0,m0,2. The ‘‘spikes’’ of the maximum value are
the singularities that occur whenb50. As can be deduced
from Eq. ~30! the peak of the minimum decay occurs atm0

522A250.586 and is 2 ln(22A2)50.535. The decay
rates between the minimum and the maximum values h
no gaps. AsLs increases eventually the only chiral symmet
violations that remain will be controlled by the minimum
decay rate unless the observable is dominated solely
terms with the decay rate close to the maximum. Since
minimum decay rate is approximately constant across
full range ofm0, there is no valuable option of tuningm0 in
order to achieve better characteristics except perhaps ar
m050.586. As an example,ss versusLs is plotted in Fig. 3

for mf50 and variousm0 at b̄150.3 which is above the
transition for all them0 values. The slopes obtained from th
largerLs points are slightly faster than the minimum dec
rates of Fig. 2 and the largest slope is form050.6.

Next consider the phase withpsÞ0. The first SPE is as in
the p50 case, Eq.~33!. However, since the non-trivial fla
vor part ofDs

21 is proportional totps , one can now elimi-
nateps from the second SPE and obtain a second non-tri
equation. These two equations can be used to determinss
andps . The full form of these equations is complicated a
not particularly illuminating. However, if only the leadin
order inmf ande2aLs is kept, these equations can be writte
in the form

b̄15
2

V (
p

Fz2

D G1O~1! ~34!

FIG. 3. The largeN ss as a function ofLs for a 63 lattice with
antiperiodic boundary conditions along the time direction,mf50

and variousm0 at b̄150.3 above the transition. The diamond
squares, crosses, circles, and stars correspond tom0

50.2,0.4,0.6,0.8, 1.0.
7-5



n-

PE

. 4
ller

n

ng

e

c

c-

P. VRANAS, I. TZILIGAKIS, AND J. KOGUT PHYSICAL REVIEW D62 054507
FIG. 4. The largeN phase boundary of the parity-flavor broke
phase of theSU(2)3SU(2) model on a 63 lattice with antiperiodic
boundary conditions along the time direction withm051 and for
variousLs values. From bottom to top theLs values are 2, 3, 4, and
5. The parity-flavor symmetry is broken inside the oval-looki
regions.

FIG. 5. For fixedb̄150.05 the origin2mf c
~diamonds! and

width dmf c
~circles! of the largeN parity-flavor broken phase of th

SU(2)3SU(2) model are plotted versusLs for m051 and for a 63

lattice with antiperiodic boundary conditions along the time dire
tion.
05450
mf52

(
p

Fe2aLsS p̄21z2

D
D G

(
p

Fz2

D G 1O~2! ~35!

D5 p̄2~11@mf1ss#e
2aLs!21z2~@mf1ss#1e2aLs!2

1upsu2~z21 p̄2e22aLs!. ~36!

If Ls is an even number or ifm0 is such that 0<b(p) ~and
therefore 0<e2a(p)) for all momenta, thene2aLs is positive
and mf must be negative in order to have a phase withps

Þ0. The phase boundarymf c
(b̄1) can be obtained from the

above equations by settingps→0 and eliminatingx5mf
1ss . From these equations it can be deduced thatumf c

u
decreases exponentially withLs . Furthermore, for a given
b̄1c

the width of thepsÞ0 region also decreases expone

tially with Ls . In Fig. 4 the phase boundary of thepsÞ0
phase is given for a 63 lattice with antiperiodic boundary
conditions along the time direction,m051, and for various
Ls values. From bottom to top theLs values are 2, 3, 4, and
5. This has been calculated using the full form of the S
and not just the truncated form, Eqs.~34! and~35!. However,
the two are nearly the same for 2,Ls . Also different values
of m0 produce similar results. As can be seen from Fig
when Ls is increased the phase boundary moves to sma

-

FIG. 6. ^s& as a function ofb̄1 for the Z23Z2 model on a 63

lattice with antiperiodic boundary conditions along the time dire
tion, mf50.02, Ls512, m050.4 ~diamonds!, m051.0 ~squares!
and m051.6 ~crosses!. The solid lines are the largeN predictions
for the same parameters and the dotted lines are the largeN predic-
tions for mf50 andLs5`.
7-6
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FIG. 7. The decay and deca
rate of^s& as a function ofLs for
the Z23Z2 model on a 63 lattice
with antiperiodic boundary condi-
tions along the time direction and

mf50.02. In ~a!, m051.0 andb̄1

50.05 ~diamonds!, b̄150.1

~squares! and b̄150.25 ~crosses!.

In ~c!, b̄150.05 and m050.6
~diamonds!, m050.8 ~squares!,
m051.0 ~crosses!, and m051.1
~circles!. The solid lines in~a! and
~c! are fits toc01c1e2c2Ls and the
dotted lines are the largeN predic-
tions. The decay ratesc2 from the
fits in ~a! and~c! are shown in~b!
and ~d! respectively. The solid
lines in these figures are the larg
N predicted minimum and maxi-
mum decay rates.
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n

umf u with decreasing width. In Fig. 5 for fixedb̄150.05 the
origin of the phase boundary,2mf c

, and width dmf c
are

plotted versusLs for m051.0 and a 63 lattice with antiperi-
odic boundary conditions along the time direction.

The effective fermion massmq is identified from the zero
of Eq. ~36! for momentap'0 and is

mq5z~p50!@mf1ss1~12m0!Ls#. ~37!

The continuum limit is reached atmq50 and the lattice
spacing is set toa;mq . This point corresponds to the larg
est b̄1c

value of the phase boundary curves in Fig. 4 (mq is
positive on the upper part of the phase boundary and n
tive on the lower one!. The width of the Aoki phase close t
mq50 can be obtained from Eq.~35!. To lowest order inmq
it is dmf5mq(]mf /]mq)umq50. The derivative is not zero a

mq50 and thereforedmf;mq;a. For an analysis concern
ing the width of the Aoki phase in QCD with Wilson ferm
ons see@27#. The above features are not particular to thr
dimensions and similar results have been obtained for fo
dimensional lattices.
05450
a-

e
r-

Finally, it is interesting to observe that ifm0 is such that
b(p)<0 for some momenta andLs is odd, then thepsÞ0
phase can occur even for positivemf . If the psÞ0 phase
needs to be avoided for anym0, then one should set 0<mf
andLs to an even number@on the other hand, ifm0<1, then
0<b(p) for any momenta and any value ofLs can be used#.

IV. HYBRID MONTE CARLO SIMULATIONS

In this section standard hybrid Monte Carlo~HMC! simu-
lations are performed forN52. These simulations suppo
the largeN results of the previous section. For all simulatio
the trajectory length is set tot51 and the step size todt
50.1. The acceptance rate is'90% and the conjugate gra
dient inverter iterations are'50–100. Typically 100–200
thermalization sweeps were followed by 300–400 swe
with measurements. The lattice size for all simulations is3

with antiperiodic boundary conditions along the time dire
tion. All simulations were done on workstations.

The Z23Z2 model with action as in Eq.~1! and interac-
tion term as in Eq.~13! was simulated first. The initial con
figuration for all simulations was a uniform configuratio
with s51. In Fig. 6,^s& is plotted as a function ofb̄1 for
mf50.02, Ls512, m050.4 ~diamonds!, m051.0 ~squares!
7-7
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and m051.6 ~crosses!. The solid lines are the largeN pre-
dictions for the same parameters and the dotted lines are
large N predictions formf50 and Ls5`. The agreemen
with the largeN predictions is good away from the critica
region where the approximation of a uniform saddle is go

The decay and decay rate of^s& as a function ofLs for
mf50.02 are shown in Fig. 7. In Fig. 7a,m051.0 andb̄1

50.05 ~diamonds!, b̄150.1 ~squares! and b̄150.25
~crosses!. In Fig. 7c, b̄150.05 andm050.6 ~diamonds!,
m050.8 ~squares!, m051.0 ~crosses!, andm051.1 ~circles!.
The solid lines in Figs. 7a and 7c are fits toc01c1e2c2Ls and
the dotted lines are the largeN predictions. The decay rate
c2 from the fits in Figs. 7a and 7c are shown in figures
and 7d respectively. The solid lines in these figures are
large N predicted minimum and maximum decay rates.
can be seen, the agreement with the largeN predictions is
good and the decay rates are fairly independent ofb̄1 andm0
and close to the minimum predicted value. This is in contr
to gauge theories where the dependence of the decay rat
the gauge coupling is significant@12,4#.

Finally the SU(2)3SU(2) model with action as in Eq
~1! and interaction term as in Eq.~16! was simulated in an
effort to investigate the presence of the parity-flavor brok
phase. The lattice Lagrangian has exactSU(2) flavor sym-
metry and as a result when this symmetry is spontaneo
broken there will be two exactly massless Goldstone pio

FIG. 8. The average value of the third component of the p
field versusmf for the SU(2)3SU(2) model on a 63 lattice with
antiperiodic boundary conditions along the time direction,h
5(0,0,0.1),b̄150.05, Ls52 andm051.0. The ‘‘outer’’ solid line
is the largeN prediction forh5(0,0,0.1) and the ‘‘inner’’ one for
h5(0,0,0). The diamonds are the results of the numerical sim
tions.
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In that case the conjugate gradient inverter would not c
verge. Furthermore, in the small lattices considered h
spontaneous breaking cannot really take place and thep field
would always average to zero for sufficiently large statisti
In @22,28,29# these problems were treated by adding a sm
external fieldh that breaks theSU(2) flavor symmetry and
therefore not only gives mass to the two pions but also p
vides a ‘‘preferred’’ orientation for thep field. Such an ex-
ternal field is used here by adding a term that is exactly
same as thep term in Eq.~16! but with p replaced byh. The
initial configuration for all simulations was a uniform con
figuration with (s,p1 ,p2 ,p3)5(1,0,0,1). In Fig. 8 the av-
erage value ofp3 is plotted versusmf for a 63 lattice with
antiperiodic boundary conditions along the time directio
h5(0,0,0.1), b̄150.05, Ls52 and m051.0. The ‘‘outer’’
solid line is the largeN prediction forh5(0,0,0.1) and the
‘‘inner’’ one for h5(0,0,0). The diamonds are the results
the numerical simulations. As can be seen they are in fa
good agreement with the largeN results supporting the pres
ence of this phase. A finite volume analysis together with
analysis involving decreasing values ofh as in @29# is still
needed in order to unequivocally establish the presenc
the parity-flavor broken phase forN52, but this is not in the
scope of this paper.

V. CONCLUSIONS

The interaction of domain wall fermions with scalar field
was formulated. It was found that contrary to naive expec
tions this interaction takes place only at the boundary of
extra direction. This is in contrast with the interaction
domain wall fermions with gauge fields which is the sam
along the extra direction. This seems to indicate a pict
with some richness where different spin fields couple to
main wall fermions in different ways.

Large N techniques were used to study two 4-fermi
models, one withZ23Z2 and one withSU(2)3SU(2) chi-
ral symmetry. It was found that at the limit of infinite extr
direction chiral symmetry breaks spontaneously in the st
dard fashion. However, if the size of the extra direction
finite, theSU(2)3SU(2) chiral symmetry is explicitly bro-
ken by the regulator down to flavorSU(2). It wasfound that
this remaining flavor symmetry can break spontaneousl
the bare quark mass is negative, resulting in a parity-fla
broken phase of the Aoki type. Hybrid Monte Carlo simul
tions were performed for those models withN52 on 63

lattices with antiperiodic boundary conditions along the ex
direction. The results were found to support the largeN pre-
dictions.
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