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Lattice determination of light quark masses
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A fully nonperturbative lattice determination of the up or down and strange quark masses is given for
quenched QCD using bothO(a) improved Wilson fermions and ordinary Wilson fermions. For the strange
quark mass withO(a) improved fermions we obtainms

MS(m52 GeV)5105(4) MeV, using the interquark
force scaler 0. Because of quenching problems, fits are only possible for quark masses larger than the strange
quark mass. If we extrapolate our fits to the up or down quark mass we find for the average massml

MS(m
52 GeV)54.4(2) MeV.

PACS number~s!: 12.38.Gc, 11.15.Ha
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I. INTRODUCTION

Some of the least known parameters in the stand
model are the light quark massesmu , md, and ms . Their
phenomenological values have been discussed since the
days of the quark model. Paradoxically, the values of
later discovered heavier quarks are more accurately kn
@1#. The reason is that the connection between light qu
masses and observables is highly nonperturbative. T
means that the lattice approach is an appropriate techn
for this problem.

In this paper we shall present a completely nonpertur
tive determination of light quark masses. A recent major s
forward has been the nonperturbative lattice determinatio
the renormalization constants of the mass operators. A
because of the increase in available computer time, a m
reliable continuum extrapolation is now possible.

This paper is organized as follows. In Sec. II we discu
the definition of the quark mass and its renormalizat
group behavior. Transcribing lattice data to physical un
requires a scale to be set. For quenched QCD this proble
discussed in Sec. III. The lattice technique for obtaining
quark masses and their renormalization is presented in
IV. In Sec. V we give our results, and in Sec. VI we extrap
late them to the continuum limit to remove residual discre
zation effects. We perform the calculations for both,O(a)
improved fermions and for Wilson fermions. Both shou
extrapolate to the same continuum result, and thus we ha
consistency check between the two methods. We have
viously used tadpole improved perturbation theory to co
pute the renormalization constants. In Sec. VII we test
validity of this approach. Finally, in Sec. VIII we give ou
conclusions.

II. DEFINING THE QUARK MASS

Due to confinement quarks are not eigenstates of the Q
Hamiltonian and are thus not directly observable. A defi
tion of the quark mass from an experiment thus means
0556-2821/2000/62~5!/054504~11!/$15.00 62 0545
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scribing the measurement procedure. Theoretically this
equivalent to giving a renormalization schemeS and scale
M. Conventionally, quark masses are given in a mass in
pendent scheme, such as the modified minimal subtrac
(MS) scheme, at some given scalem, commonly taken as
2 GeV @1#. In a general mass independent schemeS the
renormalized quark mass is given by

mS~M !5Zm
S ~M !mbare . ~1!

The running of this renormalized quark mass as the scalM
is changed is controlled by theb and g functions in the
renormalization group equation. These are defined as s
derivatives of the renormalized coupling and mass renorm
ization constant as

bS
„gS~M !…[

]gS~M !

] logM U
bare

, ~2!

gm
S
„gS~M !…[

] logZm
S ~M !

] logM
U

bare

, ~3!

where the bare parameters are held constant. These func
are given perturbatively as power series expansions in
coupling constant. The expansion is now known to fo
loops in theMS scheme@2,3#. We have

bMS~g!52b0g32b1g52b2
MSg72b3

MSg92•••,

gm
MS~g!5dm0g21dm1

MSg41dm2
MSg61dm3

MSg81•••,
~4!

where~for quenched QCD!
©2000 The American Physical Society04-1
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M. GÖCKELER et al. PHYSICAL REVIEW D 62 054504
b05
11

~4p!2 , b15
102

~4p!4 ,

b2
MS5

1

~4p!6 F2857

2 G ,
b3

MS5
1

~4p!8 F149753

6
13564z3G , ~5!

and

dm052
8

~4p!2 , dm1
MS52

1

~4p!4

404

3
,

dm2
MS52

2498

~4p!6 ,

dm3
MS52

1

~4p!8 F4603055

81
1

271360

27
z3217600z5G ,

~6!

with z351.20206 . . . and z551.03693 . . . , z being the
Riemann zeta function.

We may immediately integrate Eq.~2! to obtain

M5LS@b0gS~M !2#b1 /2b0
2
expF 1

2b0gS~M !2G
3expH E

0

gS(M )
djF 1

bS~j!
1

1

b0j3 2
b1

b0
2jG J . ~7!

The renormalization group invariant~RGI! quark mass is
defined from the renormalized quark mass as

mRGI[DZm
S ~M !mS~M !5DZm

S ~M !Zm
S ~M !mbare , ~8!

where

@DZm
S ~M !#215@2b0gS~M !2#2dm0 /2b0

3expH E
0

gS(M )
djFgm

S ~j!

bS~j!
1

dm0

b0j G J , ~9!

and the integration constant upon integrating Eq.~2! is given
by LS, and similarly from Eq.~3! we havemRGI. LS and
mRGI are independent of the scale. Under a change of v
able ~scheme change orS→S8),

gS85G~gS!5gS~11c1~gS!21••• !. ~10!

It can be shown that the first two coefficients of theb func-
tion, the first coefficient of theg function andmRGI are
independent of the scheme, whileL only changes asLS8

5LS exp(c1 /b0).
For the MS scheme computing@DZm

MS(m)#21 involves
first solving Eq.~7! for gMS(m) and then evaluating Eq.~9!.
This gives Fig. 1. We expand theb and g functions to the
appropriate order and then numerically evaluate the in
05450
ri-

-

grals. At m52 GeV we havem/LMS;8, and it seems tha
already at this value we have a fast converging series in l
orders. Indeed, only going from one loop to two loops giv
a significant change in@DZm

MS(8LMS)#21 of order 7%. From
two loops to three loops we have about 2%. The differen
between the three-loop and four-loop results isO(0.5%). So
if we are givenmRGI, and we wish to find the quark mass
the MS scheme at a certain scale, we need only use
four-loop result from Eq.~9! or equivalently Fig. 1.

III. DIGRESSION: WHICH SCALE TO USE?

We always need one~or more! experimental numbers a
input to set the scale. Ideally, it should not matter what qu
tity we use. Obvious choices are the force scaler 0 @4#, or the
string tensionAs, or some particle mass~e.g., the proton, or
for quenched QCD at least, ther). So a first requirement is
that whatever quantity we use, we should be in a reg
where the scaling to the continuum limit is the same for
quantities. Thus forr 0 and the string tension we wish that

r 0

a
~g0!3~aAs!~g0!5const ~11!

over theg0
2[6/b region used in the simulations, and inde

for all smaller g0
2. ~We know that this must break dow

below a value ofb around 5.7, due to the appearance
non-universal terms.! In Fig. 2 we show this product. This
seems reasonably constant, with a fit value of 1.170~5!.

The second requirement is to set the scale in MeV. As
are considering quenched QCD, it is not obvious that cho
ing scales from different experimental~or phenomenologi-
cal! quantities will necessarily lead to the same results.
deed, in the real world@4,10# the values are

r 050.5 fm[~394.6 MeV!21,

As5427 MeV, ~12!

FIG. 1. One-, two-, three-, and four-loop results f
@DZm

MS(m)#21 in units of LMS.
4-2
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(1 fm215197.3 MeV) which gives for the product a value
1.082–almost a 10% difference from the quenched value
both phenomenological estimates come from the same po
tial model @11#, presumably the quenched lattice potent
has a slightly different shape from the continuum potenti

Recently, the ALPHA Collaboration has determined
value forLMS @12# of

LMS50.602~48!/r 0 , ~13!

which may easily be converted using Eq.~11! to the string
tension scale. However, the numerical value will then su
from the same 10% ambiguity. Thus we find

L r 0

MS5238~19! MeV,

LAs
MS5220~18! MeV. ~14!

FIG. 2. The product ofr 0 /a and the string tensionaAs.
(r 0 /a)(g0) is taken from the formula given in@5#, while the string
tension is taken from@6# (b55.7, 5.8, 5.9, 6.4!, @7# (b56.0, 6.2!,
@8# (b56.4), and@9# (b56.6).
05450
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Our recent spectrum results@13#, usingO(a) improved fer-
mions, also show a difference whether one uses ther or the
proton mass to set the scale. Usingr 0 to set the scale is
roughly equivalent to usingmr .

In the following we shall adopt ther 0 scale as given in
@5#, namely,

ln~a/r 0!521.680521.7139~b26!

10.8155~b26!220.6667~b26!3 ~15!

~with an error of 0.3% increasing to 0.6% forb in the range
5.7<b<6.57), but delay using a numerical value for th
scale for as long as possible. For the standard scale om
52 GeV this gives, upon solving Eqs.~7! and ~9! to the
appropriate loop order, the results for@DZm

MS(m)#21 shown
in Table I. For later reference the results for some othem
values are also given there, together withas

MS(m).

IV. DETERMINING THE QUARK MASS

We shall now derive formulas for the quark masses us
the conserved vector current~CVC! and the partially con-
served axial vector current~PCAC! by assuming Taylor ex-
pansions in the bare quark mass for the relevant functi
that occur. We distinguish two quark masses. The W
identities arising from an infinitesimal vector transformati
in the partition function lead to a bare quark mass given

amqi
[

1

2 S 1

kqi

2
1

kc
D , i 51,2, ~16!

wherekqi
is the corresponding hopping parameter, andkc is

the critical hopping parameter. This is the standard definit
of the quark mass. Similarly, for an infinitesimal axial tran
formation the Ward identity~WI! or PCAC definition of the
quark mass can be written as
e
TABLE I. Useful values of@DZm
MS(m)#21 andas

MS(m)[@gMS(m)#2/4p. The errors are a reflection of th
error in Eq.~13!. The values of 1/a are found from Eq.~15! together withr 0 from Eq. ~12!.

m one-loop two-loop three-loop four-loop

@DZm
MS(m)#21

2.00 GeV 0.760(10) 0.704(9) 0.718(10) 0.721(10)
2.12 GeV (1/a at b56.0) 0.752(10) 0.697(8) 0.711(9) 0.714(10)
2.90 GeV (1/a at b56.2) 0.716(8) 0.667(7) 0.677(7) 0.679(8)
3.85 GeV (1/a at b56.4) 0.689(7) 0.644(6) 0.652(5) 0.653(6)

as
MS(m)

2.00 GeV 0.268(10) 0.195(6) 0.201(6) 0.202(7)
2.12 GeV (1/a at b56.0) 0.261(9) 0.191(5) 0.196(6) 0.197(6)
2.90 GeV (1/a at b56.2) 0.228(7) 0.170(5) 0.174(5) 0.175(5)
3.85 GeV (1/a at b56.4) 0.205(6) 0.156(3) 0.159(4) 0.159(4)
4-3
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am̃q1
1am̃q2

5
t@0 ^]4A4

q1q2~ t !P q1q2 ;smeared~0!&

^P q1q2~ t !P q1q2 ;smeared~0!&
~17!

[2sinhamPS
q1q2

^0uÂ4
q1q2uPS&

^0uP̂q1q2uPS&
, ~18!

whereA (P) is the axial vector current~pseudoscalar den
sity!. The precise form ofA and andP will be given later for
the O(a) improved as well as the Wilson cases. We ha
summed the operators over their spatial planes. WhileA(t)
and P(t) should be point operators, to improve the sign
P(0) is smeared over its spatial plane. To obtain the sec
equation, we have rewritten Eq.~17! in a Fock space and
then introduced a complete set of states in the usual way.
have then picked out the lowest pseudoscalar~PS! or 021

state whose mass we denote bymPS
q1q2 .

Both definitions of the quark mass must be renormaliz
In a schemeS at scaleM we have

mqi

S ~M !5Zm
S ~M ,amqi

!mqi
,

mq1

S ~M !1mq2

S ~M !5Z̃m
S ~M ,amq1

,amq2
!~m̃q1

1m̃q2
!.

~19!

The Ward identities giveZm51/ZS ~from CVC! and Z̃m
5ZA /ZP ~from PCAC!.

Let us now Taylor expandm̃ and the pseudoscalar ma
mPS

q1q2 in terms of the bare quark massesmqi
:

1
2 ~am̃q1

1am̃q2
!5ỸF11 c̃ 1

2 ~amq1
1amq2

!

1d̃
~amq1

!21~amq2
!2

amq1
1amq2

1•••G
3 1

2 ~amq1
1amq2

!,

~amPS
q1q2!25YPSF11cPS

1
2 ~amq1

1amq2
!

1dPS

~amq1
!21~amq2

!2

amq1
1amq2

1•••G
3 1

2 ~amq1
1amq2

!. ~20!

The functions must be symmetric under interchange of
quarks, i.e.,q1↔q2. Only at the lowest~first! order in the
quark mass is the functional form simplyamq1

1amq2
. At

the next order both terms, (amq1
1amq2

)2 and (amq1
)2

1(amq2
)2 are allowed. Taylor expanding Eq.~19! and com-

paring with Eq.~20! gives us

Ỹ5
Zm

S ~M !

Z̃m
S ~M !

[
ZP

S~M !

ZS
S~M !ZA

. ~21!
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Renormalization constants which show no explicit qua
mass dependence refer tomq1

5mq2
50.

We shall also Taylor expand the matrix elements appe
ing in Eq. ~18!. First we define the bare pseudoscalar dec
constant bŷ 0uÂ 4

q1q2uPS&5mPS
q1q2f PS

q1q2 , and similarly we set

^0uP̂ q1q2uPS&52gPS
q1q2 . Expanding the decay constan

f PS
q1 ,q2 andgPS

q1q2 to first order in the quark masses gives

d̃5dPS[d, ~22!

and hence

1
2 ~am̃q1

1am̃q2
!

~amPS
q1q2!2

5
Ỹ

YPS
F11S c̃2cPS

YPS
D ~amPS

q1q2!21•••G .

~23!

Thus, at least to this order, we have a relation between
WI quark masses and the pseudoscalar mass.

Using Eq. ~19! gives the renormalized quark mass, a
we additionally use Eq.~8! to rewrite this in a RGI form as

1
2 ~r 0mq1

RGI1r 0mq2

RGI!

~r 0mPS
q1q2!2

5ca* 1cb* ~r 0mPS
q1q2!21•••, ~24!

with

ca* 5 lim
g0→0

ca~g0!, cb* 5 lim
g0→0

cb~g0!, ~25!

and

ca5@DZm
S ~M !Z̃m

S ~M !#3F Ỹ

YPS
G3S r 0

a D 21

,

cb5@DZm
S ~M !Z̃m

S ~M !#3F Ỹ

YPS
G

3F2cPS

YPS
S r 0

a D 22G3S r 0

a D 21

. ~26!

Upon taking the continuum limitg0→0, any scaling viola-
tions will show themselves as nonconstantca ,cb functions.
Equation~24! is the main result of this analysis. Givenca* ,
cb* and the pseudoscalar mass, we can then determine
quark masses.

For theK1 (us̄) we setq15u, q25s, and for theK0 (ds̄)
we setq15d, q25s. Together with thep1 (ud̄), with q1
5u, q25d, this gives, from Eq.~24!,
4-4
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r 0ms
RGI5ca* @~r 0mK1!21~r 0mK0!22~r 0mp1!2#

1cb* @~r 0mK1!41~r 0mK0!42~r 0mp1!4#1•••,

r 0ml
RGI5ca* ~r 0mp1!21cb* ~r 0mp1!41•••, ~27!

where we have definedml
RGI5(mu

RGI1md
RGI)/2, i.e., the av-

erage of theu/d quarks. We have ignored any small corre
tions due to electromagnetic effects.

V. NUMERICAL RESULTS

A. Pseudoscalar mesons and bare quark masses

For degenerate quark masses from Eq.~20! we have

am̃q5Ỹ@11~ c̃1d!amq1•••#amq ,

~amPS!
25YPS@11~cPS1d!amq1•••#amq ,

~28!

and

am̃q

~amPS!
2

5
Ỹ

YPS
F11S c̃2cPS

YPS
D ~amPS!

21•••G , ~29!

where mPS[mPS
qq ~i.e., q15q2[q). Equation ~29! gives

Ỹ/YPS for the ca term in Eq. ~27!, but the gradient (c̃
2cPS)/YPS is not sufficient to give2cPS/YPS for the cb
term. ForO(a) improved fermions, associating the mass e
pansion parametersbA , bP, and bm @14# with our expan-
sions, we findc̃[2(bA2bP) and d[bm . First order per-
turbation theory@15# gives c̃;0.001g0

2.1 On top of that

c̃/cPS5O(a), so that the effect ofc̃ can safely be ignored
For Wilson fermions we shall assume that eitherc̃ is small in
comparison withcPS, as above, or that the complete ter
cb(r 0mK)2 is small when compared withca . As we shall
see, little error is introduced by this assumption.

We have computed the pseudoscalar massmPS and the
WI bare quark mass both, forO(a) improved fermions and
Wilson fermions. For improved fermions the calculatio
were done atb56.0,6.2,6.4 andcSW51.769,1.614,1.526
@14#, respectively, while for Wilson fermions we only di
calculations atb56.0,6.2. The computational methods us
are standard. For the pseudoscalar mass we used the co
tion function

C~ t ! 5^P smeared~ t !P smeared~0!&

5
t@0

A@e2mPSt1e2mPS(T2t)#, ~30!

T being the temporal extent of the lattice. To improve t
signal, a Jacobi-smeared operator was used, as describ
@10#. For Wilson fermions the pseudoscalar meson mass

1A nonperturbative estimate@16#, however, givesc̃;20.15 atb
56.2.
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sults can also be found in@10#. The O(a) improved results
for mPS are given in Table V in the Appendix. The variousk
values used, the lattice size, and the number of config
tions generated are also collated there.

For am̃q the ratio of two point correlation functions a
given in Eq.~17! was used. ForO(a) improved fermions, as
well as the action, the operators must also be improved:

Am5Am1cAa]mP,

P5P, ~31!

where Am5q̄gmg5q and P5q̄g5q. By choosing the im-
provement coefficientcA(g0) appropriately, the Ward iden
tity can be made exact toO(a). cA(g0) is nonperturbatively
known @17#. In Table VI in the Appendix we give our result
for am̃q .

Let us first discussO(a) improved fermions. In Fig. 3
we show the ratios (amPS)

2/amq and am̃q /amq against
amq , while in Fig. 4 we plot am̃q /(amPS)

2 against
„(r 0 /a)3(amPS)…

2. We must now search for a region whe
Eq. ~28!, without higher order terms, is valid. For large qua
mass values we expect nonlinear terms, while for sm
quark masses quenched QCD chiral logarithms become
nificant. Finite volume effects do not seem to be a proble
as for b56.0, k50.1342 andb56.2, k50.1352 we have
made runs on two different volumes, without significa
changes in the results.

We now make some cuts. In Fig. 4 we see that for sm
quark masses there are significant deviations from linea
In particular the light quark massml lies in a region where
no direct linear extrapolation is possible. However, abo
mPS'A2mK deviations from linearity seem small. For ex
ample, adding or removing a point does not change the c
stant in Eq.~29! at all and the gradient by less than ones.
We shall thus assume that at least above the strange q
mass any effects of chiral logarithms are small. For hea

FIG. 3. (amPS)
2/amq andam̃q /amq againstamq for O(a) im-

proved fermions. Filled circles denote points used in the fits.
4-5
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quark masses, on the other hand, linearity is still present u
at leastmq'3ms'

1
3 mc . @Note that 2(r 0mD)2;44.9]. In

this interval lie four or more quark masses. The results of
various fits are given in Table II.

For Wilson fermions we simply setAm5Am . The results
for am̃q have also been given in@10#. In Figs. 5 and 6 we
show the ratios (amPS)

2/amq , am̃q /amq, and am̃q /
(amPS)

2. Similar fit ranges as for improved fermions see
appropriate once more.

To illustrate theg0
2 dependence of some of these resu

we show in Fig. 7 the results forỸ taken from Table II
together with Pade´-like interpolations of the form

Ỹ~g0!5
11p1g0

21p2g0
4

11~p12c!g0
21p3g0

4 , ~32!

arranged so that the perturbative resultỸ(g0)511cg0
2 with

c50.09051 for improved fermions and 0.05195 for Wils

FIG. 4. am̃q /(amPS)
2 against@(r 0 /a)3(amPS)#2 for O(a) im-

proved fermions. Filled circles denote points used in the fits. T
dashed line (;3.13) ismPS5A2mK ~which here corresponds to

fictitious ss̄ bound state! while the dotted line (;0.125) ismp .

TABLE II. Fit values.

b Ỹ

YPS

Ỹ

YPS
3

c̃2cPS

YPS
Sr0

a D22 Ỹ

O(a) improved fermions
6.0 0.314~2! 20.0017~2! 0.972~6!

6.2 0.465~2! 20.0042~2! 1.060~3!

6.4 0.617~5! 20.0063~5! 1.082~5!

Wilson fermions
6.0 0.368~4! 20.00025~51! 0.711~12!

6.2 0.502~6! 20.0036~5! 0.814~10!
05450
til

e

,

fermions is obtained for smallg0
2. Possible Pade´ interpola-

tions are found to be (p1 ,p2 ,p3)5 (21.24,0.256,0.347) for
O(a) improved fermions and (20.944,0.00,0.0746) for Wil-
son fermions. Also shown for comparison areO(a) im-
proved results found in@16#. We see that forO(a) improved
fermions first order perturbation theory is good forg0

2

&0.96, while for Wilson fermions a breakdown occurs mu
earlier.

Thus we now have estimates forỸ/YPS and (c̃
2cPS)/YPS. Ỹ will also be needed for Wilson fermions.

B. Renormalization

To computeca andcb we must now determine the facto
DZm

S (M )Zm
S (M ). For O(a) improved fermions this was

done by the ALPHA Collaboration@12# using the Schro¨-
dinger functional (SF) method. With the notation of Eq.~8!
their result can be written as

e

FIG. 5. (amPS)
2/amq and am̃q /amq againstamq for Wilson

fermions.

FIG. 6. The same as Fig. 4 but for Wilson fermions.
4-6
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DZm
SF~L21!Z̃m

SF~L21!

51.75210.321~b26!20.220~b26!2 ~33!

~valid for 6.0<b<6.5), where they have worked at a sca
given in terms of the box sizeL. As emphasized previously
this is a mapping from the bare quark mass to the RGI m
so this function is the same in all schemes. In Eq.~33! the
total error is about 2%.

For Wilson fermions we use the method proposed in@18#
and refined in@19#. This mimics perturbation theory in
certain momentum subtraction~MOM! scheme by consider
ing amputated quark Green’s functions in, say, the Lan
gauge, with an appropriate operator insertion. The renorm
ization constant is fixed at some scalep2. This gives a non-
perturbative determination ofZS

MOM(p). @ZP
MOM(p) is not

suitable, as chiral symmetry breaking means thatZP
MOM→0

as we approach the chiral limit, as recently emphasized
@20#.# More details of the method, our momentum sour
approach, and results are given in@19#. As DZm

MS is known in

the MS̄scheme at scalem ~see Fig. 1 and Table I!, we can
write

DZm
MOM~p!Z̃m

MOM~p!5
DZm

MS~m!

ZS
MS~m!Ỹ

[F~b!, ~34!

where we have used Eq.~21! and the definitionsZm
51/ZS , DZm51/DZS and

ZS
MS~m!5XS;MOM

MS ~m,p!ZS
MOM~p!, ~35!

with

FIG. 7. Ỹ againstg0
2. Our O(a) improved fermion results are

shown as filled circles, while those from@16# are shown as open
circles. The Wilson fermion results are filled squares. The one-l
perturbation theory results are also shown for theO(a) improved
case~dashed line! and the Wilson case~long dashed line!.
05450
s,

u
l-

in
e

XS;MOM
MS ~m,p!5

DZS
MOM~p!

DZS
MS~m!

. ~36!

HereX converts the renormalization constant from the MO
scheme to theMS scheme and can be calculated using
continuum regularization~e.g., naive dimensional regulariza
tion!. So we can write

XS;MOM
MS ~m,m!5

ZS
MS~m!

ZS
MOM~m!

511
as

MS~m!

4p
B11S as

MS~m!

4p
D 2

B21•••,

~37!

with B1516/3 @10#. The coefficientB2 has recently been
calculated@21#, giving in the Landau gauge forNf50 fla-
vors a value of 177.48452. Hence, knowing the coefficie
B1 ,B2, we can trace back to the more general expression
X. A suitable formula is

p

FIG. 8. ZS
MS(m51/a) againstp2 for b56.0. ~See@19# for de-

tails.! The open squares are the original data, in the chiral lim
while the filled circles represent the results of multiplyingZMOM(p)
by X using both coefficientsB1 and B2. The open circles are the
result of using only theB1 coefficient. The straight line is a fit to the
plateau, the length denoting the fit range chosen.

TABLE III. Fit values for the Wilson renormalization constants

b ZS
MS(m51/a) DZm

MOM(p)Z̃m
MOM(p)

6.0 0.790~5! 2.49~6!

6.2 0.803~5! 2.25~4!
4-7
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FIG. 9. The continuum extrapolation forca andcb for O(a) improved fermions.
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@XS;MOM
MS ~m,p!#21

5expF E
gMS(p)

gMS(m)
dj

gm
MS~j!

bMS~j!

1E
0

gMS(p)
djS gm

MS~j!2gm
MOM

„G~j!…

bMS~j!
D G ~38!

@gMOM5G(gMS) from Eq. ~10!#. Armed with this estimate
for X, then from Eq.~35! we see thatZS

MS(m) should be
independent ofp2, so plottingZS

MS(m) againstp2 we expect
to see a plateau. In Fig. 8 we show this, plotting first t
original data, extrapolated to the chiral limit, then the resu
for ZS

MS when only usingB1, and finally using bothB1 and
B2. We see the data forZS becoming flatter. The results o
the fit are given in the first column of Table III. The appr
priate values forỸ ~see Table II! and DZm

MS(m51/a) ~see
Table I! are substituted in Eq.~34! to give the results listed in
the second column of this table.

VI. CONTINUUM RESULTS

Plotting ca and cb againsta2 for O(a) improved fermi-
ons, and againsta for Wilson fermions, we can now extrapo
05450
e
s

late these coefficients to the continuum limit. In Fig. 9 w
show the results forca and cb for improved fermions. A
linear fit is also plotted. The results of this fit are given
Table IV. As anticipated, using the first order perturbati
result from@15# for c̃ in cb has no influence on the result.2 In
Fig. 10 we show the equivalent results for Wilson fermion
In this case, as we only have twob values, the fit degener
ates to an extrapolation. The results of this extrapolation
also given in Table IV. We note that the results forO(a)
improved fermions and Wilson fermions forca* are compat-
ible with each other. Upon inserting these numbers in
~27!, we find our estimate for the RGI strange andu/d quark
masses. To convert to physical numbers, we now have
quenched QCD the uncertainty in the scale, as discusse
Sec. III. If we use the scaler 050.5 fm, Eq. ~12!, then to-
gether with the experimental values of thep andK masses,
namely mp15139.6 MeV and mK15493.7 MeV, mK0

5497.7 MeV, we find the results forO(a) improved fermi-
ons

ms
RGI5146~4! MeV,

ml
RGI56.1~2! MeV. ~39!
e

TABLE IV. The continuum extrapolation ofca→ca* and cb→cb* for O(a) improved fermions and
Wilson fermions. The errors are statistical.

ca b56.0 b56.2 b56.4 ca*

O(a) improved 0.1023~13! 0.1142~15! 0.1166~18! 0.124~2!

Wilson 0.1709~43! 0.1537~34! – 0.107~17!

cb b56.0 b56.2 b56.4 cb*

O(a) improved 20.000565~64! 20.00103~4! 20.00119~10! 20.0015~1!

Wilson 20.00012~24! 20.00111~15! – 20.0038~9!

2Note, however, that the nonperturbative estimate from@16# at b56.2 isc̃/YPS3(r 0 /a)22;20.0012 and has a similar order of magnitud
to the kept term.
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FIG. 10. The continuum extrapolation forca andcb for Wilson fermions.
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The error comes from Table IV and from Eq.~33!. As can
also be seen from Table IV, most of the result comes fr
the constant term, with the slope giving only a small corr
tion to the answer.

For Wilson fermions we havems
RGI5121(20) MeV,

ml
RGI55.3(8) MeV. This result is somewhat lower than t

O(a) improved numbers. We ascribe this mainly to the fa
that we only have two values ofb, which makes a con-
tinuum extrapolation more difficult. Also the number ofk
values used and the size of the data sets are smaller tha
O(a) improved fermions. Nevertheless, within a on
standard deviation the results are in agreement.

In the MS scheme at the ‘‘standard’’ value ofm
52 GeV, using the four-loop results from Table I, we fin
for O(a) improved fermions

FIG. 11. The strange and light quark masses from Eq.~40!
~‘‘this work’’ !. The Wilson fermion results are shown dotted. Al
shown is our previous result~‘‘previous’’ ! @10#. The arrows denote
the result when usingAs as a scale.
05450
-

t

for

ms
MS~m52 GeV!5105~4! MeV,

ml
MS~m52 GeV!54.4~2! MeV. ~40!

The corresponding Wilson results arems
MS(m52 GeV)

587(15) MeV andml
MS(m52 GeV)53.8(6) MeV.

Note that for theml quark mass result we have simp
extrapolated the fits for the strange quark mass result do
wards. The mass ratioms /ml for O(a) improved fermions is
'23.9, which is very close to the value given in leadi
order chiral perturbation theory—namely (mK1

2
1mK0

2

2mp1
2 )/mp1

2 '24.2 @see Eq.~27!#. This is simply because
ucb* u!uca* u/(r 0mK)2, and so the second term in Eq.~27! is
almost negligible. The mass ratio is then independent ofca* .

FIG. 12. The results for the ratioR as defined in Eq.~43!. Zm
MS̄

has been determined from Eq.~41! or Eq. ~42! and DZm
MS taken

from Table I. A simple interpolation has been used between thb
values. The dot-dashed vertical lines correspond tob56.0, 6.2, 6.4,
from right to left.
4-9
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In Fig. 11 we plot our results. Below the dotted line, w
have given our previous result@10#, using the string tension
as the scale, as given in Eq.~12!. As a comparison we hav
also replotted our result given in Eq.~40! using As as the
scale. A reasonable agreement is seen. As our previous r
used tadpole improved~TI! perturbation theory to determin
the renormalization constant, it would seem that the use o
perturbation theory does not introduce much error. In
next section we shall briefly investigate this point.

VII. DIGRESSION: COMPARISON WITH
TADPOLE-IMPROVED PERTURBATION THEORY

In this section we shall discuss how reliable TI perturb
tion theory is. Lowest order perturbation theory gives

ZS
MS~m51/a!512

g0
2

16p2 CFBMS~cSW!1O~g0
4!. ~41!

The B coefficient is uncomfortably large@10#. In @22# this
was traced to large tadpole diagrams in the perturbation

TABLE V. Parameter values used in the simulations, toget
with the measured pseudoscalar mass.

b csw k Volume No. configs. amPS

6.0 1.769 0.1217 163332 O(150) 1.2546~12!

6.0 1.769 0.1263 163332 O(150) 0.9704~11!

6.0 1.769 0.1285 163332 O(150) 0.8189~11!

6.0 1.769 0.1300 163332 O(160) 0.7071~16!

6.0 1.769 0.1310 163332 O(160) 0.6268~16!

6.0 1.769 0.1324 163332 O(990) 0.5042~7!

6.0 1.769 0.1333 163332 O(990) 0.4122~9!

6.0 1.769 0.1338 163332 O(520) 0.3549~12!

6.0 1.769 0.1342 163332 O(1300) 0.3012~10!

6.0 1.769 0.1342 243332 O(200) 0.3017~13!

6.0 1.769 0.1346 243332 O(200) 0.2390~12!

6.0 1.769 0.1348 243332 O(200) 0.1978~16!

6.2 1.614 0.1247 243348 O(100) 1.0284~9!

6.2 1.614 0.1294 243348 O(100) 0.7217~9!

6.2 1.614 0.1310 243348 O(100) 0.6043~9!

6.2 1.614 0.1321 243348 O(260) 0.5183~6!

6.2 1.614 0.1333 243348 O(560) 0.4136~6!

6.2 1.614 0.1344 243348 O(560) 0.3034~6!

6.2 1.614 0.1349 243348 O(560) 0.2431~7!

6.2 1.614 0.1352 243348 O(260) 0.2016~10!

6.2 1.614 0.1352 323364 O(110) 0.2005~9!

6.2 1.614 0.1354 323364 O(290) 0.1657~6!

6.2 1.614 0.13555 323364 O(280) 0.1339~7!

6.4 1.526 0.1313 323348 O(100) 0.5305~9!

6.4 1.526 0.1323 323348 O(100) 0.4522~10!

6.4 1.526 0.1330 323348 O(100) 0.3935~12!

6.4 1.526 0.1338 323348 O(200) 0.3213~8!

6.4 1.526 0.1346 323348 O(200) 0.2402~8!

6.4 1.526 0.1350 323348 O(200) 0.1923~9!

6.4 1.526 0.1353 323364 O(260) 0.1507~8!
05450
ult
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pansion and also to the expansion in a nonphysical~bare!
coupling constant. Removing the tapole diagrams and
panding in~say! as

MS gives the improved series

ZS
MS~m51/a!5u0S 12

as
MS~m51/a!

4p
CF@BMS~ c̃SW!2p2# D

1O~as
2!, ~42!

with u05^ 1
3 Tr Uplaq&

1/4 to be numerically determined, an

c̃SW5cSWu0
3. A description of our variation of this procedur

is given in@10#. In particular, we choosecSW to be the non-
perturbatively determined result, rather than setting it to

equal to 1/u0
3. as

MS̄ corresponds to the four-loop results~see
Table I! also used in@22#.

As we now have a genuine nonperturbative determina
of Zm available, it is of interest to compare how the differe
results scale to the continuum limit. It is convenient to fi
define for twoO(a) improved estimations of the renorma
ization constant the ratio

r TABLE VI. Results for the Ward identity quark mass 2am̃q .

b csw k 2am̃q
(0) 2am̃q

(1) 2am̃q

6.0 1.769 0.1217 0.9677~7! 1.7867~33! 0.8197~5!

6.0 1.769 0.1263 0.5936~4! 1.0173~24! 0.5093~3!

6.0 1.769 0.1285 0.4340~3! 0.7080~22! 0.3754~3!

6.0 1.769 0.1300 0.3314~3! 0.5227~21! 0.2881~3!

6.0 1.769 0.1310 0.2651~3! 0.4072~20! 0.2313~3!

6.0 1.769 0.1324 0.1751~1! 0.2609~8! 0.1535~1!

6.0 1.769 0.1333 0.1186~1! 0.1737~7! 0.1042~1!

6.0 1.769 0.1338 0.08734~21! 0.1274~9! 0.07678~18!

6.0 1.769 0.1342 0.06282~16! 0.09217~62! 0.05519~15!

6.0 1.769 0.1342 0.06294~27! 0.0932~12! 0.05522~25!

6.0 1.769 0.1346 0.03772~32! 0.0584~11! 0.03289~32!

6.0 1.769 0.1348 0.02485~37! 0.0399~12! 0.02154~37!

6.2 1.614 0.1247 0.7342~3! 1.1520~18! 0.6915~2!

6.2 1.614 0.1294 0.4011~2! 0.5451~12! 0.3809~2!

6.2 1.614 0.1310 0.2966~2! 0.3776~10! 0.2826~2!

6.2 1.614 0.1321 0.2272~1! 0.2748~7! 0.2170~1!

6.2 1.614 0.1333 0.15265~5! 0.1741~4! 0.14620~5!

6.2 1.614 0.1344 0.08542~6! 0.09336~36! 0.08196~5!

6.2 1.614 0.1349 0.05510~6! 0.05985~34! 0.05288~6!

6.2 1.614 0.1352 0.03688~11! 0.04073~46! 0.03537~11!

6.2 1.614 0.1352 0.03703~12! 0.04046~37! 0.03553~12!

6.2 1.614 0.1354 0.02478~6! 0.02773~18! 0.02375~6!

6.2 1.614 0.13555 0.01549~8! 0.01802~20! 0.01482~8!

6.4 1.526 0.1313 0.2709~1! 0.2870~9! 0.2637~1!

6.4 1.526 0.1323 0.2090~1! 0.2074~9! 0.2038~1!

6.4 1.526 0.1330 0.1660~1! 0.1567~8! 0.1621~1!

6.4 1.526 0.1338 0.1172~1! 0.1045~4! 0.11461~6!

6.4 1.526 0.1346 0.06882~6! 0.05799~38! 0.06736~6!

6.4 1.526 0.1350 0.04467~7! 0.03739~35! 0.04373~6!

6.4 1.526 0.1353 0.02661~5! 0.02276~22! 0.02603~5!
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R5
DZm

S1~M1!Zm
S1~M1!

DZm
S2~M2!Zm

S2~M2!
511O~a2!. ~43!

For S2 we choose theSF scheme and the result given in E
~33!, while for S1 we use the MS̄scheme, together with
either the perturbative result, Eq.~41!, or the TI result, Eq.
~42!.

In Fig. 12 we show the results for the ratioR for pertur-
bation theory and TI perturbation theory, using consisten
the one-, two-, and four-loop results from Table I. As w
originally used one-loop perturbation theory results, it see
more consistent to also use the one-loop result forDZm when

convertingZS
MS̄ to the RGI result. This gives the solid line i

the figure. This was the approach adopted in@10#. We expect
O(a) effects to become apparent asa2→0 if S1 is not ex-
actly O(a) improved. However, a linear fit ina2 for the TI
result ~with one-loopDZm) appears to go toR51 with an
error of only about 2%, while for the equivalent perturbati
result the error is about 10%. Thus, in this case tadpole
proving the perturbative result does give better results. H
ever, choosing other loop orders changes the picture so
what and can make using perturbation theory a better cho
We would like to emphasize that this picture does not h
to hold for other renormalization constants. Strictly speak
a case-by-case analysis is required.

VIII. CONCLUSIONS

In this article we have calculated the strange andu/d
quark masses for quenched QCD, both forO(a) improved
fermions and Wilson fermions, using a nonperturbatively
termined renormalization constant. Our results are given
Eq. ~40! and the lines that follow it. Corrections to leadin
ys

ys

lz,

.

l.

05450
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order chiral perturbation theory are small, if we stay aw
from the region where chiral logarithms become significa
We have also seen that using TI perturbation theory ra
than simple perturbation theory does not automatically le
to an improvement of the continuum result.

Note added. While this work was being completed, w
received a copy of@23#. This contains some similar results t
ours.
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APPENDIX

In Table V we give our parameter values used in theO(a)
improved fermion simulations together with the measu
pseudoscalar mass. For most of the overlapping values
@10# there has been some increase in statistics. The result
the WI quark mass,am̃q , are first split into two pieces
2am̃q

(0) denotes the mass coming from th

^]4A4Psmeared&/^PPsmeared& ratio, while 2am̃q
(1) is the result

of ^¹4
2PPsmeared&/^PPsmeared&. The sum 2am̃q52am̃q

(0)

12cAam̃q
(1) gives the WI quark mass. All these results a

given in Table VI. We define (]4)xy[(dx14̂,y2dx24̂,y)/2.
]4]4 has been replaced by (¹4

2)x,y[dx14̂,y22dx,y

1dx24̂,y . In the continuum limit both]4]4 and¹4
2 give the

same derivative. On the lattice we choose the discretiza
¹4

2 with the smallest~temporal! extension. In@10# the choice
]4]4 was used.
a-
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@14# M. Lüscher, S. Sint, R. Sommer, and P. Weisz, Nucl. Ph
B478, 365 ~1996!.

@15# S. Sint and P. Weisz, Nucl. Phys.B502, 251 ~1997!.
@16# G. M. de Divitiis and R. Petronzio, Phys. Lett. B419, 311

~1998!.
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