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A fully nonperturbative lattice determination of the up or down and strange quark masses is given for
quenched QCD using bot®(a) improved Wilson fermions and ordinary Wilson fermions. For the strange
quark mass withO(a) improved fermions we obtaimg"s(,u:2 GeV)=105(4) MeV, using the interquark
force scaler,. Because of quenching problems, fits are only possible for quark masses larger than the strange
quark mass. If we extrapolate our fits to the up or down quark mass we find for the averagmh‘ﬁaﬁs
=2 GeV)=4.4(2) MeV.

PACS numbdss): 12.38.Gc, 11.15.Ha

[. INTRODUCTION scribing the measurement procedure. Theoretically this is
equivalent to giving a renormalization scheifeand scale

Some of the least known parameters in the standartyl. Conventionally, quark masses are given in a mass inde-
model are the light quark massesg,, my, andmg. Their  pendent scheme, such as the modified minimal subtraction
phenomenological values have been discussed since the eaf(MS) scheme, at some given scale commonly taken as
days of the quark model. Paradoxically, the values of the GeV [1]. In a general mass independent schefé¢he
later discovered heavier quarks are more accurately knowrenormalized quark mass is given by
[1]. The reason is that the connection between light quark
masses and observables is highly nonperturbative. This
means that the lattice approach is an appropriate technique
for this problem.

In this paper we shall present a completely nonperturbaThe running of this renormalized quark mass as the ddale
tive determination of light quark masses. A recent major stefis changed is controlled by thg and y functions in the
forward has been the nonperturbative lattice determination ofenormalization group equation. These are defined as scale
the renormalization constants of the mass operators. Alsalerivatives of the renormalized coupling and mass renormal-
because of the increase in available computer time, a morigation constant as
reliable continuum extrapolation is now possible.

mS(M)=Z5(M)Myqre. (1)

This paper is organized as follows. In Sec. Il we discuss S(M
the definition of the quark mass and its renormalization BS(gS(M))= 99°(M) ©)
group behavior. Transcribing lattice data to physical units dlogM bare'
requires a scale to be set. For quenched QCD this problem is
discussed in Sec. lll. The lattice technigue for obtaining the s
guark masses and their renormalization is presented in Sec. S/ _ dlogZ (M)
IV. In Sec. V we give our results, and in Sec. VI we extrapo- Ym(@°(M))= dlogM bare' )

late them to the continuum limit to remove residual discreti-
zation effects. We perform the calculations for bo@a)
improved fermions and for Wilson fermions. Both should where the bare parameters are held constant. These functions
extrapolate to the same continuum result, and thus we haveaie given perturbatively as power series expansions in the
consistency check between the two methods. We have pr€oupling constant. The expansion is now known to four
viously used tadpole improved perturbation theory to comloops in theMS schemg2,3]. We have

pute the renormalization constants. In Sec. VII we test the
validity of this approach. Finally, in Sec. VIII we give our

conclusions. ,BM_S(g) =—byg®—b,g°— bg"_sg7— bgf'_sgg_ -

Il. DEFINING THE QUARK MASS YWS(g) = dynog?+ dV3g® + dViSg6 + dMSg8+ - - -

m m m

4

Due to confinement quarks are not eigenstates of the QCD
Hamiltonian and are thus not directly observable. A defini-
tion of the quark mass from an experiment thus means prewvhere(for quenched QCD
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with (3=1.2026 ... and {s=1.0363B..., { being the
Riemann zeta function.

We may immediately integrate ER) to obtain
M :AS[ bogS(M )Z]bl /2bé exp{

xexp{ fogS(M)dg ] (7)

The renormalization group invariafRGI) quark mass is
defined from the renormalized quark mass as

2begS(M)?

1L 1 b
BS(¢) Do DY

mRCI=AZF(M)MS(M)=AZ§(M)Z5(M)Myare,  (8)
where

[AZ5(M)]™1=[2bogS(M)?]~ dmo/2bo
><exp| fgw) " Y3(E)  duo
0

—+_

B5(&)  Pof
and the integration constant upon integrating &gjis given
by AS, and similarly from Eq.(3) we havemRC'. A¢ and

)

mRC¢! are independent of the scale. Under a change of var

able (scheme change &#—S'),

9% =G(g%)=g%1+c1(g%)%+---). (10)

It can be shown that the first two coefficients of {idunc-
tion, the first coefficient of they function andmR®' are
independent of the scheme, while only changes an®
= A°exp(c, /by). o

For the MS scheme computingAZM>(x)]~* involves

first solving Eq.(7) for gMS(w) and then evaluating Eq9).
This gives Fig. 1. We expand the and v functions to the

appropriate order and then numerically evaluate the inte-
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FIG. 1. One-, two-, three-, results for

[AZMS(1)]7Y in units of AMS,

and four-loop

grals. At u=2 GeV we haveu/AM>~8, and it seems that
already at this value we have a fast converging series in loop
orders. Indeed, only going from one loop to two loops gives
a significant change iPAZM>(8AMS)]71 of order 7%. From
two loops to three loops we have about 2%. The difference
between the three-loop and four-loop result®{$.5%). So

if we are givenmR®' and we wish to find the quark mass in
the MS scheme at a certain scale, we need only use the
four-loop result from Eq(9) or equivalently Fig. 1.

IIl. DIGRESSION: WHICH SCALE TO USE?

We always need onéor more experimental numbers as
input to set the scale. Ideally, it should not matter what quan-
tity we use. Obvious choices are the force scglf4], or the
string tensiony/o, or some particle magg.g., the proton, or
for quenched QCD at least, thg. So a first requirement is
that whatever quantity we use, we should be in a region
where the scaling to the continuum limit is the same for all
quantities. Thus for, and the string tension we wish that

~(gg) X (a\")(go) = const ap

over theg3=6/3 region used in the simulations, and indeed
Yor all smaller g3. (We know that this must break down
below a value ofB around 5.7, due to the appearance of
non-universal terms.In Fig. 2 we show this product. This
seems reasonably constant, with a fit value of 1(8)70

The second requirement is to set the scale in MeV. As we
are considering quenched QCD, it is not obvious that choos-
ing scales from different experimenté&r phenomenologi-
cal) quantities will necessarily lead to the same results. In-
deed, in the real worl@4,10] the values are

ro=0.5fm=(394.6 Me\) 1,

Jo=427MeV, (12)
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1.25 . . Our recent spectrum result$3], usingO(a) improved fer-
mions, also show a difference whether one usegptbe the
proton mass to set the scale. Usingto set the scale is
roughly equivalent to usingn, .

1.20 | )l In the following we shall adopt the, scale as given in
} { l [5], namely,
115 - } —
In(a/ry)=—1.6805-1.71393—6)

+0.81558—6)2—0.666738—6)> (15

1.10 b

(r/a) x (aVo) . . . .
(with an error of 0.3% increasing to 0.6% f@rin the range
5.7<3=<6.57), but delay using a numerical value for this
1.05 L ‘ scale for as long as possible. For the standard scale of
0.85 0.90 0.95  1.00 1.05 1.10 =2 GeV this gives, upon solving Eq$7) and (9) to the

% appropriate loop order, the results faxZ>(x)]~* shown
FIG. 2. The product ofrg/a and the string tensiorayo. in Table I. For later reference the results for some oftaer

(ro/a)(gy) is taken from the formula given if6], while the string ~ values are also given there, together Wﬁﬁs(l-b)-
tension is taken fronmp6] (8=5.7, 5.8, 5.9, 6.4 [7] (8=6.0, 6.2,

(8] (B=6.4), and[9] (B=6.6).
IV. DETERMINING THE QUARK MASS

1 fm~1=197.3 MeV) which gives for the product a value of ; ;
(1.082—almost a 10%2 differer?ce from the guenched value. AﬁqeV\::%rslgsrlllggvrléjstr(;\;ectj)rrrr:(%%scf)o;::je tﬂgagzmgﬁ;esoﬂ?mg
b.Oth phenomenological estimates come from th.e same poteQe yaq axial vector currefPCAC) by assuming Taylor ex-
tial mod.el [11],.presumably the qUenched.Iat'uce po'[enf“‘”‘lpansions in the bare quark mass for the relevant functions
has a slightly different shape from the continuum poFem'al'that occur. We distinguish two quark masses. The Ward

Recently, the ALPHA Collaboration has determined ajyonyities arising from an infinitesimal vector transformation

value for AM®[12] of in the partition function lead to a bare quark mass given by
AMS=0.60248)/r,, (13)
111y
which may easily be converted using HG1) to the string amg=> Kq  Kc)' =12, (16)

tension scale. However, the numerical value will then suffer
from the same 10% ambiguity. Thus we find
o WhereKqi is the corresponding hopping parameter, apds
A:v(')s= 23819 MeV, the critical hopping parameter. This is the standard definition
of the quark mass. Similarly, for an infinitesimal axial trans-
s formation the Ward identityWI) or PCAC definition of the
Az =22018) MeV. (14 quark mass can be written as

TABLE I. Useful values o{AZm_S(,u)]‘1 and agf'_s(ﬂ) E[g""_s(,u)]2/47r. The errors are a reflection of the
error in Eqg.(13). The values of H are found from Eq(15) together withr, from Eq. (12).

" one-loop two-loop three-loop four-loop
[AZgH ()]
2.00 GeV 0.760(10) 0.704(9) 0.718(10) 0.721(10)
2.12GeV (14 at B=6.0) 0.752(10) 0.697(8) 0.711(9) 0.714(10)
2.90GeV (14 at B=6.2) 0.716(8) 0.667(7) 0.677(7) 0.679(8)
3.85GeV (14 at 3=6.4) 0.689(7) 0.644(6) 0.652(5) 0.653(6)
al'S(u)

2.00 GeV 0.268(10) 0.195(6) 0.201(6) 0.202(7)
2.12GeV (14 at =6.0) 0.261(9) 0.191(5) 0.196(6) 0.197(6)
2.90 GeV (14 at 3=6.2) 0.228(7) 0.170(5) 0.174(5) 0.175(5)
3.85GeV (14 at B=6.4) 0.205(6) 0.156(3) 0.159(4) 0.159(4)
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_ t20(d4 Aql%( )P Gdzismeared )y Renormalization constants which show no explicit quark
mq tamg, = p———— (17) ~ mass dependence referng =mq =0.
(P Ud2(t)phdz {0)) We shall also Taylor expand the matrix elements appear-
olA%%|ps ing in Eq. (18). First we define the bare pseudoscalar decay
= Sinhamqlqzu (19  constant by(0]A 8192 Pg) = midf 412 and similarly we set
S (0|Pu%|pg) (0|PU%2|pg)= g2, Expanding the decay constants

d1.d2 d192 i i
where A (P) is the axial vector currenfpseudoscalar den- fps ™ andgp™ to first order in the quark masses gives

sity). The precise form ofd and andP will be given later for

the O(a) improved as well as the Wilson cases. We have d=dps=d (22)
summed the operators over their spatial planes. WA{l®

and P(t) should be point operators, to improve the signal

P(0) is smeared over its spatial plane. To obtain the secondnd hence

equation, we have rewritten EL7) in a Fock space and

then introduced a complete set of states in the usual way. We

1 ~ ~ ~ ~
have then picked out the lowest pseudoscéR® or 0~ * 2(amg, tamg) ¥ L[ C=Ces (a2
state whose mass we denote 2. (am’i2)2 " Yes Yps PS
Both definitions of the quark mass must be renormalized. (23
In a schemeS at scaleM we have
mgi(M):Zﬁﬁ(M'a"hi)mqi' Thus, at least to this order, we have a relation between the

WI quark masses and the pseudoscalar mass.
Using Eqg.(19) gives the renormalized quark mass, and

S S _5S ol =
mql(M)+qu(M)_Zm(M ,aMg,, My, ) (Mg, +Mg,). we additionally use Eq8) to rewrite this in a RGI form as

(19
The Ward identities giveZ,,=1/Zs (from CVC) and Z,, %(rOmRG'JrrOmRG')
ZZA/ZP (from PCAOQ. B q1q2 5 2 =cy +Cb(r0mq1q2)2+ -, (29
Let us now Taylor expandh and the pseudoscalar mass (romgg™)
Mgk in terms of the bare quark masses :
with
(amq1+amq )= Y| 1+7¢ci (amq +amq2)
C;: llm Ca(gO)v C;: llm Cb(gO)! (25)
B (amq1)2+(amq2)2 l go—0 9go—0
d +
+
&My, T &My, and
x%(amql+amq2),
- BRANIAE
=[AZS(M)ZS(M)IX | o— x| =]
(amgid?)2= ng[lecpsz(amq +amy,) [AZm(M)Zr(M)] [ Yps] 1@
(amy,)?+(amg,)? o e BA
Flesam, ram, Co=[AZRMZa(M)]X |y
x%(amql+aqu). (20 —Cpg[To| 2 ro) *
Voo |2 X 2 (26)

The functions must be symmetric under interchange of the

quarks, i.e.g;<(,. Only at the lowesf(first) order in the _ ) o ) )
quark mass is the functional form simpwnqlJraqu_ At L}pon tgkmg the continuum limitj,— 0, any scaling ylola-
the next order both terms,a(nql+amq2)2 and (amql)z tions will show themselves as nonconstaptc, functions.

. Equation(24) is the main result of this analysis. Givef ,
2 -
+(§||52)_ are allowet_i Taylor expanding E€L9) and com cy and the pseudoscalar mass, we can then determine the
paring with Eq.(20) gives us

quark masses. B B
Z5(M) ZS(M) For theK™ (us) we setq;=u, g,=s, and for_theKO(ds)

7=~? = SP . (21)  we setg;=d, q,=s. Together with ther™ (ud), with g,
Zi(M) - Zg(M)Za =u, g,=d, this gives, from Eq(24),
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RGI

FoMg o' =Cx[(romg+)2+ (romyo)?—(rom,+)?]

4 4 4
+cp[(romg+)*+ (romgo)*—(rom,+)*]+- - -,
FompC'=cZ (romy+)2+cg (romy«)*+- - -,

(27)

where we have defined®®'=(m}°'+ m¥¢Y/2, i.e., the av-

erage of thau/d quarks. We have ignored any small correc-

tions due to electromagnetic effects.

V. NUMERICAL RESULTS

A. Pseudoscalar mesons and bare quark masses

For degenerate quark masses from &f) we have
am,=Y[1+(c+d)amy+- - -Jam,,

(ampg)?=Ypd 1+ (Cps+d)amg+ - - - Jamg,
(28)

and

am; Y
(ampg)? Yps

C—Cps

1+ ampo)2+ - - -

. (29

where mps=mgl (i.e., g;=0q,=q). Equation (29) gives
Y/Yps for the c, term in Eq. (27), but the gradient'd
—Cpg)/Ypg is not sufficient to give—cpg/Ypg for the ¢y
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FIG. 3. (amps)zlamq andar~nq/amq againstam, for O(a) im-
proved fermions. Filled circles denote points used in the fits.

sults can also be found ifi0]. The O(a) improved results

for mpgare given in Table V in the Appendix. The variods
values used, the lattice size, and the number of configura-
tions generated are also collated there.

For aan the ratio of two point correlation functions as

given in Eq.(17) was used. Fo®(a) improved fermions, as
well as the action, the operators must also be improved:

term. ForO(a) improved fermions, associating the mass ex-

pansion parameters,, bp, andb,, [14] with our expan-
sions, we finde=—(b,—bp) andd=b,,. First order per-
turbation theory[15] gives ¢~0.001g2.* On top of that

clcps=0(a), so that the effect of can safely be ignored.

For Wilson fermions we shall assume that eitbés small in

A,=A,+cCpad,P,
P=P, (32

where A,=qy,ysq and P=qysq. By choosing the im-
provement coefficient,(go) appropriately, the Ward iden-

comparison withcps, as above, or that the complete term tity can be made exact 10(a). ca(go) is nonperturbatively

Co(romk)? is small when compared with,. As we shall
see, little error is introduced by this assumption.
We have computed the pseudoscalar masg and the

known[17]. In Table VI in the Appendix we give our results
for am,.
Let us first discus€(a) improved fermions. In Fig. 3

WI bare quark mass both, f@(a) improved fermions and . 2 ~ .
Wilson fermions. For improved fermions the calculations*'® show_the_ ratlgs AMpg)*/amg arld amq/amzq agafnst
were done at=6.0,6.2,6.4 andcgy~1.769,1.614,1.526 @My, Wwhile in 5'9- 4 we plot amy/(ampg)® against
[14], respectively, while for Wilson fermions we only did ((o/a)*(ampg))”. We must now search for a region where
calculations a3=6.0,6.2. The computational methods usedEd- (28), without higher order terms, is valid. For large quark

are standard. For the pseudoscalar mass we used the correlg@ss values we expect nonlinear terms, while for small
tion function quark masses quenched QCD chiral logarithms become sig-

nificant. Finite volume effects do not seem to be a problem,
as for 8=6.0, k=0.1342 andB=6.2, k=0.1352 we have
made runs on two different volumes, without significant
- Gt a-MpdT-) changes in the results.

=Ale "rste TP 1, (30 We now make some cuts. In Fig. 4 we see that for small

. . . quark masses there are significant deviations from linearity.
T being the temporal extent of the lattice. To improve theIn particular the light quark mass, lies in a region where

signal, a Jacobi-smeared operator was used, as descnbednlg direct linear extrapolation is possible. However, above

[10]. For Wilson fermions the pseudoscalar meson mass re- e . )
Mps~/2m, deviations from linearity seem small. For ex-

ample, adding or removing a point does not change the con-
stant in Eq.(29) at all and the gradient by less than ome

We shall thus assume that at least above the strange quark
mass any effects of chiral logarithms are small. For heavy

C(t) — <Psmeare?t)psmeare({0)>

A nonperturbative estimate 6], however, gives~ —0.15 atg
=6.2.
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FIG. 5. (amps‘)zlamq and a’rhq/amq againstamy for Wilson

proved fermions. Filled circles denote points used in the fits. Thd€rmions.

dashed line {3.13) ismps=y2my (which here corresponds to a
fictitious ss bound statewhile the dotted line {0.125) ism,, .

guark masses, on the other hand, linearity is still present unt

at leastmy~3mg~3m.. [Note that 2(,mp)>~44.9]. In
this interval lie four or more quark masses. The results of th
various fits are given in Table II.

For Wilson fermions we simply set,=A,, . The results
for aan have also been given ifl0]. In Figs. 5 and 6 we

show the ratios §mpg)®/am,, amy/am, and am,/

(ampg)?. Similar fit ranges as for improved fermions seem

appropriate once more.
To illustrate theg3 dependence of some of these results

we show in Fig. 7 the results for taken from Table II
together with Paddike interpolations of the form

1+p195+p29o
1+ (p1—C)g5+ Pady’

Y(go) = (32

arranged so that the perturbative reSt{g,) =1+ cg3 with
€c=0.09051 for improved fermions and 0.05195 for Wilson

TABLE II. Fit values.

? E_ Cps -

% ro
Yps Yps  Yps \@
O(a) improved fermions
6.0 0.3142) —0.00172) 0.9726)
6.2 0.46%2) —0.00422) 1.06Q3)
6.4 0.6175) —0.00635) 1.0825)
Wilson fermions

6.0 0.3684) —0.00025%51) 0.71112)
6.2 0.5026) —0.00365) 0.81410)

fermions is obtained for sma@é. Possible Padanterpola-
tions are found to bep;,p,,p3)= (—1.24,0.256,0.347) for
I(P(a) improved fermions and-{ 0.944,0.00,0.0746) for Wil-
son fermions. Also shown for comparison agga) im-
roved results found ifl6]. We see that fo©(a) improved
ermions first order perturbation theory is good fgﬁ
=0.96, while for Wilson fermions a breakdown occurs much
earlier.
Thus we now have estimates foY/Yps and (

—cpg)/Yps. Y will also be needed for Wilson fermions.

B. Renormalization

To computec, andc, we must now determine the factor
AZS(M)ZS(M). For O(a) improved fermions this was
done by the ALPHA Collaboratiof12] using the Schro
dinger functional §F) method. With the notation of E@8)
their result can be written as

0.6 [ :
|
|
Mpeg=m,. | - )
! am,/(ampg)
|
05 ! .
=6.2
Mﬁ\\
|
|
|
|
0.4 [ | ]
e .
X *
|
! B=6.0
03[ ! 1
|
i Mpe=Y2m,
|
|
0.2 1 Il Il
0.0 10.0 20.0

(rO/a)2 X (amF‘s)2

FIG. 6. The same as Fig. 4 but for Wilson fermions.
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y X using both coefficient®, and B,. The open circles are the
result of using only th®, coefficient. The straight line is a fit to the

plateau, the length denoting the fit range chosen.

—1.752+0.321 8—6)—0.224 83— 6)% (33

(valid for 6.0<B=<6.5), where they have worked at a scale
given in terms of the box size. As emphasized previously, perex converts the renormalization constant from the MOM

this is a mapping from the bare quark mass to the RGI mas
so this function is the same in all schemes. In B8) the

total error is about 2%.

Xg_:l\S/IOM(Mﬁ):

AZZM(p)

P

3cheme to theMS scheme and can be calculated using a
continuum regularizatiofe.g., naive dimensional regulariza-

tion). So we can write

For Wilson fermions we use the method proposefilis]
and refined in[19]. This mimics perturbation theory in a
certain momentum subtractigMOM) scheme by consider-

ing amputated quark Green’s functions in, say, the Landatx'\s/!_fAOM(M'M):

gauge, with an appropriate operator insertion. The renormal-
ization constant is fixed at some scafe This gives a non-

perturbative determination az¥°M(p). [Z

MOM
P

(p) is not

suitable, as chiral symmetry breaking means #Hf" -0
as we approach the chiral limit, as recently emphasized in
[20].] More details of the method, our momentum source

approach, and results are giverf 119]. As AZ,’Y'TS is known in

the MSscheme at scalg (see Fig. 1 and Table,lwe can

write

_ AZMS(u)
AZMOM(p)ZNOM(p) = 2

where we have used Eq2l1) and the definitionsZ,,

= 1/ZS, AZm= l/AZS and

ZE(w)Y

Z98( ) = X¥S o (11,P)Z¥OM (),

with

=F(B),

(34

(39

Zg%(w)
zgM(w)
WS WS, )2
L as (w) ag “(p)
=t 1+( am ) B2t

(37

with B;=16/3 [10]. The coefficientB, has recently been

calculated[21], giving in the Landau gauge fd{;=0 fla-
vors a value of 177.48452. Hence, knowing the coefficients
B,,B,, we can trace back to the more general expression for

X. A suitable formula is

TABLE lll. Fit values for the Wilson renormalization constants.

B Z¥8(u=1/a) AZMOM(p)ZMOM(p)
6.0 0.7905) 2.496)
6.2 0.8035) 2.254)
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FIG. 9. The continuum extrapolation fay andc, for O(a) improved fermions.
[Xgn__’\sAOM(ﬂ p)] -t late these coefficients to the continuum limit. In Fig. 9 we
’ o show the results foc, and c, for improved fermions. A
MS mo(é) linear fit is also plotted. The results of this fit are given in
gMS(w) . Ym - . , .
=e e T o Table IV. As anticipated, using the first order perturbative
M BY(E)

result from[15] for ¢ in c,, has no influence on the reséln
== MS( 2 _  MOM Fig. 10 we show the equivalent results for Wilson fermions.
IE Ym (&)= Ym  (G(§)) 9. - d .
+ fg (")dg( i M_s (39 In this case, as we only have tw®values, the fit degener-
0 B7(€) ates to an extrapolation. The results of this extrapolation are

[gMOM:G(gM—s) from Eq. (10)]. Armed with this estimate also given in Table IV. We note that the results fofa)
for X, then from Eq.(35) we see thatZI\S/I_S(M) should be mproved fermions and Wilson fermions fot are compat-

independent o2, s plottingzg"s(,u) againsip? we expect ible with each other. Upon inserting these numbers in Eq.

to see a plateau. In Fig. 8 we show this, plotting first the(27)’ we find our estimate for the RGI strange arfd quark

original data, extrapolated to the chiral limit, then the results 1 2>5€S- To convert to physical numbers, we now have in

for &> when only usingB,, and finally using bottB; and quenched QCD the uncertainty in the scale, as discussed in

. AL If h le;=0.5fm, Eq.(12), th -
B,. We see the data fdfg becoming flatter. The results of S:'c(r:1er withV\tlﬁ eues)((a fariemsé%atlaﬁova?ugswcl)’f tlfrqea(nd)k tmeagstgs
the fit are given in the first column of Table Ill. The appro- 9 P '

) ~ WS namely m_+=139.6 MeV and my+=493.7 MeV, mo
priate values forY (see Table Nl andAZy*(n=1/a) (see  _ 4977 MeV, we find the results fdd(a) improved fermi-
Table |) are substituted in Eq34) to give the results listed in

. ons
the second column of this table.
VI. CONTINUUM RESULTS mRC'=1464) MeV,
Plotting c, and c, againsta® for O(a) improved fermi- RGI
ons, and against for Wilson fermions, we can now extrapo- m~'=6.1(2) MeV. (39

TABLE IV. The continuum extrapolation of,—c} and c,—cf for O(a) improved fermions and
Wilson fermions. The errors are statistical.

Ca 3=6.0 5=6.2 B=6.4 ct
O(a) improved 0.102GL3) 0.114215) 0.116618) 0.1242)
Wilson 0.170943) 0.153734) - 0.10717)

Ch 3=6.0 5=6.2 B=6.4 c
O(a) improved —0.00056564) —0.001034) —0.0011910) —0.00151)
Wilson —0.0001224) —0.0011115) - —0.00389)

Note, however, that the nonperturbative estimate fibf} at 3=6.2 isc/YpsX (ro/a) 2~ —0.0012 and has a similar order of magnitude
to the kept term.
054504-8
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FIG. 10. The continuum extrapolation fog andc, for Wilson fermions.
The error comes from Table IV and from E@3). As can m's\TS(,U«ZZ GeV)=1054) MeV,
also be seen from Table IV, most of the result comes from
the constant term, with the slope giving only a small correc- WS, B
tion to the answer. M (u=2 GeV)=4.42) MeV. (40

For Wilson fermions we havemR®'=121(20) MeV,

s ; : MS,  _
mi®'=5.3(8) MeV. This result is somewhat lower than the The correspond|ngWgV|Ison results ams™(n=2 GeV)
O(a) improved numbers. We ascribe this mainly to the fact™ 87(15) MeV andm™(n =2 GeV)=3.8(6) MeV. _
that we only have two values g8, which makes a con- Note that for them, quark mass result we have simply

tinuum extrapolation more difficult. Also the number ef extrapolated the fits for the strange quark mass result down-

values used and the size of the data sets are smaller than #§@rds. The mass ratims/m, for O(a) improved fermions is
O(a) improved fermions. Nevertheless, within a one-~23.9, which is very close to the value given in leading

. . . - . 2
standard deviation the results are in agreement. order chiral perturbation theory—namelym . +mio
In the MS scheme at the ‘“standard” value of —mi+)/mi+%24.2 [see EQ.(27)]. This is simply because
=2 GeV,_using the four_—loop results from Table I, we find |c§|<|c§|/(r0mK)Z, and so the second term in EQ7) is
for O(a) improved fermions almost negligible. The mass ratio is then independert:of
' ' ' 115 — - — . :
m m | | | P
’ ' | R@)  (AZ2oop) __j---"""" (AZdloop) |
FO=—====== - F-==0-==-=1 110 o - |4>_<’_6—~>’ ' -
l Sede-eo !
(This work) (This work) 1 | Tadpole Improved Pert. Theory |
—— . 105 | | M 1
! ; . (AZ,11o0p) I
! \ | |
____________________________________________ 100 1 | | |
1 "~ - L _(AZ2loop) |
0.95 |- | ‘F:(Azfuoop)4 ]
—o—t —o—1 I e
| ~_I 1stOnder Pert. Theory |
090 [ | e | y
(previous) +——o— (previous) —o— ! \ | ( AZZ1~1<;o—p;J!
0.85 1 i l 1 |
0.00 0.01 0.02 0.03 0.04
( 1 I I ( (a/r0)2
86 95 105 115 125 3 4 5 6
MeV MeV

FIG. 12. The results for the rati@ as defined in Eq43). Z°
FIG. 11. The strange and light quark masses from &) has been determined from E@1) or Eg. (42) and Azms taken
(“this work™ ). The Wilson fermion results are shown dotted. Also from Table I. A simple interpolation has been used betweensthe
shown is our previous resultprevious”) [10]. The arrows denote values. The dot-dashed vertical lines correspond+a.0, 6.2, 6.4,

the result when using/c as a scale. from right to left.
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TABLE V. Parameter values used in the simulations, together TABLE VI. Results for the Ward identity quark masaﬁyq,
with the measured pseudoscalar mass.

B Cow K 2am’) 2am() 2am,

B Csw K Volume  No. configs. ampg

6.0 1.769 0.1217 0.9677) 1.786733  0.81975)
6.0 1.769 0.1263 0.5984) 1.017324)  0.50933)
6.0 1.769 0.1285 0.4349) 0.708@22) 0.37543)
6.0 1.769 0.1300 0.3313) 0.522721)  0.28813)
6.0 1.769 0.1310 0.26%3) 0.407220) 0.23133)
6.0 1.769 0.1324 0.17%1) 0.26098) 0.153%1)
6.0 1.769 0.1333 0.118 0.17377) 0.10421)
6.0 1.769 0.1338 0.087821) 0.12749) 0.0767818)
6.0 1.769 0.1342 0.0628P6) 0.0921762) 0.0551915)
6.0 1.769 0.1342 0.062€27) 0.093212) 0.0552225)
6.0 1.769 0.1346 0.037722) 0.058411) 0.0328932)
6.0 1.769 0.1348 0.0248%/) 0.039912) 0.0215437)

6.2 1614 01247 0.7342  1.152G18 0.69152)
6.2 1614 01294 0.4012 0545112 0.38092)
6.2 1614 01310 0.2965  0.377610) 0.28262)
6.2 1614 01321 0.227®  0.27487)  0.217Q1)
6.2 1614 0.1333 0.15265 0.17414)  0.146205)
6.2 1614 0.1344 0.08549 0.0933¢36) 0.081965)
6.2 1614 0.1349 0.05516 0.0598%34) 0.052886)
6.2 1614 0.1352 0.0368B1) 0.0407346) 0.0353711)
6.2 1.614 0.1352 0.0370B) 0.0404637) 0.0355312)
6.2 1614 0.1354 0.0247® 0.0277318) 0.023756)
6.2 1.614 0.13555 0.01549 0.0180720) 0.014829)

6.0 1769 01217 %32  O(150)  1.254612)
6.0 1769 0.1263 %32  O(150)  0.970411)
6.0 1769 01285 T&32  O(150)  0.818911)
6.0 1769 0.1300 32  O(160)  0.707116)
6.0 1769 01310 %32  O(160)  0.626816)
6.0 1769 01324 32  0O(990)  0.50427)

6.0 1769 01333 %32  0(990)  0.41299)

6.0 1769 0.1338 %32  0O(520)  0.354912)
6.0 1769 0.1342 32  O(1300)  0.301210)
6.0 1769 0.1342 2432  0(200)  0.301713)
6.0 1769 0.1346 2432  0(200)  0.239012)
6.0 1769 0.1348 2432  0(200)  0.197816)

6.2 1614 0.1247 448 0O(100) 1.02849)
6.2 1614 0.1294 448 0O(100) 0.72179)
6.2 1.614 0.1310 2448 0(100) 0.60489)
6.2 1.614 0.1321 2448 0(260) 0.51886)
6.2 1.614 0.1333 2448 0(560) 0.41366)
6.2 1.614 0.1344 2&K48 0(560) 0.30346)
6.2 1.614 0.1349 2&48 0(560) 0.24317)
6.2 1.614 0.1352 2448 0(260) 0.201610)
6.2 1.614 01352 3x64 0(110) 0.200%9)
6.2 1614 01354 3X64 0(290) 0.16576)
6.2 1.614 0.13555 3X%64 0(280) 0.13397)

6.4 1526 0.1313 0.2709  0.287G9)  0.26371)
6.4 1526 0.1323 0.2090)  0.20749)  0.203§1)
6.4 1526 01330 0.166D  0.15678)  0.16211)
6.4 1526 0.1338 0.117®  0.10454)  0.114616)
6.4 1526 0.1346 0.0688® 0.0579938) 0.067366)
6.4 1526 0.1350 0.04467) 0.0373935 0.043736)
6.4 1.526 0.1353 0.02668) 0.0227622) 0.026035)

6.4 1526 0.1313 3x48 0O(100) 0.53089)
6.4 1526 0.1323 3x48 0(100)  0.452210)
6.4 1526 0.1330 3x48 0(100)  0.393612)
6.4 1526 0.1338 3x48 0(200)  0.32189)
6.4 1526 0.1346 3x48 0(200)  0.24028)
6.4 1526 0.1350 3x48 0(200)  0.19289)
6.4 1526 0.1353 3x64 0(260)  0.15078)

pansion and also to the expansion in a nonphydibate
coupling constant. Removing the tapole diagrams and ex-

panding in(say a¥'* gives the improved series

In Fig. 11 we plot our results. Below the dotted line, we
have given our previous resttt0], using the string tension
as the scale, as given in Ed.2). As a comparison we have

also replotted our result given in E@0) using \o as the aM_S( —1/a)
scale. A reasonable agreement is seen. As our previous resyiS  ,, — 1/qy=y | 1— s BT [BMS(Csy) — 72]
. . . s (M 0 4 F SwW
used tadpole improvel) perturbation theory to determine ™
the renormalization constant, it would seem that the use of Tl )
perturbation theory does not introduce much error. In the +0O(as), (42

next section we shall briefly investigate this point.
With Up=(3TrUpjae)™* to be numerically determined, and

VIl. DIGRESSION: COMPARISON WITH Csw=Cswls. A description of our variation of this procedure
TADPOLE-IMPROVED PERTURBATION THEORY is given in[10]. In particular, we chooseg,y to be the non-
perturbatively determined result, rather than setting it to be

In this section we shall discuss how reliable Tl perturba-
tion theory is. Lowest order perturbation theory gives equal to 143, «!'® corresponds to the four-loop resuitsee
Table |) also used if22].

As we now have a genuine nonperturbative determination
of Z,, available, it is of interest to compare how the different
results scale to the continuum limit. It is convenient to first
The B coefficient is uncomfortably larggl0]. In [22] this  define for twoO(a) improved estimations of the renormal-
was traced to large tadpole diagrams in the perturbation exzation constant the ratio

9

167

Z¥S(u=1a)=1- —= 5 CrB"S(cy) +O(gh). (41)
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Azsl(M )ZSI(M ) order chiral perturbation theory are small, if we stay away
= ? ! ? ! =1+0(a?). (43 from the region where chiral logarithms become significant.
AZ 2(My)Z 2(My) We have also seen that using TI perturbation theory rather

than simple perturbation theory does not automatically lead
For 82 we choose th&F scheme and the result given in Eq to an impro\/ement of the continuum result.
(33), while for S; we use the MSscheme, together with Note added While this work was being completed, we
either the perturbative result, E(41), or the Tl result, Eq. received a copy di23]. This contains some similar results to
(42). ours.
In Fig. 12 we show the results for the rafofor pertur-
bation theory and TI perturbation theory, using consistently ACKNOWLEDGMENTS
the one-, two-, and four-loop results from Table I. As we ) .
originally used one-loop perturbation theory results, it seems The numerical calculations were performed on the Quad-

more consistent to also use the one-loop result@y, when  fics QH2 at NIC (Zeuthen as well as the CraJf3E at ZIB
(Berlin) and the CrayT3E at NIC (Juich). We wish to thank

convertingZg ~ to the RGI result. This gives the solid line in all institutions for their support,

the figure. This was the approach adoptefili®]. We expect
O(a) effects to become apparent a$—0 if S; is not ex-
actly O(a) improved. However, a linear fit in? for the TI
result (with one-loopAZy,) appears to go tk=1 with an In Table V we give our parameter values used in@{e)

error of only about 2%, while for the equivalent perturbativejmproved fermion simulations together with the measured
result the error is about 10%. Thus, in this case tadpole impsedoscalar mass. For most of the overlapping values with
proving the perturbative result does give better results. Howr1 (] there has been some increase in statistics. The results for

ever, choosing other I(_)op orders c_hanges the picture SOMfte wi quark massaFr]q, are first split into two pieces.
what and can make using perturbation theory a better choice. - ©  denot h , ¢ h
enotes e mass coming from e

We would like to emphasize that this picture does not havé@Mq !
to hold for other renormalization constants. Strictly speakingd,A,PS™¢2"¢4/(P PSmeareq ratio, while 2am{" is the result

APPENDIX

a case-by-case analysis is required. of <Vip psmeareq;(ppsmeareq - The gym ler]q:Zaano)
+2caam” gives the WI quark mass. All these results are
VIil. CONCLUSIONS given in Table VI. We define ds)xy= (8 ay— dx—iy)/2.

In this article we have calculated the strange arid  d4d4 has been replaced by V) y=0cray— 25y
quark masses for quenched QCD, both @) improved ~ +8x—a,y - In the continuum limit bothy,d, and V5 give the
fermions and Wilson fermions, using a nonperturbatively desame derivative. On the lattice we choose the discretization
termined renormalization constant. Our results are given V3 with the smallesttempora) extension. Ir{10] the choice
Eq. (40) and the lines that follow it. Corrections to leading d,d, was used.
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