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Chiral condensate in the quenched Schwinger model
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A numerical investigation of the quenched Schwinger model on the lattice using the overlap Dirac operator
points to a divergent chiral condensate.
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I. INTRODUCTION

Use of quenched QCD as an approximation to the
theory depends upon a good understanding of the region
parameter space where the quenched theory differs in im
tant ways from the full theory. For the case of the chi

condensatêc̄c&, there may be qualitatively different beha
iors for sufficiently small quark mass. Whereas the cond
sate is expected to be finite in the full theory, there are t
oretical arguments@1# and some initial numerical indication
@2# that it diverges in quenched QCD. Also numerical ana
sis @3# of an instanton gas model shows a divergence
careful study, using a lattice Dirac operator that obeys ch
symmetry, to determine the mass range in which quenc
QCD is a good approximation to the full theory has not be
done.

Similarly for the Schwinger model, the full theory has
finite condensate@4# but there are predictions@5,6# that it
diverges in the quenched theory. Thus the Schwinger mo
can be used to investigate the two-dimensional version
these questions concerning anomalies, topology, chiral s
metry, and condensates and their impact on the relation
between full and quenched theories. Although the Schwin
model is in most ways much simpler than QCD, it do
present some peculiar difficulties of its own. Strong infrar
effects, which are dynamical and nonperturbative in QC
are already kinematical in the lower dimension of t
Schwinger model. There is the possibility that infrared e
hancement in the quenched case gives a fermion spe
density that is divergent as the eigenvaluel goes to zero and
that there is a corresponding infinite condensate^c̄c&. We
have investigated this issue numerically using the ove
Dirac operator to describe the massless limit for the fermi
and have found strong evidence for these divergences in
quenched Schwinger model.

When stated in terms of the low eigenvalue behavior
the fermion spectral density in the quenched Schwin
model, theoretical discussions have given a lower bound
is finite @7# and a stronger one that is divergent@5#. Some
estimates@5,6# that are not bounds have suggested a fo
diverging exponentially in the volumeecg2V. The discussions
in Refs. @5,7# are given in terms of the eigenvalue shifts
the would-be-zero modes associated with subregions of
whole two-dimensional volumeV. With larger shifts@7# due
0556-2821/2000/62~5!/054501~6!/$15.00 62 0545
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to interactions with other subareas, the spectrum is fla
small l in the infinite volume limit. Smaller shifts@5# leave
the would-be-zero modes concentrated near the origin so
the spectral density there diverges asV→`. Other argu-
ments @5,6# for the form of the divergence proceed alon
different lines, but the implication for the spectrum is that t
lowest eigenvalues are exponentially small in the volu
with a corresponding exponentially large spectral density
condensate.

The data that we present here cover a range of lattice s
from 82 to 322. The full spectrum of the overlap Dirac op
erator was calculated in gauge backgrounds from the Wil
action at several bare couplings. The next section discu
the lattice formalism used in this paper. Section III discus
the physics issues in more detail. Section IV gives our
merical results. In addition to the spectrum itself, there
measures of its behavior including^c̄c& and the distribution
of the lowest eigenvalue. The last section contains a s
mary of our results and some concluding discussion.

II. LATTICE FORMALISM

Since we are interested in studying the small mass reg
and the massless limit, we need to work with a lattice Dir
operator that respects chiral symmetry. We will use the ov
lap Dirac operator for our numerical study. It has the fo
@8#

D5
1

2
@11m1~12m!g5e~Hw!# ~1!

with Hw being the Hermitian Wilson Dirac operator in th
supercritical region and 0<m<1 is the bare fermion mass
The Hermitian overlap Dirac operatorH5g5D has paired
non-zero eigenvalues. The topological zero modes are ch
and have partners with unit eigenvalue and opposite ch
ity. In a fixed gauge field background@9#,

^c̄c&5
uQu
mV

1
1

V (
l.0

2m~12l2!

l2~12m2!1m2 . ~2!

The sum is over all positive non-zero eigenvalues ofH, Q is
the global topological charge, andV is the lattice volume.

In the numerical calculation, we generate gauge fields
tributed according to the Wilson gauge action
©2000 The American Physical Society01-1
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Sg5
1

g2 (
p

ReUp ~3!

with Up the product of U~1! link elements around a funda
mental plaquette andg the lattice coupling constant. Th
fermions have periodic boundary conditions.1 For each
choice ofg andL, we diagonalizeHw in a fixed gauge field
background and formH by first forming e(Hw). We then
diagonalizeH2 in the chiral sector that contains topologic
zero modes, if any. Since all computations are done
double precision, we know the non-zero eigenvalues ofH to
an absolute precision of 1028. In addition we know the exac
number of zero eigenvalues ofH by counting the difference
between the number of positive and negative eigenvalue
Hw @10#.

III. PHYSICS ISSUES

In the multi-flavor Schwinger model, the classical U~1!
chiral symmetry is explicitly broken by the anomaly, whi
the SU~N! chiral symmetry cannot be broken in two dime
sions. The ’t Hooft vertex̂) i c̄ ic i& is not associated with an
intact symmetry or Goldstone bosons, so it can and d
have a non-zero value@11#. In the quenched case, the exa
zero modes of the massless Dirac operator cause a d
gence in^c̄c& in the massless limit at finite volume. But a
seen in Eq.~2!, the divergence is of the form̂uQu&/(mV).
Since^uQu&}AV, it follows that

lim
m→0

lim
V→`

^uQu&/~mV!50. ~4!

This trivial divergence does not contribute in the case wh
one first takes the thermodynamic limit and then takes
massless limit. But this finite volume divergence does
appear in the unquenched Schwinger model. The zero m
of the Dirac operator in these backgrounds cause a supp
sion of such gauge field configurations when the ferm
determinant is included as part of the gauge field measu

The small eigenvalue behavior of the spectrum de
mines the contribution that the second term in Eq.~2! makes
to ^c̄c&. Thus the issues to be numerically investigated
centered upon the small eigenvalue behavior of the mass
Dirac operator. The main question is whether the infin
volume spectrum is flat as the eigenvaluel goes to zero or
has a divergence at smalll.

Consider the gauge field seen by the fermion. T
plaquette magnetic field of the quenched Schwinger mod
ultra-local with the field fluctuations on different plaquett

1This choice of boundary conditions is not as restrictive as
seems since we only have one fermion. A gauge field configura
can be multiplied by an arbitrary constant U~1! field on each link in
either of the directions without changing the gauge action. Since
of these possibilities are included in the sum over gauge field c
figurations, there is no real distinction between periodic and a
periodic boundary conditions. More generally all boundary con
tions that are periodic up to a phase are equivalent.
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uncorrelated in infinite volume. The plaquette angles are
proximately Gaussian distributed at weak coupling. Thus
study of fermionic observables in the quenched theory is b
thought of as an investigation of a disordered system@7#.

Let us begin the discussion with two much simpler e
amples. For the case of free fermions on anL3L lattice with
periodic boundary conditions, the low-lying levels are

l'F S 2pn1

L D 2

1S 2pn2

L D 2G1/2

~5!

so that the level spacing is of order 1/L, and the density of
states per unit volume is of orderl at the low end.

Another simple case is a uniform magnetic fieldB, which
gives Landau levels. The level spacing is of orderB, and the
degeneracy of each level is of orderBV. With the scale of
energy intervals larger thanB, the density of states is flat. A
we will see later, the typicalBV is gL so that the average o
B over V does get smaller with increasing volume. Thus t
Landau levels give a flat spectral density if the energy re
lution is coarser thang/L.

For the case at hand of particles with gyromagnetic ra
2, there is a cancellation between the paramagnetic magn
moment interaction with the field and the diamagnetic
netic energy contribution that puts the lowest Landau leve
exactly zero energy. These are theBV/(2p) zero modes.

When the net flux is zero and all boundary conditions
periodic so that the vector potential can be put in the for

Am5emn]nf, ~6!

there is also a pair of zero modes with opposite chiral
These have the form

c15efS 1

0D and c25e2fS 0

1D . ~7!

For the quenched Schwinger model the field is neit
zero nor uniform. As noted above, the magnetic field is r
dom with no plaquette-plaquette correlation between
magnetic field on different plaquettes. Thus the variance
creases as the area. With the couplingg small andgR large,
the flux through the areaR3R is Gaussian distributed with a
typical size of gR, so that the area average of the fie
strength isB5g/R.

What is the fermion spectrum in that case? The ind
theorem tells us that for a net flux 2p f through the areaL2,
there aref modes with zero eigenvalue. Forf 50 and all
boundary conditions periodic, there are two zero modes
the form above. But what else happens at the low end of
spectrum? There are two suggestions for an answer in
literature. The discussion of Casher and Neuberger@7# be-
gins by dividing theL3L volume into (R3R)-sized pieces
with gR and L/R large. Considered in isolation, each
these areas has of ordergR zero modes. It is then argued th
the effect of interaction between different regions is to sh
the eigenvalues of the zero modes away from zero, in su
way as to produce a spectrum that is bounded below by
that is flat at smalll.
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CHIRAL CONDENSATE IN THE QUENCHED SCHWINGER MODEL PHYSICAL REVIEW D62 054501
With a similar approach, Smilga@5# argues for a stronge
lower bound that gives a spectral density that diverges al
→0. His stronger result follows from using the fact that t
value of the zero mode wave function on the boundary t
separates a region with magnetic field from one with z
field is exponentially small in the flux through the regio
Arguments using other methods in his paper and in the pa
by Dürr and Sharpe@6# conclude that the divergence is qui
strong with a factorecg2V. This would be a consequence
modes with eigenvalues as small as the inverse of that fa

For a numerical test of the argument used by Smilga
produce the stronger bound, we construct a backgro
gauge field configuration that has two regions of sizeR2 each
with constant magnetic field and opposite net fluxes of m
nitudeR. We study the low lying eigenvalues of the overla
Dirac operator and show that they go down exponentia
with R.

On theL2 lattice, fix two regions of sizeR2 separated by
(L/221,L/221). The slightly off-symmetric separation i
chosen to avoid any accidental lattice symmetries. On
region of sizeR2, we make up a constant magnetic field
flux R, and on the other region, we make up a constant m
netic field of flux2R. Elsewhere the field is zero. An initia
numerical check with the field set to zero in one of the
gions, verified the presence ofR topological zero modes fo
the overlap Dirac operator. Then returning to the case
interest with the field in both regions, we calculated the sp
trum again. In Fig. 1, we plot the low end of the positive h
of the spectrum as a function ofR. The lowest few of these
small eigenvalues go down exponentially inR. We verified
that this behavior remains unchanged when small rand
perturbations are added to the link elements. The nume
results are less restrictive than the theoretical argumen

FIG. 1. Low end of the positive half of the spectrum on aL
532 lattice on the special configuration as a function ofR which
defines the area of constant magnetic field of fluxR. Eigenvalues
below 1027 are not shown in this plot. Only forR53 are all the
eigenvalues above this bound. The lines connect eigenvalues a
same position in the ordering for eachR.
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that they do not rely on a variational argument, which, wi
out further work, applies only to a single mode on the latti
Also all the lattice modes in addition to the would-be zer
are included. This confirms the crucial point in the argum
for the stronger bound of Ref.@5#. However, it does not
provide evidence that the spacings might be as smal
e2cg2V.

Let us now consider the continuum limit. Given the r
mark above on the lack of correlation in the field strengths
is not possible to use a scale from that in defining the c
tinuum. However, there is another simple approach. Fog
small, ask how large doesR have to be so that the typica
flux through theR3R area is of order 1? Since the flu
variance for a single plaquette isg2 and the uncorrelated
fluxes add, the variance for the area isg2R2. Thus the typical
flux through the area isgR, andg sets an inverse length o
energy scale. This happens to be of the same order as
scale for the unquenched Schwinger model, in which
mass in lattice units isg/Ap. We may hope to get a sensib
continuum limit by measuring continuum dimensionf
quantities in units of appropriate powers ofg/a. To get the
finite volume continuum limit, we will want to takeg to zero
and L to infinity with gL fixed. Lattice eigenvalues,̂c̄c&,
and other quantities with continuum units of energy sho
be considered in ratios likel/g asg→0.

Finally, let us discuss the range ofg and L where these
interesting effects might be seen. From two points of vie
we can see thatgL must be large. First, ifL is fixed andg is
small, then there are only perturbative effects from the ga
field, and the strong infrared fluctuations cannot appe
Also, if gL is small, then there are essentially no would-b
zero modes that could realize the physical pictures of@7# and
@5#. If g is large, then the gauge field is very rough on t
scale of a single lattice spacing, and the continuum-ba
arguments above do not apply. The smallest region that t
cally contains a unit of flux should be several lattice units
that it is large enough for the fermion to realize zero mod
from the non-zero flux. Thus we must haveg small andgL
large, which means, of course, thatL must be large.

IV. NUMERICAL RESULTS

The numerical results described in this section give s
stantial evidence that the infinite volume limit of the spect
densityr(l) is indeed infinite forl→0. We will show this
by computing the spectrum of the overlap Dirac operator
U~1! gauge field backgrounds. The massless limit is
proached in the conventional way by adding a standard m
term. We will also computêc̄c& as a function of mass in
finite lattice volumes and show that it grows as the mas
lowered before it finally dives to zero as it must form50
and finite volume. We will also show that the average va
of the lowest eigenvalue does not scale with the volume
that it does not fit predictions from chiral random matr
theory.

Strong evidence for a divergence in the non-topologi
piece of^c̄c& is seen by plotting the gauge ensemble av
age of the second term in Eq.~2! as a function ofm at a fixed

the
1-3
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JOE KISKIS AND RAJAMANI NARAYANAN PHYSICAL REVIEW D 62 054501
g50.4Ap for several lattice sizes. We focus on the sm
mass region in Fig. 2. The data atL532 show a rise in̂c̄c&
as the mass is decreased. This divergence is due to an
mulation of very small eigenvalues at largerL as seen in the
histogram of the small non-zero eigenvalues in Fig. 3. E
though onlyL532 shows a rise in̂c̄c& at small masses, a
anomalous accumulation of very small eigenvalues is evid
at L524 in Fig. 3. The accumulation is not enough to give
rise in ^c̄c& on theL524 lattice.

The smallest eigenvaluelmin has to scale like 1/V for a
finite value of the density of eigenvalues at zeror(0) and a
finite value of^c̄c& in the massless limit. In Fig. 4, we plo
the histogram oflminL

2 for the various ensembles in the ze

FIG. 2. Plot of ^c̄c& with respect tom at g50.4Ap for four
different lattice sizes.

FIG. 3. Plot of the distribution of the small non-zero eigenvalu
at g50.4Ap for four different lattice sizes.
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topological sector. We see that there is no evidence for s
ing in the distribution, whereas chiral random matrix theo
predicts a universal function of the form (z/2)e2z2/4 with z
5SL2lmin andS the value of the chiral condensate. A pr
vious analysis@12# of the distribution of the low lying eigen-
values done at smaller physical volume showed that the
tribution did not fit the predictions of unitary chiral rando
matrix theory@13#. In Ref. @12# this was attributed to finite
volume effects. In our case, the reason for the discrepanc
not small volumes but a divergent chiral condensate. N
consider the average of the smallest nonzero eigenvalue
function ofL. Three simple functions motivated by heurist
physics arguments arec/V, e2cL, and e2cV. To determine
which of these forms is closest to the data, we have plotte
Fig. 5 V^lmin&/16, ln(̂ lmin&/^lmin&uL58)/(82L), and
50 ln(̂ lmin&/^lmin&uL58)/(642V) versus L for Q50 and
uQu51. ~The normalizations are just for convenience.! To
the extent that one of these functions represents the
well, the corresponding graph in Fig. 5 should be flat. E
dently e2cL is preferred. Recall that this is the form th
appears in the argument for the lower bound in@5# and in the
spectrum from the artificial configurations described in S
III.

Figure 2 shows thatL532 is needed atg50.4Ap to see
the divergent behavior in the chiral condensate. This co
sponds to a physical volume ofgL/Ap512.8. To study the
effect of lattice spacing, we compared this result with oth
obtained onL524 at g/Ap50.4(32/24) and onL528 at
g/Ap50.4(32/28). These have the same physical volu
gL/Ap512.8 but are coarser lattices. The comparison
Fig. 6 shows that the divergence visible on theL532 lattice
is not seen on theL524 lattice. However, theL528 data
follow the L532 data to very small masses and into t
region where the condensate begins to grow. We have u
dimensionless quantities in this plot to facilitate a prop

s

FIG. 4. Plot of the distribution of the smallest eigenvalue sca
with the volume and restricted to the zero topological sector ag
50.4Ap for four different lattice sizes.
1-4
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CHIRAL CONDENSATE IN THE QUENCHED SCHWINGER MODEL PHYSICAL REVIEW D62 054501
comparison. The scaling behavior is good untilm/g gets
small enough to emphasize the very smallest eigenval
some of which are being distorted on the coarser lattice
smaller coupling and at the same physical volume, the s
ing behavior extends to smallerm/g.

To illustrate the point that at fixedL, g can be neither too
big nor too small if the smalll growth is to be seen, we hav
data fromL532 and four couplings in Fig. 7. The smalle
value of g, which corresponds to a physical size of 9
shows no growth at all. The medium values at sizes 12.8
16 show the effect.~Note that the finite size effects betwee
these two are small.! The largest value ofg has size 32 but
the gauge field there is too rough, and the smalll peak is
gone.

FIG. 5. Ensemble average of the smallest eigenvalue in the
and unit topological sectors atg50.4Ap as a function of the lattice
size and plotted to facilitate comparison with the simple functio
forms described in the text.
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V. CONCLUSIONS

We have shown that for small coupling and large volum
a small eigenvalue peak appears in the spectral density o
overlap Dirac operator and in̂c̄c&. This is strong evidence
for the predictions@5,6# that these quantities diverge in th
infinite volume limit of the quenched Schwinger mode
There is some evidence that the divergence could be
strong asecgL, but the lattice sizes are insufficient to provid
evidence for the strongeredg2L2

predictions. Similarly there
is limited evidence that the would-be-zero modes of sub
gions of the lattice can provide a physical understanding
the results. However, a definite test of that model also aw
data from larger lattices.

ro

l

FIG. 6. Plot of^c̄c&/g with respect tom/g at gL/Ap512.8 on
L524,28,32.

FIG. 7. Plot of^c̄c&/g with respect tom/g at L532 and four
different couplings.
1-5
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The results in this paper clearly point the direction f
further work. The calculations should be extended to lar
lattices so that there are several sizes showing the smal

growth of the spectral density and^c̄c&. With that, it would
be possible to study the volume dependence of the smal
peaks and test in more detail the theoretical expectation

Although the quenched Schwinger model is quite so
distance from full four-dimensional QCD, results from
cl

. D

05450
r

e

help to map out the range of territory available to massl
fermions responding to a gauge field.
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