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Chiral condensate in the quenched Schwinger model
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A numerical investigation of the quenched Schwinger model on the lattice using the overlap Dirac operator
points to a divergent chiral condensate.
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[. INTRODUCTION to interactions with other subareas, the spectrum is flat at
small\ in the infinite volume limit. Smaller shiftg5] leave
Use of quenched QCD as an approximation to the fulithe would-be-zero modes concentrated near the origin so that
theory depends upon a good understanding of the regions ¢fie spectral density there diverges ds-~. Other argu-
parameter space where the quenched theory differs in impoments[5,6] for the form of the divergence proceed along
tant ways from the full theory. For the case of the chiraldifferentlines, but the implication for the spectrum is that the

condensatéyy), there may be qualitatively different behav- l/c\:meztcﬁ'rgsgvggﬁﬁ aer)((a gﬁggggﬁ‘“?;lry ;g‘aglct':‘altggn\églu;“n%
iors for sufficiently small quark mass. Whereas the Condenéondensate P g exp ylarge sp y
sate is expected to be finite in the full theory, there are the- The data.that we present here cover a range of lattice sizes
oretical argumentgl] and some initial numerical indications from 82 to 32. The full spectrum of the overlap Dirac op-
[2] that it dlve_rges in quenched QCD. Also numerlcal analy'erator was calculated in gauge backgrounds from the Wilson
sis [3] of an instanton gas model shows a divergence. Ayqiion at several bare couplings. The next section discusses
careful study, using a lattice Dirac operator that obeys chirajhe [attice formalism used in this paper. Section Ill discusses
symmetry, to determine the mass range in which quencheghe physics issues in more detail. Section IV gives our nu-
dQCD is a good approximation to the full theory has not beennerical results. In addition to the spectrum itself, there are
one. . o L= o
- : measures of its behavior includidgy) and the distribution
Similarly for the Schwinger model, the full theory has aof the lowest eigenvalue. The last section contains a sum-

finite condensatg4] but there are predictionks,6] that it ; - :
diverges in the quenched theory. Thus the Schwinger modé?ary of our results and some concluding discussion.

can be used to investigate the two-dimensional versions of
these questions concerning anomalies, topology, chiral sym- ll. LATTICE FORMALISM

metry, and condensates and the'ir impact on the relatio.nship Since we are interested in studying the small mass region
between full and quenched theories. Although the Schwingegn the massless limit, we need to work with a lattice Dirac
model is in most ways much simpler than QCD, it doesgperator that respects chiral symmetry. We will use the over-

effects, which are dynamical and nonperturbative in QCD[g]

are already kinematical in the lower dimension of the

Schwinger model. There is the possibility that infrared en- 1

hancement in the quenched case gives a fermion spectral D=3[1+m+(1-m)yse(Hu)] (1)
density that is divergent as the eigenvalugoes to zero and

that there is a corresponding infinite condensate). We  with H,, being the Hermitian Wilson Dirac operator in the

have investigated this issue numerically using the overlagupercritical region and€@m=1 is the bare fermion mass.

Dirac operator to describe the massless limit for the fermionThe Hermitian overlap Dirac operatét=y;D has paired

and have found strong evidence for these divergences in theon-zero eigenvalues. The topological zero modes are chiral

guenched Schwinger model. and have partners with unit eigenvalue and opposite chiral-
When stated in terms of the low eigenvalue behavior ofity. In a fixed gauge field background],

the fermion spectral density in the quenched Schwinger

model, theoretical discussions have given a lower bound that — Q] 1 2m(1—2\?)

is finite [7] and a stronger one that is divergdsl. Some ()= m_\/+ Vi xZo N(1—m?)+m? @

estimated5,6] that are not bounds have suggested a form

diverging exponentially in the volumef?V. The discussions The sum is over all positive non-zero eigenvaluesipl is

in Refs.[5,7] are given in terms of the eigenvalue shifts of the global topological charge, anis the lattice volume.

the would-be-zero modes associated with subregions of the In the numerical calculation, we generate gauge fields dis-

whole two-dimensional volum¥. With larger shift§7] due tributed according to the Wilson gauge action

0556-2821/2000/68)/0545016)/$15.00 62 054501-1 ©2000 The American Physical Society



JOE KISKIS AND RAJAMANI NARAYANAN PHYSICAL REVIEW D 62 054501

1 uncorrelated in infinite volume. The plaquette angles are ap-
Sg=gz > ReU, (3)  proximately Gaussian distributed at weak coupling. Thus the
P study of fermionic observables in the quenched theory is best
with U, the product of W1) link elements around a funda- thought of as an investigation of a disordered sysfémn
mental plaquette angd the lattice coupling constant. The L&t us begin the discussion with two much simpler ex-
fermions have periodic boundary conditidnsFor each am_ple;. For the case of_free fermions ori__anL lattice with
choice ofg andL, we diagonalizeH,, in a fixed gauge field periodic boundary conditions, the low-lying levels are
background and fornH by first forming e(H,,). We then 2 2
. o . : : 2n 2mn
diagonalizeH< in the chiral sector that contains topological A~ ( 1) +( 2)
zero modes, if any. Since all computations are done in L L
double precision, we know the non-zero eigenvaluel o o )
an absolute precision of 6. In addition we know the exact SO that the level spacing is of order.1/and the density of
number of zero eigenvalues bf by counting the difference States per unit volume is of ordarat the low end.

between the number of positive and negative eigenvalues of Another simple case is a uniform magnetic fiéldwhich
H,, [10]. gives Landau levels. The level spacing is of orBeand the

degeneracy of each level is of ord8¥. With the scale of
Il PHYSICS ISSUES energy intervals larger thaB, the density of states is flat. As
we will see later, the typicaBV is gL so that the average of
In the multi-flavor Schwinger model, the classica{ly B overV does get smaller with increasing volume. Thus the
chiral symmetry is explicitly broken by the anomaly, while Landau levels give a flat spectral density if the energy reso-
the SUN) chiral symmetry cannot be broken in two dimen- lution is coarser thag/L.
sions. The 't Hooft vertexIl; ;) is not associated with an ~ For the case at hand of particles with gyromagnetic ratio
intact symmetry or Goldstone bosons, so it can and doed, there is a cancellation between the paramagnetic magnetic
have a non-zero Va][{dl] In the quenched case, the exact moment interaction with the field and the diamagnetic ki-
zero modes of the massless Dirac Operator cause a divéﬂ.etic energy contribution that pUtS the lowest Landau level at
gence in(y) in the massless limit at finite volume. But as €Xactly zero energy. These are B¥/(2m) zero modes.

1/2

®

: : : When the net flux is zero and all boundary conditions are
seen in Eq(2), the divergence is of the forfiQ|)/(mV). . . .
Since<|Q|>o<\/V, it follows that periodic so that the vector potential can be put in the form
lim lim (|Q|)/(mV)=0. (4) Au=€u,0,9, (6)

m—0 V—o

there is also a pair of zero modes with opposite chirality.
This trivial divergence does not contribute in the case wherd hese have the form
one first takes the thermodynamic limit and then takes the
massless limit. But this finite volume divergence does not é
appear in the unquenched Schwinger model. The zero modes pr=e 0
of the Dirac operator in these backgrounds cause a suppres-
sion of such gauge field configurations when the fermion For the quenched Schwinger model the field is neither
determinant is included as part of the gauge field measure zero nor uniform. As noted above, the magnetic field is ran-
The small eigenvalue behavior of the spectrum deterdom with no plaquette-plaquette correlation between the
mines the contribution that the second term in E).makes  magnetic field on different plaguettes. Thus the variance in-
to (). Thus the issues to be numerically investigated arereases as the area. With the couplingmall andgR large,
centered upon the small eigenvalue behavior of the masslesise flux through the areBX R is Gaussian distributed with a
Dirac operator. The main question is whether the infinitetypical size ofgR, so that the area average of the field
volume spectrum is flat as the eigenvalugyoes to zero or strength isB=g/R.
has a divergence at small What is the fermion spectrum in that case? The index
Consider the gauge field seen by the fermion. Thetheorem tells us that for a net fluxsZ through the are&?,
plaquette magnetic field of the quenched Schwinger model ithere aref modes with zero eigenvalue. Fé==0 and all
ultra-local with the field fluctuations on different plaquettes boundary conditions periodic, there are two zero modes of
the form above. But what else happens at the low end of the
spectrum? There are two suggestions for an answer in the
This choice of boundary conditions is not as restrictive as itl|t.erature.' 'I"h'e discussion of Ca;her and Ne‘ﬂbef@'be'
seems since we only have one fermion. A gauge field configuratio'"S by dividing thel. XL volume into BX_R)'S'_Zed pieces
can be multiplied by an arbitrary constantilifield on each linkin ~ With gR and L/R large. Considered in isolation, each of

either of the directions without changing the gauge action. Since affnese areas has of ordgR zero modes. Itis then argued that
of these possibilities are included in the sum over gauge field conthe effect of interaction between different regions is to shift

figurations, there is no real distinction between periodic and antithe eigenvalues of the zero modes away from zero, in such a
periodic boundary conditions. More generally all boundary condi-way as to produce a spectrum that is bounded below by one
tions that are periodic up to a phase are equivalent. that is flat at smalk.

0
and d/_:e‘/’(l). 7)
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10° e I R I IS that they do not rely on a variational argument, which, with-
8 3 out further work, applies only to a single mode on the lattice.
10~ § $ _ Also all the lattice modes in addition to the would-be zeros
. 3 are included. This confirms the crucial point in the argument
SF 1 for the stronger bound of Ref5]. However, it does not
1077 = = provide evidence that the spacings might be as small as
E 7 efcgzv.
107 £ B Let us now consider the continuum limit. Given the re-
< F 3 mark above on the lack of correlation in the field strengths, it
107 |- — is not possible to use a scale from that in defining the con-
g 3 tinuum. However, there is another simple approach. dg-or
105 ° ] small, ask how large doeR have to be so that the typical
E 3 flux through theRXR area is of order 1? Since the flux
s . 7 variance for a single plaquette ¢ and the uncorrelated
107 T fluxes add, the variance for the areayfR2. Thus the typical
C . flux through the area igR, andg sets an inverse length or
ol Lo b e Lo energy scale. This happens to be of the same order as the
R 4 6 8 10 12 scale for the unquenched Schwinger model, in which the

R mass in lattice units ig/ /. We may hope to get a sensible

FIG. 1. Low end of the positive half of the spectrum or_a continuum limit by measuring continuum dimensionful
=32 lattice on the special configuration as a functiorRoivhich ~ dquantities in units of appropriate powers @fa. To get the
defines the area of constant magnetic field of fRixEigenvalues ~ finite volume continuum limit, we will want to take to zero
below 10°" are not shown in this plot. Only foR=3 are all the andL to infinity with gL fixed. Lattice eigenvaluegyy),
eigenvalues above this bound. The lines connect eigenvalues at tiaghd other quantities with continuum units of energy should
same position in the ordering for eah be considered in ratios like/g asg—0.

Finally, let us discuss the range gfand L where these

With a similar approach, Smilgb] argues for a stronger interesting effects might be seen. From two points of view,

lower bound that gives a spectral density that diverges as

. ; we can see thaL must be large. First, it is fixed andg is
—0. His stronger result follows from using the fact that the mall, then there are only perturbative effects from the gauge
value of the zero mode wave function on the boundary thaf.

; . S . ield, and the strong infrared fluctuations cannot appear.
separates a region with magnetic field from one with Z€T00 150, if gL is small, then there are essentially no would-be-
field is exponentially small in the flux through the region. zero’modes that co’uld realize the physical picturegpand
Arguments using other methods in his paper and in the pap

. ) . : TE] If gis large, then the gauge field is very rough on the
by Durr and Sharp¢6] conclude that the divergence is quite scale of a single lattice spacing, and the continuum-based

. 2 .
strong with a factoe®®"". This would be a consequence of arguments above do not apply. The smallest region that typi-
modes with eigenvalues as small as the inverse of that factogg)ly contains a unit of flux should be several lattice units so
For a numerical test of the argument used by Smilga Q¢ it is large enough for the fermion to realize zero modes
produce the stronger bound, we construct a backgroungom the non-zero flux. Thus we must hagesmall andgL

gauge field configuration that has two regions of §Zeach large, which means, of course, tHamust be large.
with constant magnetic field and opposite net fluxes of mag-

nitude R. We study the low lying eigenvalues of the overlap
Dirac operator and show that they go down exponentially IV. NUMERICAL RESULTS
with R.

On theL? lattice, fix two regions of siz&? separated by
(L/2—1,L/2—1). The slightly off-symmetric separation is
chosen to avoid any accidental lattice symmetries. On ong

region of sizeR?, we make up a constant magnetic field of , Y i
flux R, and on the other region, we make up a constant ma J(1) gauge field backgrounds. The massless limit is ap

netic field of flux - R. Elsewhere the field is zero, An initial_Proached in the conventional way by adding a standard mass

numerical check with the field set to zero in one of the re-term. We will also computgyy) as a function of mass in -
gions, verified the presence Bftopological zero modes for finite lattice vqu'me's and §how that it grows as the mass is
the overlap Dirac operator. Then returning to the case ofowered before it finally dives to zero as it must for=0
interest with the field in both regions, we calculated the spec@nd finite volume. We will also show that the average value
trum again. In Fig. 1, we plot the low end of the positive half Of the lowest eigenvalue does not scale with the volume and
of the spectrum as a function & The lowest few of these that it does not fit predictions from chiral random matrix
small eigenvalues go down exponentiallyRa We verified ~ theory. _ _ . _
that this behavior remains unchanged when small random Strong evidence for a divergence in the non-topological
perturbations are added to the link elements. The numericaliece of(y) is seen by plotting the gauge ensemble aver-
results are less restrictive than the theoretical arguments iage of the second term in E@) as a function omat a fixed

The numerical results described in this section give sub-
stantial evidence that the infinite volume limit of the spectral
ensityp(\) is indeed infinite forn —0. We will show this
y computing the spectrum of the overlap Dirac operator in
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FIG. 2. Plot of (g4 with respect tom at g=0.4/7 for four FIG. 4. Plot of the distribution of the smallest eigenvalue scaled
different lattice sizes. with the volume and restricted to the zero topological sectay at

=0.4/7 for four different lattice sizes.
g=0.4/7 for several lattice sizes. We focus on the small
mass region in Fig. 2. The datalat 32 show a rise M%@ topological sector. We see that there is no evidence for scal-
as the mass is decreased. This divergence is due to an ac¢dg in the distribution, whereas chiral random matrix theory
mulation of very small eigenvalues at lardemas seen in the predicts a universal function of the forra/@)e %74 with z
histogram of the small non-zero eigenvalues in Fig. 3. Even=3 L2\, and> the value of the chiral condensate. A pre-
though 0n|y|_: 32 shows a rise ”<]E¢> at small masses, an vious analysi$12] of the distribution of the low Iylng eigen-
anomalous accumulation of very small eigenvalues is evideritalues done at smaller physical volume showed that the dis-

atL=24 in Fig. 3. The accumulation is not enough to give atribution did not fit the predictions of unitary chiral random
fise in(%ﬂ) on thel = 24 lattice matrix theory[13]. In Ref.[12] this was attributed to finite

The smallest eigenvaluk,;, has to scale like / for a volume effects. In our case, the reason for the discrepancy is
finite value of the density ofmgigenvalues at zp(®@) and a not ;mall volumes but a divergent chiral condgnsate. Now
. — . o X consider the average of the smallest nonzero eigenvalue as a
finite value of(y) in the massless limit. In Fig. 4, we plot

. 2 . . function of L. Three simple functions motivated by heuristic
the histogram ok ,,j,L“ for the various ensembles in the zero physics arguments arg/V, e °-, ande V. To determine

which of these forms is closest to the data, we have plotted in
Fig. 5 V<7\min>/16v ln(<)\min>/<)\min>|L:8)/(8_L)v and
50 IN(\mind/ N miny|L=8)/(64—V) versusL for Q=0 and
|Q|=1. (The normalizations are just for convenienc&o
the extent that one of these functions represents the data
well, the corresponding graph in Fig. 5 should be flat. Evi-
dently e °t is preferred. Recall that this is the form that
appears in the argument for the lower bound@idhand in the
spectrum from the artificial configurations described in Sec.
1.
Figure 2 shows that =32 is needed ag=0.4\/7 to see
the divergent behavior in the chiral condensate. This corre-
sponds to a physical volume gfL/\/7=12.8. To study the
effect of lattice spacing, we compared this result with others
obtained onL=24 atg/\w=0.4(32/24) and orL=28 at
g/\/7=0.4(32/28). These have the same physical volume
gL/\Jm=12.8 but are coarser lattices. The comparison in
Fig. 6 shows that the divergence visible on the 32 lattice
is not seen on thé =24 lattice. However, thé =28 data
follow the L=32 data to very small masses and into the
FIG. 3. Plot of the distribution of the small non-zero eigenvaluesregion where the condensate begins to grow. We have used
at g=0.4y/7 for four different lattice sizes. dimensionless quantities in this plot to facilitate a proper

0.3 T T T T | T T T T

p(A)
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.IJ -
S| V. CONCLUSIONS
° A I R _
0.0 10 20 30 We have shown that for small coupling and large volume,
L a small eigenvalue peak appears in the spectral density of the
3 I T I overlap Dirac operator and iy4). This is strong evidence
/}E - for the predictiong5,6] that these quantities diverge in the
L04- 3 T infinite volume limit of the quenched Schwinger model.
NS There is some evidence that the divergence could be as
’TE o Q-1 2 strong ae®9t, but the lattice sizes are insufficient to provide
i 2,2 . ..
$ © Q=0 1 evidence for the stronge®¥™"" predictions. Similarly there
ERE= . is limited evidence that the would-be-zero modes of subre-
& 1 gions of the lattice can provide a physical understanding of
& the results. However, a definite test of that model also awaits
g data from larger lattices.
8 00l | |
wooln bt v v 1 1
10 20 30 IIII|III||IIIIIIIIIIII
L F 0 g=1.7725 E
FIG. 5. Ensemble average of the smallest eigenvalue in the zero 1.0 o =0.8862 —
and unit topological sectors gt=0.4/7 as a function of the lattice + g=0.7089 i
size and plotted to facilitate comparison with the simple functional
forms described in the text. i %}% x g=0.5317 1
w [ EEEFERRRT R RO
comparison. The scaling behavior is good umtilg gets /;\ C P ¥ 5 % ¥
small enough to emphasize the very smallest eigenvalues, > 0.5 |_govoonosges mm%mmim 1 1 o
some of which are being distorted on the coarser lattice. At ’ f } u? iqt
smaller coupling and at the same physical volume, the scal- I } .
ing behavior extends to smaller/g. L |
To illustrate the point that at fixeld, g can be neither too -
big nor too small if the smalk growth is to be seen, we have - T
data fromL =32 and four couplings in Fig. 7. The smallest - -
value of g, which corresponds to a physical size of 9.6, N T e
shows no growth at all. The medium values at sizes 12.8 and 000 001 002 003 004 005
16 show the effect(Note that the finite size effects between m/g

these two are smallThe largest value of has size 32 but
the gauge field there is too rough, and the smapeak is
gone.
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FIG. 7. Plot of(y4)/g with respect tom/g at L =32 and four
different couplings.
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The results in this paper clearly point the direction forhelp to map out the range of territory available to massless
further work. The calculations should be extended to largefermions responding to a gauge field.
lattices so that there are several sizes showing the small

growth qf the spectral density addr). With that, it would ACKNOWLEDGMENTS

be possible to study the volume dependence of the sxall

peaks and test in more detail the theoretical expectations.  R.N. would like to thank Urs Heller for general discus-
Although the quenched Schwinger model is quite somesions on the quenched approximation and Herbert Neuberger

distance from full four-dimensional QCD, results from it for some discussions on the quenched Schwinger model.
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