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NLO correction to one-jet inclusive production at high energies
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The next-to-leading order correction to the one-jet inclusive cross section in the framework of high energy
factorization is calculated. Numerical results for the midrapidity region are compared with predictions of
conventional calculations based on collinear factorization.

PACS number~s!: 13.60.Hb
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I. INTRODUCTION

The recently completed calculation of the next-to-lead
order ~NLO! correction to Balitskiiˇ–Fadin–Kuraev–Lipatov
~BFKL! Pomeron@1# involves as its ingredients the formula
for the cross section of tree level two-particle production a
one-loop virtual corrections to one-particle production
quasi–multi Regge kinematics~QMRK!. These results can
be used in studying the properties of the inclusive two
production at leading order@2,3# and of the one-jet inclusive
cross section in the next-to-leading order at high energie

The total cross section in the next-to-leading order~NLO
BFKL! was calculated in@1# and is now under extensiv
discussion@4,5#. The total cross section has a complicat
structure due to delicate cancellations of singularities in v
ous virtual contributions and infrared divergencies arising
integrations over parameters of real corrections. Cancella
between divergent parts of real and virtual contributions
also needed for the computation of the next-to-leading or
one-jet inclusive production cross section, but here the st
ture of this cancellation is simpler and more transparent t
in the case of the total cross section.

The problem of one-jet inclusive production in high e
ergy hadron collisions was investigated, in the leading or
~LO!, in a number of works@3#. The purpose of this paper i
to calculate the one-jet inclusive cross section to the next
leading order at high energies proceeding as far as pos
with analytical calculations and then turning to numeric
estimates.

The outline of the paper is as follows.
In Sec. II we briefly review the results on the partic

production cross sections obtained within the high ene
factorization scheme and compare them to the express
obtained using collinear factorization.

In Sec. III we describe a calculation leading to the expli
expression for the one-jet inclusive production cross sec
in the next-to-leading order.

In Sec. IV some numerical results on jet production
central rapidity region are presented and discussed.

Section V contains a brief conclusion.

II. PARTICLE PRODUCTION AT HIGH ENERGIES

From the theoretical viewpoint the hadron scattering
very high energies is special in the way the hard degree
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freedom~partons! are formed from colliding hadrons. Whe
the ratio of hardness of the processk' ~which is the trans-
verse momentum of produced particle! to the invariant en-
ergy of colliding hadrons,AS, is not too small~up to 1022)
it is possible to describe the structure functions of hadrons
taking into account only processes that contribute logarith
of k' /LQCD at leading order, i.e., by resummation of th
as

n lnn(k' /LQCD) terms. Such structure function is given b
the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi~DGLAP!
evolution equation@6#.

Since the emergence of the combinationas ln(k' /LQCD)
implies strong ordering of emitted particles in their tran
verse momenta up until a hard collision block, the transve
momentum of detected particlek' is parametrically bigger
than that of any parton involved in the process. Therefor
is possible to calculate the cross section of the hard pro
using the initial on-shell partons. This prescription is know
as collinear factorization@7# and leads to the well-known
result for the production rate:

ds

dk2 dy1

52E dy2 x1f a~x1 ,k2!
dŝab

dk2
x2f b~x2 ,k2!, ~1!

where f a(x,k2) is a structure function for the parton of typ
a andx1,25k'(e6y11e6y2)/AS.

At high energies for particles produced withk'!AS an-
other big logarithm, ln(1/x), is important. The resummatio
of such logarithmic contributions can become more imp
tant than of ln(k2/LQCD

2 ). The resummation of the leadin
energy logarithms for the structure function is described
the BFKL equation@8#. The domain of validity of the BFKL
equation in describing the structure functions is at pres
not well understood. It is likely that for some kinematic
region the correct approach is to continue the logarithms
both types, or at least interpolate between two types of
summation as done, e.g., in the Ciafalon–Catani–Fiora
Marchesini~CCFM! @9# equation.

The main point is that at high energies the transverse
menta of the incoming parton fluxes can no longer be
glected. To take them into account a new approach calledk'

or high energy factorization was proposed@10,11#. Extensive
description of the method and various applications can
found in @11#. Let us note that this method wasde factoused
earlier in @12#.

The method of high energy factorization is based on c
sideration of ‘‘partons’’ with nonzero transverse momentu
©2000 The American Physical Society28-1
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DMITRY OSTROVSKY PHYSICAL REVIEW D62 054028
that are, in contrast with the traditional collinear factorizati
case, virtual particles. In this case colliding hadrons are
scribed by unintegrated structure function,f, so that

w~x,q2!5q2
]xg~x,q2!

]q2
, ~2!

wheref/q2 is proportional to the probability to find the in
cident parton with the longitudinal momentum compone
xpa (pa is a momentum of the incident particle! and trans-
verse momentum componentq' .

Note that such an interpretation is somewhat oversim
fied, because due to the quantum structure of QCD evolu
some form factors may arise changing the form off. For
DGLAP evolution it is a Sudakov form factor@13#. How-
ever, when studying the semi-inclusive quantity like one-
production cross section it is legitimate to use the unin
grated structure function in the simple form of Eq.~2!.1

Scattering of the off-shell ‘‘partons’’ are described b
generalized cross sections calculated in quasi–multi Re
kinematics~QMRK! @14,15#.

In QMRK one studies the 2→n12 scattering proces
with two outgoing particles having almost the same m
menta as the incident ones and remainingn particles emitted
into the central rapidity region separated by large rapid
gaps from incoming particles~the situation, where rapidity
gaps betweenn particles are also large, corresponds to mu
Regge kinematics, MRK!. Large rapidity gaps allow to dis
tinguish the quantities related to the incident particles fr
those describing the cross section of the hard process of
ticle production in the central rapidity region.

Let us, for example, consider the cross section of the p
cessgg→ggg in the limit of high energy. Two particles
with momentapa andpb collide and produce particles wit
momentapa8 ~almost collinear topa), pb8 ~almost collinear to
pb), andk ~in central rapidity region!:

dsgg→ggg

d2k'dy
5

4Nc
3as

3

p2~Nc
221!

3E d2q1'

q1'
2

d (2)~q1'1q2'2k'!

k'
2

d2q2'

q2'
2

,

~3!

1I am grateful to Yu. L. Dokshitzer for pointing this out.
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whereq1,25pa,b2pa,b8 . In Eq. ~3! the above-mentioned fac
torization of the cross section is clearly seen. Indeed,
first, second, and third factors under the integral corresp
to pa→pa8 ,q1 splitting, q1 ,q2→k scattering, and pb

→p28 ,q2 splitting, respectively.
The factors related to the splitting of the incident partic

should further be transformed to structure functions. This
be done in two steps. First, one assembles incident par
into wave packets describing by form factors@2#. The second
step is taking into account additional radiation and virtu
corrections summed to give the unintegrated structure fu
tions w(x,q') with x fixed by the kinematics of the consid
ered process.

The cross sections of producingn51,2 particles in the
central region to the lowest perturbative order read~colliding
partons are gluons!:

ds1

d2k' dy
5E d2q1' d2q2'

w~x1,0,q1'!

q1'
2

dŝ1

dk'
2

w~x2,0,q2'!

q2'
2

,

dŝ1

dk'
2

5
4Ncas

Nc
221

d (2)~q1'1q2'2k'!

k'
2

, ~4!

x1,05k'ey/AS, x2,05k'e2y/AS;

ds2

d2k1' d2k2' dy1dy2

5E d2q1' d2q2'

w~x1 ,q1'!

q1'
2

3
dŝ2

d2k1' d2k2' dDy

w~x2 ,q2'!

q2'
2

,

dŝ2

d2k1' d2k2' dDy
5

2Nc
2as

2

~Nc
221!p2

3
d (2)~q1'1q2'2k1'2k2'!

q1'
2 q2'

2
A,

x15k1'ey1~11k2'eDy!/AS,

x25k1'e2y1~11k2'e2Dy!/AS,

Dy5y22y1 . ~5!

A part of the analytical expression forA can be found in
@15,16# for the subprocessesgg→gg and in @15,17# for the
gg→qq̄ ones. The explicit form ofA was recently derived
in @18# and is given in Appendix A. Note that the formula fo
gg→qq̄ cross section from@17# coincides with the analo-
gous formula in@11# in the limit of massless quarks.

In the leading order of the high energy factorization a
proach it is natural to consider as colliding partons gluo
only. Indeed, resummation of powers ofas

n lnn1/x implies
8-2
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NLO CORRECTION TO ONE-JET INCLUSIVE . . . PHYSICAL REVIEW D 62 054028
that the particle propagating in thet-channel is a gluon, for
quarks do not give the factor of ln 1/x for eachas . At the
next-to-leading order stage the terms resummed are of
order as

n11 lnn1/x and therefore one should add quarks
colliding partons to the scheme described. However, we h
encountered one quark in thet-channel diagrams when add
ing a contribution for two quarks production from gluon
gluon collision. These are exactly the same diagrams
appear in the one-particle production process where on
the particles is a quark. Therefore, we must not add
further contributions from quark structure functions at NL
calculation~later, an analogous argument will be used for t
MRK contribution to the NLO cross section!.

Equation~4! gives the rate of one-particle production
the leading order. It was studied in a number of publicatio
@3#. Our aim is to calculate a first correction to it.

III. REAL AND VIRTUAL CONTRIBUTIONS
TO NLO ONE-JET PRODUCTION

Particles produced in hard scattering then undergo a f
mentation process and appear in experiment as jets of
rons. Therefore fixing parameters of a particle produced
hard block, we are really able to estimate~infrared-safe!
characteristics of a jet. Therefore, in the following we w
use jet terminology for particles produced in a hard scat
ing ~as it will clear soon in NLO some two-particle stat
may form a single jet!.

The one-jet production in the next-to-leading order
cludes two contributions, real and virtual. The real contrib
tion comes from the two-particle cross section Eq.~5! inte-
grated over the phase space of one of the parti
~considered unobservable! and the fixed four-momentum o
the second particle:

ds r

d2k1' dy1

52E dF
w~x1 ,q1'!

q1'
2

3
dŝ2

d2k1' d2k2' dDy

w~x2 ,q2'!

q2'
2

, ~6!

where

dF5d2q1' d2q2' d2k2' dDy. ~7!

The factor of 2 in Eq.~6! reflects the identity of outgoing
particles.

The virtual contribution has the same form as in Eq.~4!,
but instead ofŝ1 we must use

dŝv

dk'
2

5
4Ncas

Nc
221

d (2)~q1'1q2'2k'!

k'
2

V~q1' ,q2'!. ~8!

The virtual correction contains both ultraviolet and infrar
divergencies. The ultraviolet one leads, through stand
renormalization procedure, to the running coupling const
The infrared divergence must cancel with the infrared a
collinear divergences in the real contribution.
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A. Cancellation of collinear and infrared divergences

Let us now outline at the formal level how this cancell
tion occurs. To deal with the collinear singularity we mu
introduce a jet-defining algorithm which in the two-partic
production case could be expressed through the func
S(k,k1 ,k2) (k1 , k2 , andk are on-shell 4-vectors! so that Eq.
~6! is replaced by

ds r

d2k' dy
5E d2k1' d2k2' dy1dy2

3
ds2

d2k1' d2k2' dy1dy2

S~k,k1 ,k2!. ~9!

To provide the sought after cancellation between the real
virtual corrections,S should be an infrared safe quantit
which means that the following property should hold~cf.
@19#!:

S~k,lk1 ,~12l!k1!5d (2)~k'2k1'!d~y2y1!, 0,l,1.
~10!

We chooseS in the following form:

S~k,k1 ,k2!5u~R.R0! (
i 51,2

d (2)~k'2ki'!d~y2yi !

1u~R,R0!d (2)~k'2k1'2k2'!d

3S y2
1

2
ln

k1'ey11k2'ey2

k1'e2y11k2'e2y2
D , ~11!

whereR25(f12f2)21(y12y2)2. Although the last line in
Eq. ~11! may look artificial, it has the natural meaning. If w
claim that jet, initiated by two particles indistinguishable u
der given resolution, has definite rapidity and th
4-momenta of two particles are added up to form t
4-momentum of the jet, we immediately arrive at Eq.~11!. It
is straightforward to check that Eq.~11! satisfies Eq.~10!.

Grouping together Eqs.~5!, ~9!, and~11! we find

ds r

d2k' dy
52E dF

w~x1 ,q1'!

q1'
2

dŝ2

d2k' d2k2' dDy

3
w~x2 ,q2'!

q2'
2

u~R.R0!1E dF
w~ x̃1 ,q1'!

q1'
2

3
dŝ2

d2k1' d2k2' dDy

w~ x̃2 ,q2'!

q2'
2

u~R,R0!,

~12!

where k1'5k'2k2' and x̃1,25e6yAS/S with S5k1
21k2

2

12k1k2 ch(Dy) ~see Appendix A!, andki5uki'u which is a
notation we shall use from now on. Note that whenR→0
x̃1→x1,0 and x̃2→x2,0. Let us now rewrite the second term
in Eq. ~12! as
8-3
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F E dFS w~ x̃1 ,q1'!

q1'
2

w~ x̃2 ,q2'!

q2'
2

2
w~x1,0,q1'!

q1'
2

w~x2,0,q2'!

q2'
2 D dŝ2

d2k1' d2k2' dDy

1E dF
w~x1,0,q1'!

q1'
2

dŝ2

d2k1' d2k2' dDy

w~x2,0,q2'!

q2'
2 Gu~R,R0!. ~13!

The integration in the first line is free from divergencies, while in the second line integrals overd2k2' anddDy do not involve
structure functions and could be done analytically. Before doing this integration we make a replacementu(R,R0)51
2u(R.R0) in the last term and then substitute Eq.~13! into Eq. ~12! to yield

ds r

d2k' dy
5E d2q1' d2q2'

w~x1,0,q1'!

q1'
2

w~x2,0,q2'!

q2'
2 E d2k2' dDy

dŝ2

d2k1' d2k2' dDy

1E dFS 2
w~x1 ,q1'!

q1'
2

dŝ2

d2k' d2k2' dDy

w~x2 ,q2'!

q2'
2

u„R~k,k2!.R0…2
w~x1,0,q1'!

q1'
2

3
dŝ2

d2k1' d2k2' dDy

w~x2,0,q2'!

q2'
2 u„R~k1 ,k2!.R0…D

1E dFS w~ x̃1 ,q1'!

q1'
2

w~ x̃2 ,q2'!

q2'
2

2
w~x1,0,q1'!

q1'
2

w~x2,0,q2'!

q2'
2 D dŝ2

d2k1' d2k2' dDy
u~R,R0!, ~14!

where we indicate thatR(k,k2)5„(y2y2)21(f2f2)2
…

1/2 and R(k1 ,k2)5„(y12y2)21(f12f2)2
…

1/2 are different in the
third and fourth lines of Eq.~14!. The third line in Eq.~14! has an infrared singularity whenk2→0 and the fourth one ha
singularities whenk2→0 or k1→0. However, it is possible to combine the singularities in the fourth line so that we find
one singular point and also an accompanying factor of 2 thus providing a cancellation of singularities in the third and
lines.

Indeed, the expression under the integral in the fourth line in Eq.~14! is symmetric under the simultaneous transformat
k1'↔k2' andDy↔2Dy which is nothing else than the permutation of the two produced particles. Therefore we can
multiply this term at 2u(k1'.k2') to obtain

ds r

d2k' dy
5E d2q1' d2q2'

w~x1,0,q1'!

q1'
2

w~x2,0,q2'!

q2'
2 E d2k2' dDy

dŝ2

d2k1' d2k2' dDy

12E dFS w~x1 ,q1'!

q1'
2

dŝ2

d2k' d2k2' dDy

w~x2 ,q2'!

q2'
2

u„R~k,k2!.R0…

2
w~x1,0,q1'!

q1'
2

dŝ2

d2k1' d2k2' dDy

w~x2,0,q2'!

q2'
2

u„R~k1 ,k2!.R0…u~k1'.k2'!D
1E dFS w~ x̃1 ,q1'!

q1'
2

w~ x̃2 ,q2'!

q2'
2

2
w~x1,0,q1'!

q1'
2

w~x2,0,q2'!

q2'
2 D dŝ2

d2k1' d2k2' dDy
u~R,R0!. ~15!

The combination of the third and fourth lines in Eq.~15! is free from singularities@note that fork2→0 there is no difference
betweenR(k,k2) andR(k1 ,k2)# and the singularity in the second line cancels with that inV in Eq. ~8!. Combining Eq.~15!
with Eqs.~4! and~8! we obtain the second order correction to the one-jet inclusive production in the high energy factor
scheme:
054028-4
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ds (2)

d2k' dy
5E d2q1' d2q2'

w~x1,0,q1'!

q1'
2

w~x2,0,q2'!

q2'
2 S dŝ2

d2k'

1
dŝv

d2k'

D
12E dFS w~x1 ,q1'!

q1'
2

dŝ2

d2k' d2k2' dDy

w~x2 ,q2'!

q2'
2

u„R~k,k2!.R0…

2
w~x1,0,q1'!

q1'
2

dŝ2

d2k1' d2k2' dDy

w~x2,0,q2'!

q2'
2

u„R~k1 ,k2!.R0…u~k1'.k2'!D
1E dFS w~ x̃1 ,q1'!

q1'
2

w~ x̃2 ,q2'!

q2'
2

2
w~x1,0,q1'!

q1'
2

w~x2,0,q2'!

q2'
2 D dŝ2

d2k1' d2k2' dDy
u~R,R0!. ~16!
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Let us now analyze the MRK limit of Eq.~16!, that is we
take the limit Dy→` in A @see Eq.~5! and Eq.~A2! in
Appendix A#. In this limit

A→AMRK5
q1'

2 q2'
2

k1'
2 k2'

2
~17!

which is precisely the combination of two leading ord
BFKL kernels responsible for real particles productio
However, let us remind that the leading order one-jet prod
tion in the high energy factorization, described by Eq.~4!,
includes MRK contributions to all orders if the unintegrat
structure function,f(x,q') includes resummation to all or
ders ofas ln(1/x). It is evidently the case for structure func
tions undergoing BFKL equation. For other types of stru
ture functions we just assume that the resummedas

n lnn(1/x)
terms are included in some hidden way. Consequently,
must subtractAMRK from A, and we will imply this subtrac-
tion in the following.

To proceed further we must calculate

dŝ2

d2k'

5E d2k2' dDy
dŝ2

d2k1'd2k2'dDy
. ~18!

Note that the quantity in brackets in the first line of Eq.~16!
should coincide~up to the constant factors depending
normalization! with the NLO BFKL kernel written explicitly
in @1#. Note however, that when calculating the real con
bution in@16# the terms vanishing after integration overd2k'

were dropped which did not change the result for NL
BFKL Pomeron itself. In calculating the one-jet inclusiv
cross sections these contributions have to be kept.

The integration in Eq.~18! is very difficult. Fortunately,
we can do it not for wholeŝ2, but only for its singular part
ŝ2

s . We must also change some other terms in Eq.~16! that
emerge when arriving from Eq.~12! at Eq.~16!. Finally, the
result is
05402
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ds (2)

d2k'dy
5E d2q1' d2q2'

w~x1,0,q1'!

q1'
2

w~x2,0,q2'!

q2'
2

3S dŝ2
s

d2k'

1
dŝv

d2k'

D 12E dFS w~x1 ,q1'!

q1'
2

3
dŝ2

d2k' d2k2' dDy

w~x2 ,q2'!

q2'
2

u„R~k,k2!.R0…

2
w~x1,0,q1'!

q1'
2

dŝ2
s

d2k1' d2k2' dDy

w~x2,0,q2'!

q2'
2

3u„R~k1 ,k2!.R0…u~k1'.k2'!D
1E dFS w~ x̃1 ,q1'!

q1'
2

dŝ2

d2k1' d2k2' dDy

3
w~ x̃2 ,q2'!

q2'
2

2
w~x1,0,q1'!

q1'
2

dŝ2
s

d2k1' d2k2' dDy

3
w~x2,0,q2'!

q2'
2 D u~R,R0!. ~19!

B. Integration

Let us now choose the singular part ofA with contribu-
tions from quark and gluon production added up in the fo
~see the Appendix A, MRK part as it was mentioned above
subtracted!:

A s52
q1

2q2
2

2k1
2k2

2
1

q1
2q2

2 ch~Dy!

k1k2s
2S 12

nf

4Nc
D 2q1

2q2
2

sS

1S D22

2
2

nf

Nc
D E2

8s2
. ~20!
8-5
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This form of A s is chosen to avoid artificial ultraviolet di
vergency which occurs if one takesS5k2 as it is in collinear
and infrared limits. For the same purpose we takeE in the
form

E5
1

S
@k2~ q̄12q̄2!~ k̄12 k̄2!2~q1

22q2
2!~k1

22k2
2!

12k1k2 sh~Dy!~k22q1
22q2

2!#. ~21!

Now we integrate the singular part ofA over transverse two
dimensional momentum space analytically continued toD
225212« or, strictly speaking, with

d2k2'→ d212«k2'

~2p!2«
~22!

and over rapidity. The results of the calculation of the in
gral overA s are given in Appendix B. The answer reads@see
Eq. ~5! for relation betweenŝ2 andA#

dŝ r
s

d2k'

5
2Nc

2as
2

Nc
221

d (2)~q1'1q2'2k'!

k2

G~12«!

~4p!11«

4G2~11«!

«G~112«!

3S k2

m2D «S 1

«
12c~1!22c~112«!

2
1118«

2~112«!~312«!
1

nf

4Nc

416«

~112«!~312«! D .

~23!

The result forŝv was derived in@20#. Note that the an-
swer depends on the arrangement of different correction
QMRK amplitude. In this paper the symmetric variant@1# is
chosen:

dŝv

d2k'

5
4Nc

2as
2

Nc
221

d (2)~q1'1q2'2k'!

k2

G~12«!

~4p!11«

3F2
2

«2 S k2

m2D «

1
1

« S 11

3
2

2

3

nf

Nc
D1p21

k2

3

3H S 1122
nf

Nc
D ln q1

2/q2
2

q1
22q2

2
1S 12

nf

Nc
D

3XS q1
2

q2
2

2
q2

2

q1
2

22 ln
q1

2

q2
2D

3
2q1

2q2
22q̄1q̄2~q1

21q2
214q̄1q̄2!

~q1
22q2

2!3
1

q̄1q̄2

q1
2q2

2CJ G .

~24!

From Eqs.~23! and~24! it is easy to see that divergencie
of real and virtual parts cancel leaving a finite contribution
the first line in Eq.~19!:
05402
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to

dŝ r
s

d2k'

1
dŝv

d2k'

5
Nc

2as
2

~Nc
221!p

d (2)~q1'1q2'2k'!

k2

3F2S 11

3
2

2

3

nf

Nc
D ln

k2

m2
2

2p2

3
1

64

9
2

7

9

nf

Nc
1

k2

3

3H S 1122
nf

Nc
D ln q1

2/q2
2

q1
22q2

2
1S 12

nf

Nc
D

3XS q1
2

q2
2

2
q2

2

q1
2

22 ln
q1

2

q2
2D

3
2q1

2q2
22q̄1q̄2~q1

21q2
214q̄1q̄2!

~q1
22q2

2!3
1

q̄1q̄2

q1
2q2

2
CJ G . ~25!

FIG. 1. ds/d2k dy calculated with asymptotic BFKL structur
function Eq. ~26!. 1-loop as with LQCD5200 MeV, R50.7. ~a!
AS51.8 TeV; ~b! AS514 TeV.
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FIG. 2. ds/d2k dy calculated
with CTEQ5M structure function
@22#. 2-loop as with LQCD

5226 MeV, R50.7, nf55. ~a!
AS51.8 TeV; ~b! AS514 TeV.
to

on

th

-
i

e
-
l
t

ije
th

o
on

ur
,
p
h
se

th

a-

L
un,
mi-

ith

f
c-
O
Q
ted
-
.
nc-
f

a-
am

-

-
oss
-jet

n

The first term in Eq.~25!, which is proportional to ln(k2/m2),
is nothing but the well-known contribution corresponding
the running coupling. Therefore, after replacingas by the
running couplingas(k

2), one should drop this term.
Equations~19! and ~25! together with Eq.~20! and the

formula from Appendix A provide an analytical expressi
for the one-jet inclusive cross section.

For practical applications one should integrate over
parameters of unintegrated structure functions~disregarding
trivial elimination of delta functions!. The corresponding nu
merical calculations numerical studies will be described
the next section.

IV. NUMERICAL ESTIMATES

Let me first mention that numerical results for the collid
energies now available~or will be available in the near fu
ture! can be made only for transversal momenta of severa
as an extreme example several tens GeVs. The reason is
the high energy kinematics is applicable forx,1022. There-
fore, jet calculations we are making correspond to the min
rather than the conventional jet domain. This limits us in
experimental check of the results obtained.

The numerical results strongly depend on the type
structure functions used in the calculation. Let us first c
sider the asymptotic BFKL structure function@21#

w~x,q2!5CS x0

x D l q

q0

1

Apl9 ln~x0 /x!

3expF2
ln2~q2/q0

2!

4l9 ln~x0 /x!
G , ~26!

with l54 ln 2Ncas/p andl9514z(3)Ncas /p; as is chosen
to be equal to 0.2. Because the asymptotic BFKL struct
function is a solution of the linear homogeneous equation
does not have definite normalization and, moreover, the
rametersq0 and x0 are arbitrary. Since the calculation wit
this structure function is illustrative only, we simply choo
C51, q051 GeV, andx051. From Eq.~19! it is clear that
the NLO correction to the production process depends on
05402
e

n

r
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hat

t
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f
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e
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parameterR describing the collinear angle. For this calcul
tion we takeR50.7. Further discussion of theR dependence
will be given below.

It is important to note that although in asymptotic BFK
structure function the strong coupling constant does not r
to be consistent we should however make it run in a se
hard vertices@cf. the discussion after Eq.~19!#. In the actual
calculation with 1-loopas we chooseLQCD5200 MeV.

The one-jet inclusive cross section forAS51.8 TeV and
AS514 TeV, y50, andnf54 is shown in Figs. 1~a! and
1~b! where for collinear factorization Eq.~1! was used with

xg~x,k2!5E
0

k2 dq2

q2
w~x,q2!.

As a second example we consider one-jet production w
one of the realistic structure functions, CTEQ5M@22#. In
Figs. 2~a! and 2~b! we show differential cross sections o
one-jet inclusive production calculated with CTEQ5M stru
ture functions in four different approximations: LO and L
1NLO in high energy and collinear factorizations. CTE
structure functions satisfy the DGLAP equation not rela
to BFKL. However, it possibly includes leading MRK con
tribution through the initial conditions for DGLAP evolution
Note the rapid increase and broadening of the structure fu
tion with decreasingx, which is the characteristic property o
BFKL induced structure functions. NLO collinear factoriz
tion calculation was performed making use of the progr
developed by Elis, Kunst, and Soper@23,24# ~for theoretical
basis and earlier calculations see@25#!. This calculation was
done for AS51.8 @Fig. 2~a!# and 14 TeV@Fig. 2~b!#, for
2-loop as with LQCD5226 MeV ~because with these pa
rameters CTEQ5M is calculated!, nf55, y50, andR50.7.

In Figs. 3~a! and 3~b! we take a closer look at the differ
ence between different approximations for the one-jet cr
section. Namely, in these figures we show ratios of one
cross section calculated in high energy factorization~LO and
LO1NLO! and collinear factorization~LO1NLO! schemes
to that calculated in the LO of the collinear factorizatio
8-7
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FIG. 3. Ratios ofds/d2k dy calculated with
CTEQ5M structure functions@22# in LO and LO
1NLO of high energy factorization approach an
LO1NLO of collinear factorization approach to
the LO of collinear factorization approach. 2-loo
as with LQCD5226 MeV, R50.7, nf55. ~a!
AS51.8 TeV; ~b! AS514 TeV.
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scheme. The structure functions and set of parameters ar
same as for Figs. 2~a! and 2~b!.

From Figs. 1–3 we see that NLO corrections lead to
decrease of the particle production rate at high energies.
relation between LO and LO1NLO results for collinear fac-
torization is opposite~see also@25# and@26#!. For the leading
BFKL structure function NLO high energy factorization co
rections change cross sections substantially~up to 50% in
chosen kinematical interval!, for non-BFKL CTEQ5M struc-
ture function changes are more dramatic: corrected cross
tions are 2 to 5 times smaller than the leading order o
~apparently these results are sensitive to the cone size!.

Finally, in Fig. 4 we show the dependence of NLO cro
section on the cone sizeR. It may be fitted well by function
of the typeA1B ln R1CRand becomes infinitely large~and
negative! at R→0. This is the general property of quantitie
with canceling virtual and real corrections showing that
small values ofR the fixed order perturbation theory is n
valid ~cf. @24#!.

V. CONCLUSION

The paper is devoted to the calculation of next-to-lead
order correction to one-jet inclusive production in the fram

FIG. 4. R-dependence ofds/d2k dy calculated with CTEQ5M
structure functions. AS514 TeV, 2-loop as with LQCD

5226 MeV, nf55.
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work of high energy factorization. High energy factorizatio
scheme allows one to account for the initial transverse m
mentum of the colliding partons. The natural setup for p
ticle production processes leading to high energy factor
tion is provided by quasi–multi Regge kinematics.

The results of computation of NLO contributions
BFKL Pomeron~cf. @1# and references therein! can be used
to compute the next-to-leading order corrections to one
inclusive production at high energies. This correction
cludes real and virtual pieces. The infrared singularity in
virtual piece in the NLO contribution cancels the infrare
singularity in its real one when an infrared safe jet algorith
is applied. The explicit calculations of the infrared stab
one-jet inclusive cross section at the next-to-leading or
constitutes the main result of the paper.

Numerical estimates were made to analyze the magnit
of NLO corrections for typical semihard transverse mome
and central rapidity region. Contrary to collinear factoriz
tion approach, NLO correction in high energy factorizati
diminishes the one-jet inclusive cross section.~in the minijet
domain!.
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APPENDIX A: CROSS SECTIONS OF PAIR PRODUCTION
IN HIGH ENERGY FACTORIZATION

We will use the following notation:

s52„k1k2 ch~Dy!2k1'k2'…,

t52~q1'2k1'!22k1k2eDy,

u52~q1'2k2'!22k1k2e2Dy,

S5x1x2S5k1
21k2

212k1k2 ch~Dy!,
8-8
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with k15Ak1'
2 , k25Ak2'

2 , and k1'k2' is the dot product
with 2D Euclidean metric.

Combined gluons and quarks~fermions! contribution to
gg scattering has the form@adopted to Eq.~5!#

A5Agluons1
nf

4Nc
3
Afermions. ~A1!

1. gg\gg

Find

Agluons5A11A2 ,

A15q1
2q2

2H 2
1

tu
1

1

4tu

q1
2q2

2

k1
2k2

2
2

eDy

4tk1k2
2

e2Dy

4uk1k2
1

1

4k1
2k2

2

1
1

S F2
2

s S 11k1k2S 1

t
2

1

uD sh~Dy! D1
1

2k1k2

3S 11
S

s D ch~Dy!2
q1

2

4s F S 11
k2

k1
e2DyD1

t

1S 11
k1

k2
eDyD 1

uG2
q2

2

4s F S 11
k1

k2
e2DyD1

t

1S 11
k2

k1
eDyD 1

uG G J , ~A2!

A25
D22

4 H S ~k1'2q1'!2~k2'2q1'!22k1
2k2

2

tu D 2

2
1

4 S ~k2'2q1'!22k1k2e2Dy

~k2'2q1'!21k1k2e2Dy
2

E

s D
3S ~k1'2q1'!22k1k2eDy

~k1'2q1'!21k1k2eDy
1

E

s D J ,

E5~q1'2q2'!~k1'2k2'!2
1

S
~q1

22q2
2!~k1

22k2
2!

12k1k2 sh~Dy!S 12
q1

21q2
2

S D .

2. gg\qq̄

Find

Afermions5Nc
2A1 f1A2 f ,

A1 f5H 2
q1

2q2
2

sS S 11k1k2 sh~Dy!S 1

t
2

1

uD D
2S ~k1'2q1'!2~k2'2q1'!22k1

2k2
2

tu D 2
05402
1
1

2 S ~k2'2q1'!22k1k2e2Dy

~k2'2q1'!21k1k2e2Dy
2

E

s D
3S ~k1'2q1'!22k1k2eDy

~k1'2q1'!21k1k2eDy
1

E

s D J ,

~A3!

and

A2 f5H S ~k1'2q1'!2~k2'2q1'!22k1
2k2

2

tu D 2

2
q1

2q2
2

tu J ,

whereE is the same as for gluons.

APPENDIX B: INTEGRALS

To make integration easily it is worth to change integ
tion overDy to integration overx5k1 /(k11k2eDy):

E
2`

`

dD y•••5E
0

1 dx

x~12x!
•••, ~B1!

E d212«k2'

~2p!2« S 2
1

2

1

k1
2k2

2D
52

1

2E d212«k2'

~2p!2«

1

~k'2k2'!2k2'
2

52p
G~12«!

~4p!«

k2«

k2

G2~11«!

«G~112«!
,

~B2!

E d212«k2'

~2p!2«

ch~Dy!

k1k2s

5E d212«k2'

~2p!2« S 12x

2k2
2sx

1
x

2k1
2s~12x!

D
5E d212«k2'

~2p!2«

~12x!2

2k2
2~~12x!k'2k2'!2

1~x↔12x!

5p
G~12«!

~4p!«

k2«

k2

G2~11«!

«G~112«!
@~12x!2«1x2«#.

~B3!

Let’s now combine these two contributions and perfo
an integration overx

I 125p
G~12«!

~4p!«

k2«

k2

G2~11«!

«G~112«!
E dx

x~12x!

3@~12x!2«1x2«21#. ~B4!

In order to avoid divergencies we introduce infinitesimal p
rameterd (d!«) so that
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E dx

x~12x!
@~12x!2«1x2«21#

5 lim
d→0

E dx

x12d~12x!12d
@~12x!2«1x2«21#

5 lim
d→0

S 2
G~d!G~2«1d!

G~2«12d!
2

G2~d!

G~2d! D
5

1

«
12c~1!22c~112«! ~B5!

and

I 125p
G~12«!

~4p!«

k2«

k2

G2~11«!

«G~112«!

3S 1

«
12c~1!22c~112«! D . ~B6!
.

.

.

-

.

.

05402
For the integrations involvingS it is useful to changek2' on
k5k2'2(12x)k' so thats5k2/x(12x) and S5k2/x(1
2x)1k2. Now

E dx

x~12x!
E d212«k2'

~2p!2«

1

sS

5p
G~12«!

~4p!«

k2«

k2

G2~11«!

«G~112«!

1

112«
~B7!

and

E dx

x~12x!
E d212«k2'

~2p!2«

E2

8q1
2q2

2s2

5p
G~12«!

~4p!«

k2«

k2

G2~11«!

«G~112«!

12«

2~112«!~312«!
.

~B8!
s.

7.
tt.

.

r.
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