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NLO correction to one-jet inclusive production at high energies
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The next-to-leading order correction to the one-jet inclusive cross section in the framework of high energy
factorization is calculated. Numerical results for the midrapidity region are compared with predictions of
conventional calculations based on collinear factorization.
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[. INTRODUCTION freedom(partons are formed from colliding hadrons. When
the ratio of hardness of the procdss (which is the trans-
The recently completed calculation of the next-to-leadingverse momentum of produced particte the invariant en-
order (NLO) correction to Balitski-Fadin—Kuraev—Lipatov ergy of colliding hadrons@, is not too smallup to 10‘2)
(BFKL) Pomeror{1] involves as its ingredients the formulas it is possible to describe the structure functions of hadrons by
for the cross section of tree level two-particle production andaking into account only processes that contribute logarithms
one-loop virtual corrections to one-particle production ingf | IAoep at leading order, i.e., by resummation of the
quasi—multi Regge kinematidQMRK). These results can a2 In"(k, JAqep) terms. Such structure function is given by

be used in studying the properties of the inclusive two-jet,> e g B o
production at leading ord¢®,3] and of the one-jet inclusive t:at:/eollljjt(i)cl)(: Znggticﬁﬁ%?ov Lipatov—Altarelli-ParibGLAP)

cross section in the next-to-leading order at high energies. Since the emergence of the combinatiegin(k, /Accp)
o e . 1 AQCD,
The total cross section in the next-to-leading orfierO implies strong ordering of emitted particles in their trans-

gichllj_s)s;l(\)li[S 4 %?IC'I':Irlwa(:et?)t;I[%:]roasgdsgSctri](())r\:vhigdgrcg)riirlli(s;;i Olverse momenta up until a hard co]lision block., the trgnsverse
structure dué t6 delicate cancellations of singularities in Vari_momentum of detected.partlclq S parametrically bigger .
ous virtual contributions and infrared divergencies arising inj[han th{:\t of any parton involved in the_ process. Therefore it
integrations over parameters of real corrections Cancellatiol) _possuble_ to calculate the cross section of t_hg ha_rd process
between divergent parts of real and virtual coﬁtributions ig. o9 the initial on-_she_ll partons. This prescription is known
X X as collinear factorization7] and leads to the well-known
also needed for the computation of the next-to-leading Orderresult for the production rate:
one-jet inclusive production cross section, but here the struc- '
ture of this cancellation is simpler and more transparent than
in the case of the total cross section. g _ 2
The problem of one-jet inclusive production in high en- dk?dy, Zf dyz Xafa(x1. k%)
ergy hadron collisions was investigated, in the leading order
(LO), in a number of work$3]. The purpose of this paper is \wheref,(x,k?) is a structure function for the parton of type

to calculate the one-jet inclusive cross section to the next-toy angx, ,=k, (e*Y1+e*¥2)//S.
leading order at high energies proceeding as far as possible p¢ hi(jh energies for particles produced wikh< /S an-
With analytical calculations and then turning to numerical yiher big logarithm, In(3), is important. The resummation
estimates. _ of such logarithmic contributions can become more impor-
The outline of the paper is as follows. _tant than of INk/A3cp). The resummation of the leading
In S(.EC' Il we bnefl_y review .the res_ullts on th_e particle energy logarithms for the structure function is described by
produpﬂo_n cross sections obtained within the high Enerd¥he BFKL equatior{8]. The domain of validity of the BFKL
facto.nzatmn' SChe”.‘e and compare them to the exprESSIOré‘ctquation in describing the structure functions is at present
obtained using coIIme_ar factorlzanc_)n. . . ..not well understood. It is likely that for some kinematical
In Sec. lll we describe a calculation leading to the epr|C|tregion the correct approach is to continue the logarithms of

expression for the one-jet inclusive production cross sectiorgo,[h types, or at least interpolate between two types of re-

n tlhesnext—lt\c/)-leadmg order.. | it it duction i summation as done, e.g., in the Ciafalon—Catani—Fiorani—
n Sec. IV some numerical results on jet production iny,. eheciniiCCEM) [9] equation.

central rapidity region are presented and discussed.
Section V contains a brief conclusion.

d‘}ab
Xofr(Xs,k?), (1
dk22b(2 ), (@D

The main point is that at high energies the transverse mo-
menta of the incoming parton fluxes can no longer be ne-
glected. To take them into account a new approach célled
or high energy factorization was propodd®,11. Extensive

From the theoretical viewpoint the hadron scattering atdescription of the method and various applications can be
very high energies is special in the way the hard degrees dbund in[11]. Let us note that this method wes factoused

earlier in[12].
The method of high energy factorization is based on con-
*Email address: ostrov@Ipi.ru sideration of “partons” with nonzero transverse momentum

II. PARTICLE PRODUCTION AT HIGH ENERGIES
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that are, in contrast with the traditional collinear factorizationwhereq; ;= p, p,— Pa - In Eq. (3) the above-mentioned fac-
case, virtual particles. In this case colliding hadrons are detorization of the cross section is clearly seen. Indeed, the
scribed by unintegrated structure functiah, so that first, second, and third factors under the integral correspond

axg(x,9%) to pa—p,.d: splitting, q;,0,—k scattering, andp,
’ 2 ’ (2)  —P2.0, splitting, respectively.
aq

The factors related to the splitting of the incident particles
where ¢/g? is proportional to the probability to find the in- should further be transformed to structure functions. This can
cident parton with the longitudinal momentum component.

be done in two steps. First, one assembles incident partons

XPa (Pa is @ momentum of the incident parti¢land trans- Into wave p_ackf-zts describing by _fqrm fact@_?s}. _The Secof‘d
verse momentum componeaqt . step is taking into account addmopal radiation and virtual

Note that such an interpretation is somewhat oversimpli-(?OrreCtlons summed _to give the u_nlntegr_ated structure func-
fied, because due to the quantum structure of QCD evolutioHONS #(x,d.) with x fixed by the kinematics of the consid-
some form factors may arise changing the form¢ofFor ~ ©red process. _ . _
DGLAP evolution it is a Sudakov form factdt.3]. How- The cross sections of producing=1,2 particles in the
ever, when studying the semi-inclusive quantity like one-jetcentral region to the lowest perturbative order rézalliding
production cross section it is legitimate to use the unintefartons are gluons
grated structure function in the simple form of Eg).! .

Scattering of the off-shell “partons” are described by doy [ ., @(X10,01.) doy ¢(X20,021)
generalized cross sections calculated in quasi—multi Reggez, gy d“qy, d°gz, 92 W q2
kinematics(QMRK) [14,15. L4y H L 2L

In QMRK one studies the 2-n+2 scattering process

e(x,0%)=q

- 2
with two outgoing particles having almost the same mo- ﬂ: ANgas 8 (ay, +da0 —ky) @)
menta as the incident ones and remaimgarticles emitted dkf Ng— 1 kf '
into the central rapidity region separated by large rapidity
gaps from incoming particleghe situation, where rapidity . X1 0= kley/\/§, Xp,0= kle‘y/\/é;
gaps between patrticles are also large, corresponds to multi
Regge kinematics, MRK Large rapidity gaps allow to dis- d
tinguish the quantities related to the incident particles from 92
those describing the cross section of the hard process of pai®k,, d%k,, dy,dy,
ticle production in the central rapidity region.
Let us, for example, consider the cross section of the pro- 5 , ¢(X1,d11)
cessgg—ggg in the limit of high energy. Two particles Zf dqy, d°0p————
with momentap, andp, collide and produce particles with a
momentapa_ (almost coII|r_1e_ar tma_), p, (almost collinear to dfrz ©(X2, 0, )
Pp), andk (in central rapidity region X— 5 5
dky, dkz dAYy 03,
P, p' .
'/\ > do, 2N2a?
« d?k;, d?k,, dAy (NZ2—1)7?
82y, + 0z, — Ky, —Kay)
' x 2 2 ‘A’
pb p b Q1. 92,
1=Ky, €1(1+ky, e2)/4/S,
99 —+ 999 Xo,=kq, €7V1(1+ky, e )/ S,
Ay=y,—V;. ©)
3.3 27 Y1
doggﬂggg: 4N;ag
d%k, dy wA(N2-1) A part of the analytical expression fot can be found in
[15,14 for the subprocessapg—gg and in[15,17] for the
d?q;, 8D(dy, +az, —k,) d?ay, gg—qq ones. The explicit form of4d was recently derived
X 9 K2 2 ' in [18] and is given in Appendix A. Note that the formula for
s L L — . . . .
gg—qqg cross section froni17] coincides with the analo-
©) gous formula in11] in the limit of massless quarks.
In the leading order of the high energy factorization ap-
proach it is natural to consider as colliding partons gluons
1| am grateful to Yu. L. Dokshitzer for pointing this out. only. Indeed, resummation of powers af In"1/x implies
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that the particle propagating in thiechannel is a gluon, for A. Cancellation of collinear and infrared divergences
quarks do not give the factor of InXLfor eachag. At the

. Let us now outline at the formal level how this cancella-
next-to-{lei??mg order stage the terms resummed are of thgyy occurs, To deal with the collinear singularity we must
n

ordgr_as "1/x and therefore one _S'hOU'd add quarks asintroduce a jet-defining algorithm which in the two-particle
colliding partons to the scheme described. However, we havgroduction case could be expressed through the function
encountered one quark in tirehannel diagrams when add- S(k,kq,k,) (ky, kp, andk are on-shell 4-vectoyso that Eq.

ing a contribution for two quarks production from gluon— (g) js replaced by

gluon collision. These are exactly the same diagrams that
appear in the one-particle production process where one of do,
the particles is a quark. Therefore, we must not add any

- [ %, %, dysay,

further contributions from quark structure functions at NLO d*k, dy
calculation(later, an analogous argument will be used for the do
MRK contribution to the NLO cross sectipn X 2 S(k,kq,ky).  (9)
Equation(4) gives the rate of one-particle production in d?k;, d?k,, dy;dy,
the leading order. It was studied in a number of publications
[3]. Our aim is to calculate a first correction to it. To provide the sought after cancellation between the real and
virtual corrections,S should be an infrared safe quantity,
IIl. REAL AND VIRTUAL CONTRIBUTIONS which means that the following property should hakf.
TO NLO ONE-JET PRODUCTION [19]):

Particles produced in hard scattering then undergo a fragS(k,Aky,(1—N)ky) =8 (k, —ky, ) 8(y—y;), O0<A<1.
mentation process and appear in experiment as jets of had- (10
rons. Therefore fixing parameters of a particle produced in a
hard block, we are really able to estimaiefrared-safe ~ We chooseSin the following form:
characteristics of a jet. Therefore, in the following we will
use jet terminology for particles produced in a hard scatter-
ing (as it will clear soon in NLO some two-particle states
may form a single jet

S(k,kl-kz)ze(R>Ro)i§2 5D(k, — ki) 8(y—yi)

The one-jet production in the next-to-leading order in- +O(R<Rg) 8P(k, —ki, —kp )6
cludes two contributions, real and virtual. The real contribu- y y
tion comes from the two-particle cross section E5).inte- x| y— Eln ki €1tky €2 (1)

grated over the phase space of one of the particles

2 klle_)/l_{_ kzie_y2 '
(considered unobservabland the fixed four-momentum of

the second particle: whereR?= (¢, — ¢,)?+ (y1—Y2)?. Although the last line in
Eqg. (11) may look artificial, it has the natural meaning. If we
do, ®(X1,911) claim that jet, initiated by two particles indistinguishable un-
d?k,, dy =2 do 92 der given resolution, has definite rapidity and that
i L 4-momenta of two particles are added up to form the
d(}z @(X2,0,) 4-momentum of the jet, we immediately arrive at Etl). It
X— 5 > , (6) is straightforward to check that E¢l1) satisfies Eq(10).
dky, dkp dAY 03 Grouping together Eqg5), (9), and(11) we find
where 0
doy, :zf 4D ®(X1,011) dos
d®=d?q,, d?q,, d’k,, dAy. 7 d%k, dy qs,  d%k, d’k,, dAy
The factor of 2 in Eq.(6) reflects the identity of outgoing Xo, X1,
The virtual contribution has the same form as in &, 2. qn
but instead ofr; we must use do %o,
A Xde de2 o o( ZZQZL) B(R<R,),
do,  4Neas 8Py +0p —k,) w e GAY b
= V(011 ,92,.). (8 (12)

dkd N2-1 k2

The virtual correction contains both ultraviolet and infraredWhere ki =k, —kz, and x; = e*\2/S with E:_kif k3
divergencies. The ultraviolet one leads, through standard- 2KiK ch(Ay) (see Appendix A andk;=|k;, | which is a
renormalization procedure, to the running coupling constantlotation we shall use from now on. Note that whigr-0
The infrared divergence must cancel with the infrared andk;—X; o andX,—X, . Let us now rewrite the second term
collinear divergences in the real contribution. in Eq. (12) as
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[ o

X1 0 do X 0
+f 4D o( 1,2 di1.) . 202 o( 2,2 dz.)
A1, d°ky, dky, dAy Az,

PHYSICAL REVIEW D62 054028

GD&LQM) <P(';<21CI2¢) _‘P(Xl,01qu_) @(Xz,o,Qa)) df}z
ai a5, ai. 95, %k, d%kp, dAy

O(R<Ry). 13

The integration in the first line is free from divergencies, while in the second line integralsidugranddAy do not involve
structure functions and could be done analytically. Before doing this integration we make a repladéRemR,) =1
— 6(R>Ry) in the last term and then substitute Ef3) into Eq. (12) to yield

do <P(X10 011) ¢(X2,0.021) da’z
S0 | @a 0, - 2 [ gk, day——<
k. dy a5, dky, dky, dAy
X1, do Xs, X1.0,
+J 4D 2<P( 12q11_) : 202 o( zquL)G(R(k,kZ)>RO)— o( 1,2 d1.)
kT d°k, d°ky, dAy dz. b
df}z ®(X2,0,021)

x B(R(Ky k) >R
d%k,, d%k,, dAy O3, (Reks ke)>Ro)

Jan

where we indicate thaR(k,k,)=((y—Y,)?+ (d— d,)2)Y? and R(ky,k,) = ((Y1—Y2)?+ (h1— ¢,)?)Y? are different in the
third and fourth lines of Eq(14). The third line in Eq.(14) has an infrared singularity whén,—0 and the fourth one has
singularities wherk,— 0 ork;— 0. However, it is possible to combine the singularities in the fourth line so that we find only
one singular point and also an accompanying factor of 2 thus providing a cancellation of singularities in the third and fourth
lines.

Indeed, the expression under the integral in the fourth line in(E4).is symmetric under the simultaneous transformation

k,, <k, andAy«— — Ay which is nothing else than the permutation of the two produced particles. Therefore we can simply
multiply this term at 2(k,, >k,,) to obtain

0(R<Ry), (14

<P(;<1,Q1¢) CP(;(z,Qu) _QD(Xl,OrqlL) <P(X2,01CI2L)) di}z
Qi qgi Qﬁ qgi d?ky, d?ky, dAy

d X do
oy :J g, &2y, P(x 12011& @(X20, Qu)szkud Ay oy
d2k, dy d2k,, d?k,, dAy
+2f do

11 qZL
_&D(Xl,o,QM) df}z @(X2,0,021)
qi d?k;, d%ky, dAy Q2L

+fdd>

The combination of the third and fourth lines in E§5) is free from singularitiegnote that fork,— 0 there is no difference
betweenR(k,k,) andR(k;,k,)] and the singularity in the second line cancels with thavim Eq. (8). Combining Eq.(15)

with Eqgs.(4) and(8) we obtain the second order correction to the one-jet inclusive production in the high energy factorization
scheme:

@(X1,01,) do, @(X2,02.)
qi,  d%k, d%k, dAy g3,

6(R(K,k2)>Ro)

O(R(Ky,K2)>Rp)0(kq, >ky, ) )

dO'Z
2 2
d%k,, d%k,, dAy

<P(;(1,Q1¢) QD(;(2-C12L) _QD(Xl,o,QM) ®(X2,0,021)
Qi qgi Qﬁ qgi

O(R<Ry). (15)
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do® ¢(X1,0,01,) @(X20.02.)( dop  do,
J'dZQn quZL : - : - ( +

d%, dy oz, a2, ldk,  dk,
X1, do Xo,
+2f 4D o( lquL) . 2(72 o( 22q2L)0(R(k,k2)>Ro)
*ET d°k, d°ky, dAy Az,
- ¢(X1,0,011) da’z ®(X2,0,021)

O(R(Ky,k2)>Ro)0(kq; >kp, )

a2, d%ky, d%k,, dAy @,

X1, Xz, X1 0, X2 0, do
+f dq)(ﬁD( 12qu_) o( 2ZQZJ_)_(P( 1,2 qur) @( 2,(; O2.) : . 2 B(R<R,). (16)
A1, dz. A1, dz. d<ky, d°ky, dAy
|
Let us now analyze the MRK limit of Eq16), that is we do® X X
take the limitAy—o in A [see Eq.(5) and Eq.(A2) in 20 =j d?q,, d?g,, a l'g’qu) a Z’Z’qﬂ)
Appendix Al. In this limit dk, dy 1 2.
dos do, X1,
2, &, ( . 2, X +2] 4D o( 1ZQ1¢)
A= Avre=——%— 17) d’k, d%; a1,
ki Kk
11K21 R
do, ®(X2,02,)
which is precisely the combination of two leading order Xdzk d%k,, dAy o2 O(R(k,k2)>Ro)
BFKL kernels responsible for real particles production. e e 2
However, let us remind that the leading order one-jet produc- X dos X
tion in the high energy factorization, described by E4), _ e 1‘Z'qli) 5 : 2 al z’g'qﬁ)
includes MRK contributions to all orders if the unintegrated q;,  d%y d%kp dAy g3,
structure functiong(x,q,) includes resummation to all or-
ders ofagIn(1/). It is evidently the case for structure func- X O(R(K+ K)>R)O(k: >k
tions undergoing BFKL equation. For other types of struc- (R(k1,kz)>Ro) 0(k1, > ka1 )
ture functions we just assume that the resummagth"(1/x) _ R
®(X1,911) do,

terms are included in some hidden way. Consequently, we
must subtractd,rk from A, and we will imply this subtrac- + | d®
tion in the following.

92, d%ky, d%ky, dAy

To proceed further we must calculate oGntn)  @(Xe0.dus) 453
X — v
do, , do, g3, @2, d%kq, d%k,, dAy
i) ey P Xnin)
L 1. 07Kz, dAY % :Z, 21 )0(R<R0). 19
21

Note that the quantity in brackets in the first line of E46)

should coincide(up to the constant factors depending on B. Integration

normalization with the NLO BFKL kernel written explicitly ] ) )

in [1]. Note however, that when calculating the real contri- L€t us now choose the singular part.dfwith contribu-
bution in[16] the terms vanishing after integration ow#k,  tions from quark and gluon production added up in the form
were dropped which did not change the result for NLO(see the Appendix A, MRK part as it was mentioned above is
BFKL Pomeron itself. In calculating the one-jet inclusive Subtractegt

cross sections these contributions have to be kept.

The integration in Eq(18) is very difficult. Fortunately, As= RECE N aiq5 chAy) _( _ N ) 2qid;
we can do it not for wholer,, but only for its singular part 2k7k3 kikos 4Nc/ s
&2. We must also change some other terms in #6) that 2
emerge when arriving from E@12) at Eq.(16). Finally, the +(E - ﬁ)E_ (20)
result is 2 N¢/gs?
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This form of A% is chosen to avoid artificial ultraviolet di-
vergency which occurs if one tak&s=k? as it is in collinear
and infrared limits. For the same purpose we t&km the

form

1 - - -
E= S [K(a1~a2)(ky—ko) — (a1~ a3) (K — k)

+2kqk, SHAY)(K2—ag3—qd)]. (21)

Now we integrate the singular part gf over transverse two-
dimensional momentum space analytically continuedto
—2=2+2¢ or, strictly speaking, with

2+2¢
d ko,

—(277)28 (22

d2k2L_>

and over rapidity. The results of the calculation of the inte-
gral overA?® are given in Appendix B. The answer reddse

Eq. (5) for relation betweenr, and.A]

do?  2NZaZ 6(qy, +d, —k,) [(1—g) 4I'%(1+¢)

d%k, NZ-1 K2 (am)tre eD(1+2¢)

2 &
| =5 | S +20(1) - 29(1+2¢)

11+8¢ N n¢ 4+ 6e
" 2(1+26)(3+2¢) 4N, (1+2¢)(3+2¢))°
(23

The result fora, was derived if20]. Note that the an-

PHYSICAL REVIEW D62 054028

1 01 4 HE factorization
E LO+NLO
10°4
=)
&<
B 10 1
5]
o
1073
e
T T T T T T T T T T T T T T M T T T T 1
0 2 4 6 8 10 12 14 16 18 20
k, GeV
a
107 3 HE factorization
] LO+NLO
10"
=3
< o
T 1074
S E
©
107 3
10”
T 4 T M T M T M T M T T T T T T T T 1
0 2 4 6 8 10 12 14 16 18 20
k., GeV
b

swer depends on the arrangement of different corrections to

QMRK amplitude. In this paper the symmetric variqht is
chosen:

do, 4NZas 6@(qy, +0p —k,) T(1-e)
d’k, N2-1 k? (4m)tte
2 (K2\° 1/11 2 ng , K
Tl TeleTan) T
ne\Ing2/q3 n
X 11—2—f) quq22+(1——f>
Ne d:—0q; Ne
ai a3 qs
X —2——2—2In—2
qz O az

quiqé—i@m%w%ﬂ&@) 910,
(a2—a3)® 0395

)|

(24)

From Eqgs(23) and(24) it is easy to see that divergencies

of real and virtual parts cancel leaving a finite contribution to

the first line in Eq.(19):

FIG. 1. do/d?k dy calculated with asymptotic BFKL structure
function Eq.(26). 1-loop as with Agcp=200 MeV, R=0.7. (a)
JS=1.8 TeV;(b) VS=14 TeV.

dot  do,
+_
d%k, d%k,
_ Need 6%y +az —ko)
(N2=1)7r k?
11 2an k? 27> 64 7n; K2
T ”E‘T 9 9N, 3
ne \Ing3/q> n
x{ 11—2N—f) o q22+(1—N—f>
¢/ d1— 0z c
2 2 2
qz 0Oz dz

XZqiq%—E@(q% 93+40,9,) . 010>
(95— 3)° q5a3

) -
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14 .
\ HE factorization \\ Y HE factorization
J ———LO+NLO 14 . ——LO+NLO
o 014 \ --10 A - o
% \ coll. factorization N> \‘ . coll. factorization
o \ -« - LO+NLO 3 o1 \" - -+ LO+NLO
3 0,011 —-=1L0 3 \ —=L0
£ £ -
T & FIG. 2. do/d%k dy calculated
T 7 & with CTEQ5M structure function
8 § 1E3; [22]. 2-loop ag with Agcp
1E-4 5 =226 MeV, R=0.7, n;=5. (a
1E-4 VS=1.8 TeV;(b) VS=14 TeV.
1E-5,
1E-54
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
k,, GeV k., GeV
a b

The first term in Eq(25), which is proportional to In¢/u?),  parameteR describing the collinear angle. For this calcula-

is nothing but the well-known contribution corresponding totion we takeR=0.7. Further discussion of tHe dependence

the running coupling. Therefore, after replacing by the  will be given below.

running couplingag(k?), one should drop this term. It is important to note that although in asymptotic BFKL
Equations(19) and (25) together with Eq.(20) and the  structure function the strong coupling constant does not run,

formula from Appendix A provide an analytical expressionto be consistent we should however make it run in a semi-

for the one-jet inclusive cross section. hard verticegcf. the discussion after Eq19)]. In the actual
For practical applications one should integrate over thecalculation with 1-loopas we choose\ ocp=200 MeV.
parameters of unintegrated structure functi¢disregarding The one-jet inclusive cross section fg6=1.8 TeV and

trivial elimination of delta functions The corresponding nu- /S=14 TeV, y=0, andn;=4 is shown in Figs. (8) and

merical calculations numerical studies will be described in1(b) where for collinear factorization Eq41) was used with
the next section.
2 dg?
IV. NUMERICAL ESTIMATES Xg(X,k2)=Jk —qzw(x,qz)-
Let me first mention that numerical results for the collider © q
energies now availabléor will be available in the near fu-
ture) can be made only for transversal momenta of several or
as an extreme example several tens GeVs. The reason is trbaH
the high energy kinematics is applicable for 10~ 2. There-
fore, jet calculations we are making correspond to the minije
(;a)‘(tgg:ir:]::t;?(thgcnkvi?ttlf?gar.lejseljlgogb?g;h(;rgIs limits us in theture fun_ctions in four different a.pproximatio_ns: 'LO and LO
; X +NLO in high energy and collinear factorizations. CTEQ
The numerical results strongly depend on the type of

structure functions used in the calculation. Let us first con-StrUCture functions satisfy the DGLAP equation not related

. . . to BFKL. However, it possibly includes leading MRK con-
sider the asymptotic BFKL structure functigni] tribution through the initial conditions for DGLAP evolution.

As a second example we consider one-jet production with

e of the realistic structure functions, CTEQHIZ2]. In

Eigs. Za) and Zb) we show differential cross sections of
ne-jet inclusive production calculated with CTEQ5M struc-

Xo\* g 1 Note the rapid increase and broadening of the structure func-
o(x,0%) = C( _0) s - tion with decreasing, which is the characteristic property of
X ) Go aN" In(Xq/x) BFKL induced structure functions. NLO collinear factoriza-
o 21 2 tion calculation was performed making use of the program
In“(q/qg) ) developed by Elis, Kunst, and Sofdé@?3,24] (for theoretical
exp — AN In(%o/X) ' (26) basis and earlier calculations d&&]). This calculation was

done for 'S=1.8 [Fig. 2@)] and 14 TeV[Fig. 2b)], for
with A =4 In 2Ncas/m and\"=14{(3)N.as/7; agis chosen  2-loop ag with Aqocp=226 MeV (because with these pa-
to be equal to 0.2. Because the asymptotic BFKL structureameters CTEQ5M is calculatgch;=5, y=0, andR=0.7.
function is a solution of the linear homogeneous equation, it In Figs. 3a) and 3b) we take a closer look at the differ-
does not have definite normalization and, moreover, the paence between different approximations for the one-jet cross
rametersg, andXx, are arbitrary. Since the calculation with section. Namely, in these figures we show ratios of one-jet
this structure function is illustrative only, we simply choose cross section calculated in high energy factorizafiod and
C=1, qo=1 GeV, andxg=1. From Eq.(19) it is clear that LO+NLO) and collinear factorizatiofLO+NLO) schemes
the NLO correction to the production process depends on th® that calculated in the LO of the collinear factorization

054028-7
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2.01 2.01

i — 1 — 1
1.84 S -2 /,// 1.8 R 2
164 T 3 P 1.6 — 3
1.4 ,, 1.4 \\
124 /’ ,,,,,,,,,,, - 127 \, FIG. 3. Ratios ofda/d?k dy calculated with
10] e, - 1.0 S o CTEQS5M structure functiong22] in LO and LO
o8] o 0.5, = +NLO of high energy factorization approach and
iy ) LO+NLO of collinear factorization approach to
061 0.61 the LO of collinear factorization approach. 2-loop
04l "\ 0.4 ¥ ag With Agcp=226 MeV, R=0.7, n;=5. (a
0.2 024 JS=1.8 TeV;(b) VS=14 TeV.
0.0+ 0.0

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

k, GeV k,, GeV
a b

scheme. The structure functions and set of parameters are thrk of high energy factorization. High energy factorization
same as for Figs.(2) and 2b). scheme allows one to account for the initial transverse mo-

From Figs. 1-3 we see that NLO corrections lead to thenentum of the colliding partons. The natural setup for par-
decrease of the particle production rate at high energies. Coticle production processes leading to high energy factoriza-
relation between LO and LONLO results for collinear fac- tion is provided by quasi—multi Regge kinematics.
torization is oppositésee als§25] and[26]). For the leading The results of computation of NLO contributions to
BFKL structure function NLO high energy factorization cor- BFKL Pomeron(cf. [1] and references thergican be used
rections change cross sections substantially to 50% in  to compute the next-to-leading order corrections to one-jet
chosen kinematical intervalfor non-BFKL CTEQ5M struc-  inclusive production at high energies. This correction in-
ture function changes are more dramatic: corrected cross sechudes real and virtual pieces. The infrared singularity in the
tions are 2 to 5 times smaller than the leading order onesirtual piece in the NLO contribution cancels the infrared
(apparently these results are sensitive to the cong. size singularity in its real one when an infrared safe jet algorithm

Finally, in Fig. 4 we show the dependence of NLO crossis applied. The explicit calculations of the infrared stable
section on the cone siZR It may be fitted well by function one-jet inclusive cross section at the next-to-leading order
of the typeA+ B In R+CRand becomes infinitely larg@nd  constitutes the main result of the paper.
negativg at R— 0. This is the general property of quantities ~ Numerical estimates were made to analyze the magnitude
with canceling virtual and real corrections showing that atof NLO corrections for typical semihard transverse momenta
small values ofR the fixed order perturbation theory is not and central rapidity region. Contrary to collinear factoriza-
valid (cf. [24]). tion approach, NLO correction in high energy factorization

diminishes the one-jet inclusive cross section.the minijet
V. CONCLUSION domain.

The paper is devoted to the calculation of next-to-leading

order correction to one-jet inclusive production in the frame- ACKNOWLEDGMENTS
0,07 - | am grateful to A. V. Leonidov for suggesting the idea of
. the paper and also for stimulating and helpful discussions.
0,06 + u Special thanks to O. V. lvanov for pointing out the powerful
S 005_' method of multidimensional integratid27]. The work was
8 ] ] supported by INTAS within the research program of ICFPM,
E’ 0,04 Grant No. 96-0457.
= )
T, 0037 APPENDIX A: CROSS SECTIONS OF PAIR PRODUCTION
D 002_' IN HIGH ENERGY FACTORIZATION
s O
© 001_’ We will use the following notation:
] s=2(kikp ch(Ay) —ky k) ),
0,00 T T T T T
J f 0,2 0,4 06 0,8 1,0 5 A
0,01 R t=— (01 — K1) —kikoe™,
- _ _ 2_ -A
FIG. 4. R-dependence afio/d?k dy calculated with CTEQ5M u=—(qy, —ka )“—kikoe ™,
structure  functions. VS=14 TeV, 2-loop as Wwith Agcp 2 9
=226 MeV, n;=5. 2 =X1X,S=K{+ K5+ 2k Kk, ch(Ay),
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with k;= \/kzu, k,= \/kz"l, andk, k,, is the dot product

with 2D Euclidean metric.

Combined gluons and quarKfermiong contribution to

gg scattering has the forfradopted to Eq(5)]

A:Agluons 4N3Afermlons (A1)
1.99—9g9
Find
-Agluons= A+ A,
A 1 0g3q5 e B e &y . 1
1= ~ iy 2t k2 Atkok, AUk, 4Kk
2 1+kqk 1 1 A
T3 s\ Prkakel g[S o
3 qi I(2 A
= -1 S2a-Ay |
X 1+S ch(Ay) 7s 1+ I(1e n
ki 4|1 q ky
VLN 0 [ Ay |
+|1 I(ze )u Zs 1+k2e "
ko 11
22aAy| =
+1+he>u], (A2)
_D_Z ((ku_Qu)z(ka_Qn)z_kikg 2
27 4 tu
1Ubﬁﬂuy—hb€M E
(Ko, =0y, )%+ kike ™ S
ky| — 2_k,.k,e2Y E
% (ki —011) 1€ E ’
(ki —0p, )%+ kike® S
1 o o2 2
:(QM_QZL)(ku_kZL)_g(%_%)(kl_kz)
2, 42
+2k,ky sr(Ay)( 1- q12q2>.
2.99—qq
Find

_ N2
Afermions_ NcAlf + A2f '

1 1
Alf—[quqz ( 1+ klkzsr(Ay)<—— —))
» u
-~ ( (kn_QM)z(ka_Qn)z_k%kg)2
tu
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+1beﬂuﬁ—hb€” E)

2\ (Ko, =0y, )% +kokoe dY S

q5a3
tu |’

2—k.k,eY E
d1.) €7

— 0y, )%+ kikeY S

(wu—
X
(Ky,

(A3)
and

(Kiy =01, )%(kg, =g, )%~ k%kg 2
Agp= -

tu

whereE is the same as for gluons.

APPENDIX B: INTEGRALS

To make integration easily it is worth to change integra-
tion overAy to integration ovex=k; /(k;+k,e*Y):

f dA fl dx
Vo= fox@—x
Jd2+28k2l 1 1
(2m? | 2 KKk

B 1J d2+28k2L 1
2 (277)28 (kl_kZL)zkgi

(B1)

I'(1—¢) k?* T?(1+e)
(4)® Fsl’(1+28)’

(B2)

ch(Ay)
kqkss

J— dZ+2.9k2l
(277)2.9
Jd”zak 1-x X

= +

(2m)?® | 2k3sx  2k?s(1—x)
_f d2+28k2 (1—X)2

(2m)%® 2k3((1—x)k,

y )2+(X<—>1—X)
21

I'(1—¢) k?® T?(1+e)
7 (4m)° FSF(]."FZS

TLA—x7 ],
(B3)

Let's now combine these two contributions and perform
an integration ovek

dx
X(1—X)

I'(1-¢) k? T?(1+e)
(4m)° k2 el'(1+2¢)

X[(1—x)%2+x%*—1].

12— T
(B4)

In order to avoid divergencies we introduce infinitesimal pa-
rameters (6<<e) so that
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dx
_ v\2e 2
f—x(l—x)[(l X)f+X 1]

= lim [(1—x)%*+x%*—1]

J dx

50 Xl*é‘(l_x)lfﬁ

= Iim(2
6—0

=%+2¢(1)—2¢(1+28)

T'(8)T(2+9)
T(2&+29)

I'2(5)
" T(26)

(B5)

and

I'(1—¢) k?* T?(1+e)
(4)° Fsl“(1+28)

12— T

X %+2¢(1)—2¢(1+2s) . (B6)

PHYSICAL REVIEW D62 054028

For the integrations involving it is useful to changé&,, on
k=Kky, —(1—x)k, so thats=«?/x(1—x) and 3= «k?/x(1
—x)+k?. Now

f dx jdz*kk2l 1
X(1-x)) (2m)? s
_ T(1-e)K* TX1+e) 1
~ T (4me K2 el(1+2e) 1426 &7

and

d2+25k2 E2

I'(1-¢) k% F2(1+£) 1—¢
T 4w K2 el(1+2e) 2(1+26)(3+28)°

(B8)
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