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Weyl invariant formulation of the flux-tube solution in the dual Ginzburg-Landau theory

Yoshiaki Koma* and Hiroshi Toki
Research Center for Nuclear Physics (RCNP), Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047, Japan

~Received 19 April 2000; published 11 August 2000!

The flux-tube solution in the dual Ginzburg-Landau~DGL! theory in the Bogomol’nyi limit is studied by
using the manifestly Weyl invariant form of the DGL Lagrangian. The dual gauge symmetry is extended to
@U(1)#m

3 , and, accordingly, there appear three different types of flux tube. The string tension for each flux tube
is calculated analytically and is found to be the same owing to Weyl symmetry. It is suggested that the
manifestly Weyl invariant approach enables us to treat flux tubes of various types in the DGL theory in a
framework quite similar to the U(1) dual Abelian Higgs theory.

PACS number~s!: 12.38.Aw, 12.38.Lg
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I. INTRODUCTION

Recent studies in lattice QCD in the maximally Abelia
gauge suggest remarkable properties of the QCD vacu
such as Abelian dominance@1# and monopole condensatio
@2#, which provide the dual superconductor picture of t
QCD vacuum as described by the dual Ginzburg-Lan
~DGL! theory @3,4#. The DGL theory is obtained by usin
Abelian projection@5#. In this scheme, QCD is reduced
@U(1)#2 gauge theory including color-magnetic monopole
Based on the dual superconductor picture of the Q
vacuum, we get an intuitive picture of hadrons as the vor
excitation of the color-electric flux@6,7#, which we call the
color-electric flux tube, or simply the flux tube. In th
vacuum, the color-electric flux is squeezed into an alm
one-dimensional object such as a string due to the d
Meissner effect caused by monopole condensation. This
ation seems to be the same as the appearance of the Ab
sov vortex in the ordinary superconductor system, which
caused by Cooper pair condensation.

We know that the Abrikosov-Nielsen-Olesen~ANO! vor-
tex in an ordinary superconductor can be described by u
the Abelian Higgs theory@8#, where the key is the breakin
of U(1)e gauge symmetry through the Higgs mechanis
Moreover, there exists an analytic solution of the ANO vo
tex at the border of type-I and type-II vacuums, called
Bogomol’nyi limit @9,10#. The analytical solution exhibits
interesting features of superconductivity and is useful in
derstanding the properties of vortex dynamics. Hence,
considered quite interesting to investigate the flux-tube s
tion in the dual superconductor QCD vacuum correspond
to the ANO vortex in the Bogomol’nyi limit.

However, the symmetry in the QCD vacuum is not
simple as in an ordinary superconductor system, since
we have to take into account the@U(1)#m

2 dual gauge sym-
metry corresponding to the U(1)e gauge symmetry in the
ordinary superconductor. Note that the symmetry@U(1)#N21

originates from the maximal torus subgroup of SU(N). Fur-
thermore, we also haveWeylsymmetry, which is the permu
tation invariance of the labels among the Abelian co
charges. Therefore, the flux tube in the QCD vacuum is

*Email address: koma@rcnp.osaka-u.ac.jp
0556-2821/2000/62~5!/054027~6!/$15.00 62 0540
m,

u

.
D
x

st
al
u-
ko-
is

g

.
-
e

-
is
-
g

s
w

r
-

pected to have some characteristic aspects beyond bein
analog of the ANO vortex in an ordinary superconduc
system.

In this paper, we investigate the flux-tube solution in DG
theory in the Bogomol’nyi limit. This study is similar to tha
given in Ref. @11#. In fact, our result will be shown to be
identical. However, we would like to present a useful meth
to find the Bogomol’nyi limit, and this can be achieved b
taking into account the Weyl symmetry in the DGL theor
This idea can be extended straightforwardly to t
@U(1)#N21 dual Abelian Higgs theory that would be reduce
from SU(N) gluodynamics@12#. We first write the DGL La-
grangian in a manifestly Weyl invariant form. At the sam
time, we pay attention to the singular structure in the DG
theory, since it plays a significant role in obtaining the strin
like flux-tube solution. Note that the boundary condition
the dual gauge field depends crucially on this singular str
ture. Second, we consider the Bogomol’nyi limit, the bord
between the type-I and type-II vacuums. The string tens
in this limit is computed analytically. Finally, we discuss th
properties of the flux-tube solution in DGL theory.

II. MANIFESTLY WEYL INVARIANT FORM
OF THE DGL LAGRANGIAN

The DGL Lagrangian@3,4# is given by1

LDGL52
1

4 S ]mBW n2]nBW m2
1

n•]
«mnabna jWbD 2

1(
i 51

3

@ u~]m1 igeW i•BW m!x i u22l~ ux i u22v2!2#,

~2.1!

whereBW m andx i denote the dual gauge field with two com
ponents (Bm

3 ,Bm
8 ) and the complex scalar monopole fiel

respectively. The quark field is included in the currentjWm

5eq̄gmHW q, HW 5(T3 ,T8). Here, eW i is the root vector of

1Throughout this paper, we use the following notation: Latin
dicesi , j express the labels 1,2,3, which are not to be summed o
unless explicitly stated. Boldface letters denote three-vectors.
©2000 The American Physical Society27-1
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SU(3) algebra,eW15(21/2,A3/2), eW 25(21/2,2A3/2), eW 3

5(1,0), andnm denotes an arbitrary constant four-vecto2

which corresponds to the direction of the Dirac string. T
gauge couplinge and the dual gauge couplingg have the
relationeg54p. This relation guarantees the unobservab
ity of the Dirac string when the dual gauge symmetry is n
broken. Note that the DGL Lagrangian~2.1! is invariant un-
der the@U(1)#m

2 dual gauge transformation:

x i→x ie
i f i, x i* →x i* e2 i f i,

BW m5~Bm
3 ,Bm

8 !

→S Bm
3 2

1

g
]m f 3 ,Bm

8 2
1

A3g
~]m f 12]m f 2!D

~ i 51,2,3!, ~2.2!

where the phasef i has the constraint( i 51
3 f i50 @3,4#.

The nonlocal term in the kinetic term of the dual gau
field is concretely written as

1

n•]
«mnabna jWb5E d4x8^xU 1

n•] Ux8&«mnabna jWb~x8!,

~2.3!

where

^xU 1

n•] Ux8&5@pu„~x2x8!•n…2~12p!u„~x82x!•n…#

3d (3)~xW'2xW'8 !. ~2.4!

Herep is an arbitrary real number andd (3)(x) is ad function
defined on a three dimensional hypersurface that has the
mal vectornm , so thatxW' andxW'8 are three-vectors~not nec-
essarily spatial! that are perpendicular tonm . It is noted that,
in order to define the color-electric charge of the quark
terms of thedual gauge field, we need such a nonlocal ter
which is a result of the choice of theone potential approach
@13#.

Now, we define an extended dual gauge field to take i
account the Weyl invariance in the DGL theory as

Bim[A2

3
eW i•BW m ~ i 51,2,3!. ~2.5!

Here, the constraint( i 51
3 Bim50 appears, which has th

same structure as the constraint( i 51
3 f i50. Furthermore, we

divide the dual gauge field into two parts, a regular part a
a singular part@14,15#,

2If the dual gauge symmetry is broken through monopole cond
sation,nm cannot be an arbitrary vector any longer. Instead, t
vector describes the dynamics of the string and gives the contr
tion to the energy of the system.
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BW m[BW m
reg1BW m

sing. ~2.6!

The factorA2/3 in Eq.~2.5! is a simple normalization to ge
the factor 1/4 in front of the kinetic term of the dual gau
field @see Eq.~2.8! below#. The singular dual gauge field
BW m

sing is determined so as to cancel the Dirac string in
nonlocal term as

]mBW n
sing2]nBW m

sing2
1

n•]
«mnabna jWb[CW mn . ~2.7!

In the staticq-q̄ system,CW mn is nothing but the color-electric
field originating from the color-electric charge, like the ele
tric field induced by an electric charge, where an expli
form of BW m

sing is given in Sec. III. It is noted that the cros

term of the regular dual field tensor* FW mn
reg[]mBW n

reg2]nBW m
reg

and CW mn can be integrated out; the square ofCW mn and its
integration give the Coulomb energy including the se
energy of the color-electric charge. However, we drop
square ofCW mn hereafter in order to concentrate on the fl
tube itself. Accordingly, we pay attention to the string te
sion for an ideal flux-tube system which has terminals
infinity.3

Thus we obtain

LDGL5(
i 51

3 S 2
1

4
* Fimn

reg 21u@]m1 ig8~Bim
reg1Bim

sing!#x i u2

2l~ ux i u22v2!2D , ~2.8!

* Fimn
reg []mBin

reg2]nBim
reg, ~2.9!

where the dual gauge couplingg is scaled as

g8[A3

2
g. ~2.10!

One finds that the dual gauge symmetry becomes very e
to observe, since the dual gauge transformation is define

x i→x ie
i f i, x i* →x i* e2 i f i,

Bim
reg→Bim

reg2
1

g8
]m f i ~ i 51,2,3!, ~2.11!

and accordingly the Lagrangian~2.8! has the extended loca
symmetry @U(1)#m

3 . However, this does not mean an in
crease of the gauge degrees of freedom because we hav
constraint( i 51

3 Bim50.
The field equations are given by

@]m1 ig8~Bim
reg1Bim

sing!#2x i522lx i~x i* x i2v2!,
~2.12!

n-
s
u-

3In order to classify the types of flux tube, we use words such

the q-q̄ system.
7-2
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]n * Fimn
reg [kim

52 ig8~x i* ]mx i2x i]mx i* !

12g82~Bim
reg1Bim

sing!x i* x i . ~2.13!

These field equations are to be solved with the proper bou
ary conditions that quantize the color-electric flux@8#. The
flux is given by

F i[E * Fimn
reg dsmn5 R Bim

regdxm, ~2.14!

where smn is a two-dimensional surface element
Minkowski space. By using the polar decomposition of t
monopole field asx i5f ie

ih i (f i ,h iPR), we get, from the
field equation~2.13!,

Bim
reg5

kim

2g82f i
2

2Bim
sing2

1

g8
]mh i . ~2.15!

We substitute this expression into Eq.~2.14! and integrate
out over a large closed loop where the monopole currentkim
vanishes. Thus we get

F i52 R S Bim
sing1

1

g8
]mh i D dxm. ~2.16!

It is suggested from this expression that there are two po
bilities for obtaining the flux-tube configuration. One orig
nates from the singularity inBim

sing and the other is from the
singularity in]mh i . We find that the former case, as can
seen from the relation~2.7!, corresponds to the flux tube tha
has a quark source. On the other hand, the latter case
not contain any information about the quark, which mea
there is no terminal; hence, it cannot provide a physical s
like the q-q̄ system. If one assumes the existence of an
ternal color-electric source or a glueball state as the flux-t
ring @16#, it should be taken into account. However, sin
this is not the case that we discuss in this paper, we ass
that there is no singularity in]mh i . Thus this term can be
absorbed into the regular dual gauge fieldBim

reg by the re-
placementBim

reg1]mh i /g8→Bim
reg. In this case, the flux~2.16!

just has the meaning of the boundary condition of the reg
dual gauge field, which should behave asBim

reg→2Bim
sing at

infinity, where monopoles are condensed.

III. THE STATIC q-q̄ SYSTEM

In this section, we consider the staticq-q̄ system. The
quark source is given by thec-number current, which is typi-
cal in the heavy quark system,

jWm[ jWm
j~x!5QW jg

m0@d (3)~x2a!2d (3)~x2b!#, ~3.1!

where QW j[ewW j is the Abelian color-electric charge of th
quark. Here,a and b are position vectors of the quark an
the antiquark, respectively, andwW j is the weight vector of
05402
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SU(3) algebra, wW 15(1/2,A3/6), wW 25(21/2,A3/6), wW 3

5(0,21/A3). This vector is nothing but the diagonal com
ponent ofHW 5(T3 ,T8). The labelj 51,2,3 can be assigned t
the charges red (R), blue (B), and green (G). We assume
cylindrical geometry of the system by takinga52(r /2)ez ,
b5(r /2)ez , and nm5ez , where the distance between th
quark and the antiquark is defined byr. In this system, we
get an explicit form of the singular dual gauge field from t
relation ~2.7! as

Bi
sing5A2

3
eW i•F2

QW j

4pr S z1r /2

Ar21~z1r /2!2

2
z2r /2

Ar21~z2r /2!2D ewG , ~3.2!

where w is the azimuthal angle around thez axis andr
denotes the radial coordinate. Since the color-electric cha
are defined on the weight vector of SU(3) algebra, th
arises the relation

eW i•wW j52
1

2 S 0 1 21

21 0 1

1 21 0
D 52

1

2 (
k51

3

e i jk[2
1

2
mi j ,

~3.3!

wheremi j takes the values 0 or61. The zero of the diagona
component means that one of the monopole fields is dec
pled from the system and does not contribute to the ene
when we pay attention to one of the color-electric charg
since the color-magnetic charge of the monopole field is
fined on the root vector of SU(3) algebra, asgeW i .

Here, we investigate the ideal system for the limitr→`.
That is,

lim
r→`

Bi
sing5A2

3

emi j

4pr
ew5

mi j

g8r
ew , ~3.4!

where we have usedeg54p andg85A3/2g. Thus the fields
depend only on the radial coordinate,

f i5f i~r!, Bi
reg5Bi

reg~r!ew[
B̃i

reg~r!

r
ew , ~3.5!

and the field equations~2.12! and ~2.13! are reduced to

d2f i

dr2
1

1

r

df i

dr
2S g8B̃i

reg1mi j

r
D 2

f i22lf i~f i
22v2!50,

~3.6!

d2B̃i
reg

dr2
2

1

r

dB̃i
reg

dr
22g8~g8B̃i

reg1mi j !f i
250,

~3.7!

The string tension can be defined by the energy per
length of the flux tube,
7-3
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s52p(
i 51

3 E
0

`

rdrF1

2
S 1

r

dB̃i
reg

dr
D 2

1S df i

dr D 2

1S g8B̃i
reg1mi j

r
D 2

f i
21l~f i

22v2!2G , ~3.8!

and we obtain the flux quantization condition

F i52
2pmi j

g8
. ~3.9!

The boundary conditions are given by

B̃i
reg50, f i5H 0 ~ iÞ j !

v ~ i 5 j !
as r→0,

B̃i
reg52

mi j

g8
, f i5v as r→`. ~3.10!

Here, we shall confirm the relation~2.7!. In this cylindrical
system, the nonlocal term can be computed explicitly,

A2

3
eW i•

1

n•]
«mnabna jWb

5A2

3
eW i•2QW jd~x!d~y!ez ~QW j[ewW j !

5“3S mi j

g8r
ewD . ~3.11!

As can be seen from this expression, one finds that this t
exactly cancels the color-electric field that is originates fr
the singular dual gauge fieldBi

sing in Eq. ~3.4!. This shows
that the kinetic term of the dual gauge field in the Lagrang
~2.8! can be written with no singular field.

IV. BOGOMOL’NYI LIMIT

In this section, we discuss the properties of the flux tu
in the Bogomol’nyi limit. Since now we have the same L
grangian with U(1) gauge symmetry except only the lab
of i and j that classify the kinds of monopole and the qua
corresponding to@U(1)#m

3 dual gauge symmetry, we can us
the same strategy to find the Bogomol’nyi limit as given
Ref. @9#. Thus, we can write the string tension~3.8! exactly
in the form

s52p(
i 51

3

umi j uv212p(
i 51

3 E
0

`

rdrF1

2
S 1

r

dB̃i
reg

dr

6g8~f i
22v2! D 2

1S df i

dr
6~g8B̃i

reg1mi j !
f i

r D 2

1
1

2
~2l2g82!~f i

22v2!2G . ~4.1!
05402
m

n

e

s

From this expression, we find the Bogomol’nyi limit

g8252l or 3g254l. ~4.2!

In this limit, one finds that the string tension is reduced t

s52p(
i 51

3

umi j uv254pv2, ~4.3!

and the profiles of the dual gauge field and the monop
field are determined by the first order differential equatio

df i

dr
6~g8B̃i

reg1mi j !
f i

r
50, ~4.4!

1

r

dB̃i
reg

dr
6g8~f i

22v2!50. ~4.5!

These field equations, of course reproduce the second o
differential equations~3.6! and ~3.7! when the relation~4.2!
is satisfied.

Here, to obtain a string tension of the form~4.1! and the
saturated string tension~4.3!, we have paid attention to th
boundary conditions of the fields~3.10! by taking into ac-
count the relation~3.3!. For instance, let us consider theR-R̄
flux tube, which is given by the labelj 51. In this system,
the monopole fieldf1, which has the magnetic chargegeW1,
is decoupled from the system, sincef1 does not experience
any singularity of the flux-tube core, and, accordingly, t
regular dual gauge fieldB1

reg is also decoupled. The behavio
of the other fields is interesting;f2 and f3 behave as the
same monopole field, andB2

reg andB3
reg provide the U(1)i 52

flux tube and U(1)i 53 anti-flux-tube depending on the sig
of mi j , which is 1 and21, respectively. Here, the two dua
gauge fields are related to each other through the const
( i 51

3 Bi
reg50, and the U(1)i 53 anti-flux-tube can be regarde

as the U(1)i 52 flux tube, or vice versa. As a result, these flu
tubes provide the same string tension 2pv2, and finally we
get twice this string tension, 232pv2. This is caused by the
@U(1)#m

2 dual gauge symmetry. We note that this discuss
is Weyl symmetric, and thus the final expression for t
string tension~4.3! does not depend on the kind of colo
electric chargeQW j . The profiles of the color-electric field ca
be obtained by solving the first order equations~4.4! and
~4.5! by taking into account the above discussion, as is d
cussed in Ref.@9,10#.

Let us consider the meaning of Eq.~4.2!. Here, we can
define two characteristic scales using three parameter
DGL theory,g, l, andv. One is the mass of the dual gaug

field mB5A2g8v5A3gv and the other is the mass of th
monopole fieldmx52Alv. These masses are extracted fro
the Lagrangian~2.8! by taking into account the dual Higg
mechanism. Thus, one finds that the Bogomol’nyi limit
the DGL theory@Eq. ~4.2!# is the supersymmetry betwee
the dual gauge field and the monopole field. Since these
verse massesmB

21 and mx
21 correspond to the penetratio
7-4
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depth of the color-electric field and the coherent length of
monopole field, respectively, the Ginzburg-Landau~GL! pa-
rameter is defined as

k̃[
mB

21

mx
21

5
A2l

g8
5

2Al

A3g
. ~4.6!

Therefore,k̃51 is regarded as the Bogomol’nyi limit, an
the vacuum is classified into two types in terms of t
Bogomol’nyi limit: k̃,1 belongs to the type-I vacuum an
k̃.1 is the type-II vacuum.

Now we would like to discuss the interaction between t
parallel flux tubes of the same type, such as the systemR-R̄
andR-R̄. In general, the flux tubes would interact with ea
other. However, in the Bogomol’nyi limit, there is no inte
action between them. This can be understood through
investigation of the generalized string tension for an exo
that the color-electric charges are given bynQW j and 2nQW j
for an integern. In this system, we get the generalized stri
tension

sn54pnv2, ~4.7!

where mi j is simply replaced bynmi j . One finds that the
string tension~4.7! is proportional ton, which implies that
the interaction energy is zero. It is considered that this com
from a balance of the propagation ranges of the dual ga
field and the monopole field sincemB5mx . In the type-I or
type-II vacuum, which is away from the Bogomol’nyi limi
the interaction range of these fields lose its balance, and
flux-tube interaction manifestly appears. The string tensio
no longer proportional ton. While an attractive force appear
between two parallel flux tubes in the type-I vacuum, the fl
tubes repel each other in the type-II vacuum. Numerical
vestigations of the interaction between two or more para
flux tubes of the same type in DGL theory are given in Re
@17,18#.

It is interesting to investigate what happens if two para
flux tubes of different types are placed at a certain dista
apart@19#. Here, according to the@U(1)#m

3 dual gauge sym-
metry, there appear three different types of flux tube, suc
given by R-R̄, B-B̄, and G-Ḡ, so that these interaction
appear very complicated. However, now the system has
markable aspects owing to the Weyl symmetry. For instan
let us consider the interaction betweenR-R̄ and B-B̄. We
find that the interaction between them is attractive, since
we suppose that these flux tubes are unified into one
t.

ys
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tube, it becomesḠ-G @see the relation~3.3!#. This means
that the energy of the system after unification is reduced
one-half of the initial energy. The same interaction prope
would be observed in the processes,B-B̄1G-Ḡ→R̄-R and
G-Ḡ1R-R̄→B̄-B. These investigations show that, if w
pay attention to the Weyl symmetry, we can easily obt
qualitative information about the flux-tube interaction.

V. CONCLUSION

We have studied the flux-tube solution in DGL theory
the Bogomol’nyi limit by using the manifestly Weyl invari
ant form of the DGL Lagrangian. Here, the original du
gauge symmetry@U(1)#m

2 is extended to@U(1)#m
3 . This re-

placement makes further manipulation of the Lagrang
analogous to the U(1) case. We have found that
Bogomol’nyi limit is given by 3g254l, and the string ten-
sion is calculated assn54pnv2 for a q-q̄ pair with the
chargenQj and 2nQj at the two ends. In this limit, the
masses of the dual gauge field and the monopole field
comeexactlythe same. It should be noted that we could s
the same relation with U(1) Abelian Higgs theory except
the three different types of flux tube. To summarize, ve
similar properties to those of the ANO vortex in Abelia
Higgs theory are observed when we see a single flux tub
DGL theory, and the flux-tube solution can easily be o
tained if we pay attention to the Weyl symmetry in DG
theory.

Finally, we would like to mention the relation between th
work in Ref. @11# and our study. If we replace the monopo
field and the parameters used in@11# by x→A2x, h
→A2v, andl→l/4, we get the same framework at the sta
ing point, and the Bogomol’nyi limit is replaced by 3g2

516l→3g254l. The idea of the extension of dual gaug
symmetry based on Weyl symmetry in our case, howev
seems to be a simple way to reach the final expression for
string tension, which can be applied straightforwardly to t
@U(1)#N21 dual Abelian Higgs theory reduced from SU(N)
gluodynamics.
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