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Weyl invariant formulation of the flux-tube solution in the dual Ginzburg-Landau theory
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The flux-tube solution in the dual Ginzburg-LanddGL) theory in the Bogomol'nyi limit is studied by
using the manifestly Weyl invariant form of the DGL Lagrangian. The dual gauge symmetry is extended to
[U(l)]rsn, and, accordingly, there appear three different types of flux tube. The string tension for each flux tube
is calculated analytically and is found to be the same owing to Weyl symmetry. It is suggested that the
manifestly Weyl invariant approach enables us to treat flux tubes of various types in the DGL theory in a
framework quite similar to the U(1) dual Abelian Higgs theory.

PACS numbd(s): 12.38.Aw, 12.38.Lg

[. INTRODUCTION pected to have some characteristic aspects beyond being the
analog of the ANO vortex in an ordinary superconductor
Recent studies in lattice QCD in the maximally Abelian system.

gauge suggest remarkable properties of the QCD vacuum, In this paper, we investigate the flux-tube solution in DGL

such as Abelian dominandé] and monopole condensation theory in the Bogomol’'nyi limit. This study is similar to that

[2], which provide the dual superconductor picture of thegiven in Ref.[11]. In fact, our result will be shown to be

QCD vacuum as described by the dual Ginzburg-Landaidentical. However, we would like to present a useful method

(DGL) theory[3,4]. The DGL theory is obtained by using to find the Bogomol'nyi limit, and this can be achieved by

Abelian projection[5]. In this scheme, QCD is reduced to taking into account the Weyl symmetry in the DGL theory.

[U(1)]? gauge theory including color-magnetic monopoles.This idea can be extended straightforwardly to the

Based on the dual superconductor picture of the QCO}U(1)]N"! dual Abelian Higgs theory that would be reduced

vacuum, we get an intuitive picture of hadrons as the vortexrom SUNN) gluodynamicg12]. We first write the DGL La-

excitation of the color-electric flukg,7], which we call the grangian in a manifestly Weyl invariant form. At the same

color-electric flux tube, or simply the flux tube. In this time, we pay attention to the singular structure in the DGL

vacuum, the color-electric flux is squeezed into an almostheory, since it plays a significant role in obtaining the string-

one-dimensional object such as a string due to the dudike flux-tube solution. Note that the boundary condition of

Meissner effect caused by monopole condensation. This situhe dual gauge field depends crucially on this singular struc-

ation seems to be the same as the appearance of the Abrikte. Second, we consider the Bogomol'nyi limit, the border

sov vortex in the ordinary superconductor system, which idetween the type-l and type-Il vacuums. The string tension

caused by Cooper pair condensation. in this limit is computed analytically. Finally, we discuss the

We know that the Abrikosov-Nielsen-OleséaNO) vor-  properties of the flux-tube solution in DGL theory.

tex in an ordinary superconductor can be described by using

the Abelian Higgs theory8], where the key is the breaking II. MANIFESTLY WEYL INVARIANT FORM

of U(1). gauge symmetry through the Higgs mechanism. OF THE DGL LAGRANGIAN

Moreover, there exists an analytic solution of the ANO vor- ) o

tex at the border of type-l and type-Il vacuums, called the 1he DGL Lagrangiai3,4] is given by

Bogomol'nyi limit [9,10]. The analytical solution exhibits 1 1 2

interesting features of superconductivity and is usefulinun- £ . =— -9 B,~9,B,— —¢ Vagn“fﬁ

derstanding the properties of vortex dynamics. Hence, it is 4 n.-g -~

considered quite interesting to investigate the flux-tube solu- 3

tion in the dual superconductor QCD vacuum corresponding + > [l(a,+ige B, xil2=N(|xi|2—v?)2

to the ANO vortex in the Bogomol'nyi limit. =1 1 - BuxilF =Ml ]
However, the symmetry in the QCD vacuum is not as 2.1)

simple as in an ordinary superconductor system, since now

. 2 R
we have to take into account the)(1)];, dual gauge sym-  \hereB, andy; denote the dual gauge field with two com-

metry corresponding to the U(d)gauge symmetry in the ponents B3,B%) and the complex scalar monopole field,
ordinary superconductor. Note that the symmétgy1)]N 1 L

originates from the maximal torus subgroup of SUJ( Fur- - - -
thermore, we also haweylsymmetry, which is the permu- =€97,Ha, H=(T3,Tg). Here, ¢ is the root vector of
tation invariance of the labels among the Abelian color
charges. Therefore, the flux tube in the QCD vacuum is ex-
Throughout this paper, we use the following notation: Latin in-
dicesi,j express the labels 1,2,3, which are not to be summed over
*Email address: koma@rcnp.osaka-u.ac.jp unless explicitly stated. Boldface letters denote three-vectors.

respectively. The quark field is included in the currq’?pt
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-

SU(3) algebrage,=(—1/2,/3/2), e,=(—1/2,—/3/2), €5 B, =B+ B3, 2.6
=(1,0), andn* denotes an arbitrary constant four-vector, g :

which corresponds to the direction of the Dirac string. TheThe factory/2/3 in Eq.(2.5) is a simple normalization to get
gauge couplinge and the dual gauge coupling have the the factor 1/4 in front of the kinetic term of the dual gauge
relationeg=4. This relation guarantees the unobservabil-field [see EQ.(2.8) below]. The singular dual gauge field
ity of the Dirac string when the dual gauge symmetry is not85" is determined so as to cancel the Dirac string in the
broken. Note that the DGL Lagrangid®.1) is invariant un-  nonlocal term as

der the[U(l)]ﬁ1 dual gauge transformation:

o . 1 - -
) ) sing__ sing__ “8__
xi—xiel, xFxreih, 9,B5"-3,B; _n-aaf‘”“ﬁnalﬁ_cf”' 2.7

In the statioq-asystem,éﬂy is nothing but the color-electric

B,=(B3,B%) : o : ;
Iz 2 field originating from the color-electric charge, like the elec-

1 1 tric field induced by an electric charge, where an explicit
_>( B~ aaufg,Bi_ T(aﬂfl—&ﬂf2)> form of BS" is given in Sec. IIl. It is noted that the cross
39 term of the regular dual field tensdrF*%=d,B'*%— 5B
(i=1,2,3, (22 andC,, can be integrated out; the square ®f, and its
integration give the Coulomb energy including the self-
where the phasé has the constraint? ,f;=0 [3,4]. energy of the color-electric charge. However, we drop the
The nonlocal term in the kinetic term of the dual gaugesquare ofC,,, hereafter in order to concentrate on the flux
field is concretely written as tube itself. Accordingly, we pay attention to the string ten-
sion for an ideal flux-tube system which has terminals at
L e [t x o xye o) infinity.>
g Eurapn 1= n-g | 18 mrap X0, Thus we obtain
2.3 ,
1 )
where Cooi= 3, | - 7P+ 10, g/ (B0 B 1
X 7| X 0 =[PO((x=x")- M= (1=p) 6((x" —x) - )] —)\(|Xi|2—v2)2), (2.8
X 8®)(x, —x|). (2.4 *F{%9=4,B/%%-9,B%, (2.9

Herep is an arbitrary real number ani®)(x) is aé function ~ Where the dual gauge couplingis scaled as
defined on a three dimensional hypersurface that has the nor- 3

mal vectorn,,, so thatx, andx/ are three-vectorénot nec- g'= \[Eg

essarily spatialthat are perpendicular t, . It is noted that,

in order to define the color-electric charge of the quark ingne finds that the dual gauge symmetry becomes very easy

terms of thedual gauge field, we need such a nonlocal term,, gpserve, since the dual gauge transformation is defined by
which is a result of the choice of thene potential approach
it

[13]. _ . . xi—xi€', xr—xte ',
Now, we define an extended dual gauge field to take into
account the Weyl invariance in the DGL theory as

(2.10

1
BI°¢. B%0— aaﬂfi (i=1,2,3), (2.12)

2. .
Bin= \[géi B, (=123 @9 and accordingly the Lagrangid@.8) has the extended local
symmetry[U(l)]ﬁq. However, this does not mean an in-
Here, the constrainEisleiM=0 appears, which has the crease of the gauge degrees of freedom because we have the
same structure as the constraﬂlefi =0. Furthermore, we constraintzleBi,fO.
divide the dual gauge field into two parts, a regular part and The field equations are given by

a singular parf{14,15, ] _
[9,+ig" (B{S+ B9 12xi= — 2N\ xi(xf xi—v?),
(2.12
2If the dual gauge symmetry is broken through monopole conden-
sation,n* cannot be an arbitrary vector any longer. Instead, this

vector describes the dynamics of the string and gives the contribu-°In order to classify the types of flux tube, we use words such as
tion to the energy of the system. the g-q system.
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PFII =k

iur™ Nip

SU(3) algebra, wy=(1/2,J/3/6), W,=(—1/2,/3/6), ws
i (v vy o =(0,—1/y/3). This vector is nothing but the diagonal com-
= 71970 JuXi— XiduX?) ponent of = (T3, Tg). The labelj=1,2,3 can be assigned to
+29/2(Bifig+ Bis,ifg)Xi*Xi- (2.13 the charges redR), blue B), and green G). We assume
cylindrical geometry of the system by takirg — (r/2)e,,

These field equations are to be solved with the proper bound=(r/2)e,, and n,=e,, where the distance between the
ary conditions that quantize the color-electric fli8. The quark and the antiquark is defined bylIn this system, we
flux is given by get an explicit form of the singular dual gauge field from the
relation(2.7) as

0= | “FiRion e, 210 o | O [z
Bsino—  [—¢.| - 2
i i
where o*” is a two-dimensional surface element in 3 amp po+(z+112)°

monopole field ag; = ¢ie'” (¢, 7 R), we get, from the L
field equation(2.13), P2+ (z—1/2)2

reg__ Ki . B _Si“g_i(y - (2.15 where ¢ is the.azimuthlal anglg around tteaxis qndp
i 29’2¢i2 i g " I ' denoteg the radial coord_lnate. Since the color-electric charges
are defined on the weight vector of SU(3) algebra, there
We substitute this expression into E@.14) and integrate arises the relation
out over a large closed loop where the monopole curkgnt 0 1 -1
vanishes. Thus we get o 1 13 1
§Wi=—35 -1 0 1 :_Egleijkz_imija

) 1 1 -1 0
@iz—jﬂ(sf;:'%;m)dxﬂ. 216 33

Minkowski space. By using the polar decomposition of the )
(3.2

It is suggested from this expression that there are two posstheremiJ takes the values 0 ar 1. The zero of the diagonal

bilities for obtaining the flux-tube configuration. One origi- component means that one of the monop_ole fielas is decou-
nates from the singularity iBS" and the other is from the pled from the system and does not contribute to the energy

. o ) n when we pay attention to one of the color-electric charges,
singularity ind,, ;. We find that the former case, as can be

seen from the relatiof2.7), corresponds to the flux tube that ;ince the color-magnetic charge of the monclpole field is de-
has a quark source. On the other hand, the latter case doB€d on the root vector of SU(3) algebra,gs.

not contain any information about the quark, which means Here, we investigate the ideal system for the limit .
there is no terminal; hence, it cannot provide a physical staténat is,

like the g-q system. If one assumes the existence of an ex- S em. M
ternal color-electric source or a glueball state as the flux-tube lim BSN9= —ﬂe =—le,
ring [16], it should be taken into account. However, since R 34mp ¢ g'p
this is not the case that we discuss in this paper, we assume

that there is no singularity i@, 7;. Thus this term can be where we have useelg=4m andg’ = V/3/2g. Thus the fields
absorbed into the regular dual gauge fi@f? by the re- ~depend only on the radial coordinate,
placemenB{>+ 4,7, /g’ —B[Z2. In this case, the flux2.16 =1
just has the meaning of the boundary condition of the regular bi=di(p), BEO=B"Yp)e EBi 4p)
dual gauge field, which should behave BE— —BF° at = eip) B P
infinity, where monopoles are condensed.

(3.9

(3.5

b

and the field equation®.12 and (2.13 are reduced to

lIl. THE STATIC ¢-q SYSTEM_ o 1dé, (Q’E{eg+mij)2 L
In this section, we consider the statigq system. The  g,2 ' p dp p ¢i= 20 hi($i—v)=0,
quark source is given by tteenumber current, which is typi- (3.6)
cal in the heavy quark system,
d?B{*¢ 1 dB[*® -
jr=100=Q;g" ¥ (x-a) - s (x-b)], (3. —— =5 —20'(g'BI*% my) 97 =0,

dp?2 p dp
where sze\fvj is the Abelian color-electric charge of the 3.7

quark. Here,a andb are position vectors of the quark and The string tension can be defined by the energy per unit
the antiquark, respectively, ang; is the weight vector of length of the flux tube,
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3 1(1 d“Bireg 2 dey\2 From this expression, we find the Bogomol'nyi limit
o=2m2, 254 tlap
=1 p P g'?=2\ or 3g%=4\. (4.2
Breg+ . .. . . . .
+(g— P?+ N (p2—v?2)2 (3.9  Inthis limit, one finds that the string tension is reduced to
3
and we obtain the flux quantization condition o=2m>, Imjj|v2=4mv?, (4.3
=1
27Tmij
Oj=——. (3.9 and the profiles of the dual gauge field and the monopole
9 field are determined by the first order differential equations:
The boundary conditions are given by dé, 6
7 reg -0
- 0 (i#)) ap T(@BIEmy) 9
Bi®9=0, ¢= ... asp—0,
v (i=])
1 dB®
. +g'(¢?~v?)=0. (4.9
~ m i
Breo=— L =y aspoo. (3.10 p dp
g/

These field equations, of course reproduce the second order
Here, we shall confirm the relatio2.7). In this cylindrical  differential equationg3.6) and(3.7) when the relatior(4.2)

system, the nonlocal term can be computed explicitly, is satisfied.
Here, to obtain a string tension of the for#.1) and the
2. 1 . saturated string tensiof@.3), we have paid attention to the
36" msumﬁnalﬁ boundary conditions of the field8.10 by taking into ac-

count the relatior§3.3). For instance, let us consider tReR
2. < < - flux tube, which is given by the labgk= 1. In this system,
=\ﬁ~—Q,-5(X)5( e, (G . . . .
the monopole fieldp,, which has the magnetic charge,,
is decoupled from the system, singg does not experience
m—e (3.19) any singularity of the flux-tube core, and, accordingly, the
g'p ' regular dual gauge fielB*9is also decoupled. The behavior
of the other fields is interestingp, and ¢5 behave as the
As can be seen from this expression, one finds that this terrsame monopole field, ar8ly® and B9 provide the U(1)-,
exactly cancels the color-electric field that is originates fromflux tube and U(1).5 anti- flux tube depending on the sign
the singular dual gauge f|ell‘°"ng in Eq. (3.4). This shows  of m;;, which is 1 and—1, respectively. Here, the two dual
that the kinetic term of the dual gauge field in the Lagrangiargauge fields are related to each other through the constraint

i
®
=

=VX

(2.8) can be written with no singular field. =3 B[*9=0, and the U(1). 5 anti-flux-tube can be regarded
as the U(1)-, flux tube, or vice versa. As a result, these flux
IV. BOGOMOL'NY! LIMIT tubes provide the same string tensionvzz, and finally we

get twice this string tension,”227v?2. This is caused by the

h P i h h E{U(l)]m dual gauge symmetry. We note that this discussion
in the Bogomol'nyi limit. Since now we have the same La-; is Weyl symmetric, and thus the final expression for the

grgnglzr] V;]"th Llj(l). gar]gek§)gmmetry exce;lz)t Ong’ tr?e labell(s'strlng tension(4.3 does not depend on the kind of color-
of i andj t f”lt classify t3 e kinds of monopole and the quar electric chargeQJ . The profiles of the color-electric field can
corresponding tU(1)], dual gauge symmetry, we can use be obtained by solving the first order equatidds4) and

the same strategy to find the Bogomol'nyi limit as given in( -2 ; : -
. : . 4.5) by taking into account the above discussion, as is dis-
Ref.[9]. Thus, we can write the string tensi¢8.8) exactly cussed in Ref[9,10].

in the form Let us consider the meaning of E@.2). Here, we can
define two characteristic scales using three parameters in

In this section, we discuss the properties of the flux tub

reg
o= 2772 Im;, |U2+2Wz f pdp| = (1 dB DGL theory,g, \, andv. One is the mass of the dual gauge
1
J 2\p dp field mg= \/Eg’v= \/ggv and the other is the mass of the
monopole fieldn, = 2\\v. These masses are extracted from
+g'($2—0?) +(ﬁ+(g Be9t m, )ﬂ) the Lagrangian2.8) by taking into account the dual Higgs
B ' dp ' mechanism. Thus, one finds that the Bogomol'nyi limit in

the DGL theory[Eq. (4.2)] is the supersymmetry between
the dual gauge field and the monopole field. Since these in-
verse masseslg ! and m;l correspond to the penetration

(-G (0P (4.1
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depth of the color-electric field and the coherent length of theype, it becomess-G [see the relatior{3.3)]. This means

monopole field, respectively, the Ginzburg-Land&Ll) pa-
rameter is defined as

1

Van 2
g 39

Therefore,x=1 is regarded as the Bogomol'nyi limit, and

Mg
—1

my

K=

(4.9

the vacuum is classified into two types in terms of the

Bogomol'nyi limit: k<1 belongs to the type-I vacuum and
«>1 is the type-Il vacuum.

that the energy of the system after unification is reduced to
one-half of the initial energy. The same interaction property

would be observed in the processBsEJr G-G—R-R and

G-G+R-R—B-B. These investigations show that, if we
pay attention to the Weyl symmetry, we can easily obtain
qualitative information about the flux-tube interaction.

V. CONCLUSION

We have studied the flux-tube solution in DGL theory in

Now we would like to discuss the interaction between twothe Bogomol'nyi limit by using the manifestly Weyl invari-

parallel flux tubes of the same type, such as the syﬁeﬁ

andR-R. In general, the flux tubes would interact with each
other. However, in the Bogomol'nyi limit, there is no inter-
action between them. This can be understood through

investigation of the generalized string tension for an exotic

that the color-electric charges are givenm@; and —nQ,
for an integem. In this system, we get the generalized string
tension

(4.7

wherem; is simply replaced bynm;; . One finds that the
string tension(4.7) is proportional ton, which implies that

op=4mnv?,

al

ant form of the DGL Lagrangian. Here, the original dual
gauge symmetryU(1)]3 is extended tdU(1)]3,. This re-
placement makes further manipulation of the Lagrangian

a@nalogous to the U(1) case. We have found that the

ogomol’nyi limit is given by 3?=4\, and the string ten-
sion is calculated as,=4mnv? for a g-q pair with the
chargenQ; and —nQ; at the two ends. In this limit, the
masses of the dual gauge field and the monopole field be-
comeexactlythe same. It should be noted that we could see
the same relation with U(1) Abelian Higgs theory except for
the three different types of flux tube. To summarize, very
similar properties to those of the ANO vortex in Abelian
Higgs theory are observed when we see a single flux tube in

the interaction energy is zero. It is considered that this comeBGL theory, and the flux-tube solution can easily be ob-
from a balance of the propagation ranges of the dual gauggined if we pay attention to the Weyl symmetry in DGL

field and the monopole field sincag=m, . In the type-I or
type-Il vacuum, which is away from the Bogomol'nyi limit,

theory.
Finally, we would like to mention the relation between the

the interaction range of these fields lose its balance, and thgork in Ref.[11] and our study. If we replace the monopole
flux-tube interaction manifestly appears. The string tension isield and the parameters used jal] by x—+2x, 7

no longer proportional to. While an attractive force appears

—/2v, and\ —\/4, we get the same framework at the start-

between two parallel flux tubes in the type-I vacuum, the fluXing point, and the Bogomol'nyi limit is replaced byg3
tubes repel each other in the type-Il vacuum. Numerical in— 16\ —,3¢2=4\. The idea of the extension of dual gauge
vestigations of the interaction between two or more parallebymmetry based on Weyl symmetry in our case, however,
flux tubes of the same type in DGL theory are given in Refsgeems to be a simple way to reach the final expression for the

[17,18.

string tension, which can be applied straightforwardly to the

It is interesting to investigate what happens if two paraIIeI[U(l)]N—l dual Abelian Higgs theory reduced from Sy
flux tubes of different types are placed at a certain diStancﬁluodynamics.

apart[19]. Here, according to thgU(1)]3, dual gauge sym-

metry, there appear three different types of flux tube, such as

given by R-R, B-B, and G-G, so that these interactions
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