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Parton skewed distributions in the pion and quark-hadron duality
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Applying arguments based on the operator product expansion for a three-point correlator and relying on
quark-hadron duality, we derive an expression for the skewed~non-forward! parton distribution in the pion in
the case of a zero-skewedness parameterF z50

cup (X;t). We expect that our result is relevant for moderately large
momentum transfers 1&t&10 GeV2. In addition, we construct a purely phenomenological factorized model
for the same quantity in close analogy to Radyushkin’s model, originally proposed for skewed distributions of
quarks in the nucleon. Though the quark-hadron duality approach supports theoretically the factorized model,
the two models exhibit a different behavior in the parton momentum fractionX at any fixedt. The relevant
process to distinguish between the two options seems to be the WACS off the pion that measures~to leading
t/s order! the inverse moment̂X21& of the skewed distribution. Even after the inclusion of the first order
kinematic t/s corrections, the predictions for the cross section (ds/dt)(s,t) at c.m.s. scattering anglesq
530° and 90° differ by factors of 3.5–3.9 and 2.9–7.5, respectively, so that a discrimination appears possible.

PACS number~s!: 12.38.Lg, 12.38.Bx, 13.60.Fz, 14.40.Aq
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I. INTRODUCTORY REMARKS

Recently, Radyushkin@1# has argued that at moderate
large momentum transfert5(1210) GeV2, hadronic form
factors and wide-angle Compton scattering~WACS! ampli-
tudes are dominated by a soft mechanism correspondin
an overlap of soft wave functions. This analysis was p
formed in terms of universal nonforward parton densit
F(X;t), which accumulate the soft contribution in th
WACS case. These densities are obtained in thez50 limit
of the nonforward parton distributions1 ~NFPDs!, Fz(X;t),
introduced in@2,3#, and represent the simplest hybrid dist
bution interpolating between the usual parton densitiesf c(x)
and hadronic form factors. A simple factorized model f
F(X;t) in the proton was constructed in@1# using the well-
known Glück-Reya-Vogt parametrization@7# for f cuproton(x)
and assuming a Gaussian dependence on the transvers
mentumk' of the effective two-body soft light-cone wav
function C(x,k') of the proton.

In this paper, we perform a similar analysis relating to t
case of the nonforward parton densities in the pion. We sh
that the factorized model can be approximately justifi
within the operator product expansion~OPE! in conjunction
with QCD sum rules@8#.

As a first step towards a complete QCD sum-rule analy
we explore in this paper the so-called local quark-had
duality approximation~simply abbreviated as LD in the fol
lowing! @8–12# that was successfully applied to estima
various nonperturbative characteristics, such as had

*On leave of absence from the Institute for Nuclear Research
Nuclear Energy, 1784 Sofia, Bulgaria.

1
The NFPDs are similar to but not coinciding with the off-forwa

parton distributions~OFPDs! introduced by Ji in@4,5#; cf. the dis-
cussion in@3,6#.
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masses, leptonic widths, electromagnetic form factors
hadrons, etc.@10–17#. Note that our approach has the adva
tage of being simultaneously gauge and Lorentz invari
from the outset.

Within this framework, we are able to obtain a compa
expression for the NFPDs, likeFz50(X;t), in the form of an
overlap integral of the Drell-Yan-West type@18,19#, which
involves an effective two-body soft pion wave functio
C(x,k'), introduced earlier in@12#. We compare the LD
expression forFz50(X;t) with the corresponding factorize
ansatz and comment on the reliability of the LD approxim
tion.

Finally, an estimate of the leading contribution to WAC
off the pion is made for moderately large scattering ang
~in the c.m. frame!. We also discuss possible corrections
order ofO(t/s) at leading twistand show that new nonper
turbative quantities should be introduced in addition to
skewed parton densities. These new quantities are partic
y-moments of the same underlying double distributio
F(x,y;t).

The analysis of these moments, as well as an extensio
our approach to the nucleon case, will be done elsewher

The paper is organized as follows. In Sec. II we estab
our definitions of double distributions~DDs! for the pion
case. We derive their symmetry properties and relations
the corresponding NFPDs. In Sec. III the operator prod
expansion approach for the skewed distributions in the p
is discussed in connection with local duality. The predicti
for the distributionFz50(X;t) following from this approach,
is given in Sec. IV. The consistency of the LD result with t
general sum rule for the pion form factor is demonstrat
Section V deals with the modeling of the skewed distrib
tions, using a phenomenological parametrization for the
lence quark distribution in the pion. We demonstrate that
WACS process off the pion is very sensitive to the model

nd
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Fz50(X;t), especially to its smallX behavior. In Sec. VI we
discuss finiteO(t/s) corrections to the handbag contributio
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of the skewed distributions. Finally, in Sec. VII we furthe
discuss our results and draw our conclusions.
II. DOUBLE DISTRIBUTIONS IN THE PION; DEFINITIONS AND SUM RULES

First, we define double distributions in the pion in close analogy to the nucleon case@2,3# in terms of a nonforward matrix
element of a bilocal quark-antiquark operator on the light cone using, however, the most general decomposition~see also@20#!

^p~p8!uc̄~0!gmE~0,z;A!c~z!up~p!&uz250

5~p1p8!mE
0

1E
0

1

u~x1y<1!@e2 ix(pz)2 iy(rz)Fcup~x,y;t !2eix(pz)2 i ȳ(rz)F c̄up~x,y;t !#dxdy

1~p2p8!mE
0

1E
0

1

u~x1y<1!@e2 ix(pz)2 iy(rz)Gcup~x,y;t !2eix(pz)2 i ȳ(rz)Gc̄up~x,y;t !#dxdy

1 izmE
0

1E
0

1

u~x1y<1!@e2 ix(pz)2 iy(rz)Zcup~x,y;t !2eix(pz)2 i ȳ(rz)Zc̄up~x,y;t !#dxdy, ~1!
r
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wherer[p2p8 is the momentum transfer (r 2[2t,0) and
E(0,z;A)5P exp„ig*z

0dxmAm(x)… is the path-ordered gaug
string factor in the fundamental representation2 (Am

[(a51
8 taAm

a). Equation~1! corresponds to operator structur
of leading and next-to-leading twists~twist 2 and 3, respec
tively!.

Matrix elements of this type appear in the perturbat
QCD analysis of deeply virtual Compton scattering~DVCS!
processes@4,2#. One can actually prove in all orders of pe
turbation theory that the large-Q2 asymptotics of the scatter
ing amplitude can be represented in a factorized form w
the short-distance part calculated perturbatively~see, e.g.,
@22,3#!. The dynamics of large distances, which is main
nonperturbative, is in turn accumulated in the matrix e
ments of the type given by Eq.~1!.

The zm-term in Eq.~1! is of higher twist-3, that is, it will
produce a power-suppressed contribution (;1/Q2) in the
DVCS amplitude. Another two-body twist-3 part is produc
by the axial-vector matrix element

^p~p8!uc̄~0!gmg5E~0,z;A!c~z!up~p!&uz250

5par bzsemabsE
0

1E
0

1

u~x1y<1!

3@e2 ix(pz)2 iy(rz)Acup~x,y;t !

2eix(pz)2 i ȳ(rz)Ac̄up~x,y;t !#dxdy. ~2!

Because we neglect in this paper power-suppressed
rections, our main focus will be on theF-, G-distributions.

The parametrization of the nonforward matrix element
terms of DDs is natural and can be established, at leas

2Note that to leading-twist accuracy, the definition of the mat
element in Eq.~1! is independent of the choice of the contour co

necting the quark fieldsc̄(0),c(z) ~cf., e.g.,@21#!.
h
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perturbation theory, at any order ofas @2,3#. Just as in the
case of deep-inelastic scattering, DDs in Eq.~1! have a par-
ton interpretation:Fcup(x,y;t) is the amplitude to find an
active quark in the pion with momentum fractionsx andy of
the initial ~hadron! momentump and the momentum transfe
r, respectively.

Due to the conservation of the local vector current, t
DDs Gcup(x,y;t) obey a sum rule. Indeed, forz50 only the
first term in Eq.~1! should survive (r 2Þ0) and this implies

E
0

1E
0

1

u~x1y<1!@Gcup~x,y;t !2Gc̄up~x,y;t !#dxdy50.

~3!

Moreover, there are stronger sum rules:

E
0

1E
0

1

u~x1y<1!Gc,c̄up~x,y;t !dxdy50. ~4!

Indeed, using TP-invariance and complex conjugation of
matrix elements in Eqs.~1!,~2!, one can easily show that th
DDs introduced above are real-valued functions and sho
obey the symmetry relations

Fcup~x,12x2y;t !5Fcup~x,y;t !

Gcup~x,12x2y;t !52Gcup~x,y;t !
~5!

Zcup~x,12x2y;t !5Zcup~x,y;t !

Acup~x,12x2y;t !5Acup~x,y;t !,

which are a generalization of the ‘‘Mu¨nich symmetry’’ rela-
tions @23# in the case of the pion. Hence, the sum rules
coded in Eq.~4! are an obvious consequence of that symm
try for the DD Gcup(x,y;t).

Within the generalized Bjorken limit for DVCS, we hav
the relationsQ2,pq8@t,mp

2 and r i5zp @4,2#, where z
[Q2/2pq8 coincides with the Bjorken variable. Considerin
8-2
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z as an external parameter, one can introduce the NF
@2,3# Fz(X;t), with X5x1zy being the total fraction of the
momentum of the active parton, to read

F z
cup~X;t !5u~X>z!E

0

X̄/ z̄
Fcup~X2yz,y;t !dy

1u~X<z!E
0

X/z

Fcup~X2yz,y;t !dy. ~6!

Analogously, one can also define the ‘‘forward invisible
NFPDsG z

cup(X;t), Z z
cup(X;t), A z

cup(X;t).
Then the leading contribution of the handbag diagrams

Fig. 1 can be obtained in the form

Tmn~p,q,q8!5
1

2 (
c

ec
2S 2gmn1

1

p•q8
~pmqn81pnqm8 !D

3E
0

1

dXF 1

X2z1 i e
1

1

X2 i eG
3@~z22!„F z

c~X;t !1F z
c̄~X;t !…2z„G z

c~X;t !

1G z
c̄~X;t !…#. ~7!

Another process, described with the same handbag
grams, is the wide-angle Compton scattering~WACS!, re-
cently reexamined in papers@1,24# for the proton case. Now
the initial photon is also real (Q250), but t[r 2 is large
enough to ensure the light-cone dominance~see @1# for a
discussion of other contributions with subleadingO(t/s) be-
havior!. The contribution of large distances in this case w
be described by the same skewed distributions atz50, no-
tably

Fz50
cup ~X;t ![F cup~X;t !. ~8!

Of course, in this case one should use Eq.~7! with some care
because finitet-corrections to the hard part may become i
portant @15,1#. These t-corrections, which are within the
leading-twist approximation, are analogous to the targ
mass corrections in DIS which have led to the Nachtma
Georgi-Politzerj-scaling@25,26#.

As it was shown in Refs.@2,3#, DDs play a key role in
describing those processes in which nonforward matrix
ments are involved. In fact, many properties of the skew

FIG. 1. Diagrams contributing to the DVCS amplitude. T
blobs at the bottom correspond to DDs.
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distributions, like polynomiality@27,28#, symmetry proper-
ties @23,28#, etc., can be simply established using the integ
representations of the type of Eq.~6!.

However, DDs seem to have a more complicated str
ture. In fact, the question of possible singularities of the D
is still open. A pure perturbative analysis seems to yield D
without singularities@3#. However, DDs are by definition
nonperturbative objects and one may expect such singu
ties to appear in the real world. In the work of@28#, t-channel
meson-exchange contributions were considered and foun
produced-function type singularities. In the case of pio
DDs a dynamical mechanism was found@20#, based on the
effective chiral model which follows from the instanto
vacuum of QCD@29,30#.

Independently of whether or not these singularities rea
appear in the DDs, it is clear that the skewed distributio
which are certain integrals of the DDs, are more smoot
behaved functions. Thus, they seem to be more approp
for modeling.

III. OPE APPROACH TO THE SKEWED DISTRIBUTIONS

In this and the subsequent sections, we are going to s
the skewed distribution in the pion,F z

cup(X;t), within an
approach which is based on QCD sum rules@8#, with par-
ticular emphasis being placed on the casez50. As in the
proton case@4,5#, one can derive a sum rule connecting t
charge pion form factor with a certain integral of the NFP
~the zeroth moment!, namely,

Fp~ t !5(
c

ecE
0

1

@F z
cup~X;t !2F z

c̄up~X;t !#dX, ~9!

whereec is the electric charge of the active ‘‘c ’’-quark ~see
also@31#!. Indeed, Eq.~9! follows immediately from Eq.~1!
after taking the limitz50 and incorporating the sum rule fo
the DD, termedG in Eq. ~3!. It should be emphasized, how
ever, that for fixedzÞ0, the physical domains for the
t-variable on the left and the right hand side of Eq.~9! are
different. In fact, for the DVCS process, the limitt→0 is
unreachable@32#, i.e.,

t>tmin5
z2mp

2

12z
. ~10!

On the other hand, in the forward limit (z50, t50), a
reduction formula holds~see@4,2#!, and we have

Fz50
cup ~X;t50!5 f cup~X!. ~11!

Both, the form factor, as well as the parton distribution in t
middle region ofX, were thoroughly investigated within th
QCD sum-rule approach. In fact, for the pion form fact
Fp(t) it was shown that in the region of momentum tran
fers, t>1 GeV2, the so-called Feynman mechanism@33# is
capable to reproduce the experimental data@13,9# without
recourse to the hard part.

In this paper we shall adopt a similar philosophy and u
to derive the skewed distribution in the pion the concept
local quark-hadron duality@8–17# that was successfully ap
8-3
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plied to the calculation of various nonperturbative charac
istics, like hadron masses, leptonic widths, electromagn
form factors, etc.~for some recent applications, we refer
@15,12,16,17#!.

As usual in the QCD sum rule approach, let us consi
the three-point amplitude

Ramb
u ~p,p8;z!5 i 2E d4xE d4ye2 ipxeip8y

3^0uT$ j a
51

~x!ū~0!gmE~0,z;A!

3u~z! j b
5~y!%u0&, ~12!

wherej a
5(x)5d̄(x)g5gau(x) is the axial current with a non

zero projection on the pion state, so that

^0u j a
5~0!up1~p!&5 i f ppa , f p.133 MeV, ~13!

andz denotes a light-like coordinate (z250).
The correlator defined by Eq.~12! will be considered in

the Euclidean region forp,p8,r[p2p8. It gives contribu-
tions to different invariant form factors with tensor structur
proportional topa(p1p8)mpb8 , par mpb8 , gabr m , etc. For
the z50 case we shall project on a light-like direction v
nanbnm , wheren250, p1[(np), and r 1[(nr)50. The
advantage of this projector is that it projects out the lead
structure in the infinite momentum frame~IMF!, wherep1

→`, with r' fixed. This structure is also most directly re
lated to the one analyzed before in@9,34# by employing the
QCD sum-rule method to calculate the pion form factor.

Picking out the invariant amplitude of the leading stru
ture, we have

Ru~p2,p82,t;z!5
1

p2E0

`E
0

` ru
phys~s,s8,t;z!

~s2p2!~s82p82!
dsds81•••,

~14!

where the ellipsis denotes polynomials inp2,p82. The per-
turbative contribution toRu(p2,p82,t;z) ~which is the lead-
ing term of an OPE expansion in the deeply Euclidean reg
of the momentum invariants! can be written in the same form
as Eq.~14! with the obvious changeru

phys→ru
pert. Because of

asymptotic freedom, for larges and s8, ru
phys(s,s8)

;ru
pert(s,s8). However, for smalls,s8, the two spectral den

sities differ drastically from each other. Indeed,ru
phys con-

tains the pion doubled-function term

ru
p~s,s8,t,z!52p2f p

2 d (1)~s2mp
2 !d (1)~s82mp

2 !

3E
0

1

@e2 iX(pz)Fz50
uup ~X;t !

2eiX(pz)Fz50
ūup ~X;t !#dX, ~15!

whereas, in contrast,ru
pert(s,s8) is a smooth function for any

finite order of perturbation theory.
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Under the proviso of the local duality~LD! assumption,
one has thatru

p(s,s8) is dual toru
pert(s,s8) in an appropriate

duality interval, so that

1

p2E0

s0E
0

s0
ru

pert~s,s8!dsds85
1

p2E0

s0E
0

s0
ru

p~s,s8!dsds8.

~16!

Here the duality intervals0 corresponds to the effectiv
threshold of the higher excited states and the ‘‘continuum
in the channels with the quantum numbers of the axial c
rent.

The LD relation~16! is very natural within the QCD sum
rule approach@8#. In fact, the effective thresholds0 is fixed
by the ratio of the nonperturbative power corrections~the
condensate contributions! relative to the~leading! perturba-
tive term in the OPE for the correlator@cf. Eq. ~12!#. In what
follows, we shall use the value

s05s0
LD54p2f p

2 , ~17!

which follows from the LD prescription for the correlator o
two axial currents:

Pab~p!5 i E e2 ipx^0uT$ j a
51

~x! j b
5~0!%u0&d4x. ~18!

For the experimental value off p , we have s0
LD

>0.67 GeV2. This value is very close to the standard on
s0

SR'0.7 GeV2, that has been extracted from the direct QC
sum-rule approach for the 2-point correlator, Eq.~18!, in the
classical work of Ref.@8#, in determining the pion decay
constantf p .

The same duality interval was also obtained in the QC
sum-rule analysis of Refs.@13,9# of the charged pion form
factor at moderate momentum transferst'123 GeV2.
However, it was observed in@35# that for higher values oft,
the relative contribution of the condensate~power! correc-
tions increase, ensuing an increase of the extracted param
s0 as well. This situation corresponds to the so-called inf
red regime@36,15#, i.e., to the kinematical regime, where on
of the quarks carries most of the momentum of the init
hadron~current!. In this regime the underlying OPE serie
becomes badly convergent and should be resumed in s
way, e.g., by introducing nonlocal condensates^q̄(0)q(x)&,
^G(0)G(x)&, ^q̄(0)G(x)q(y)&, etc.@37,38#. Adopting a rea-
sonable model for the nonlocal condensates, it was sh
@35# that the form factorFp(t), extracted from such an im
proved approach, can describe the data up tot;10 GeV2 in
compliance with previous rough estimations@39,11#, accord-
ing to which the asymptotically leading hard-scattering co
tribution starts to become important beyondt*10 GeV2. As
discussed more fully in@35#, the corresponding threshol

s0
(3 GeV2<t<10 GeV2) in such a type of QCD sum-rule analys

was found to have approximately the standard value, quo
above.
8-4
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IV. LOCAL DUALITY PREDICTIONS FOR THE SKEWED
DISTRIBUTIONS IN THE PION

The one-loop contribution to the double spectral dens
can most easily be calculated using light-cone variables
frame where the initial momentump has no transverse com
ponents, i.e.,

p5H p1,p25
s

p1
,0'J ~19!

and the momentum transfer has no ‘‘plus’’ component~cf.
@12#!:

r 5H 0,r 25
s

p1
2

s81r'
2

p1
,r'J , k5$Xp1,k2,k'%.

~20!

Here,s,s8 are the invariant masses in the channels with p
quantum numbers,X is the total fraction of the longitudina
momentum carried by the quark entering the composite
tex, andk' is its transverse momentum.

Applying the Cutcosky rules~cf. Fig. 2a!, one can obtain
for the double spectral density of the ‘‘Ru’’-correlator @recall
Eq. ~14!# in leading order ofas

ru
pert~s,s8,t;z!5

3

pE0

1

e2 iX(pz)dXE dS s2
k'

2

XX̄
D

3dS s82
~k'2r'X̄!2

XX̄
D d2k' . ~21!

For the contribution at hand, the spectral constraint 0,X
,1 reflects the positivity of the energy of the struck a
spectator quark, respectively. In fact, this constraint ha
more general nature, discussed, for instance, in@3,5#.

Substituting Eq.~21! into the LD relation, provided by
Eq. ~16!, one can extract~by taking the Fourier transform!
the corresponding skewed distribution

FIG. 2. Typical Cutcosky cuts~dashed lines! for perturbative
diagrams in the OPE for the 3-point correlator of two hadron c
rents, involving a composite operator~crossed oval at the top!. The
left and right graphs correspond to theO(1) andO(as) contribu-
tions, respectively.
05401
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F z50,uup
LD ~X;t !5

3

4 f p
2 p3E QS s02

k'
2

XX̄
D

3QS s02
~k'2r'X̄!2

XX̄
D d2k' . ~22!

Analogously, one can deduce that, in leading order, the
lowing relations hold:

F z50,d̄up
LD

~X;t !5F z50,uup
LD ~X;t !,

F z50,ūup
LD

~X;t !5F z50,dup
LD ~X;t !50. ~23!

Equation ~22! can be recast in the form of an overla
integral of effective two-body soft light-cone wave function
of the incoming and outgoing pion:

F z50,uup
LD ~X;t !5E cLD~X,k'!cLD~X,k'2X̄r'!

d2k'

16p3
.

~24!

The explicit form of the effective wave functioncLD(x,k')
can be obtained, in particular, from the evaluation of t
2-point correlator, Eq.~18!, to read@12#

ceff
LD~X,k'!5

2A6

f p
QS s02

k'
2

XX̄
D . ~25!

Thus, the LD prescription reproduces an expression of
Drell-Yan-West type@18,19#. In a recent paper@24#, the clas-
sical Drell-Yan-West formula was used as a starting point
developing a phenomenological model for the form fact
and skewed distribution of the proton.

Carrying out the integration over the transverse mom
tum k' , we obtain from Eq.~24!

F uup
LD ~X;t !5

3

p3f p
2

QS X2
t

4s01t D s0XX̄FarccosA X̄t

X4s0

2A X̄t

X4s0
S 12

X̄t

X4s0
D G . ~26!

Note that theQ function in Eq.~26! is due to the correspond
ing abrupt behavior of the effective pion wave function~25!
dictated by local duality at leading order. It ensures that
correspondingX21-moment ofF uup

LD (X;t), which enters the
leading handbag expression for the WACS, is indeed fin
@cf. Eq. ~7!#. We expect that at next-to-leading~NLO! order
in as ~cf. Fig. 2b! of the LD-approach this property wil
remain intact. In fact, such a property is required by t
general considerations of the factorization theorem@22,3#.

For small momentum transferst, the form of the quark-
hadron duality will change~see the discussion below!. How-
ever, in a more realistic model for the effective wave fun
tion and/or skewed distribution, this property should
preserved as well.

-

8-5
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Taking the zero-orderX-moment ofF uup
LD (X;t) and incor-

porating the relations~23!, one can reproduce to leading
order accuracy the general sum rule, Eq.~9! ~at z50),

Fp
LD~ t !5E

0

1

F uup
LD ~X;t !dX, ~27!

where

Fp
LD~ t !512

116s0 /t

~114s0 /t !3/2
. ~28!

Actually, the explicit LD prediction for the pion form facto
was obtained earlier in@9,12#.

Thus, the concept of local duality provides us with no
trivial dynamical information about the form of the pio
wave function/skewed distribution, as well as about the
havior of the pion form factor at moderately large mome
tum transferst*0.6 GeV2. As we shall see in the next sec
tion, this form-factor prediction seems to be supported by
existing experimental data in this momentum region. Mo
over, due to the Ward identity, connecting the 3-point fun
tion, Eq. ~12!, and the 2-point function, Eq.~18!, the prop-
erty Fp(t50)51 is also preserved.3

On the other hand, it is well known that in the region
small momentum transfert, the quark-hadron duality is mor
complicated@40,9,41,15#. Thus, one should not overestima
the accuracy of Eq.~27! in the region oft<s0. In fact, the
derivative of Eq.~27! at zero momentum transfer is infinite
The reason is that in the kinematical regiont!up2u,up82u,
one has to include additional terms in the operator prod
expansion~OPE! corresponding to the situation in which th
current with small momentum transfer is placed at a la
distance. This leads to the notion of bilocal power corr
tions@40,9#. Taking them into account extends the validity
the theoretical QCD sum-rule prediction for the pion elect
magnetic form factor to the whole momentum transfer reg
t5(0 –3) GeV2, providing, in particular, the correct valu
of the pion charge radiusdF/dtu t50 @9#.

It is important to note that the same reasoning can
applied to a more complicated object, namely, the skew
distribution Fuup(X;t). In fact, the t50 limit of Eq. ~24!
gives

F uup
LD ~X;t50!5 f uup

LD ~X!56XX̄. ~29!

The parton distributionf uup
LD (X) is normalized to unity and

hence respects the same Ward identity, mentioned ab
Moreover, it turns out that its form coincides with th
asymptotic~leading-twist! distribution amplitude of the pion
wp

as(x). Thus, as a consequence, the~naive! quark-hadron
duality procedure fails to reproduce a reasonable vale
parton density in the pion. Actually, to reproduce the sm
t-behavior of the skewed distributionF uup

LD (X;t) within a

3This property was shown to be satisfied in a complete Q
sum-rule analysis for the pion form factor, performed in@34#.
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QCD sum rule approach is a rather complicated proble
Both, the notions of bilocal power corrections of leadin
twist @15#, as well as non-local condensates@37,38# should
be introduced. We shall address this interesting problem
forthcoming publication.

However, for large momentum transferst>1 GeV2, in
analogy to the form factor calculation, one may expect t
the LD result, given by Eq.~26!, should work.

V. MODELING THE SKEWED DISTRIBUTIONS

In order to get some experience of how reliable the L
strategy is, and to estimate how large the deviations in
region of small momentum transferst may be, we shall de-
rive in this section a factorized model for the skewed par
distribution in the pion atz50.

We shall argue that the factorized ansatz forFz50
uup (X;t),

following the approach of Ref.@1#, is of the form

F z50
uup;factorized~X;t !5 f uup~X!e2tX̄/2L2X, ~30!

which makes it apparent that it automatically satisfies
general ‘‘reduction relation’’~11! @4,2,3#. Note thatf uup(X)
is the valenceu-quark distribution in the pion.

The specific functional dependence of the exponentia
Eq. ~30! on t- and X- can be formally justified within the
OPE approach. In fact, if one replaces into the overlap f
mula ~24! the abrupt LD wave function,cLD(X,k'), given
by Eq. ~25!, by the popular Gaussian ansatz, proposed
@42,43#,

cGaussian~X,k'!5F~X!e2k'
2 /2L2XX̄, ~31!

one also arrives at such an exponential dependence. Ano
hint at an exponential dependence can be traced back to
double Borel transform of the 3-point correlator~12! when
employing the OPE. In fact, thet-dependence of the pertur
bative term~first diagram on the rhs of Fig. 3! and that of the
term involving a ~vector! nonlocal quark condensate~in-
serted into the bottom line of the second diagram on the
of the same figure! is described by one and the same fun
tion, namely,

F~ t,X![e2tX̄/(M1
2
1M2

2)X. ~32!

HereM1
2 andM2

2 are Borel parameters, corresponding top2

andp82, respectively, andX is the momentum fraction, flow-
ing through the upper lines. Other terms of the nonlo
OPE– not displayed in the figure—are more complicat
but numerically theirt dependence is similar.

FIG. 3. Operator product expansion of the 3-point correlator
two pion currents involving a composite operator.
8-6
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A Gaussian distribution form for the transverse mome
tum should not be surprising. It is in line with the Bor
transformation technique, as it was recently shown in@44#,
where effective Gaussian wave functions were derived.

The dimensional parameterL in Eq. ~30! should be de-
termined in correspondence with some averaged value
the Borel parameterŝM1,2

2 & for which the underlying sum
rule is saturated. Thus, one may expect that

L2'^M1,2
2 &'230.7 GeV251.4 GeV2, ~33!

where 0.7 GeV2 is the characteristic scale for the two-poi
pion correlator and its 3-point counterpart is twice larg
@35#.

On the other hand,L can be determined on a purely ph
nomenological ground by adopting the Glu¨ck-Reya-
Schienbein~GRSch! parametrization for the valence qua
distribution in the pion@47#:

x fuup~x!50.5645x0.504~110.153Ax!~12x!0.349, ~34!

which refers to a rather low normalization pointmLO
2

50.26 GeV2. According to our considerations, we shall u
in our modeling procedure a parton distribution evolved t
more appropriate scale:m2.1 GeV2. Taking into account
the leading order LD estimates forF z50

cup (X;t) @recall Eq.

~22!#, one is tempted to assume that the valenced̄ distribu-
tion is f d̄up(x). f uup(x) and that the sea quark contribution

FIG. 4. Predictions fortFp(t) based on the LD model, Eq.~28!,
~solid line! and the factorized GRSch-ansatz, Eqs.~34!, ~35!
~dashed line!. The experimental data are taken from@45,46#.
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are practically negligible.~This assumption seems indeed
be supported by experiment@48,47#.!

To fix the parameterL, we use sum-rule relation~9!,
related to the electromagnetic pion form factor, and a pr
erly weighted sum of quark and antiquark DDs. Taking in
account Eq.~23! andeu2ed51, one can write

Fp
factorized~ t !.E

0

1

dXF z50
uup;factorized~X;t !

5E
0

1

dX fuup~X!expS 2tX̄

2L2X
D , ~35!

which makes the dependence on the parameterL explicit.
The best agreement between our factorized~and OPE-
inspired! model~35! and the experimental data@45,46# in the
region of intermediate momentum transfer 1 GeV2<t
<10 GeV2, is realized for L0

2'1.7 GeV2 ~see Fig. 4!
which is not far away from the QCD sum-rule inspired val
L251.4 GeV2, given above.

Now, we are able to compare the two models in mo
detail. The results are presented in Fig. 5 for three differ
values of the momentum transfer:t51, 3, 10 GeV2. One
observes from this figure a quite different behavior over
momentum fractionX ~at fixed momentum transfert) for the
two displayed models, though the general tendency is
for higher t the distributions tend to shift their weight to
wards the upper end point of the interval 0,X,1. For the
sake of completeness we also present in the same figu
factorized model based on the naive LD distribution fun
tion, Eq.~29!. As one may expect, this option gives a som
what ‘‘smoother’’ behavior relative to the LD curve.

By construction, the zero-orderX-moment following from
the factorized ansatz forF z50

cup (X;t), @cf. Eq. ~35!#, fits the
data for the pion form factor rather well. On the other han
also the LD prediction for the pion form factor@Eq. ~28!#
complies with the data quite well. Thus, in order to disti
guish between the two models, one should look for ot
physical observables, which are more sensitive to the form
the distribution.

In principle, the form of the true distribution at givent can
be reconstructed having recourse to higher moments:^XN&
(N.0). In addition, the smallX-behavior ofF z50

cup (X;t) is
sensitive to the inverse moments^X2N&. Remarkably, a pos-
sibility to measure thêX21& is offered by the WACS pro-
z
FIG. 5. Predictions for the skewed distributions in the pion withz50, obtained with local duality~solid lines! and the factorized ansat
in conjunction with the GRSch parametrization~dotted lines!, and the~naive! LD parton distributions, Eq.~29! ~dashed lines!.
8-7
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BAKULEV, RUSKOV, GOEKE, AND STEFANIS PHYSICAL REVIEW D62 054018
cess in the pion case. Indeed, as we have mentioned ab
the leading part of the handbag contribution to the WA
amplitude is proportional to the integral

^X21&[R21
u ~ t !5E

0

1

Fz50
uup ~X;t !

dX

X
, ~36!

as it can be seen from Eq.~7! at z50.
In the case of unpolarized initial photons, the different

cross section reads

ds

dt
~s;t !5

4pa2

s2
~eu

21ed
2!2@R21

u ~ t !1R21
ū ~ t !#2, ~37!

where we are still neglecting finitet-corrections. As we see
from this equation, the inverse momentX21, or equivalently
R21

u (t), enters squared in the cross section formula. Th
one may expect an improved sensitivity of the WACS p
cess to different models of the skewed distribution in
pion ~as well as also in other hadrons!.

In Fig. 6 we show the differential cross sections of WAC
off a pion as functions of the squared center-of-mass ene
s for different values of the scattering angleq which is held
fixed. One infers from this figure that the two models p
sented above yield cross sections which differ from e
other by approximately one order of magnitude.

We remark that estimates for the pion Compton scatte
were also presented on phenomenological grounds in@49#.

As we have mentioned in the Introduction, in order
ensure light-cone dominance, one should consider a Co
ton process at momentum transferst*1 GeV2. Thus, the
t/s ratio may not be small. We recall in this context that
5sin2(q/2)s in the center-of-mass reference system, we
using, andq is the c.m.s. scattering angle.
e

f
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In such a situation, to make a more reliable comparis
with the experimental data, one should actually take i
account finitet/s corrections. This task will be undertaken
the next section, where we consider possible correction
order ofO(t/s) at the leading-twist level.

VI. FINITE O„tÕs… CORRECTIONS WITHIN THE
HANDBAG CONTRIBUTION

In order to derive theO(t/s) corrections at the leading
twist level, one can start from the contribution of the han
bag diagram in the coordinate representation~see,@15#!. Tak-
ing into account the parametrizations of the leading tw
non-forward matrix elements through DDs@Fc(x,y;t),
Gc(x,y;t), etc.#, via Eq.~1!, and performing a Fourier trans
formation, one arrives at the following expression for t
Compton scattering amplitude:

FIG. 6. Leading order predictions for the differential cross s
tion of WACS off a pion, plotted against the squared center-of-m
energys for different values of the~fixed! scattering angleq ~in the
center-of-mass reference system!. The solid line shows the resul
derived from local duality; the dashed line that following from th
GRSch-based model.
Tmn~p,q8,r !5 i (
c5u,d

ec
2E

0

1

dxE
0

1

dyu~1.x1y!Smbnr$~p1p8!r@Fc~x,y;t !1F c̄~x,y;t !#1~p2p8!r@Gc~x,y;t !

1Gc̄~x,y;t !#%@Sb~qs!2Sb~qu!#1 ‘‘A term’’ 1 ‘‘Z term,’’ ~38!
-

uce
where Smbnr[gmbgnr2gmngbr1gmrgnb and Sb(qs),
Sb(qu) are, respectively, the hard quark propagators for ths
andu channel handbag diagrams:

Sb~q!5
qb

q2
, qs5q1xp1yr, qu5q2xp1 ȳr .

~39!

For real Compton scattering, i.e.,q250, the denominators o
the quark propagators can be written in the form

qs
25xs2r 2y~12x2y!2xx̄mp

2

and qu
25xu2r 2y~12x2y!2xx̄mp

2 ~40!

and respect the ‘‘Mu¨nich symmetry,’’ Eq.~5!.
In principle, it would be legitimate to retain in the calcu

lation ~see also@15#! O(mp
2 ), O(r 2) terms as well, in anal-

ogy to target-mass effects in DIS that have lead toj-scaling
@25,26#. Here, in the pion case, themp

2 terms are not signifi-
cant and can be neglected compared tos, t, andu.

Suppose for a moment that we neglect thet-corrections to
the hard quark propagator. Then, we immediately reprod
the leading handbag contributionTmn(p,q8,r ), Eq. ~7!, with
the leading tensor structure2gmn1@1/(p•q8)#(pmqn8
8-8
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PARTON SKEWED DISTRIBUTIONS IN THE PION AND . . . PHYSICAL REVIEW D62 054018
1pnqm8 ) depending on the two Sudakov 4-vectorsp,q8. The
appearance of the non-forward~skewed! distributions
F z

cup(X;t), G z
cup(X;t), defined through the DDs

Fcup(x,y;t), Gcup(x,y;t), in Eq. ~6!, is in accordance with
the fact that in theformal t→0 limit, the denominators of the
quark propagators depend on the combinationX5x1zy
only, the latter being the total momentum fraction of t
active parton. Forz50, we have

F cup~X;t !5E
0

X̄
dyFcup~X,y;t !, etc. ~41!

In general, when tÞ0, the scattering amplitude
Tmn(p,q8,r ) should depend on three independent 4-vect
which may be chosen to bep,q8,r' , or p,q8,r , etc., and will
also include non-leading tensor structures.4 The denomina-
tors will also acquire an additional nontrivial dependence
the x- andy-fractions.

It is in practice more convenient to consider directly t
(t/s)-corrections to the cross section of WACS. For the c
of unpolarized initial photons, and summing over the pol
izations of the final one, we obtain5

ds

dt
~s;t !5

4pa2

s2
~eu

21ed
2!2H @R21

u ~ t !1R21
ū ~ t !#2

2
t

s
†@R21

u ~ t !1R21
ū ~ t !#22@R21

u ~ t !1R21
ū ~ t !#

3@R1
u~ t !1R1

ū~ t !#‡1OS t2

s2D J , ~42!

whereR1
u(t) is the corresponding firstX moment

^X1&[R1
u~ t !5E

0

1

dXXFz50
uup ~X;t !. ~43!

The first term in Eq.~42! reproduces the leading result fo
the cross section, i.e., Eq.~37!. It is worth remarking that the
leading t/s-corrections are expressed only through the m
ments of the skewed parton distributionFz50

uup (X;t). In con-
trast, the NLOt2/s2-corrections include all distributions in
troduced in Sec. II.

Let us now introduce they-moments of the DDs

F cup
(k) ~X;t ![E

0

X̄
dyykFcup~X,y;t ! ~44!

and analogously for the other DDs, namely,Gcup , Acup ,
Zcup . Then the skewed distributionF cup(X;t) becomes sim-
ply the zeroth-ordery-moment of the corresponding DD
Fcup(X,y;t). Moreover, one can show that th
t2/s2-corrections can be expressed by means of

4In fact ur'u;At.
5The SU(2) symmetry relations@cf. Eq. ~23!# have been taken

into account.
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X-moments of these new distributions. Obviously, the hig
y-moments, Eq.~44!, cannot be expressed in terms of th
simplest skewed distributionF cup(X;t). Thus, one is forced
to introduce new skewed distributions,F cup

(kÞ0)(X;t), though
these distributions refer to the same DD. The generaliza
of Eq. ~44! to non-zero skewedness,zÞ0, is straightforward
but we shall skip it here for the sake of brevity.

The evaluation of the differenty-moments is a separat
task which we shall not address in this paper. Thus, we
strict our analysis here to the first ordert/s-correction to the
cross section, Eq.~42!. The evaluation of the moment
R21

u (t), R1
u(t) is straightforward by virtue of Eqs.~26!, ~30!.

Figure 7 shows the plot of our LD predictions for th
differential cross section of WACS off a pion as a functio
of the squared center-of-mass energys for different values of
the fixed scattering angle~in the center-of-mass referenc
system! q. We expect that the prediction is reliable fort
*1 GeV2, as it was explained above. Notice here that
condition t*1 GeV2 for the kinematics with fixed scatter
ing angle q transforms into the condition s
*1/sin2(q/2) GeV2. For the minimal (30°) and maxima
(90°) values of the scattering angleq this means s
*15 GeV2 ands*2 GeV2, respectively.

As it turns out, the relative magnitude of th
t/s-correction to the LD-predicted skewed distributio
F uup

LD (X;t) is '4% for q530° and rises to 10–28 % forq
590°. On the other hand, in the case of the factorized
satz, F uup

factorized(X;t), the corrections are stronger~5% and
25–42 %, respectively!.

Still, even after taking into account thet/s-corrections,
the predictions for the cross section in the LD case, evalua
at q530° (90°) is 3.5–3.9~2.9–7.5! times smaller than
with the corresponding factorized ansatz. Hence, forthco
ing experiments at TJNAF@49# may be able to discriminate
between these two models. The most dramatic differenc
the two models appears, however, in the kinematical reg
q590° and fors>10 GeV2.

VII. DISCUSSION AND CONCLUSIONS

Let us start our discussion with some comments conce
ing the energy-momentum sum rule for the pion parton d

FIG. 7. Local duality~LD! predictions for the differential cross
section of WACS off a pion with the first order kinematict/s cor-
rections included as a function of the squared center-of-mass en
s for selected values of the fixed scattering angle~in center-of-mass
reference system! q.
8-9
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BAKULEV, RUSKOV, GOEKE, AND STEFANIS PHYSICAL REVIEW D62 054018
tributions, which we have rewritten in the form

E
0

1

dXX@F uup~X;t !1F d̄up~X;t !1F ūup~X;t !1F dup~X;t !

1F gup~X;t !#u t5051. ~45!

Here we have neglected the sea quark contribution of o
flavors andF gup(X;t) is the z50 version of the gluon
skewed distribution in the pion that can be defined in
analogous way to the quark case~cf., e.g.,@2#!.

With the leading order LD result~meaning zeroth order in
as), i.e., Eqs.~26!, ~23!, taken in thet50 limit, one observes
that the sum rule, Eq.~45!, is already saturated with th
quark contribution alone; the sea and gluon contributio
being exactly zero in this approximation.

In this way we demonstrate the consistency of the
approach with the energy-momentum sum rule, Eq.~45!. It is
interesting to mention that the energy-momentum sum rul
saturated by the quark contribution alone also within the
fective chiral model of Ref.@20#. Actually, their approach is
based on a low-energy effective action derived from the
stanton vacuum~see, @29,30# and references therein! and
states that the gluon distribution should be parametric
small,;( r̄/R̄)4, wherer̄'1/600 MeV21 is the average in-
stanton size andR̄ is the average distance betwe
instantons.6

We would like to emphasize once more that the LD a
proach described in Sec. III is, strictly speaking, not app
cable to the region of small momentum transferst
&0.6 GeV2 and should therefore be modified. For instan
using our factorized model forF cup(X;t), Eq. ~30!, which is
based on the GRSch parametrization of the quark distr
tions in the pion, one finds~at m2.1 GeV2) for the quark
contribution a value of;0.54 to the energy-momentum su
rule with some room for the gluons left over. Note also th
the contribution of the sea amounts only to;7% of the total
result.

In the region of applicability of our LD formula, Eq.~26!,
t*1 GeV2, we expect that the skewed distributions of t
sea and the gluons should be suppressed. Indeed, withi
LD approach they will both appear first at the level ofas
corrections.

Another point worth to be discussed concerns the esti
tion of the intrinsic transverse momentum of the pion. W
the explicit form of the effective two-body wave functio
ceff

LD(X,k'), given by Eq.~25!, one immediately obtains

^k'
2 &p

LD5
s0

LD

10
'~260 MeV!2. ~46!

6The quark skewed distribution in the pion has been studied in
instanton vacuum, but in a somewhat different approach, als
Ref. @50#.
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On the other hand, employing the factorized ansatz,
~30!, one gets for the valence quark distribution

^k'
2 &p

factorized5L2E
0

1

XX̄f uup~X!dX'~320 MeV!2,

~47!

which is in moderate agreement with the LD estimate.
both cases a reasonable value of the intrinsic average tr
verse momentum of the pion is obtained. This value turns
to be somewhat smaller than that proposed by Kroll a
collaborators@43#. The reason for this discrepancy may b
traced back to the fact that the LD two-body wave functio
Eq. ~25!, is an effective one and therefore includes not on
the lowest particle-number~quark-antiquark! Fock state, but
also an infinite tower of Fock states with additional soft g
ons ~cf. the discussion given in@12,44# and also@51#!.

As a result, ourceff
LD(X,k') can account for the full nor-

malization condition

E dXd2k'

16p3
ucp~X,k'!u251, ~48!

whereas the two-body wave function of Ref.@43# contributes
approximately 1/4 of it.

In conclusion, we have provided evidence that the lo
duality approach for the skewed distributionF z50

uup (X;t) in
the pion seems to support both, theoretically and phen
enologically, the so-called factorized model for the sa
quantity ~proposed in@1# for the case of the proton!. How-
ever, the two presented models show distinct behaviors
the longitudinal momentum fractionX for any fixed momen-
tum transfert.

Furthermore, we have shown in this paper that measu
the wide angle Compton scattering off the pion will provid
us with a very sensitive tool to test the form of the skew
distribution and, in particular, to discriminate between t
two models, proposed in this paper, and against others.
emphasize that our analysis was performed by taking
account the finitet/s corrections to the cross section o
WACS. Thus, we expect that our results may be relevant
an experimental check in the energy region ofs
.2 –15 GeV2 and a scattering angleq.30° –90° in the
c.m.s. which seems accessible to the TJNAF machine@49#.

In a forthcoming publication we plan to generalize the L
approach to the case of a non-zero skewedness paramez.

ACKNOWLEDGMENTS

This work was supported in part by RFFI Grant No. 0
02-16696, by the Heisenberg-Landau Program, and by
COSY Forschungsprojekt Ju¨lich/Goeke. We are grateful to
A. V. Radyushkin who inspired this work and to S. V
Mikhailov, M. Polyakov, and C. Weiss for fruitful discus
sions. Two of us~A.B. and R.R.! are thankful to Professor K
Goeke and his group for their warm hospitality at Bochu
University, where part of this work was done.

e
in
8-10



l.

B

l.

n
i-
-

h

ff,

G

g,

PARTON SKEWED DISTRIBUTIONS IN THE PION AND . . . PHYSICAL REVIEW D62 054018
@1# A. V. Radyushkin, Phys. Rev. D58, 114008~1998!.
@2# A. V. Radyushkin, Phys. Lett. B380, 417 ~1996!; 385, 333

~1996!.
@3# A. V. Radyushkin, Phys. Rev. D56, 5524~1997!.
@4# X. Ji, Phys. Rev. Lett.78, 610 ~1997!.
@5# X. Ji, Phys. Rev. D55, 7114~1997!.
@6# A. V. Radyushkin, Phys. Rev. D59, 014030~1999!.
@7# M. Gluck, E. Reya, and A. Vogt, Z. Phys. C67, 433 ~1995!.
@8# M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nuc

Phys.B147, 385 ~1979!; B147, 447 ~1979!.
@9# V. A. Nesterenko and A. V. Radyushkin, Phys. Lett.115B,

410 ~1982!.
@10# V. A. Nesterenko and A. V. Radyushkin, Phys. Lett.128B,

439 ~1983!.
@11# A. V. Radyushkin, Acta Phys. Pol. B15, 403 ~1984!.
@12# A. V. Radyushkin, Acta Phys. Pol. B26, 2067~1995!.
@13# B. L. Ioffe and A. V. Smilga, Phys. Lett.114B, 353 ~1982!.
@14# V. M. Belyaev and B. L. Ioffe, Zh. E´ksp. Teor. Fiz.83, 876

~1982! @Sov. Phys. JETP56, 493 ~1982!#.
@15# A. V. Radyushkin and R. Ruskov, Nucl. Phys.B481, 625

~1996!.
@16# V. M. Belyaev and A. V. Radyushkin, Phys. Lett. B359, 194

~1995!.
@17# I. V. Musatov and A. V. Radyushkin, Phys. Rev. D56, 2713

~1997!.
@18# S. D. Drell and T. M. Yan, Phys. Rev. Lett.24, 181 ~1970!.
@19# G. B. West, Phys. Rev. Lett.24, 1206~1970!.
@20# M. V. Polyakov and C. Weiss, Phys. Rev. D60, 114017

~1999!.
@21# A. V. Efremov and A. V. Radyushkin, Riv. Nuovo Cimento3,

1 ~1980!.
@22# J. C. Collins, L. Frankfurt, and M. Strikman, Phys. Rev. D56,

2982 ~1997!.
@23# L. Mankiewicz, G. Piller, and T. Weigl, Eur. Phys. J. C5, 119

~1998!.
@24# M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, Phys. Lett.

460, 204 ~1999!.
@25# O. Nachtmann, Nucl. Phys.B63, 237 ~1973!.
@26# H. Georgi and H. D. Politzer, Phys. Rev. D14, 1829~1976!.
@27# X. Ji, J. Phys. G24, 1181~1998!.
@28# A. V. Radyushkin, Phys. Lett. B449, 81 ~1999!.
@29# D. I. Diakonov and V. Yu. Petrov, Nucl. Phys.B272, 457

~1986!; LNPI Report No. 85-1053, 1985.
@30# D. I. Diakonov, V. Yu. Petrov, and P. V. Pobylitsa, Nuc

Phys.B306, 809 ~1988!.
05401
@31# P. Jain and J. P. Ralston, inProceedings of the Workshop o
Future Directions in Particle and Nuclear Physics at Mult
GeV Hadron Beam Facilities~Brookhaven National Labora
tory, Upton, 1993!, hep-ph/9305250.

@32# H. Abramowicz, L. Frankfurt, and M. Strikman, Surv. Hig
Energy Phys.11, 51 ~1997!.

@33# R. P. Feynman,Photon-Hadron Interactions~Benjamin, Read-
ing, MA, 1972!.

@34# V. A. Nesterenko and A. V. Radyushkin, Pis’ma Zh. E´ksp.
Teor. Fiz.39, 576 ~1984! @JETP Lett.39, 707 ~1984!#.

@35# A. P. Bakulev and A. V. Radyushkin, Phys. Lett. B271, 223
~1991!.

@36# A. V. Efremov and A. V. Radyushkin, Teor. Mat. Fiz.42, 97
~1980!.

@37# S. V. Mikhailov and A. V. Radyushkin, Pis’ma Zh. E´ksp.
Teor. Fiz.43, 551~1986! @JETP Lett.43, 712~1986!; Yad. Fiz.
49, 794 ~1989! @Sov. J. Nucl. Phys.49, 494 ~1989!#.

@38# S. V. Mikhailov and A. V. Radyushkin, Phys. Rev. D45, 1754
~1992!.

@39# N. Isgur and C. H. Llewellyn Smith, Phys. Rev. Lett.52, 1080
~1984!.

@40# I. I. Balitsky and A. V. Yung, Phys. Lett.129B, 328 ~1983!.
@41# V. M. Belyaev and Ya. I. Kogan, Int. J. Mod. Phys. A8, 153

~1993!.
@42# S. J. Brodsky, T. Huang, and G. P. Lepage, inParticles and

Fields 2, Proceedings of the Banff Summer Institute, Ban
Alberta, 1981, edited by A. Z. Capri and A. N. Kamal~Ple-
num, New York, 1983!.

@43# R. Jakob and P. Kroll, Phys. Lett. B315, 463 ~1993!; 319,
545~E! ~1993!; R. Jakob, P. Kroll, and M. Raulfs, J. Phys.
22, 45 ~1996!.

@44# A. Szczepaniak, A. Radyushkin, and C.-R. Ji, Phys. Rev. D57,
2813 ~1998!.

@45# C. N. Brownet al., Phys. Rev. D8, 92 ~1973!.
@46# C. J. Bebeket al., Phys. Rev. D13, 25 ~1976!; 17, 1693

~1978!.
@47# M. Glück, E. Reya, and I. Schienbein, Eur. Phys. J. C10, 313

~1999!.
@48# P. J. Sutton, A. D. Martin, R. G. Roberts, and W. J. Stirlin

Phys. Rev. D45, 2349~1992!.
@49# Andrei V. Afanasev, hep-ph/9808291.
@50# I. V. Anikin, A. E. Dorokhov, A. E. Maximov, L. Tomio, and

V. Vento, Report No. FTUV-99-31~Valencia U.!, 1999, 27,
hep-ph/9905332.

@51# F. Schlumpf, Phys. Rev. D50, 6895~1994!.
8-11


