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Parton skewed distributions in the pion and quark-hadron duality
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Applying arguments based on the operator product expansion for a three-point correlator and relying on
quark-hadron duality, we derive an expression for the skeiwed-forward parton distribution in the pion in
the case of a zero-skewedness paranﬁ{é]’o(x;t). We expect that our result is relevant for moderately large
momentum transfers2t<10 Ge\2. In addition, we construct a purely phenomenological factorized model
for the same quantity in close analogy to Radyushkin’s model, originally proposed for skewed distributions of
quarks in the nucleon. Though the quark-hadron duality approach supports theoretically the factorized model,
the two models exhibit a different behavior in the parton momentum fractian any fixedt. The relevant
process to distinguish between the two options seems to be the WACS off the pion that méadessting
t/s ordep the inverse momentX 1) of the skewed distribution. Even after the inclusion of the first order
kinematict/s corrections, the predictions for the cross sectidwr/dt)(s,t) at c.m.s. scattering angle$
=30° and 90° differ by factors of 3.5—-3.9 and 2.9-7.5, respectively, so that a discrimination appears possible.

PACS numbes): 12.38.Lg, 12.38.Bx, 13.60.Fz, 14.40.Aq

I. INTRODUCTORY REMARKS masses, leptonic widths, electromagnetic form factors of
hadrons, etd.10—17. Note that our approach has the advan-
Recently, Radyushkifl] has argued that at moderately tage of being simultaneously gauge and Lorentz invariant
large momentum transfer=(1—10) Ge\?, hadronic form  from the outset.
factors and wide-angle Compton scatteriVgACS) ampli- Within this framework, we are able to obtain a compact
tudes are dominated by a soft mechanism corresponding @xpression for the NFPDs, likE,_o(X;t), in the form of an
an overlap of soft wave functions. This analysis was peroverlap integral of the Drell-Yan-West tydé8,19, which
formed in terms of universal nonforward parton denSitiEancﬂveS an effective tWO-bOdy soft pion wave function
F(X;1), which accumulate the soft contribution in the y(x k ), introduced earlier if{12]. We compare the LD
WACS case. These densities are obtained infth® limit expression fotF,_o(X;t) with the corresponding factorized

of the nonforward parton distributioch§NFPDS, F/(Xit),  ansatz and comment on the reliability of the LD approxima-
introduced in[2,3], and represent the simplest hybrid distri- tion.

bution interpolating between the usual parton densftjgx)
and hadronic form factors. A simple factorized model for
F(X;t) in the proton was constructed ji] using the well-

Finally, an estimate of the leading contribution to WACS
off the pion is made for moderately large scattering angles

known Glick-Reya-Vogt parametrizatiof¥] for f yiproor ) (in the c.m. framg We also discuss possible corrections of

and assuming a Gaussian dependence on the transverse rﬁgjer ofO(t/s) at leading twistand show that new nonper-

mentumk, of the effective two-body soft light-cone wave urbative quantities should be introduced in addition to the
function \If(x k,) of the proton skewed parton densities. These new quantities are particular
s N .

In this paper, we perform a similar analysis relating to they-moments of the same underlying double distributions
case of the nonforward parton densities in the pion. We shol (%Y:1)- _ _
that the factorized model can be approximately justified The analysis of these moments, as well as an extension of
within the operator product expansi¢®@PB in conjunction  OUr approach to the nucleon case, will be done elsewhere.
with QCD sum ruleg8]. The paper is organized as follows. In Sec. Il we establish
As a first step towards a complete QCD sum-rule analysisQur definitions of double distributionéDDs) for the pion
we explore in this paper the so-called local quark-hadrorcase. We derive their symmetry properties and relations to
duality approximation(simply abbreviated as LD in the fol- the corresponding NFPDs. In Sec. Ill the operator product
lowing) [8-12 that was successfully applied to estimate expansion approach for the skewed distributions in the pion
various nonperturbative characteristics, such as hadrois discussed in connection with local duality. The prediction
for the distributionF;_(X;t) following from this approach,
is given in Sec. IV. The consistency of the LD result with the
*On leave of absence from the Institute for Nuclear Research angeneral sum rule for the pion form factor is demonstrated.
Nluclear Energy, 1784 Sofia, Bulgaria. Section V deals with the modeling of the skewed distribu-
The NFPDs are similar to but not coinciding with the off-forward tions, using a phenomenological parametrization for the va-
parton distribution§OFPDS$ introduced by Ji inf4,5]; cf. the dis-  lence quark distribution in the pion. We demonstrate that the
cussion in[3,6]. WACS process off the pion is very sensitive to the model for
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Fr-o(X;t), especially to its smalK behavior. In Sec. VI we of the skewed distributions. Finally, in Sec. VIl we further
discuss finited(t/s) corrections to the handbag contribution discuss our results and draw our conclusions.

II. DOUBLE DISTRIBUTIONS IN THE PION; DEFINITIONS AND SUM RULES

First, we define double distributions in the pion in close analogy to the nucleorfZ,8é terms of a nonforward matrix
element of a bilocal quark-antiquark operator on the light cone using, however, the most general decontpesits®20])

(m(p")]¥(0)y,E(0Z;A) ()| 7(P))] =0

11 X . . .
=(p+ p/)“fo fo O(x+y<1)[e XPA-VIIE  (x,y;t)—eXPA-VIDEL (x,y;t)]dxdy
11 . . . S
+(p—p’)Mf0 fo O(x+y<1)[e XP-NAG  _(x,y;t)—eXPI=VIAG, (x,y;t)]dxdy

11 . . . .
+ izygfO fo O(x+y<1)[e XPA=WIAZ . (x,y;t)—eXP=WIDZ o (x y;t)]dxdy, 1)

wherer=p—p’ is the momentum transfer{=—t<0) and  perturbation theory, at any order ef, [2,3]. Just as in the
E(0z;A)=P exp(igf‘z)dxMAM(x)) is the path-ordered gauge case of deep-inelastic scattering, DDs in EL).have a par-
string factor in the fundamental representa%io(lAM ton interpretation:F  .(x,y;t) is the amplitude to find an
=35_t,A%). Equation(1) corresponds to operator structures active quark in the pion with momentum fractionandy of
of leading and next-to-leading twistswvist 2 and 3, respec- the initial (hadron momentunp and the momentum transfer
tively). r, respectively.

Matrix elements of this type appear in the perturbative Due to the conservation of the local vector current, the
QCD analysis of deeply virtual Compton scatteriii/CS)  DDs G .(x,y;t) obey a sum rule. Indeed, far=0 only the
processe$d,2]. One can actually prove in all orders of per- first term in Eq.(1) should survive (*#0) and this implies
turbation theory that the larg®? asymptotics of the scatter- 11
ing amplitude can be represented in a factorized form with j f O(x+Y=<1)[G,(X,y;t) = Gyj.(x,y;t) Jdxdy=0.
the short-distance part calculated perturbativedge, e.g., 0Jo
[22,3]). The dynamics of large distances, which is mainly 3
nonperturbative, is in turn accumulated in the matrix ele-
ments of the type given by Eql).

Thez,-term in Eq.(1) is of higher twist-3, that is, it will 171
produce a power-suppressed contributien1(Q?) in the J f O(X+y<1)G, yi-(X,y;t)dxdy=0. 4)
DVCS amplitude. Another two-body twist-3 part is produced 070
by the axial-vector matrix element

Moreover, there are stronger sum rules:

Indeed, using TP-invariance and complex conjugation of the
= _ matrix elements in Eqg1),(2), one can easily show that the
(m(p")]4(0)y,ysE(0.Z;A) ¢(2)| ()| 2-0 DDs introduced above are real-valued functions and should

101 obey the symmetry relations
=Pof BZ5€ naBo O(x+y=<1
Pof pZo€pap fo fo (x+y=<1)

Fya(X1=X=y;t)=F  -(Xy;t)

x[e X(PD=Iy(DA  (x y:t
[ B (XY Gyr(X,1=X=y;1) = = Gy (X,y;1)
—eX(PA-IYIDAL (x y:t)]dxdy. 2 ®
s=(%Y:t) Jdxdy @ Zy (X, 1=X=Yit) =Z 2 (X,Y;1)
Because we neglect in this paper power-suppressed cor- VN .
rections, our main focus will be on the, G-distributions. Apla(X%1=X=Y D= Agia(Xy3t),
The parametrization of the nonforward matrix element inwhich are a generalization of the “lMich symmetry” rela-
terms of DDs is natural and can be established, at least iﬂons [23] in the case of the pion. Hence, the sum rules en-
coded in Eq(4) are an obvious consequence of that symme-
try for the DD G (X,Y;t).
Note that to leading-twist accuracy, the definition of the matrix ~ Within the generalized Bjorken limit for DVCS, we have
element in Eq(1) is independent of the choice of the contour con- the relations Qz,pq’>t,m72T and rj=¢p [4,2], where {
necting the quark fieldg(0),¥(z) (cf., e.g.,[21]). =Q?/2pq’ coincides with the Bjorken variable. Considering
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distributions, like polynomiality{27,28, symmetry proper-
ties[23,29, etc., can be simply established using the integral
representations of the type of E®).

However, DDs seem to have a more complicated struc-
ture. In fact, the question of possible singularities of the DDs
is still open. A pure perturbative analysis seems to yield DDs
without singularities[3]. However, DDs are by definition
nonperturbative objects and one may expect such singulari-
ties to appear in the real world. In the work[@8], t-channel
meson-exchange contributions were considered and found to

FIG. 1. Diagrams contributing to the DVCS amplitude. The produce §-function type singularities. In the case of pion

blobs at the bottom correspond to DDs.

DDs a dynamical mechanism was fouffD], based on the
effective chiral model which follows from the instanton

{ as an external parameter, one can introduce the NFPBgcuum of QCD[29,30.

[2,3] F,(X;t), with X=x+ {y being the total fraction of the
momentum of the active parton, to read

YT N — Y/? o .

XI¢
+9(X$§)fO Fy-(X=ygyt)dy. (6)

Independently of whether or not these singularities really
appear in the DDs, it is clear that the skewed distributions,
which are certain integrals of the DDs, are more smoothly
behaved functions. Thus, they seem to be more appropriate
for modeling.

Ill. OPE APPROACH TO THE SKEWED DISTRIBUTIONS

In this and the subsequent sections, we are going to study

Analogously, one can also define the “forward invisible” the skewed distribution in the pio"(X;t), within an

NFPDsG/7(X;t), Z/7(X;t), AY7(X;1).

approach which is based on QCD sum rul8% with par-

Then the leading contribution of the handbag diagrams irficular emphasis being placed on the cgse0. As in the

Fig. 1 can be obtained in the form

1 1
A 2 ’ ’
T,.(p.9.9 )—5%‘, ew(—g#ﬁ —p_q,(pﬂqy+pyq#))

XJ'ldX 1 + !
0 X—={(+ie X-—ie

X[({=2)(FLUX )+ FUX )= LG LX)

+GUX0)]. (7)

Another process, described with the same handbag di

grams, is the wide-angle Compton scatterivgACS), re-
cently reexamined in papef&,24] for the proton case. Now
the initial photon is also real@?=0), butt=r? is large
enough to ensure the light-cone dominarisee[1] for a
discussion of other contributions with subleadifgt/s) be-

havior). The contribution of large distances in this case will

be described by the same skewed distribution§=a0, no-
tably
FX0=FUm(X:0). ®)

Of course, in this case one should use &gwith some care

proton casd4,5], one can derive a sum rule connecting the
charge pion form factor with a certain integral of the NFPD
(the zeroth momeint namely,

Fw(t)=% e,l,jol[]:gf\ﬂ(x;t)—f?W(X;t)]dX, 9

wheree,, is the electric charge of the activa)”-quark (see
also[31]). Indeed, Eq(9) follows immediately from Eq(1)
after taking the limiz=0 and incorporating the sum rule for
the DD, termeds in Eq. (3). It should be emphasized, how-
ever, that for fixed{#0, the physical domains for the
t-variable on the left and the right hand side of E9). are

Fifferent. In fact, for the DVCS process, the lintit>0 is

unreachabl¢32], i.e.,
§2m2

-7 (10

==

On the other hand, in the forward limig €0, t=0), a
reduction formula hold¢see[4,2]), and we have
FUXt=0) =1 4y (X). (11)

Both, the form factor, as well as the parton distribution in the
middle region ofX, were thoroughly investigated within the

because finité-corrections to the hard part may become im-QCD sum-rule approach. In fact, for the pion form factor
portant [15,1]. Theset-corrections, which are within the F_(t) it was shown that in the region of momentum trans-
leading-twist approximation, are analogous to the targetfers,t=1 Ge\?, the so-called Feynman mechani§g8] is
mass corrections in DIS which have led to the Nachtmanneapable to reproduce the experimental ddt3,9] without
Georgi-Politzeré-scaling[ 25,26 recourse to the hard part.

As it was shown in Refg.2,3], DDs play a key role in In this paper we shall adopt a similar philosophy and use
describing those processes in which nonforward matrix eleto derive the skewed distribution in the pion the concept of
ments are involved. In fact, many properties of the skewedocal quark-hadron duality8—17] that was successfully ap-
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plied to the calculation of various nonperturbative character- Under the proviso of the local dualif. D) assumption,
istics, like hadron masses, leptonic widths, electromagnetione has thap[(s,s’) is dual top®'{(s,s’) in an appropriate
form factors, etc(for some recent applications, we refer to duality interval, so that
[15,12,16,17).
As usual in the QCD sum rule approach, let us consider
. . 1 (so(so . 1 (so(so
the three-point amplitude - ph¥(s,s")dsds =— py(s,s’)dsds.
m<Jo Jo m<Jo Jo

2
| e (16)
Rzﬂﬁ(p,p’;z)zﬁf d4xf diye PxeiPy
Here the duality intervals, corresponds to the effective

><<O|T{jz+(x)ﬁ(0) Y.E(0.Z;A) threshold of the higher excited states and the “continuum”
- in the channels with the quantum numbers of the axial cur-
Xu(2)j3(y)}0), (12 rent.

The LD relation(16) is very natural within the QCD sum-
Whereji(x)zd(x) Ys57.U(X) is the axial current with a non- rule approachi8]. In fact, the effective threshols, is fixed
zero projection on the pion state, so that by the ratio of the nonperturbative power correctidtizse
condensate contributionselative to the(leading perturba-
(0|j2(0)|77+(p)>=if,7pa, f_=~133 MeV, (13 tive term in the OPE for the correlatfef. Eqg. (12)]. In what
follows, we shall use the value

andz denotes a light-like coordinate{=0). b 5
The correlator defined by Eq12) will be considered in So=Sg =47f2, 17

the Euclidean region fop,p’,r=p—p’. It gives contribu-

tions to different invariant form factors with tensor structureswhich follows from the LD prescription for the correlator of

proportional topa(p+p’)Mp;, parMp’B, Japl ., €tc. For  two axial currents:

the {=0 case we shall project on a light-like direction via

n,ngn,, wheren?=0, p*=(np), andr*=(nr)=0. The _ N

advantage of this projector is that it projects out the leading Haﬁ(p)=if e PXOIT{jY (x)j3(0)}0)d*x. (18)

structure in the infinite momentum franggMF), wherep™

—oo, with r, fixed. This structure is also most directly re-

. LD
lated to the one analyzed before[®,34] by employing the Eor the ~experimental value off,, we have s;
QCD sum-rule method to calculate the pion form factor. =0.67 Ge\f. This value is very close to the standard one,

Picking out the invariant amplitude of the leading struc-So ~0-7 GeV, that has been extracted from the direct QCD

ture, we have sum-rule approach for the 2-point correlator, EL), in the
classical work of Ref[8], in determining the pion decay
1 (= (o pphys(s s't:2) constantf ... o . -
R,(p%p'2tz)= _f f 4 T dsdE+t-- -, The same duality interval was also obtained in the QCD
w?Jo Jo (s—p?)(s'—p'?) sum-rule analysis of Ref$13,9] of the charged pion form

(14 factor at moderate momentum transfars1—3 Gel\~.
However, it was observed i85] that for higher values dof,

where the ellipsis denotes polynomialsp,p’2. The per- the relative contribution of the condensdfwel correc-
turbative contribution tdR,(p?,p’?,t;z) (which is the lead- tions increase, ensuing an increase of the extracted parameter
ing term of an OPE expansion in the deeply Euclidean regiois, as well. This situation corresponds to the so-called infra-
of the momentum invariankgan be written in the same form red regimg 36,15, i.e., to the kinematical regime, where one
as Eq.(14) with the obvious changgP™*— pP". Because of of the quarks carries most of the momentum of the initial
asymptotic freedom, for larges and s’, pghys(s,s’) hadron(curren}. In this regime the underlying OPE series
~pPe{(s,s’). However, for smalk,s’, the two spectral den- becomes badly convergent and should be resumed in some

sities differ drastically from each other. Indegg/¥* con-  way, e.g., by introducing nonlocal condensate0)q(x)),

tains the pion doublé-function term (G(0)G(x)), (q(0)G(x)a(y)), etc.[37,38. Adopting a rea-
sonable model for the nonlocal condensates, it was shown
p(s,8'1,2)=2m?f2 6 (s—m2) 6(P)(s' —m?2) [35] that the form factofF .(t), extracted from such an im-
proved approach, can describe the data upt@0 Ge\? in
> fl[e_ix(pz)fuh (X:t) compliance with previous rough estimatidi@®,11], accord-
0 g=0tm ing to which the asymptotically leading hard-scattering con-

. _ tribution starts to become important beyarzl10 Ge\?. As
—e'X(pZ)f?L”O(X;t)]dX, (150  discussed more fully if35], the corresponding threshold
s(3 GeV=t=10 GeV) i g ch a type of QCD sum-rule analysis
whereas, in contraspﬂerks,s’) is a smooth function for any was found to have approximately the standard value, quoted
finite order of perturbation theory. above.
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k?
Sh— —
% XX

3
Fi2ou (X§t)=WJ@

(ki_

r, X)2
X0 sO—X—f))dzki. (22)

Analogously, one can deduce that, in leading order, the fol-
lowing relations hold:

FIG. 2. Typical Cutcosky cut¢dashed linesfor perturbative 5 0d| (Xit)=F 2oy (X:1),
diagrams in the OPE for the 3-point correlator of two hadron cur-
rents, involving a composite operat@rossed oval at the tppThe g Ou‘ (X:;t)= ~7:g odlm (X:t)=0. (23)

left and right graphs correspond to t&1) andO(«s) contribu-

tions, respectively. Equation (22) can be recast in the form of an overlap

integral of effective two-body soft light-cone wave functions

IV. LOCAL DUALITY PREDICTIONS FOR THE SKEWED of the incoming and outgoing pion:

DISTRIBUTIONS IN THE PION

. . . 2

The one-loop contribution to the double spectral density LD LD LD dok,
can most easily be calculated using light-cone variables in a FmouAX0= | (X KX K, = Xri)mws'
frame where the initial momentumhas no transverse com- (24)
ponents, i.e.,

The explicit form of the effective wave functiop°(x,k )
} can be obtained, in particular, from the evaluation of the

p= [ ptp = —.0, (199  2-point correlator, Eq(18), to read[12]

2\6 k?
Yer(X.ki)= f—[( So~ X—Y) (25)

ks

and the momentum transfer has no “plus” componésfit
[12]):
Thus, the LD prescription reproduces an expression of the
s s4r2 Drell-Yan-West typd18,19. In a recent papd24], the clas-
r= [ Or =——— ,U] . k={Xp" .k Kk} sical Drell-Yan-West formula was used as a starting point for
p developing a phenomenological model for the form factors
(200 and skewed distribution of the proton.
Carrying out the integration over the transverse momen-
Here,s,s’ are the invariant masses in the channels with piortumk, , we obtain from Eq(24)
guantum numbersX is the total fraction of the longitudinal

momentum carried by the quark entering the composite ver- LD Xt
tex, andk, is its transverse momentum. A X)=—50| X~ SpXX| arcco
. . . m3f 45+t X4s,
Applying the Cutcosky rule¢cf. Fig. 2a, one can obtain m
for the double spectral density of thdr|;”-correlator[recall Xt Xt
Eg. (14)] in leading order ofag - \/E( 1— As ) (26)
0 0
3 (T k? Note that the® function in Eq.(26) is due to the correspond-
e o 1. Cix 1 g. pon
(ss'.t:2) f e (pz)dxf 5( ST _> ing abrupt behavior of the effective pion wave functi@b)

dictated by local duality at leading order. It ensures that the

corresponding< ~*-moment of 7, (X;t), which enters the
d’k,. (21)  |eading handbag expression for the WACS, is indeed finite

[cf. Eq.(7)]. We expect that at next-to-leadibLO) order

in ag (cf. Fig. 2b of the LD-approach this property will
For the contribution at hand, the spectral constraiatX)  remain intact. In fact, such a property is required by the
<1 reflects the positivity of the energy of the struck andgeneral considerations of the factorization theofé3).
spectator quark, respectively. In fact, this constraint has a For small momentum transfets the form of the quark-
more general nature, discussed, for instancé3 ;. hadron duality will changésee the discussion belpwHow-

Substituting Eq.(21) into the LD relation, provided by ever, in a more realistic model for the effective wave func-

Eqg. (16), one can extractby taking the Fourier transform tion and/or skewed distribution, this property should be
the corresponding skewed distribution preserved as well.

!

k, —r, X)2
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Taking the zero-ordex-moment of 7, (X;t) and incor-

porating the relation$23), one can reproduce to leading-
order accuracy the general sum rule, E&). (at {=0),
1 =, rt , o+
FP(t)= f Fio(X;t)dX, (27)
0
FIG. 3. Operator product expansion of the 3-point correlator of
where two pion currents involving a composite operator.
D 1+6sy/t QCD sum rule approach is a rather complicated problem.
Fa (t):1_—(1+4s ez (28 Both, the notions of bilocal power corrections of leading
0

twist [15], as well as non-local condensa{&¥,38 should
be introduced. We shall address this interesting problem in a
forthcoming publication.

However, for large momentum transfers1 Ge\?, in
analogy to the form factor calculation, one may expect that
the LD result, given by Eq(26), should work.

Actually, the explicit LD prediction for the pion form factor
was obtained earlier if9,12].

Thus, the concept of local duality provides us with non-
trivial dynamical information about the form of the pion
wave function/skewed distribution, as well as about the be
havior of the pion form factor at moderately large momen-
tum transferd=0.6 Ge\?. As we shall see in the next sec- V. MODELING THE SKEWED DISTRIBUTIONS
tion, this form-factor prediction seems to be supported by the

existing experimental data in this momentum region. More- In order to get some experience of how reliable the LD
over, due to the Ward identity, connecting the 3-point fur]C_strategy is, and to estimate how large the deviations in the

. . . region of small momentum transfersnay be, we shall de-
tion, Eq.(12), and the 2-paint function, Eq18), the prop- rive in this section a factorized model for the skewed parton
erty F_(t=0)=1 is also preservet.

. . . distribution in the pion at=0.

On the other hand, it is well known that in the region of . oo,
small momentum transféy the quark-hadron duality is more f "\Ne. Sh?fl]l argue thar: tf}eRfacltorl_zedf ?r? s?tz Rjt‘)(x't)'
complicated 40,9,41,15. Thus, one should not overestimate ollowing the approach of Refl], is of the form
the accuracy of Eq(27) in the region oft<s,. In fact, the
derivative of Eq.(27) at zero momentum transfer is infinite.
The reason is that in the kinematical regib|p?[,|p’?|,

one has to include additional terms in the operator producghICh makes it apparent that it automatically satisfies the

. : L T . eneral “reduction relation’(11) [4,2,3. Note thatf ,(X)
expansionNOPE) corresponding to the situation in which the is the valencas-quark distribution in the pion.

current with small momentum transfer is placed at a large The specific functional dependence of the exponential in
distance. This leads to the notion of bilocal power correc-

tions[40,9]. Taking them into account extends the validity of Eg. (30) on t- and X- can be formally justified within the

i L . OPE approach. In fact, if one replaces into the overlap for-
the theqreucal QCD sum-rule prediction for the pion elect.ro-mula (24) the abrupt LD wave functiong(X,k, ), given
magnetic form factor to the whole momentum transfer regio

t=(0-3) GeV, providing, in particular, the correct value %XZE%J (25), by the popular Gaussian ansatz, proposed in

of the pion charge radiuvdF/dt|,_ [9].

It is important to note that the same reasoning can be
applied to a more complicated object, namely, the skewed
distribution 7, -(X;t). In fact, thet=0 limit of Eq. (24)
gives

fElzwafactorizectX;t) — fu‘w(x)eftflmzx, (30)

,#Gaussia(uxi kL) — q)(x)efkflezxy, (31)

one also arrives at such an exponential dependence. Another

hint at an exponential dependence can be traced back to the

VP IN- double Borel transform of the 3-point correlatd2) when
Fua(Xt=0)=fz(X)=6XX. (29 employing the OPE. In fact, thedependence of the pertur-
o ) ) ) bative term(first diagram on the rhs of Fig) &nd that of the

The parton distributiorf ;{’ (X) is normalized to unity and o, involving a (vectod nonlocal quark condensatén-

hence respects the same Ward identity, mentioned aboveete into the bottom line of the second diagram on the rhs

Moreover, it turns out that its form coincides with the ot ihe same figureis described by one and the same func-
asymptotic(leading-twis} distribution amplitude of the pion i namely

©2(x). Thus, as a consequence, ttraive quark-hadron
duality procedure fails to reproduce a reasonable valence — a—tXI(M2+M2)X

o . P(t,X)=e 1TV, (32
parton density in the pion. Actually, to reproduce the small

t-behavior of the skewed distributiosf ;(X;t) within a HereM?2 and M2 are Borel parameters, correspondingpfo
andp’?, respectively, anX is the momentum fraction, flow-
ing through the upper lines. Other terms of the nonlocal
3This property was shown to be satisfied in a complete QCDOPE— not displayed in the figure—are more complicated,
sum-rule analysis for the pion form factor, performed 34]. but numerically theiit dependence is similar.
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1 are practically negligible(This assumption seems indeed to
be supported by experimef#8,47.)
2

0.a] tF(t)[GeV7] To fix the parameter\, we use sum-rule relatiof9),
related to the electromagnetic pion form factor, and a prop-

0.6 erly weighted sum of quark and antiquark DDs. Taking into
account Eq(23) ande,—ey=1, one can write

0.4

. 1 e
o I:f;ictorlze(tt)2 fo dezlfo’faCtonze(tX;t)

0 2 4 3 8 10 =J1de (X)eXp( —tY) (35
t [GeV?] o 242X’

FIG. 4. Predictions fotF .(t) based on the LD model, Eq8), which makes the dependence on the paraméataxplicit.
(solid Iim_e) and the fa_ctorized GRSch-ansatz, Eq84), (35 The best agreement between our factorizesd OPE-
(dashed ling The experimental data are taken fr¢Ab,46]. inspired model(35) and the experimental dafd5,46 in the
region of intermediate momentum transfer 1 GeVY
<10 Ge\?, is realized forA3~1.7 GeV (see Fig. 4
which is not far away from the QCD sum-rule inspired value
A?=1.4 GeV, given above.

Now, we are able to compare the two models in more
gfetail. The results are presented in Fig. 5 for three different
values of the momentum transfer=1, 3, 10 GeV. One
observes from this figure a quite different behavior over the
momentum fractiorX (at fixed momentum transfej for the
two displayed models, though the general tendency is that
for highert the distributions tend to shift their weight to-

i - . wards the upper end point of the intervakX<1. For the
where 0.7 GeY is the characteristic scale for the two-point sake of completeness we also present in the same figure, a

pion correlator and its 3-point counterpart is twice largerty torized model based on the naive LD distribution func-

A Gaussian distribution form for the transverse momen
tum should not be surprising. It is in line with the Borel
transformation technique, as it was recently showih4i],
where effective Gaussian wave functions were derived.

The dimensional parametér in Eq. (30) should be de-
termined in correspondence with some averaged values
the Borel parameter{sMiZ) for which the underlying sum
rule is saturated. Thus, one may expect that

A2=(M2)~2x0.7 GeVP=1.4 GeV, (33

[35]. tion, E i i i
. , Eq.(29). As one may expect, this option gives a some-
On the other hand) can be determined on a purely phe- yhat “smoother” behavior relative to the LD curve.
nomenological ground by adopting the GkiReya- By construction, the zero-ordé&¢moment following from

Schienbein(GRSch parametrization for the valence quark the factorized ansatz fQFfL’B(X;t), [cf. Eq. (35)], fits the

distribution in the pior{47]: data for the pion form factor rather well. On the other hand,
also the LD prediction for the pion form fact¢Eq. (28)]
Xfyj(x) =0.5645"%41+0.153/x)(1-x) %% (34) complies Witf?the data quite ngl. Thus, in orde? to distin-

. o o guish between the two models, one should look for other

which refers to a rather low normalization pointio  physical observables, which are more sensitive to the form of

=0.26 Ge\f. According to our considerations, we shall usethe distribution.

in our modeling procedure a parton distribution evolved to a |n principle, the form of the true distribution at giveéoan

more appropriate scalgi’~=1 GeV’. Taking into account pe reconstructed having recourse to higher momepty)

the leading order LD estimates fof /% (X;1) [recall Eq.  (N>0). In addition, the smalk-behavior of FI7(X;t) is

(22)], one is tempted to assume that the valedadistribu-  sensitive to the inverse momer{t$ ). Remarkably, a pos-

tion is fgj-(x)=f, »(x) and that the sea quark contributions sibility to measure théX 1) is offered by the WACS pro-

0.8 0.5 0.2
2
o o t=3GeV - t =10 GeV?
0.6
0.5 0.3
0.4
0.3 0.2 ~
0.2 ) /
0.1 P
0.1 e g
-~
0.2 07 04 0.
X

FIG. 5. Predictions for the skewed distributions in the pion withO, obtained with local dualitysolid lineg and the factorized ansatz
in conjunction with the GRSch parametrizati@otted line$, and the(naive LD parton distributions, Eq(29) (dashed lines
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cess in the pion case. Indeed, as we have mentioned above, 442 [nb - GeVY]
the leading part of the handbag contribution to the WACS 104 — ‘“/,_ ---------------------- P
amplitude is proportional to the integral e -
3
o . 1 | dX 10 ﬁ
(XTH=RY ()= | FLHGH -, @
0 X S S
10%— ===
$=90°
as it can be seen from E?) at {=0. /\
In the case of unpolarized initial photons, the differential 101

cross section reads

5 10 15 20 25
g 2 s [GeV?
g ey —
E(S;t): 2 (eZ+ed)? R (H+R"(1)]% (37 FIG. 6. Leading order predictions for the differential cross sec-

tion of WACS off a pion, plotted against the squared center-of-mass
energys for different values of théfixed) scattering anglé¥ (in the
where we are still neglecting finitecorrections. As we see center-of-mass reference systerfihe solid line shows the result
from this equation, the inverse mometit?, or equivalently  derived from local duality; the dashed line that following from the
R",(t), enters squared in the cross section formula. ThusGRSch-based model.

one may expect an improved sensitivity of the WACS pro-

cess to different models of the skewed distribution in the 'tlhn tShUCh a 5|t_uat|0tn,| tg :nake a mhoreldrellatblelIco[nEarl_sct)n
pion (as well as also in other hadrons Wi e experimental data, one should actually take into

In Fig. 6 we show the differential cross sections of WACS%CCOL'mtfm't?/S COI‘LeCtIOI’]S. This FSSK will pﬁlundertalign n f
off a pion as functions of the squared center-of-mass energ € next section, where we consider possible corrections o

s for different values of the scattering angdewhich is held rder of O(i/s) at the leading-twist level.
fixed. One infers from this figure that the two models pre-
sented above yield cross sections which differ from each
other by approximately one order of magnitude.

We remark that estimates for the pion Compton scattering In order to derive the)(t/s) corrections at the leading-
were also presented on phenomenological groundiddh twist level, one can start from the contribution of the hand-
As we have mentioned in the Introduction, in order tobag diagram in the coordinate representatiee[15]). Tak-
ensure light-cone dominance, one should consider a Comgng into account the parametrizations of the leading twist

ton process at momentum transféesl Ge\?. Thus, the non-forward matrix elements through DDEFY(x,y;t),

t/s ratio may not be small. We recall in this context that G¥(x,y;t), etc], via Eq.(1), and performing a Fourier trans-
=sir’(9/2)s in the center-of-mass reference system, we ardormation, one arrives at the following expression for the
using, andd is the c.m.s. scattering angle. Compton scattering amplitude:

VI. FINITE O(t/s) CORRECTIONS WITHIN THE
HANDBAG CONTRIBUTION

1 1 _
Tl =i S eifodxfodye(1>x+y)sﬁm{<p+p'>p[F¢<x,y:t>+F*”(x,y;t>]+<p—p'>p[ed’<x,y;t>

Y=u,d
+GY(x,y;) M Ss(ds) — Sp(y) ]+ “A term” +“Z term,” (39)
|
where  S,5,,=0,59,,~9.9p,1 9up8ss  @Nd  Sp(qs), and q2=xu—r2y(1—x—y)—xxm2 (40)

Sg(qy) are, respectively, the hard quark propagators foisthe

andu channel handbag diagrams: L
and respect the “Maich symmetry,” Eq.(5).

q - In principle, it would be legitimate to retain in the calcu-
Sp(q)= —":, gs=Qg+Xp+yr, g,=q—Xp+yr. lation (see alsd 15]) (’)(m,zT),' O(r?) terms as well, in anal-
q ogy to target-mass effects in DIS that have lead-&caling
(39 [25,26|. Here, in the pion case, the? terms are not signifi-
cant and can be neglected compared,th andu.
Suppose for a moment that we neglect ttuorrections to
the hard quark propagator. Then, we immediately reproduce
5 ) — the leading handbag contributidn,,(p,q’,r), Eq. (7), with
Os=XS—ry(1l—x—y)—xxmz the leading tensor structure—g,,+[1/(p-q’)1(p,q,

For real Compton scattering, i.@2=0, the denominators of
the quark propagators can be written in the form

054018-8



PARTON SKEWED DISTRIBUTIONS IN THE PION AND . .. PHYSICAL REVIEW [B2 054018

+ py%) depending on the two Sudakov 4-vectprs’. The 10* S b - GeVo]

appearance of the non-forwardskewed distributions 9=30
FUT(Xt), GU7(X;t), defined through the DDs
Fy(x.y:1), Gy(x,y;1), in Eq. (6), is in accordance with
the fact that in théormal t— O limit, the denominators of the
quark propagators depend on the combinatkn x+ y

only, the latter being the total momentum fraction of the o T =
active parton. Fof=0, we have 10" - T — T T = L op
" X, T —g=1ud
ks . — . 0 _
FAT(X;N) fo YFy=(X,y;t), etc. (41 10 : - - > ~
s [GeVY

In ~general, when t#0, the scattering amplitude FIG. 7. Local duality(LD) predictions for the differential cross
T,..(p.q’.r) should depend on three independent 4-vectors "= /: ualiyl=0) predictior ! !

v _
which may be chosen to keq’,r, , orp,q’,r, etc., and will sect_lon c_)f WACS off a pion with the first order kinematics cor

. . . rections included as a function of the squared center-of-mass energy
also include non-leading tensor structutéBhe denomina- X ) )
. . - L sfor selected values of the fixed scattering an@iecenter-of-mass
tors will also acquire an additional nontrivial dependence or}
! eference systemd.

the x- andy-fractions.

It is in practice more convenient to consider directly theX-moments of these new distributions. Obviously, the higher
(t/s)-corrections to the cross section of WACS. For the casg-moments, Eq(44), cannot be expressed in terms of the
of unpolarized initial photons, and summing over the polar-simplest skewed distributiof#!"(X;t). Thus, one is forced
izations of the final one, we obtain to introduce new skewed distributiong,%ﬁo)(x;t), though
these distributions refer to the same DD. The generalization
of Eq. (44) to non-zero skewedness&# 0, is straightforward
but we shall skip it here for the sake of brevity.

The evaluation of the differeni-moments is a separate

t - _ task which we shall not address in this paper. Thus, we re-
—g[[ R, (1)+RY (1) ]?—[RY 1 (t) +R" 4(1)] strict our analysis here to the first ordés-correction to the

4 2 _
‘3—({<s;t>=%<eﬁ+e§>2fmu1<t>+R“1(t>]2

cross section, Eq(42). The evaluation of the moments
_ t2
X[Ri(D+R(D)]]+0O ?)

RY,(t), Ri(t) is straightforward by virtue of Eq$26), (30).
Figure 7 shows the plot of our LD predictions for the
differential cross section of WACS off a pion as a function

of the squared center-of-mass enesdyr different values of
the fixed scattering anglén the center-of-mass reference
. system \1?2 We expect that the prediction is reliable for
1\ — pU( ) — T - =1 GeV, as it was explained above. Notice here that the
(XH=Ri(t)= Jo dXXF‘zLO(X,t). (43 conditiont=1 Ge\? foreche kinematics with fixed scatter-
ing angle 9 transforms into the condition s
The first term in Eq.42) reproduces the leading result for 21/Sir12(1?/2) Ge\2. For the minimal (30°) and maximal
the cross section, i.e., EB7). It is worth remarking that the (90°) values of the scattering anglé this meanss
leadingt/s-corrections are expressed only through the mo=15 Ge\? ands=2 Ge\?, respectively.
ments of the skewed parton distributiﬁ?fo(x;t). In con- As it turns out, the relative magnitude of the
trast, the NLOt?/s?-corrections include all distributions in- t/s-correction to the LD-predicted skewed distribution
troduced in Sec. II. Fub(X:t) is ~4% for $=30° and rises to 10-28 % fa¥
Let us now introduce thg-moments of the DDs =90°. On the other hand, in the case of the factorized an-
- satz, Fa°*{X;t), the corrections are strongés% and
]:Epk‘)w(x;t)zf dyy*F i -(X,y;t) (44)  25-42%, respectively
0 Still, even after taking into account thés-corrections,
the predictions for the cross section in the LD case, evaluated
and analogously for the,Othef_DDﬁ, name§y ., Ayz, gt §=30° (90°) is 3.5-3.9(2.9-7.5 times smaller than
Z,| - Then the skewed distributiaR"'"(X;1) becomes sim-  \yith the corresponding factorized ansatz. Hence, forthcom-
ply the zeroth-ordey-moment of the corresponding DD, g experiments at TINAF49] may be able to discriminate
F2¢|7£(X,y;t)-. Moreover, one can show that the pepyeen these two models. The most dramatic difference of
t/s*-corrections can be expressed by means of thghe two models appears, however, in the kinematical region
9=90° and fors=10 Ge\’.

whereR](t) is the corresponding first moment

“In fact |r, |~ i, VII. DISCUSSION AND CONCLUSIONS
SThe SU(2) symmetry relationgcf. Eq. (23)] have been taken Let us start our discussion with some comments concern-
into account. ing the energy-momentum sum rule for the pion parton dis-
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tributions, which we have rewritten in the form On the other hand, employing the factorized ansatz, Eq.
(30), one gets for the valence quark distribution

1 - _
dXXFUm(Xt) + FAm(Xt) + FUm(Xqt) + FAm(Xqt . 1=
J;) X[ ( ) ( ) ( ) ( ) <kf>£ilctor|zed:A2f XXfu‘ﬂ.(X)dX%(320 MeV)Z,
0

+ FI7(X;t)|1—o=1. (45) (47)

which is in moderate agreement with the LD estimate. In
Hoth cases a reasonable value of the intrinsic average trans-
verse momentum of the pion is obtained. This value turns out
"o be somewhat smaller than that proposed by Kroll and
collaboratorg43]. The reason for this discrepancy may be
: . S traced back to the fact that the LD two-body wave function,

tor[f)t, Ifﬁ” Eqs.(26)|, (2:2’ tilgen_m tTet—dO I'm'tt’ or:edobs_?rr]v?hs Eqg. (25), is an effective one and therefore includes not only

at the sum rule, Eq(45), is already saturated wi '€ the lowest particle-numbéguark-antiquark Fock state, but
Slso an infinite tower of Fock states with additional soft glu-
ons (cf. the discussion given ifiL2,44] and alsg51]).

As a result, ourssF(X,k,) can account for the full nor-
Qwalization condition

Here we have neglected the sea quark contribution of oth
flavors and]-“g‘”(x;t) is the {=0 version of the gluon
skewed distribution in the pion that can be defined in a
analogous way to the quark ca@., e.g.,[2]).

With the leading order LD resu{imeaning zeroth order in

being exactly zero in this approximation.
In this way we demonstrate the consistency of the LD

approach with the energy-momentum sum rule, &8§). It is

interesting to mention that the energy-momentum sum rule i

saturated by the quark contribution alone also within the ef- dX Pk

fective chiral model of Ref[20]. Actually, their approach is f ——— (X k)|?=1, (48)

based on a low-energy effective action derived from the in- 16m3

stanton vacuum(see,[29,30 and references thergirand . .
states that the gluon distribution should be parametricall)}"’hereas the two-body wave function of Rgf3] contributes

= — 1 . approximately 1/4 of it.
small, ~(p/R)", WhirePNUGOO MeV " is the average in- In conclusion, we have provided evidence that the local

stanton size andR is the average distance between yyality approach for the skewed distributidﬁ?fo(x;t) in

instantons. _ _ the pion seems to support both, theoretically and phenom-
We would like to emphasize once more that the LD ap-gngjogically, the so-called factorized model for the same

proach described in Sec. Il is, strictly speaking, not app"‘quantity(proposed in1] for the case of the protonHow-

cable to the region of small momentum transfers gyer the two presented models show distinct behaviors in
=0.6 GeV and should therefore be modified. For instance ihe longitudinal momentum fractiox for any fixed momen-

using our factorized model faF¥/"(X;t), Eq.(30), whichis  tym transfert.
pasegl on the. GRSch parametrization of the quark distribu-  Fyrthermore, we have shown in this paper that measuring
tions in the pion, one findéat u?=1 GeVP) for the quark  the wide angle Compton scattering off the pion will provide
contribution a value of-0.54 to the energy-momentum sum ys with a very sensitive tool to test the form of the skewed
rule with some room for the gluons left over. Note also thatgjstribution and, in particular, to discriminate between the
the contribution of the sea amounts only-+@ % of the total o models, proposed in this paper, and against others. We
result. _ o emphasize that our analysis was performed by taking into
In the region of applicability of our LD formula, E426),  account the finitet/s corrections to the cross section of
t=1 GeV*, we expect that the skewed distributions of thewaCs. Thus, we expect that our results may be relevant for
sea and the gluons should be suppressed. Indeed, within the experimental check in the energy region ef
LD approach they will both appear first at the level@f ~2_15 GeV? and a scattering anglé=30°-90° in the
corrections. . ~c.m.s. which seems accessible to the TINAF mach8¢
Another point worth to be discussed concerns the estima- | forthcoming publication we plan to generalize the LD

tion of the intrinsic transverse momentum of the pion. Withapproach to the case of a non-zero skewedness parafheter
the explicit form of the effective two-body wave function

YR (X,k,), given by Eq.(25), one immediately obtains ACKNOWLEDGMENTS
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