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Debye screening and the Meissner effect in a three-flavor color superconductor
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I compute the gluon self-energy in a color superconductor with three flavors of massless quarks, where
condensation of Cooper pairs breaks the color and flavorSU(3)c3U(3)V3U(3)A symmetry of QCD to the
diagonal subgroupSU(3)c1V . At zero temperature, all eight electric gluons obtain a Debye screening mass,
and all eight magnetic gluons a Meissner mass. The Debye as well as the Meissner masses are found to be
equal for the different gluon colors. These masses determine the coefficients of the kinetic terms in the
effective theory for the low-energy degrees of freedom. Their values agree with those obtained by Son and
Stephanov.

PACS number~s!: 12.38.Mh, 24.85.1p
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I. INTRODUCTION AND CONCLUSIONS

The presence of attractive interactions in a degenerate
mionic system destabilizes the Fermi surface and leads to
formation of Cooper pairs—the system becomes a super
ductor @1#. When increasing the quark density in cold qua
matter, asymptotic freedom implies that single-gluon e
change becomes the dominant interaction between qua
Single-gluon exchange is attractive in the color-antitrip
channel, and therefore leads to color superconductivity
cold, dense quark matter@2#.

Considerable activity has been recently generated@3–40#
by the observation that the zero-temperature co
superconducting gapf0 can be as large as 100 MeV@3,7#.
Gaps of this magnitude may have important consequen
for the physics of nuclear collisions. The critical temperatu
for the onset of color superconductivity,Tc , is ~to leading
order in the strong coupling constantg) related tof0 in the
same way as in BCS theory,Tc.0.57f0 @15#. Thus, for
f0;100 MeV, it cannot be excluded that colo
superconducting quark matter could be created in nuc
collisions in the GSI-SIS or BNL Alternating Gradient Sy
chrotron~AGS! energy range.

In order to compute the color-superconducting gap, o
commonly solves a gap equation@1#. For theories with point-
like four-fermion interactions,f0;m exp(2c4F/G2), where
m is the quark chemical potential,c4F is a constant, andG2 is
the four-fermion coupling strength@3–5,7,8,11,20,34#. On
the other hand, in QCD,f0;m exp(2cQCD/g), wherecQCD
is another constant@10,12,15,21,23–25,27,29,30#. In weak
coupling, there are then three different energy scales,f0
!mg!m, wheremg is the gluon mass. AtT50 and forNf
flavors of massless quarks@41#,

mg
2[

Nf

3

g2m2

2p2
. ~1!

The value ofcQCD depends on the form of the gluo
propagator in the cold, dense quark medium. If one takes
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gluon propagator in the standard ‘‘hard dense loop’’~HDL!
approximation@41#, one obtainscQCD53p2/A2 @25#. In this
approximation, the quarks inside the HDL’s are assumed
be in the normal, and not the color-superconducting pha
Consequently, an important question that has to be addre
is how color superconductivity influences the propagation
gluons and whether this could changecQCD. In a recent work
@19#, I have derived a general expression for the gluon s
energy in a two-flavor color superconductor, and explici
computed the self-energy in the static limit,p050, for gluon
momentap[upu→0, and forp@f0.

In a two-flavor color superconductor, condensation
Cooper pairs in a channel of total spinJ50 breaksSU(3)c
to SU(2)c . Then, the three gluons corresponding to the g
erators of the unbrokenSU(2)c subgroup are expected t
remain massless, while the other five should attain a m
through the Anderson-Higgs mechanism. An explicit comp
tation of the gluon self-energy to one-loop order in perturb
tion theory confirms this qualitative expectation, but quan
tatively reveals some surprising details@19#. At T50, the
three gluons of the unbrokenSU(2)c attain no Meissner
mass, but also no Debye mass. This means that static, ho
geneous color-electric fields of the unbrokenSU(2)c sub-
group are not screened. Furthermore, the Debye and Me
ner masses of the remaining five gluons are not identi
four gluons have a Debye massA3/2 mg and a Meissner
massmg /A2, while the last one has a Debye massA3mg ,
like in the non-superconducting phase, but a Meissner m
mg /A3.

On the other hand, in a three-flavor color superconduc
the color and flavorSU(3)c3U(3)V3U(3)A symmetry is
broken to the diagonal subgroupSU(3)c1V . This locks
color and flavor rotations@4#. From the 18 Goldstone boson
resulting from symmetry breaking, eight get absorbed by
gluons, which consequently become massive. The purpos
this paper is to complement the results of@19# for the two-
flavor case with the computation of the Debye and Meiss
masses of these gluons in the three-flavor case.

It is worthwhile mentioning that here, as well as in@19#,
the terms ‘‘Debye mass’’ and ‘‘Meissner mass’’ refer excl
sively to the screening ofcolor-electric andcolor-magnetic
fields. The ‘‘ordinary’’ ~electro!magnetic Meissner effec
was studied in@6,36#. Similar to the mixing of weak and
©2000 The American Physical Society17-1
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DIRK H. RISCHKE PHYSICAL REVIEW D 62 054017
electromagnetic gauge bosons in the standard model,
electromagnetic field mixes with the eighth gluon to form
modified photon, under which the color-superconduct
condensate is electrically neutral. The mass of the modi
eighth gluon becomes slightly larger than that of the ot
seven. However, the mixing angle as well as this increas
mass is determined by the ratio of electromagnetic
strong coupling constants and consequently quite sm
Therefore, effects from electromagnetism will be neglec
throughout the following.

There is another reason why it is important to know t
values for the Debye and Meissner mass. The relevant
grees of freedom in the color-flavor locked phase at ene
scales much smaller than the gap,f0, are the remaining 10
Goldstone bosons resulting from the breaking of color a
flavor symmetries. Apart from an additional Goldstone b
son arising from breakingU(1)V , these bosons are analo
gous to the pseudoscalar mesons which result from ch
symmetry breaking in the QCD vacuum@9,17#. Conse-
quently, the dynamics of these 10 Goldstone bosons is
scribed by an effective theory which resembles the Lagra
ian of the nonlinear sigma model, describing the dynamic
the chiral fields in the QCD vacuum@26,31#. To lowest or-
der, this Lagrangian contains only kinetic terms:

LnlS
kin 5

f p
2

4
Tr~]0S†]0S2vp

2
“S†

•“S!

112 f h8
2

@~]0u!22vh8
2

~“u!2#

112 f H
2 @~]0w!22vH

2 ~“w!2#. ~2!

Here,S[exp(ila/fp), wherepa, a51, . . . ,8, are thefields
corresponding to the meson octet in the QCD vacuum. Th
are the pions, the kaons, and theh meson, which are the
Goldstone bosons resulting from spontaneous breaking o
SU(3)A symmetry.la are the Gell-Mann matrices.u is the
field corresponding to the meson singlet in the QCD vacuu
i.e., theh8 meson, which is the Goldstone boson resulti
from breakingU(1)A spontaneously.~In the QCD vacuum,
U(1)A is also broken explicitly by instantons. At the qua
densities relevant for the effective theory in the color-flav
locked phase, however, instantons play no longer any sig
cant role@13#.! Finally, w is the Goldstone mode resultin
from breakingU(1)V . This field has no analogon in th
QCD vacuum.

The coefficients of the kinetic terms are determined by
‘‘decay constants’’f p , f h8 , and f H . The presence of a me
dium breaks Lorentz invariance, and the coefficients of
time-like and space-like terms may differ, i.e., the velocit
vp

2 , vh8
2 , and vH

2 are not necessarily equal to one. The
velocities enter the dispersion relation of the Goldsto
bosons ase i

2(k)5v i
2k21mi

2 , i 5p,h8,H.
The decay constants as well as the velocities can be c

puted by matching the effective theory to the underlying m
croscopic theory. A convenient way to do this was propo
by Son and Stephanov@26#. First, they observed that, b
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minimally gauging the model~2!, for instance the pseudo
scalar decay constantf p is related to the Debye mass of th
gluons,mD , via

f p[mD /g, ~3!

and the velocity of the pseudoscalar mesons is determ
from the ratio of Debye and Meissner masses,

vp[mM /mD . ~4!

The problem is thus reduced to computing these masse
the underlying theory. In this case, one has two choic
First, one may use QCD in the color-superconducting grou
state. This theory has quasiparticle as well as qu
antiparticle excitations, and is valid at all energy scales. S
ond, one may start from the effective theory proposed
Hong @21#. This theory contains only quasiparticle excit
tions around the Fermi surface, quasi-antiparticle excitati
have already been integrated out. It is valid at energy sc
which are much smaller than the chemical potential,m, but
which can be larger than the gap,f0.

Son and Stephanov@26# used the latter theory to comput
the Debye and Meissner masses. Their results are

mD
2 5mg

2 2128 ln 2

18
, mM

2 5mg
2 2128 ln 2

54
. ~5!

Consequently, the velocity of the pseudoscalar meson
vp51/A3. Note that the~square of the! Debye mass in the
three-flavor superconductor,mD

2 .0.859 mg
2 , is reduced by a

factor of 3.5 as compared to its value in a normal, cold m
dium, mD

2 53mg
2 .

The result~5! is not undisputed throughout the literatur
For instance, Rho, Shuryak, Wirzba, and Zahed@30# com-
puted the Debye and Meissner masses from the gluon
energy in the full theory, including quasi-antiparticle excit
tions. Within their set of approximations, they obtained@see
Eqs.~A.72! and ~A.75! of @30##,

mD
2 5

1

2
mg

2 , mM
2 5

5

6
mg

2 . ~6!

Other results that can be found in the literature are thos
Zarembo@37#, which agree with Son and Stephanov’s calc
lation. Beane, Bedaque, and Savage@33# agree with Son and
Stephanov on the Debye and Meissner masses up to a f
of 2.

The second goal of this paper is to resolve this ambigu
in the literature. The Debye and Meissner masses will
computed in the full theory, i.e., QCD in the colo
superconducting ground state. The framework for suc
computation was already established in@19#. As shown in
the following section, the results are found to agree w
those of Son and Stephanov, Eq.~5!.

The Debye and Meissner masses are not only impor
for the nonlinear version~2! of the effective low-energy
theory in a three-flavor color superconductor. As outlined
7-2
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DEBYE SCREENING AND THE MEISSNER EFFECT IN . . . PHYSICAL REVIEW D62 054017
@19# they also determine the coefficients of the kinetic ter
in the linear version of the effective theory,

LlS
kin5ae (

h5r ,l
Tr@~D0Fh!†D0Fh#

1am (
h5r ,l

Tr@~DiFh!†DiFh#. ~7!

Since there is no reason why right- and left-handed te
should differ in normalization, I assumedaer[ael[ae, and
similarly for the coefficient of the space-like terms,am. For
color-flavor locking, the order parameter is a 333 matrix
with expectation value^Fh&5diag(f0h ,f0h ,f0h) @13#.
Consequently, g2ae(f0r

2 1f0l
2 )[mD

2 , g2am(f0r
2 1f0l

2 )
[mM

2 . Due to explicit symmetry breaking by nonzero qua
masses~and, at less than asymptotically high densities,
stantons!, the true ground state of the color-flavor locke
phase corresponds to theJP501 channel wheref0r

[2f0l[f0. Then,ae[mD
2 /(2g2f0

2), am
2 [mM

2 /(2g2f0
2).

I use natural units,\5c5kB51, and work in Euclidean
space-timeR4[V/T, whereV is the volume andT the tem-
perature of the system. Nevertheless, I find it convenien
retain the Minkowski notation for 4-vectors, with a metr
tensorgmn5diag(1,2,2,2). For instance, the space-tim
coordinate vector isxm[(t,x), t[2 i t, wheret is Euclid-
ean time. 4-momenta are denoted asKm[(k0 ,k), k0
[2 ivn , where vn is the Matsubara frequency,vn
[2npT for bosons andvn[(2n11)pT for fermions, n
50,61,62, . . . . Theabsolute value of the 3-momentumk
is denoted ask[uku, and its direction ask̂[k/k.

II. EXPLICIT COMPUTATION OF DEBYE
AND MEISSNER MASSES

A convenient starting point to compute the gluon se
energy in the color-flavor locked phase is Eq.~68! of @19#,

Pab
mn~P!5

1

2
g2

T

V (
K

Trs,c, f@Ga
mG1~K !Gb

nG1~K2P!

1Ḡa
mG2~K !Ḡb

nG2~K2P!

1Ga
mJ2~K !Ḡb

nJ1~K2P!

1Ḡa
mJ1~K !Gb

nJ2~K2P!#. ~8!

Here, the trace is over color, flavor, and spinor space.

vertices areGa
m[gmTa and Ḡa

m[2gmTa
T . G6 and J6 are

the diagonal and off-diagonal elements of the Nam
Gor’kov propagator for quasiparticle excitations,

G6[~@G0
6#212S6!21, J6[2G0

7F6G6. ~9!

G0
6(K)[(g•K6g0m)21 is the propagator for massles

non-interacting quarks~charge-conjugate quarks!, and S6

[F7G0
7F6 is the quark self-energy generated by excha

ing particles or charge-conjugate particles with the cond
05401
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sate. In mean-field approximation, the condensateF1 is
computed from the gap equation discussed in@15#, andF2

can be obtained from

F2~K ![g0@F1~K !#†g0 . ~10!

In Eq. ~8!, the first two lines correspond to the diagram
Fig. 1~a!, where only the diagonal components of th
Nambu-Gor’kov propagator appear, while the last two lin
correspond to the diagram in Fig. 1~b!, formed from the off-
diagonal components. Note that, at small temperatureT
;f0, and in weak coupling,f0!m, the fermion loops of
Fig. 1 constitute the dominant contribution to the gluon se
energy, since contributions from gluon~or ghost! loops are
relatively suppressed by a factorT2/m2;f0

2/m2 @19#.
In the two-flavor case, the trace over color and flavor

Eq. ~8! could be performed independently@19#. In the three-
flavor case, due to color-flavor locking this is no longer po
sible. The traces over color and flavor must be perform
simultaneously. The most elegant way to do this is to util
the color-flavor space projectors introduced by Shovko
and Wijewardhana, Eq.~7! of @24#,

C (1)
rs
i j [

1

3
d r

i d s
j , ~11a!

C (2)
rs
i j [

1

2
~d rsd

i j 2d r
j d s

i !, ~11b!

C (3)
rs
i j [

1

2
~d rsd

i j 1d r
j d s

i !2
1

3
d r

i d s
j .

~11c!

~To avoid proliferation of the symbolP, I denote them here
as C.! All projectors are symmetric under simultaneous e
change of color,i , j , and flavor,r ,s, indices. Note thatC (1) is
the singlet projectorP1 introduced by Zarembo, Eq.~3.11! in
@37#. Furthermore,C (2)1C (3)[12P1[P8 is Zarembo’s oc-
tet projector, Eq.~3.12! in @37#.

With the projectors~11!, the gap matricesF6 can be
written as

F6[ (
n51

3

C (n)Fn
6 . ~12!

Here,

F1
6[2~F 3̄

6
12F6

6!, ~13a!

FIG. 1. The contributions from~a! the diagonal and~b! the
off-diagonal components of the Nambu-Gor’kov propagator to
gluon self-energy. Double full lines stand for the full quasipartic
propagatorG6, single full lines for the free propagatorG0

6 . The
full blob representsF2, the empty blobF1. Vertices are repre-
sented by small blobs.
7-3
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F2
6[F 3̄

6
2F6

6 , ~13b!

F3
6[2F2

6 , ~13c!

are gap matrices in spinor space,

Fn
1~K ![ (

h5r ,l
(

e56
fn,h

e ~K !P hLk
e ,

~14!

Fn
2~K ![ (

h5r ,l
(

e56
@fn,h

e ~K !#* P2hLk
2e ,

wherePr ,l[(16g5)/2 are chirality projectors,2h5 l when
h5r and 2h5r when h5 l , Lk

6[(16g0g• k̂)/2 are en-
ergy projectors, andfn,h

e (K) are simple functions of
4-momentumKm.

In Eqs.~13!, F 3̄
6 is the gap matrix in the antitriplet chan

nel andF6
6 is the gap matrix in the sextet channel,

F6
rs
i j [F 3̄

6
~d r

i d s
j 2d s

i d r
j !1F6

6~d r
i d s

j 1d s
i d r

j !. ~15!

Why condensation in the~repulsive! sextet channel is pos
sible in the color-flavor locked phase was explained in@17#.
Antitriplet and sextet gaps are related to the gap functionsk1

and k2 of @4# by f 3̄l
1

52f 3̄r
1

[(k12k2)/2, f6l
152f6r

1

[(k11k2)/2. For future purpose, it will be convenient t
define a singlet and an octet gap matrix according to

F1
6[F1

6 , F8
6[F2

6[2F3
6 . ~16!

The quasiparticle propagators take the form
05401
G6~K ![ (
n51

3

C (n)Gn
6~K !, ~17!

where

Gn
6~K !5 (

h5r ,l
(

e56
P6hLk

6e 1

k0
22@ek

e~fn,h
e !#2

@G0
7~K !#21.

~18!

The quasiparticle energies are

ek
e~fn,h

e ![A~m2ek!21ufn,h
e u2, ~19!

where fn,h
e is the gap function for pairing of quarks (e

511) or antiquarks (e521) with chirality h.
The right-hand side of Eq.~18! does not depend on th

sign of the gap functions, i.e., the difference in sign betwe
f2,h

e andf3,h
e , Eq. ~13c!, is irrelevant,G2

6[G3
6 . Then, Eq.

~17! has the alternative representation

G6~K ![P1G1
6~K !1P8G8

6~K !, ~20!

whereP1,8 are the singlet and octet projectors introduced
Zarembo @37#, see above, and, following Eq.~16!, G1

6

[G1
6 , G8

6[G2
65G3

6 .
The off-diagonal components of the quasiparticle pro

gators are similarly computed as

J6~K ![ (
n51

3

C (n)Jn
6~K !, ~21!

where
ain

nt
uch terms
Jn
1~K !52 (

h5r ,l
(

e56

fn,h
e ~K !

k0
22@ek

e~fn,h
e !#2

P2hLk
2e , Jn

2~K !52 (
h5r ,l

(
e56

@fn,h
e ~K !#*

k0
22@ek

e~fn,h
e !#2

P hLk
e . ~22!

Sincef2,h
e 52f3,h

e , there is no simple representation in terms of singlet and octet projectors forJ6. Nevertheless, in line with
Eq. ~16! let us define for future purposeJ1

6[J1
6 , J8

6[J2
6[2J3

6 .
Inserting Eqs.~17! and ~21! into Eq. ~8!, one straightforwardly performs the trace over color and flavor space to obt

Pab
mn~P!5dabP

mn~P!, ~23a!

Pmn~P!5
g2

12

T

V (
K

Trs@gmG1
1~K !gnG8

1~K2P!1gmG8
1~K !gnG1

1~K2P!1gmG1
2~K !gnG8

2~K2P!

1gmG8
2~K !gnG1

2~K2P!17gmG8
1~K !gnG8

1~K2P!17gmG8
2~K !gnG8

2~K2P!

1gmJ1
2~K !gnJ8

1~K2P!1gmJ8
2~K !gnJ1

1~K2P!1gmJ1
1~K !gnJ8

2~K2P!1gmJ8
1~K !gnJ1

2~K2P!

12gmJ8
2~K !gnJ8

1~K2P!12gmJ8
1~K !gnJ8

2~K2P!#. ~23b!

From Eq.~23! one learns two things. First, unlike the two-flavor case@19#, the gluon self-energy is diagonal in the adjoi
colorsa,b. Second, there are no terms where both quasiparticle propagators involve singlet gaps. The reason is that s
are proportional to Trc Ta Trc Tb[0.

The evaluation of the spin traces proceeds in complete analogy to the two-flavor case@19#. Assumingfn,r
e 52fn,l

e [fn
e

PR, the result is@cf. Eq. ~96a! of @19##
7-4
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Pmn~P!52
g2

12E d3k

~2p!3 (
e1 ,e256

S T 1
mn~k1 ,k2!F S n̂1~12n2!

p01 ê11e2

2
~12n̂1!n2

p02 ê12e2
D ~12N̂12N2!

1S ~12n̂1!~12n2!

p02 ê11e2

2
n̂1n2

p01 ê12e2
D ~N̂12N2!1S n1~12n̂2!

p01e11 ê2

2
~12n1!n̂2

p02e12 ê2
D ~12N12N̂2!

1S ~12n1!~12n̂2!

p02e11 ê2

2
n1n̂2

p01e12 ê2
D ~N12N̂2!17S n1~12n2!

p01e11e2
2

~12n1!n2

p02e12e2
D ~12N12N2!

17S ~12n1!~12n2!

p02e11e2
2

n1n2

p01e12e2
D ~N12N2!G1T 2

mn~k1 ,k2!F S ~12n̂1!n2

p01 ê11e2

2
n̂1~12n2!

p02 ê12e2
D ~12N̂12N2!

1S n̂1n2

p02 ê11e2

2
~12n̂1!~12n2!

p01 ê12e2
D ~N̂12N2!1S ~12n1!n̂2

p01e11 ê2

2
n1~12n̂2!

p02e12 ê2
D ~12N12N̂2!

1S n1n̂2

p02e11 ê2

2
~12n1!~12n̂2!

p01e12 ê2
D ~N12N̂2!17S ~12n1!n2

p01e11e2
2

n1~12n2!

p02e12e2
D ~12N12N2!

17S n1n2

p02e11e2
2

~12n1!~12n2!

p01e12e2
D ~N12N2!G2@U 1

mn~k1 ,k2!1U 2
mn~k1 ,k2!#

3H f̂1f2

4ê1e2
F S 1

p01 ê11e2

2
1

p02 ê12e2
D ~12N̂12N2!2S 1

p02 ê11e2

2
1

p01 ê12e2
D ~N̂12N2!G

1
f1f̂2

4e1ê2
F S 1

p01e11 ê2

2
1

p02e12 ê2
D ~12N12N̂2!2S 1

p02e11 ê2

2
1

p01e12 ê2
D ~N12N̂2!G

12
f1f2

4e1e2
F S 1

p01e11e2
2

1

p02e12e2
D ~12N12N2!2S 1

p02e11e2
2

1

p01e12e2
D ~N12N2!G J D . ~24!

Here, I denoted the octet and singlet gaps by

f i[f8
ei , f̂ i[f1

ei . ~25!

Correspondingly,

e i[eki

ei~f i !, ê i[eki

ei~f̂ i ! ~26!

are the excitation energies for quasiparticles with octet and singlet gaps,k1[k, k2[k2p,

ni[nki

ei[
e i2j i

2e i
, n̂i[n̂ki

ei[
ê i2j i

2ê i

~27!

are the occupation numbers for quasiparticles with octet and singlet gaps,j i[eiki2m, and

Ni[Nki

ei[FexpS e i

T D11G21

, N̂i[N̂ki

ei[FexpS ê i

T
D 11G21

~28!

are the corresponding thermal occupation numbers. The spin traces are@see Eqs.~45! and ~97! of @19##

T 6
005U 6

00511e1e2k̂1• k̂2 , ~29a!

T 6
0i5T 6

i052U 6
0i5U 6

i056e1k̂1
i 6e2k̂2

i , i 5x,y,z, ~29b!

T 6
i j 52U 6

i j 5d i j ~12e1e2k̂1• k̂2!1e1e2~ k̂1
i k̂2

j 1 k̂1
j k̂2

i !, i , j 5x,y,z. ~29c!
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In Eq. ~24!, the terms proportional toT 6
mn correspond to the diagram in Fig. 1~a!, while those proportional toU 6

mn correspond
to that in Fig. 1~b!.

In order to compute the Debye and Meissner mass, it is sufficient to consider the time-like,m5n50, and space-like,m
5 i ,n5 j , components of the self-energy, since the Debye and Meissner masses are defined as

mD
2 [2 lim

p→0
P00~0,p!, mM

2 [ lim
p→0

P i i ~0,p!. ~30!

The sign in the first equation is due to the choice of metric. The self-energy of electric gluons is

P00~P!52
g2

12E d3k

~2p!3 (
e1 ,e256

~11e1e2k̂1• k̂2!F S 1

p01 ê11e2

2
1

p02 ê12e2
D ~12N̂12N2!

ê1e22j1j22f̂1f2

2ê1e2

1S 1

p01e11 ê2

2
1

p02e12 ê2
D ~12N12N̂2!

e1ê22j1j22f1f̂2

2e1ê2

17S 1

p01e11e2
2

1

p02e12e2
D ~12N12N2!

e1e22j1j222f1f2/7

2e1e2

1S 1

p02 ê11e2

2
1

p01 ê12e2
D ~N̂12N2!

ê1e21j1j21f̂1f2

2ê1e2

1S 1

p02e11 ê2

2
1

p01e12 ê2
D

3~N12N̂2!
e1ê21j1j21f1f̂2

2e1ê2

17S 1

p02e11e2
2

1

p01e12e2
D ~N12N2!

e1e21j1j212f1f2/7

2e1e2
G . ~31a!

On the other hand, the self-energy of magnetic gluons is

P i j ~P!52
g2

12E d3k

~2p!3 (
e1 ,e256

@d i j ~12e1e2k̂1• k̂2!1e1e2~ k̂1
i k̂2

j 1 k̂1
j k̂2

i !#F S 1

p01 ê11e2

2
1

p02 ê12e2
D

3~12N̂12N2!
ê1e22j1j21f̂1f2

2ê1e2

1S 1

p01e11 ê2

2
1

p02e12 ê2
D ~12N12N̂2!

e1ê22j1j21f1f̂2

2e1ê2

17S 1

p01e11e2
2

1

p02e12e2
D ~12N12N2!

e1e22j1j212f1f2/7

2e1e2
1S 1

p02 ê11e2

2
1

p01 ê12e2
D

3~N̂12N2!
ê1e21j1j22f̂1f2

2ê1e2

1S 1

p02e11 ê2

2
1

p01e12 ê2
D ~N12N̂2!

e1ê21j1j22f1f̂2

2e1ê2

17S 1

p02e11e2
2

1

p01e12e2
D ~N12N2!

e1e21j1j222f1f2/7

2e1e2
G . ~31b!

In Eq. ~31!, terms proportional to (e1e26j1j2)/(2e1e2) ~and similar terms involving the singlet gaps,f̂ i) arise from the
diagram in Fig. 1~a!, while terms proportional tof1f2 /(2e1e2) ~and similar terms involving the singlet gaps,f̂ i) arise from
that in Fig. 1~b!.

To proceed I treat quasi-antiparticles as free antiparticles, as in@19#,

f8
2.0, f1

2.0, eki

2~f8
2!.ki1m, eki

2~f1
2!.ki1m, ~32a!

nki

2.1, n̂ki

2.1, 12nki

2.0, 12n̂ki

2.0, Nki

2.0, N̂ki

2.0. ~32b!

Setting p050 and sendingp→0, there are then no antiparticle contributions to the electric part of the gluon self-en
Abbreviatingf8

1[f, f1
1[f̂, ek

1[e, êk
1[ê, Nk

1[N, N̂k
1[N̂,
054017-6
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P00~0![Pe
(a)~0!1Pe

(b)~0!, ~33a!

Pe
(a)~0!.2

g2

24p2E0

`

dk k2F8
12N̂2N

ê1e

êe2j2

2êe
17~122N!

f2

e3
28

N2N̂

e2 ê

êe1j2

2êe
228

dN

de S 12
f2

2e2D G , ~33b!

Pe
(b)~0!.2

g2

24p2E0

`

dk k2F28
12N̂2N

ê1e

f̂f

2êe
22~122N!

f2

e3
28

N2N̂

e2 ê

f̂f

2êe
24

dN

de

f2

e2 G . ~33c!

In order to facilitate comparison with the results of Son and Stephanov, and to elucidate the origin of the various term
separated the self-energy into the contributions from the diagram in Fig. 1~a!, Pe

(a) , and that in Fig. 1~b!, Pe
(b) .

For the self-energy of magnetic gluons one obtains with*dV k̂i k̂ j /(4p)5d i j /3, nk
1[n, n̂k

1[n̂,

P i j ~0![d i j @Pm
(a1)~0!1Pm

(a2)~0!1Pm
(b)~0!#, ~33d!

Pm
(a1)~0!.2

g2

72p2E0

`

dk k2F8
12N̂2N

ê1e

êe2j2

2êe
17~122N!

f2

e3
28

N2N̂

e2 ê

êe1j2

2êe
228

dN

de S 12
f2

2e2D G , ~33e!

Pm
(a2)~0!.2

g2

72p2E0

`

dk k2F16
~12N̂!~12n̂!

k1m1 ê
1128

~12N!~12n!

k1m1e
116

N̂n̂

k1m2 ê
1128

Nn

k1m2e
272

1

kG , ~33f!

Pm
(b)~0!.2

g2

72p2E0

`

dk k2F8
12N̂2N

ê1e

f̂f

2êe
12~122N!

f2

e3
18

N2N̂

e2 ê

f̂f

2êe
14

dN

de

f2

e2 G . ~33g!

Again, I have separated contributions from Fig. 1~a!, Pm
(a1)1Pm

(a2) , from those of Fig. 1~b!, Pm
(b) . Obviously, Pe

(a)

[3Pm
(a1) , Pe

(b)[23Pm
(b) . There are two contributions from Fig. 1~a!. The first, Pm

(a1) , arises from quasiparticle
quasiparticle excitations, while the second,Pm

(a2) , originates from quasiparticle-antiparticle excitations. The latter is U
divergent, and thus requires renormalization, which is achieved by adding the last term in Eq.~33f!. As we shall see shortly
Pm

(a2) gives rise to the ‘‘bare’’ Meissner mass in Hong’s effective theory@21,26#, where contributions involving antiparticle
are integrated out.

Let us now consider the case of zero temperature, whereN[N̂[0. One may restrict thek integration to the region 0
<k<2m, the contribution fromk>2m can be shown to be negligible. The various components of the self-energies ar

Pe
(a)~0![3Pm

(a1)~0!.2
g2m2

12p2E0

m

djF 4

f̂22f2 S ê21j2

ê
2

e21j2

e D 17
f2

e3 G , ~34a!

Pe
(b)~0![23Pm

(b)~0!.2
g2m2

12p2E0

m

djF2
4f̂f

f̂22f2 S 1

e
2

1

ê
D 22

f2

e3 G , ~34b!

Pm
(a2)~0!.

g2

72p2E0

2m

dk kF8
m~ê2k1m!1f̂2

ê~ ê1k1m!
164

m~e2k1m!1f2

e~e1k1m! G . ~34c!
ap

f
s
iv

.
ion,
, to
t
e

er
The integral appearing in Eq.~34c! was already computed in
@19#, Eq. ~122!. The result is

Pm
(a2)~0!.mg

2 . ~35!

As advertised above, this is the ‘‘bare’’ Meissner mass
pearing in Hong’s effective theory@21,26#.

To obtain the expressions~34a! and ~34b! for Pe
(a) and

Pe
(b) , I substitutedj[k2m and exploited the symmetry o

the integrand aroundj50. Furthermore, contribution
;j2/m2 in the integrands were neglected, because they g
05401
-

e

rise to terms of order;f2/m2 relative to the leading terms
Neglecting the momentum dependence of the gap funct
all remaining integrals are exactly solvable. First note that
leading order,*0

mdjf2/e3.1. This takes care of the las
term in Eqs.~34a! and~34b!. To compute the first, substitut
y[ ln@(j1e)/f# for j in the first term in parentheses, andŷ

[ ln@(j1ê)/f̂# in the second. Evaluating they integral, note
that one must not approximate ln@(m1Am21f2)/f#
. ln(2m/f) for the upper boundary of they integral, and
similarly for the ŷ integral. The reason is that leading-ord
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terms cancel between these two integrals. The sublea
terms conspire to cancel the denominatorf̂22f2. To lead-
ing order, one then obtains

Pe
(a)~0!.2

3

2
mg

2 , Pe
(b)~0!.

1

3
mg

2S 11
2f̂f

f̂22f2
ln

f̂

f D .

~36!

Neglecting the sextet gap, the singlet gap is twice the o
gap,f̂52f, cf. Eq. ~13!, and

Pe
(b)~0!.

1

3
mg

2S 11
4

3
ln 2D . ~37!
o
n-

.

05401
ng

et

Using the definitions of the Debye and Meissner masses,
~30!, this confirms the results of Son and Stephanov, Eq.~5!,
q.e.d.
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