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At sufficiently high baryon densities, the physics of a dense quark-gluon plasma may be investigated through
the tools of perturbative QCD. This approach has recently been successfully applied to the study of color
superconductivity, where the dominant di-quark pairing interaction arises from one gluon exchange. Screening
in the plasma leads to novel behavior, including a remarkable non-BCS scaling, ¢dhe transition tempera-
ture to the color superconducting phase. Radiative corrections to one gluon exchange were previously consid-
ered and found to affedi . In particular, the quark self-energy in a plasma leads to non-Fermi liquid behavior
and suppressek: . However, at the same time, the quark-gluon vertex was shown not to modify the result at
leading order. This dichotomy between the effects of the radiative corrections at first appears rather surprising,
as the BRST identity connects the self-energy to the vertex corrections. Nevertheless, as we demonstrate, there
is in fact no contradiction with the BRST identity, at least to leading logarithmic order. This clarifies some of
the previous statements on the importance of the higher order corrections to the determin@tioandfthe
zero temperature gap in color superconductivity.

PACS numbgs): 12.38.Mh, 12.38.Aw, 11.10.Wx, 11.15.Ex

[. INTRODUCTION Coulomb interaction ifil11]. The resultant perturbative series
contains logarithms of the coupling constant accompanying
Attention to the physics of a dense quark-gluon plasmdhe powers of it.

has recently been revived, along with progress in understand- As a result of HDLs, the electric gluon propagator is
ing the phase structure of QCD. Interest has only heightenescreened effectively by a Debye massg, , while the mag-
recently with the projected onset of relativistic heavy ionnetic propagator is poorly screened via Landau damping in
collisions at BNL. Such unusual conditions of QCD may the sensitive region of momentum space. An important con-
also exist in nature, for example in the core of a dense newsequence of this is the introduction of non-Fermi liquid be-
tron star. The asymptotic freedom of QCD makes a perturhavior of the quark self-energhl2]. In the infrared limit
bative treatment applicable at sufficiently high baryon den<{highlighted by a cutoft.) this self-energy is
sity, and the attractive di-quark interaction mediated by one

gluon exchange in the antisymmetric color representation in- _ ig2 4|:C3
duces superconductivity below a certain temperaflix€7]. S(v,p )|p=,ﬁ ———Crvav In—s—, (1.0
Working at non-zero temperature and chemical potential 127 Mg v|

introduces several complications. One of the primary fea- .

tures of the plasma is that it screens the QCD interactionvhere (,v) are the Euclidean energy-momentum. Such a
Thus it is necessary in principle to dress gluon propagatorgon-analytic dependence on enengyas first discovered in
with hard dense loopgHDLs) and hard thermal loops solid state physic$l3] in the context of magnetic interac-
(HTLs) in the plasma. For conditions in the range of interesttions. The logarithm suppresses the quasi-particle weight at
for color superconductivity, the temperature effects are lesthe Fermi level and the single fermion occupation number
important, and only the effects of screening by HDLs need tdecomes a continuous function@t pg , the Fermi momen-

be considered. That this screening is important is a corollarjum, in contrast to the kink of a Fermi liquid. Another effect
of a more general statement, namely that, with a long range a term~T In T in the specific heat, but this turns out to be
interaction at non-zero chemical potential, a straightforwardoo small to be observed since the magnetic coupling repre-
power series expansion of the free energy in the couging sents merely a relativistic correction. Such non-analyticity as
results in infrared divergences. A resummation over the ferindicated by Eq(1.1) was also suggested for certain strongly
mion loops, and the replacement of the bare gluon propagaorrelated systems such as hi§h superconductorfl4].

tor by that dressed with HDLE8—10], prior to perturbative In a relativistic quark-gluon plasma, the relatively poor
expansion resolves the infrared difficulties. This was demonscreening by Landau damping is far more transparent. The
strated, for example, for a non-relativistic electron gas withdi-quark pairing force is dominated by magnetic gluons, and
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swers. In this article we shall disentangle this mystery. It
turns out that the expressioh,(P,P) is highly ambiguous

in the presence of a Fermi sea, and, in particular,

FIG. 1. The quark self-energy diagram. lim  lim A#(P,,P)qﬁ lim  lim AM(P’,P), (1.9

p’~>p V’HV V’*)Vprﬂp

Landau damping gives rise to a remarkable non-BCS scaling
of the transition temperature and the energy gap for coloa common ambiguity of the infrared limithe zero energy-

superconductivityf12,15-17: momentum limit of soft lines of a diagrgnm the absence of
covariance. The contribution of;'M(P’,P) to color super-
M 6N; 7 conductivity comes mainly in the regiop’ — v|<u with
KeTc=c-gexp — o - (1.2 z 2 203 13 ; /
s Net1lg p'=p[~mpv' =" while [p—pu|~[v| and |p’—ul

S . ~|v'|, which is closer to the order of the left hand side of
The non-Fermi liquid behaviof1.1) suppresses the pre- gq. (1.8). By carefully tracing the subtleties of the infrared
exponential factoc significantly, and we found th41.8] limit along the different routes, we are able to reconcile the
o B logarithmic behavior of Eq(1.1) with the Ward identity
c=coe (TN VA=0.176c, for No=3, (1.3 (1.7) as well as the full BRST identity when the group theo-
retic factors and the vertex diagrams in Fig. 2b and Fig. 2c
are restored. Yet the suppression in Eg3) remains intact.
Though we are mainly addressing QCD and color super-

with ¢y the pre-exponential factor without radiative correc-
tions[15,16,19,20. We have also argued that the contribu-

tions from other higher order diagrams to Eg.3) are sub- conductivity in this article, the non-Fermi liquid behavior of

Iead_ing. . . the fermion self-energy and the vertex function apply, to a
Since the inverse quark propagator is related to the quark- '

. . . Simpler extent, to the relativistic electron plasma as well.
gluon vertex function through a Becchi-Rouet-Stora-Tyuting -, 5 y1asma exists inside a white dwarf star, a supernova
(BRST) identity, so is the quark self-ener@(P) of Fig. 1 P ' b

1o the radiative correction'M(P’,P) of Fig. 2. To illustrate or a red giant star, for which the condition that the chemical

h lati f th " tion in Fia. 2 potential be much higher that the temperature is valid.
such a reiation, we focus on the Vertex correction in Fig. 2a, | the next section, we shall calculate the quark self-

which survives in the Abelian case and will be referred to a%nergy and pin down the mathematical mechanism behind

e “Abeln veriexin he lolouing. e aclrang bl th ogartm of Eq(L.1. The verex unciont (', P) i
group analyzed in Sec. Il in light of the BRST identity. The con-

energy, tribution to color superconductivity will be discussed in Sec.
ALfa)(P’,P)=gT?“T'fTrf“AM(P’,P) (1.4 IV together with some concluding remarks.
and Il. QUARK SELF-ENERGY

S(P)=T TLE(P) (1.5 Little motivation is required for the analysis of the quark

m ’ self-energy, represented in Fig. 1; it may appear as a simple

we have the Takahashi identity radiative correction in perturbative processes, but it also en-
ters the BRST identity. The form of the self-energy also

(P'=P), A, (P, P)=E(P")—E(P). (1.6)  characterizes the non-Fermi liquid behavior at high density

and has a subtle influence over the divergences of the quark

_'Bakin_g the limit P'—P, we end up with the usual Ward yertices. Without more ado, in Euclidean space we write
identity

1 d3r
S(P)=—¢"T{Ti- X J(ZT)gD,W(L)mS(HP)%,

AM(P,P)=L:(P), (1.7 84
(2.2

P,

which is similar to the Ward identity of QED. Because of the
above behavior oE (P), this identity raises a suspicion that
A ,(P’,P) must also contribute to the pre-exponential factor
in a manner similar to Eq(1.3). This was, however, ruled
out in [18] where we showed that while the derivative
(0/9v)E(P) contains the logarithm ofy, the derivative .
(0/9p;) 2 (P) does not, and thus the effect is not that of wave S(P)= '_ (2.2)
function renormalization. The contribution of,(P',P) re- P
mains subleading even with the logarithm since the Coulomb o
propagator attached to it is strongly screened. whereP= y,(n+iv)—ivy-p. In the presence of a Fermi sea
Nevertheless, a paradox arises here. The integral repré-is necessary to incorporate HDLs into the gluon propagator
sentations of\;(P,P) andA 4(P,P) look identical while the at leading order. While it is possible that a magnetic mass of
above results, together with E(L.7), suggest different an- orderT exists, at high density>kgT the damping due to

whereL=(I,—w,), P=(p,— 1), w,=ne, v,=(n+13)e,
e=2mkgT and T{T;=C;=(N2—1)/2N, for T; in the fun-
damental representation &U(N.). Following the notation
of [18,20, we write the quark propagator as
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HDLs prevails over that due to HTLE21]. Incorporating

HDLs, the gluon propagator in the covariant gauge takes the HE<(P)=-— —f dl sz d(cos#)
form
. 1 7aild-p)?yp
=i X — —D(l, , (21
D,(K)=————P,, B ; (a0 (210
Ko+ " (K, w)
i K K where =+ p|— u. Corrections due to the change from a
ple—ia L discrete sum to an integral are sub-leading; they can be ob-
K21+ 0F(k, w)/k?] (K?)2 tained using zeta-function techniques as demonstrated for
2.3 similar processes i120]. Thus, in pursuit of the leading
' order behavior only, we immediately move to the continuous
2 12 o a T o7 energy limit withkg T<v,<w.. Making the change of vari-
WheTreK (k _(.L)) Ke=k +(,() P J_klkj y Pi4_ P4J abIeS fr0m6 to f’
=P,,=0,
1 PP
) KK, f_1d<cose>[y4—|(l p)%yp]
PL,= %—F—PW, (2.4
&HHidg % - .
, , :j T va—i 55 (E- &)y P,
and « is the gauge parametéwe have adopted the notation ép—l “p
|k|=k). The electric self-energyF(k,) and the magnetic (2.1
self-energyo™(k,w) in Eq. (2.3 are given byoF(k, o)
=mafS(w/k),  oM(k,w)=mitM(w/k), with M3  with £,=p—pu, we find
=N¢g?u?/27? and
1 <(Vp~——f dllf de(l w)F(v,p;l,w),
fE(x)=|1—xtan ! —” (2.9
X (212
X 1 2 .
f""(x)=§ (1+x?)tan* ;)—x . (2.6) - 74—i:?(§—§p)27-p
F(v,p;l,w)=J e
For more discussion of our notation or HDLs in general see b 2.13
[18,2Q or [21], respectively. From Eq2.5) we can see that '

the Coulomb interaction is strongly screened while from Eq.
(2.6) the magnetic interaction is not. In this paper, we shall
be interested only in the leading infrared behavior, which
comes solely from magnetic gluon exchange, and so we shall

Fixing p= u for the external lines and carrying out the inte-
gration over¢, we have

neglect the electric contributions and regard F(v,ul,w)=2i y4tan‘1|T + sz V;,. p
wTV
D,,(K)~—iD(K, w)PW, 2.7 w+v I
X|1———tan?! , (2.19
. | w+v
with
so that
Dik,w) ! 29
,w)= . . 9
K2+ w?+ oMk, w) 5F(y,,u,;l,w)=27‘ri v46(v+ )
To focus upon the infrared behavior, we separate the loop 2il 2
integral into two regions and rewrite the self-energy as ——————Yat —
(0+v)2+1277 |
S(P)=C{E~(P)+E~(P)], (2.9 . |
—2— tan ! m
where the superscripts denote integration inside and outside wTy
the infrared sensitive region:<0l<l., —w.<w,<w, with 2(w+v)2+12]
I, wc<u. We shall evaluate the infrared sensitive region LT T ISS, (215
only, (w+v)2+12
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where the delta function comes from the discontinuity of the That the self-energy does not depend upon the spatial mo-
inverse tangent function. We find the energy dependence ahentum in the infrared limit can easily be ascertained by

the self-energy by differentiating, differentiating 2 (P) with respect top;. Noting thatd/dp;
J = bia/agp, from EQ@s.(2.12 and(2.13) it is straightforward
—E P GTATB(], (219 N
. Jd - .
with —E5(1,0)]p=,=19B(¥), (2.21)

¢y

i le
14
am |2+v2+m§,fM(—

which is both real and finite in the limit— 0. Therefore the
logarithmic singularity cannot be attributed to a wave func-
tion renormalization. This is also the case found in a solid
and state physics contexi3].

To summarize, we find that in a dense quark-gluon
plasma the quark self-energy exhibits non-analytic behavior

(2.17)
.

1 le @c
B(,,):4_3J dlf deoD(l,w) only for the energy component:

m>J0 —we

X{ il 1 L0 | ig2 413
—— YT an 2%(P)|p=p=———=CiysviIn—s—+-.- (222
(w+1))2+|2 | | w+v ( )|p o 2772 fYa Wm% V|
20w+ v)2+12| . .
[PEESTaTY Yp|- (218 (the imaginary part of the self-energy, contributing to damp-

ing in the plasmd22,23, is analytic asv—0). It is impor-
tant to note that the infrared non-analyticity in the energy
originates in the discontinuity of the pole cutting the contour
in the ¢ integration. This feature gives rise to th€unction

in Eq. (2.15 which ultimately leads to the infrared non-
analyticity. This behavior will be seen to repeat itself in Sec.
Il A where it will lead to infrared divergences in the radia-
tive corrections to the quark-gluon vertex.

From the resul2.22) it is clear that covariance is broken;
this is a direct effect of the presence of a Fermi sea. We also
see that=Z<(0)=0, so that the self-energy leads to no
1 (lo | 1 lo chemical potential renormalization from the infrared side.

f f dll What is also of considerable interest is the BRST identity.

How this is met in the dense quark-gluon plasma is subtle
and we investigate this phenomenon in the next section.

Noting the asymptotic behavior—th&t(x)=(w/4)|x| for
|x|<1—a scaldy may be introduced to divide the integra-
tion in A(v) into two: |v|<lo<(m3|v|)2 For 1<l we
have the contribution

lo
dl

3
I0

mp|v]

<L (219 IIl. BRST IDENTITY AT HIGH DENSITY

) - ) ) Since the quark self-energy is only non-analytic in the
A.II. of the inequalities follow strmghtfowvardly from the defi- oyternal energy, one may expect from a generalization of the
nition of |, except for the second, which is due (/) Ward identity of QED that the Coulomb-quark vertex has

being a monotonically decreasing function lofTherefore,  gimjlar behavior and is divergent while the magnetic gluon-
neglecting this subleading contribution, we find a logarith-quark vertex is not. However, it is also clear that the inte-

mic infrared singularity inA(v) arising from the second re- grands in the infrared region fdl|4 andA! are mathemati-

. . . . . i
gion (namely the regioro<I<I.). The integratiorB(v) is  caly identical, save for an indiced prefactor. Apparently we
finite in the limit »—0. We end up with have something of a paradox: from the self-energy we expect
only the Coulomb vertex to be divergent, but there appears to
be no mathematical difference between the infrared contri-
bution to the Coulomb and magnetic vertices. We shall re-

|2

Jd - |g2 le
—g5< ==
aV‘—* (V:p)|p:,u 4W274L0d|

a
13+ 1%+ Zm%|V| solve this paradox in this section and show how the BRST
identity works at high density. First of all, we shall examine
ig? 413 the zero energy-momentum transfer limit of the Abelian ver-
=— 5 Yaln—5—+---. (220  texA,(P’,P) and derive the precise expression of the Ward
12m TMp| | identity (1.7):
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ig? d3r
Agfﬂ(P',P)zF En‘, f(ZT)SD,,p(I,w)
i“gﬁf Xy,S(L+P")y,S(L+P)y,. (3.3
LL“ This may be written in terms of two integrals, one inside and
(b) (©

one outside the infrared sensitive regions<Io<l., — w,
<w<w:.Wwith |;,0.<u,

FIG. 2. The physical radiative corrections to the quark-gluon
vertex:(a) A® , the Abelian vertex(b) A'®, the tri-gluon vertex, A®P’,P)=P, [A@<(P",P)+A@>(P" P)],
and(c) A\, the triangular vertex. . (3.4)

(a)

p with P, =(—ip,1). Inthis subsection we are only interested
lim lim Ay(P',P)=— a_:(P)’ in the leading infrared behavior. So we evaluate,
Vv plp v
gz (S 1
A(a)<(P’,P)z—3f dl |2f d(cos®)
P 8m°Jo -1
lim lim Ai(P’,P)=£:(P). (3.9
- i

P ,—>p V’—*V

X (ys—iy-pcof®A(P,P';L), (3.5

~ do D(l,w) 1 1
The latter relation for the magnetic vertex was previously A(P,P";L)= fﬁz— ; e -
investigated irf 24] for a system of fermions interacting with Tl ot 0=
transverse Abelian gauge bosons. Contrasting the Coulomb 1
and magnetic cases in E(.1) provides an important clue — 4 )In(—w), (3.6)
hinting that the ordering of limits contributes to the subtlety otl{ o—{

we are overlooking. To show how the paradox is resolved o
this identity shall be considered in the next subsection, whereshere {=v+i¢, é=|I+p|—u and ' and &’ refer tov’,

the infrared behavior of the vertices is discussed and thg ' The logarithm in Eq(3.6) introduces a branch cut which
Abelian vertex is treated in detail. In the second Subsectiome may take to lie a|ong the positive real axis and the con-
we shall show how the full BRST |dent|ty works in the densetour to run above and below it in the normal fashion. As
quark-gluon plasma in terms of Feynman diagrams. shown for the self-energy, it is only the discontinuities that
occur as poles cut the contour and branch cut that induce the
infrared singularity. Hence we need only focus upon the sec-
ond and fourth terms in Eq3.6), since the other terms are
To explore the behavior of the quark-gluon vertices andregular. Using the convention that argl)=0, we find that
their relation to the BRST identity we shall analyze in detailthe contribution of these poles reads
the Abelian vertexA(® shown in Fig. 2a. We refer to this

A. Infrared behavior of the Abelian vertex

vertex as “Abelian” since it is the only physical vertex that -~ o T , ,
also appears in the Abelian theory. In order to simplify mat- Adisd P".PiL)= g,_g[sgrrg)D(I ) —sgrie )DL ],
ters further, in this subsection we shall put both external 3.7)

quarks on shellp=p’=u.

Intuitively, we may expect the behavior of the vertex to where the sign function comes from the discontinuity of
depend subtly upon the ordering of the limits. We may dedn(—w) crossing the cut.
velop this intuition from HDLs, for example, where although  \We are now in a position to take the IinﬁgL—>P’ for the

there is an analytic result for the screeni@g) and(2.6), it ward identity and we shall consider the two different order-
has different asymptotic behavior in the two orderings of theings of the limits in turn:

limits (x—0 andx—®). As we shall see, HDLs and the

BRST identity at high density are intimately connected and it ) o~ . J
is no surprise that the ordering of limits in E§.1) is crucial (1) I,|m _'Em Adisd P, PiL) = —msgr(§)——D(1,{),
in resolving the paradox. We write the Abelian vertex as vi—ovpo—p 3.9

AP P)=gTTT{TPA L(P',P) (9
(i) fim 1im Ao P',P;L) =i w2 sgri&) D1, 4) .
AE’«a)(P,’P)’ (32) 5,*’[3 v —v

(3.9

C
=gT'f(—%‘+c:f

In both cases we are looking at the infrared limit, and thus fix
where the external momentum to he=p’=u, §,=0.
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First of all, considering casg), using the change of vari-

ables(2.1)) it is straightforward to find

lim  lim A®<(P",P)[y-

V’*}V P ’~>p

92 Ie | d
__ Qfo dll f_ldfsgr(§>5z><l,§>

X

(3.10

. .
Ya—i 2 p)

N2
:%”Jolcd' (DA, v)—D(I,v+il)]+-- -
T
(3.11)
ig? 413

= Y. Ir‘ + ... ,
1272 " I71'm2D|V|

(3.12

where the second term in the brackets of E11) contrib-

PHYSICAL REVIEW D 62 054013

O A A

(a) (b) (c)

FIG. 3. The non-physical ghost diagrams generated by the
BRST transformations, representita) R'®, (b) R'® and(c) R'®.
The open circles denote non-physical vertices generated by the
BRST transformation.

(P'—P)*AL(P",P)=gTi[S(P)~3(P)]+R (P’ ,P).
(3.15

The physical quark-gluon vertice$), = A®+ AP+ A (9
are represented in Fig. 2. The non-physical ghost-quark ver-
tices induced by the BRST transformatid®l=R'(® + R'(?)
+R'(©), are represented in Fig. 3. They vanish for on-shell
Minkowski momentaP andP’ at u=0.

The nontrivial part of the BRST identit{8.15 is in the
dressing of the gluon lines of Figs. 1, 2 and 3 by HDLs and
the inclusion of Fig. 2c. The order of the perturbative expan-

utes to the subleading terms denoted by ellipses in Eq:}ion is mixed up without offsetting the simple form of the

(3.12.
Second, considering cas$i), we find that differentiation
gives two terms which will cancel in the leading order:

lim lim A@=(P",P)| -,

p ,*)p T

ig? (lc [ £
:@fo di 'f_ldf( w—'m'p)

]
sgn(¢) —D(|,§)+25(§)D(|,§)}

¢
(3.13

The first term is identical to that evaluated for céiseabove.
With the same approximation, the second term is

X

ig? [le 12 ig? 413

= — In
472J)o 1272

ks

4

c
TMR|V
24 T2y ol

(3.19

identity. The detailed derivation of Eq3.15 is given in
Appendix A.

Setting ﬁ'=5 on the Fermi level, the BRST identity
(3.15 implies that

_RI(P'P)

lim | AY(P",P) ,
’ VvV —V s,
vy p'=p,p=p
—gTi (P
=—9g 55 (P)

3 | 4 g
Cfo’y4|n—2.
Tmp| v

o (316
1272 '
It follows from the discussions of the previous subsection
that AL(P',P)=AA(P",P)+AP(P',P)+ A (P, P)
with

Cad ) ig? 413
- 2icC In
2 f 1272 Ya

Aifa><P',P>=gT'f( TR
mg| v|

(3.17

It remains to find the logarithmic terms from Figs. 2b, 2c or

The two leading contributions cancel and in this ordering of3 to reconcile the BRST identit(3.15 to the leading order

limits the vertex is finite.

of the infrared logarithms.

Now we can see how the paradox is resolved. The spatial for5'=p andp= 4, we have

Abelian vertex considered with the ordering of the limits in
case(ii) is finite, in agreement with the second part of the

identity (3.1).

B. BRST identity

1
AP, P)=ig3falbTaTt— >

d°r
R f—B(an—V'—V)

(2m)

XD2(l,w,)(8;— 1)) %S(P+L)y,

The BRST identity is a generalization of the Ward-
Takahashi identities for non-Abelian gauge theory obtained
through the BRST transformations. The BRST version of the
Takahashi identity can be written as

1
=5 9CaTI AP (P, P)+ AP (P, P)],

(3.18
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where the superscripts specify the contributions from loopvhich completes the BRST identit{8.16 to the leading

momentum inside and outside the infrared regien,< w,

andl<l.. The inside contribution can be approximated by lim

2 le we
AP P= (ot [ dwwp0,0)
4’7T3 0 — ¢

el

J' . 74—I|—27-p

o B oy
2

g X S oA
== (ilyyatlay-p), (3.19
2w
where
le @¢ |
_ 2 _1
l4 fo dllj_wcdw oD(l,w)tan e (3.20
and
| —f%dwacd P20 Y a1
2=, . 0w (,w)l— tan el
(3.21)

In the limit v— 0, the integrands of both integrdlg and|,
are positive and can be bounded by letting— and
changing the integration variables from ¢) to (I,x=w/l).
We have

xtan 1=

! |<fwdx X Ir\Ig(lerz)_
Yo T2 mRiM(x)

11 (3.22
and

1
x(x—tan‘l—)
X

Isfdx
2l=, (1+x2)2

12(1+x2)
n —1].
m3fM(x)

(3.23

logarithm level. The other order of the limits,
s dimg AP, P), s infrared finite.

To summarize, we have shown how the BRST identity
works in a quark-gluon plasma at high density in terms of
Feynman diagrams. The derivation of the identity is quite
general and that it works at high density is not surprising, but
with this presentation we hope that the mystery that shrouds
this topic may be lifted. With the incorporation of HDLs, the
BRST identity is no longer satisfied order by order. The pay-
ment for using HDLs is that orders of perturbation theory
become mixed up.

IV. COLOR SUPERCONDUCTIVITY

Perturbative QCD has been applied successfully toward
the study of color superconductivity at high baryon densities.
In this regime, single gluon exchange dominates the pairing
interaction, and screening plays an important role in the non-
BCS behavior of color superconductivifyl2,15—-17. In
Refs.[18,20, the superconducting pairing temperature of a
dense quark-gluon plasma was investigated by means of a
Dyson-Schwinger approach to the pairing interaction. The
resulting problem was reduced to one of finding the smallest
eigenvalue), of the Fredholm equation

\? -
anm)=§m§%kdp

X Ksisé,slsz(n,rn|p,ap)fslsz(n|p),

4.1

with the condition\?=1 yielding the critical temperature.
The kernel is given by

Ksis’ slsz(n’-n|p,ap)

2

1727172

2
p
= o ;/ Ys!s! s”s”(n,un|plap)
152

Both integrals are convergent and herid” does not con-
tribute to the infrared logarithm. It is also straightforward to
verify that the BRST generated diagrams in Fig. 3 do not
display any logarithmic behavior in the limit—0. Thus the

only candidate left over is the diagram in Fig. 2c correspond@nd consists of the-wave components of the two particle
ing to gluon insertion on a HDL. irreducible amplitude for the scattering of two quarks in their

Though formidable as it looks, evaluation of Fig. 2c canColor antisymmetric channel with zero total energy and mo-
be simplified with the aid of a Ward type identity which Mentum, ¥y s s (n",n[p’,p), and the full quark propaga-
relates the derivative of the gluon self-energy and the tritor Sy ¢(n|p). The initial energies of the two quarks are
gluon vertex with three external gluon lines. Again the an-+iv, and the final ones aretiv, with v,=(n+3)e. The
swer is sensitive to the relative order of the limits—» and  jnitial momenta of the two quarks arep and the final

5’ﬁ5. In Appendix B, we shall demonstrate that

XSsIsl(n|p)Ssgsz(_n|p)y (4-2)

ones are +=p’. The diagrammatic expansion of
7 413 ysiséyslsz(n’,mp’,p) to orderg* and S, 4(n|p) to orderg?
lim lim A{O(P",P)= ——=CuqTlysIn—5—+- -, is shown in Fig. 4. _ _
Vv P 24 mmp| v Collecting previous results, the perturbative expansion of

(3.29

the least eigenvalue reafis8,2(]
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Pl

p-p'—(p-H(p’-1)
C(unlpp) = § + § + a?; + }‘ii te 8 iIAv—¢'+¢
S X = ! T y (4.4)
Salp) = —— 4+ S e Hotv) =& j(o+v)—¢

FIG. 4. The diagrammatic expansion of the two particle irreduc-,

whereAv=1'—v, é=|p+1|—p andé’ =|p ' +1|— u with
ible vertexfsisé,SlSZ(n’,n|p’,p) to orderg* and the quark self- v=v' - v £=[ptl|—u £=Ip [~ n

) |¢]<I and [&'|<I. It follows from the discussions of the
energySys(n|p) to orderg™. previous sections that the sensitive region of the integration
variables which is responsible to the non-Fermi liquid loga-

g2 1\[ 4 2 8 rithm corresponds to the singularities of the fractions inside
N 1+ NC ?Iogzr+ ?(y-l— log 2) the brackets. Therefore one Bnd¢" must be kept smallin
A ¢ € the sensitive region. If there were an infrared logarithm, it

would come from

sz ot -5 [+
xlogz + O 1= 2422) | 1R, - &l [oc do D(l,w)
A PP (2w)3Jw5iAv—g'+g
CMI 33+(9I 22 +0(g° C C
A e e o=l oe-IgD ], o
4.3 (otv)=¢ i(wt+v)—¢]

with 7<1. Transforming the integration variables frdnto
where the Ieadingﬁ(gz) term stems from the first diagram |, £ and¢’, we have
of Fig. 4 with a bare quark propagator. Relative to this lead-
ing term, the radiative corrections and the two gluon ex-
change appear to be suppressedybys is the case with the
remaining diagrams of Fig. 4 but may not be so because of
the infrared logarithm, each counted @s® for T~T¢ in where the Jacobian ig=|T-pxp'|=p? 17— (- &)
accordance with Eq(l.2). The radiative correction to the wijth the approximation tha¢ or &’ <I. Introducing
quark propagator is such an exampl®]. The logarithm of
the self-energy, contained in the last line of E4.3), gives DU, w) f

y W)=

TS
d3I=TIdId§d§’, (4.6)

rise to a significant contribution to the prefactt8].

Though the radiative correction to the vertex function is li-

able to such a Iogarithm according to the BRST identity, thisand Carrying out the integra‘[ion ovérand g’, we obtain

does not happen in the energy momentum redion u|

~|v|, |p"—u|~|v'| and|p—p |~ («|v—v'])*3 where the o 1 ([l I wg

main contribution to the kernel4.2) comes from; this is A7(P ’P):@fo dl\/ﬁf,ﬂ

indicated by the absence of the logarithm in the limit ¢

— v followed by p ' —p of the vertex function. In what fol- X[(w+v)=d(wt+v')]

lows, we shall demonstrate this point via an explicit evalua-

tion of the contribution of the Abelian vertex function to the :if'cdl | ff"

partial wave amplitude. 872Jo 1202+ A1) -
Consider the Abelian vertex Fig. 2a, with=p'=pu, q

=2u sin(@/2)= 6. The infrared contribution is given by

" o' D(l,w'), 47

doD(l,)

doD(l,w).

4.9

Note that ifp ' — p first, we have a complete exposure/of

Kfa)(P’ P)=u( P’)A}a)(P’ P)u(P) in the denominator:

o d*l [oc do A@ /P Py 11k J‘f”
=ag2p. - ANV (P P)=——-—| dll doD(l,w). (4.9
p'f|<|c(277)3f%27rp(l’w) 7 8m2 Avlo -

The integration will give rise ta’ In|v'|—vIn|v|, which in

00 —(-Np' 1
P-p —(p-N(p"-1) the limit v’ — v produces the infrared logarithm. But here,

[[(o+ ") =& [I(0+v)—§] with 6~|v’'—v|¥® and | ~|v|*3, such a singularity is sup-

& oo d pressed through thi¢ 6% term inside of the square root. In-

:gZE).f _ J ¢ —wD(I,w) deed, if we insert/\(,f‘)(P’,P) into the partial wave integra-
icig2m)?) -2 tion, we find the corresponding contribution
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g* (%
7IR(V’1V):_f do oD(ub,v' —v)
8m2Jo

IS | —v
X fo dl\/ny’de(l’w).
(4.10

vir(v',v) may be bounded by droppindv inside the
square root. Then the integration owkedecouples from that
overl andw, i.e.,

4

|7IR(V,1V)|$Q|J, (4.11)
where
0C
|=J’ doD(ub,v' —v) (4.12
0
and
S —v
J=f dlf doD(l,w). (4.13
0 '

It follows from the properties of the functioP(l,w) thatl
andJ are bounded from above by

=

| <

(K|V,_ yl)—1/3

2
33n (4.19

and

v
J< K—1/3 v 2/13__ Sgr(V/V) v 2/3’
NG |[v'] [v|*]

(4.195

where K=(7r/4)m§,. Combining I and J, we see that
vir(v',v) is nonsingular in the limit’—0 andv—0 along
any path in the ¢',v) plane.

It is important to note that this result forg(v',v) only
pertains to any possible additional infrared enhanceme
arising from the radiative quark-gluon verte\){éa) . For the

complete partial wave amplitudey(v’,v), the collinear

magnetic gluon exchange logarithm, already present at the

tree level, i.e.,

2 3

: in ok
Yired V ,V)—mz nm.

(4.19
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clusion merit further consideration. In particular, the formula
for the vertex function, taken from Reff21], is not appli-
cable for the infrared contribution at a large chemical poten-
tial in comparison with the temperature. This can be judged
by the absence of the infrared logarithm from their vertex
function in any order of the limit of zero energy-momentum
transfer; this absence contradicts the BRST identity as dis-
cussed above. In fact, only the expressions for diagrams with
internal fermion lines only can be carried over from the high
temperature region to the large chemical potential region, as
is the case with the gluon self-energy functiof@s5 and
(2.6). For diagrams with internal gluon lines, the infrared
region makes significant contributions, leading to effects
such as the non-Fermi liquid behavior of the quark self-
energy and vertex functions, which has been completely ig-
nored by the hard thermal loop approximation employed in
[21].

By careful examination of the radiative corrections to the
quark self-energy and vertex functions, we have reconciled
the non-Fermi liquid behavior in the dense plasma with the
BRST identity. The incorporation of HDLs, and the resulting
resummation in the gluon propagator, leads to a mixing of
orders in the perturbative expansion. Hence proof of the
BRST identity involves combining diagrams of different
loop order, as seen in Fig. 2. An important consequence of
this result for color superconductivity is the verification that
there are no additional infrared logarithms accompanying the
radiative correction to the vertex function. This strengthens
our previous result that the only radiative correction to the
determination ofT - comes from the quark self-energy, and
suggests that the pre-exponential factor of @) is in fact
exact to leading order ig.
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APPENDIX A

In this appendix, we shall prove the BRST identity, Eq.
(3.15, relating the self-energy, vertex and ghost diagrams of
Figs. 1, 2 and 3 in the presence of hard dense loops.

Using the standard trick

maintains its presence at the radiative level. Indeed, based on(P’ —P)#S(P’' +L)y,S(P+L)=S(P’'+L)—S(P+L),

numerical evaluation of the partial
Yapeliarl ¥’ V), We have confirmed that only this expected

wave amplitude,

(A1)

collinear logarithm is present. We have also evaluated thwe may trivially relate the Abelian vertex Fig. 2a with self-

infrared contributiony,g(v’,v) numerically, and the result
supports the above analytic arguments.

Though our conclusion that the vertex function does not
contribute to the pre-exponential factor agrees with that

made in[15], the arguments used [A5] to justify this con-

energy Fig. 1,

Cad
2C;

)[E(P’)—E(P)],
(A2)

(P’—P)“A'lfa)(P’,P):gT'f( 1-
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which, apart from the group theoretic factors, is nothing butThe HDL-dressed gluon propagator is related to the bare
the Takahashi identity of QED and is independent of thepropagator via the Dyson-Schwinger equation
form of the gluon propagator. However, for non-Abelian

gauge theories, the group coefficients do not match; cancel- D,,(P)=D,(P)—=iD ,,(P)IL,\(P)D,,(P)
lation of the extra term must result from the additional ver- .
tices. :D,u.v( P)_ID/L[)( P)Hp)\( P)D)\v( P) (Ag)

In QCD there is a second physical procesOgt®) in
perturbation theory, formed with the tri-gluon vertex It follows that —i(P'—P),D,\(P")",\,(P",P)D,,(P)
—if'm”FMp, as shown in Fig. 2b. We now turn to this dia- can be obtained by sandwiching EGA8) betweend,
gram to see how it may cancel the extra terms. It is straight—iD, gz (P')Ilz,(P) on the left and 4,,
forward to write down an expression —ill,5(P)Dg,(P) on the right. The expression is then sim-
plified by the 4-dimensional transversality of the self-energy

g® dl ) matrix IT(p), and we end up with Eq$A4) and (A5).
I(b ’ _
AP ,P)—flmnTPT?E ; f WDML)(_') Now we look at the contribution due %),
XT (L, L=Q)D,, (L) y,S(P+L) v, , Cao, ¢ s f a3 D L0
(A3) 2 "BF ) 2m3t
where if ™M= — (C,4/2)T}. However, this expression D, (L)]v,S(P+L)y,

may be simplified when contracted wit? (—P),, with the
aid of the identity Cad

~'95¢,

THZ(P)=3(P)]. (A10)
(P,_P)#DV/A(P,)FM)\‘)(PI!P)DPV(P)
— v o ) /s 3) /s This expression, the origins of which are purely non-Abelian
HV, A (PTR)Y V(PP VLA (PP, in nature, exactly cancels the extra terms induced in Eq.

(A4) (A2). However, the tri-gluon vertex also induces a number of
extra terms which we shall now consider in turn.

where The appearance of the ghost propagatorgii suggests

1) o ) ) that these extra terms will be canceled by the non-physical
V(P P)=i[D,,,(P)=D,/,(P")], ghost-quark vertices generated by the BRST transformations.

X Indeed, we find that, when grown from a fermion line, the
V2 (P",P)=D,, (P, ,(P") =TI, ,(P)]D,,(P), ghost terms contribute,
VOUP PI=A(PIP, PIDL(P)=Dn(POPPAR). g

H m-n
(A5) if M E ; f —(27)3VV,V(L,L—Q)')/,,,S(L+P)'y,,,

IT,,,(P) is the HDL diagram which satisfieB,,IT,,,(P)=0 (A11)
andA(P)=—i/p? is the ghost propagator. Sintg is itself

of O(g?), we see here that the price one pays for incorpoWwhich exactly cancels the diagrams of Fig. 3.

rating HDLs in the gluon propagator is the mixing of orders ~ The remaining termy‘®), is of O(g®), two orders higher
in perturbation theory. To prove E¢A4), we start with the  in perturbation theory, and contributes:

bare gluon propagator

3 d°r
-flmn-l—m ng 2: f D L— i L
P P
—I,,(L=Q)ID,,(L) v, S(L+P)y,. (A12)

and the identity
) ] , In the absence of HDLs this term does not appear and the
(P"=P) (=T 4\ (P, P) BRST identity is satisfied order by order in perturbation
_(p2_pr2 o theory. Although with the inclusion of HDL the ordering has
(PT=P"%) o+ Py PY= PPy (A7) become mixed up, the identity must remain. To see how this

Sandwiching Eq(A7) betweerD(P') andD(P), we find contribution is canceled we study the triangular vertex
' shown in Fig. 2c.

—i(P'— p)’uDa,p(p')l"Mm(p/,p)Da(p) . We shall first look at one of the two Ioops that form the
triangular vertex, namely the quark loop with three external
=—i[D,o(P")=D,(P)]+A(P) gluons, as shown in Fig. 5. With three identical vertices there
;o , are two possible orderings for this diagram. Considering both
X Pa/Ppra(P) —A(P)D,,(P)P,P,. (A8) orderings, we write this vertex correction as

054013-10
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=(V,00), X0 =9 (X)), x()=($(x)), c(x)=((x)) and
c(x)=(¢(x)). The master BRST identity reads
oI’

f d' Bx(X)

+ or S(X)) + of o
=0, (A16)

FIG. 5. Quark loop with three external gluorf§;;\’;.

ol

A G (VO +

(09(x))

where
- g° d3r |
TP P)== > f —— T TT{T{%S(L+P—P")
B (2m ¢!
T oV, = - —+gfmVIg" (A17)
Xy, S(L)y,S(L+P)+T{Ti Ty, Xu
XS(—L=P)y,S(—L)y,S(—L—P+P")]. o
(A13) SyY=—iT' ¢, (A18)
Contracting one leg of the triangular vertex witR'(~ P)* —
we find oY=—IiT ¢ ¢, (A19)
(P'=P)“TM" (P, P)=igf'™TII,,(P") —1II, (P)], L
(A14) 5¢I — E]clmn(ﬁm(ﬁn (AZO)
where, as discussell is the vacuum polarization diagram.
Therefore, connecting the two free legs to a fermion line, we
find that are the BRST vgiations of the field components. The expan-
sion of the termyxc in Eq. (A16) to the orderg® and with
(P'— P)“ALEC)(P’,P) the bare gluon propagators replaced by the dressed ones af-

. terwards yield the identity3.15. Unlike an Abelian gauge
B _f,mnTang_3 > f d°l D (L-0) theory, the ghosts couple to other fields of the theory. The
N Ffg 4 (2m)3 v expectation of the nonlinear term of the BRST variations
gives rise to the additional ternR?(p’,p) with R'® from
X[, ,(L=Q)—~1I,,(L)]D,,(L)y,,S(L+P)y,, the second term of E¢A17), R'® from Eq.(A18) andR'(®)
(A15) from Eq. (A19).

which cancels the remainder in E@A12).

At this point, we note that at nonzero chemical potential
the triangular diagram, EqA13), does not contain exclu- |n this appendix, we shall evaluate the infrared contribu-
sively the term proportional td'™", and is nonvanishing tion of the diagram in Fig. 2c, which we denote by
even in QED because of the breakdown of Furry’s theoren}\bc)(P,,P)lR with P=(p,») and P'=(p+q,v+Aw).

by the Fermi sea. On the other hand, the ideni#®%4) re- - R
y MAY4) ThenQ=P'—P=(q,Av), and bothqg andA v are soft. The

mains valid rigorously and there is no contribution from the . e ) ; X i
triangular diagram to the Takahashi identity of QED. Fur-Calculation is greatly simplified with the aid of the identity

thermore, for low excitations near the Fermi level, the ap{(A14) for u=4 in the limit q—0 followed by Av—0 and
proximate particle-hole symmetry renders the triangular diafor x=j in the limit Av—0 followed byg—O0.
gram dominated by the term proportional fi§"". (i) The triangular vertex in the limit

Before concluding this appendix, we shall relate the par-
ticular BRST identity(3.15 to the master BRST identity as

given in Ref[25]. LetT'(A, x, x,C,c) be the generating func-

tional of proper vertex functions with, y, x, ¢ andc the
quantum mechanical average of the gauge potenal,

quark fieldsy, ¢ and the ghost fieldss, ¢, i.e., A,(x)  We start with

APPENDIX B

lim limAY9(P’",P) 5. (B1)
Av—0 aﬂo
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O , & o do__ wherep=u and ¢=|p+1|— . Carrying out the¢ integra-
A9 (P, P)r=—0g |<|C(2w)3fwcﬁ tion, we find
i «dl oM F(v,ul
X[ T i (Ll = Q) Ty 7 AP) == LN f f G T (V+“ M(T) =
w g w
(B6)

XD(|I—q|,0—Av)D(l,w)
with F(v,u;l,®) given by Eq.(2.14 The discontinuity of

X| Syt m— Ml( P the inverse tangent corresponds«te- — v and thel integra-

IT—ql? tion is dominated at~ (k) 3~ (kv)*3. We end up with
(B2)
h L o) is gi ~mn _ AP)= delf do™M  F(v,uil, o)
whereD(l, ) is given by Eq(2.8) andI" /},;, by Fig. 5. Note o 0 124 oM(1o) 2

that we have used the continuum approximation for the Mat-
subara sum. It follows from EqA14) that

IC
= g_nj dID(l,—v)+terms regular ags—0
472 0
lim nmr'j}J(LL Q)—lgf'ab—H,,(L) (B3)

Av—0 q—0 Igz Ig
= y4logm +terms regular as—0. (B7)
Therefore 127

(i) The triangular vertex in the limit
lim limAYO (P’ P),Rz—gCadT'A(P), (B4)

A0 G0 lim lim A[©(P",P)g. (B8)
d*,o Av—0
with

HereA}(C)(P’,P) is given by Eq.(B2) with the replacement

B [oe goM T'4mm'7n,—>f}m',‘n, . It then follows from the identityA14) that

A(P)=—g? f d 2 _py
(P)=-g 2m) w— (I,w) )

P lim lim T2 (L,L—Q)=igf'®®—TI,(L). (B9

74—|(p-|)27~p a_>0Av—>0 Jmn( Q) g (9|j mn( ) ( )
i(w+v)—¢

Therefore

1
f f (9(1) 2 2 M 2
[I"+ o+ v (l,w)] lim lim Al(C)(PI P)|R:_gcadT pJA’(P) (B10)
1 q_)oAVHO
_— B5
i(w+v)—¢ B5) with

I 2L
Xf_ld§< Y4~ 57 P

co 9 (fle, (o oM 1 ! _52 1
A (P)_ @jo le_w dw ol [|2+w2+0-M(|,w)]2f gg( Y4 ||27 p) ((1)+V) g

j dlf an | |
CI 124 w2 m3 M ()2 T

(w+1/)3 .
tan
E wtv]”

1 w+vt o |
—1+——tan”
| w+v

1 (w+v)? )

il

f)] (B11)

The discontinuity of the inverse tangent functioneat =0 is now smeared by the factar+ v. This integral converges in
the limit v—0.
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