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At sufficiently high baryon densities, the physics of a dense quark-gluon plasma may be investigated through
the tools of perturbative QCD. This approach has recently been successfully applied to the study of color
superconductivity, where the dominant di-quark pairing interaction arises from one gluon exchange. Screening
in the plasma leads to novel behavior, including a remarkable non-BCS scaling ofTC , the transition tempera-
ture to the color superconducting phase. Radiative corrections to one gluon exchange were previously consid-
ered and found to affectTC . In particular, the quark self-energy in a plasma leads to non-Fermi liquid behavior
and suppressesTC . However, at the same time, the quark-gluon vertex was shown not to modify the result at
leading order. This dichotomy between the effects of the radiative corrections at first appears rather surprising,
as the BRST identity connects the self-energy to the vertex corrections. Nevertheless, as we demonstrate, there
is in fact no contradiction with the BRST identity, at least to leading logarithmic order. This clarifies some of
the previous statements on the importance of the higher order corrections to the determination ofTC and the
zero temperature gap in color superconductivity.

PACS number~s!: 12.38.Mh, 12.38.Aw, 11.10.Wx, 11.15.Ex
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I. INTRODUCTION

Attention to the physics of a dense quark-gluon plas
has recently been revived, along with progress in understa
ing the phase structure of QCD. Interest has only heighte
recently with the projected onset of relativistic heavy i
collisions at BNL. Such unusual conditions of QCD m
also exist in nature, for example in the core of a dense n
tron star. The asymptotic freedom of QCD makes a per
bative treatment applicable at sufficiently high baryon d
sity, and the attractive di-quark interaction mediated by o
gluon exchange in the antisymmetric color representation
duces superconductivity below a certain temperature@1–7#.

Working at non-zero temperature and chemical poten
introduces several complications. One of the primary f
tures of the plasma is that it screens the QCD interact
Thus it is necessary in principle to dress gluon propaga
with hard dense loops~HDLs! and hard thermal loops
~HTLs! in the plasma. For conditions in the range of inter
for color superconductivity, the temperature effects are l
important, and only the effects of screening by HDLs need
be considered. That this screening is important is a corol
of a more general statement, namely that, with a long ra
interaction at non-zero chemical potential, a straightforw
power series expansion of the free energy in the coupling
results in infrared divergences. A resummation over the
mion loops, and the replacement of the bare gluon propa
tor by that dressed with HDLs@8–10#, prior to perturbative
expansion resolves the infrared difficulties. This was dem
strated, for example, for a non-relativistic electron gas w
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Coulomb interaction in@11#. The resultant perturbative serie
contains logarithms of the coupling constant accompany
the powers of it.

As a result of HDLs, the electric gluon propagator
screened effectively by a Debye mass,mD , while the mag-
netic propagator is poorly screened via Landau damping
the sensitive region of momentum space. An important c
sequence of this is the introduction of non-Fermi liquid b
havior of the quark self-energy@12#. In the infrared limit
~highlighted by a cutoffl c! this self-energy is

S~n,pW !up5m.2
ig2

12p2
Cfg4n ln

4l c
3

pmD
2 unu

, ~1.1!

where (pW ,n) are the Euclidean energy-momentum. Such
non-analytic dependence on energyn was first discovered in
solid state physics@13# in the context of magnetic interac
tions. The logarithm suppresses the quasi-particle weigh
the Fermi level and the single fermion occupation num
becomes a continuous function atp5pF , the Fermi momen-
tum, in contrast to the kink of a Fermi liquid. Another effe
is a term;T ln T in the specific heat, but this turns out to b
too small to be observed since the magnetic coupling re
sents merely a relativistic correction. Such non-analyticity
indicated by Eq.~1.1! was also suggested for certain strong
correlated systems such as highTC superconductors@14#.

In a relativistic quark-gluon plasma, the relatively po
screening by Landau damping is far more transparent.
di-quark pairing force is dominated by magnetic gluons, a
©2000 The American Physical Society13-1
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Landau damping gives rise to a remarkable non-BCS sca
of the transition temperature and the energy gap for co
superconductivity@12,15–17#:

kBTC5c
m

g5
expS 2A 6Nc

Nc11

p2

g D . ~1.2!

The non-Fermi liquid behavior~1.1! suppresses the pre
exponential factorc significantly, and we found that@18#

c5c0e2(p214)(Nc21)/16.0.176c0 for Nc53, ~1.3!

with c0 the pre-exponential factor without radiative corre
tions @15,16,19,20#. We have also argued that the contrib
tions from other higher order diagrams to Eq.~1.3! are sub-
leading.

Since the inverse quark propagator is related to the qu
gluon vertex function through a Becchi-Rouet-Stora-Tyu
~BRST! identity, so is the quark self-energyS(P) of Fig. 1
to the radiative correctionLm

l (P8,P) of Fig. 2. To illustrate
such a relation, we focus on the vertex correction in Fig.
which survives in the Abelian case and will be referred to
the ‘‘Abelian’’ vertex in the following. After factorizing out
the group theoretic coefficients from the vertex and s
energy,

Lm
l (a)~P8,P!5gTf

mTf
l Tf

mLm~P8,P! ~1.4!

and

S~P!5Tf
l Tf

l J~P!, ~1.5!

we have the Takahashi identity

~P82P!mLm~P8,P!5J~P8!2J~P!. ~1.6!

Taking the limit P8→P, we end up with the usual War
identity

Lm~P,P!5
]

]Pm
J~P!, ~1.7!

which is similar to the Ward identity of QED. Because of t
above behavior ofJ(P), this identity raises a suspicion tha
Lm(P8,P) must also contribute to the pre-exponential fac
in a manner similar to Eq.~1.3!. This was, however, ruled
out in @18# where we showed that while the derivativ
(]/]n)J(P) contains the logarithm ofn, the derivative
(]/]pi)J(P) does not, and thus the effect is not that of wa
function renormalization. The contribution ofL4(P8,P) re-
mains subleading even with the logarithm since the Coulo
propagator attached to it is strongly screened.

Nevertheless, a paradox arises here. The integral re
sentations ofL i(P,P) andL4(P,P) look identical while the
above results, together with Eq.~1.7!, suggest different an

FIG. 1. The quark self-energy diagram.
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swers. In this article we shall disentangle this mystery.
turns out that the expressionLm(P,P) is highly ambiguous
in the presence of a Fermi sea, and, in particular,

lim
pW 8→pW

lim
n8→n

Lm~P8,P!Þ lim
n8→n

lim
pW 8→pW

Lm~P8,P!, ~1.8!

a common ambiguity of the infrared limit~the zero energy-
momentum limit of soft lines of a diagram! in the absence of
covariance. The contribution ofLm

l (P8,P) to color super-
conductivity comes mainly in the regionun82nu!m with
upW 82pW u;mD

2/3un82nu1/3 while up2mu;unu and up82mu
;un8u, which is closer to the order of the left hand side
Eq. ~1.8!. By carefully tracing the subtleties of the infrare
limit along the different routes, we are able to reconcile t
logarithmic behavior of Eq.~1.1! with the Ward identity
~1.7! as well as the full BRST identity when the group the
retic factors and the vertex diagrams in Fig. 2b and Fig.
are restored. Yet the suppression in Eq.~1.3! remains intact.

Though we are mainly addressing QCD and color sup
conductivity in this article, the non-Fermi liquid behavior o
the fermion self-energy and the vertex function apply, to
simpler extent, to the relativistic electron plasma as w
Such a plasma exists inside a white dwarf star, a supern
or a red giant star, for which the condition that the chemi
potential be much higher that the temperature is valid.

In the next section, we shall calculate the quark se
energy and pin down the mathematical mechanism beh
the logarithm of Eq.~1.1!. The vertex functionLm

l (P8,P) is
analyzed in Sec. III in light of the BRST identity. The con
tribution to color superconductivity will be discussed in Se
IV together with some concluding remarks.

II. QUARK SELF-ENERGY

Little motivation is required for the analysis of the qua
self-energy, represented in Fig. 1; it may appear as a sim
radiative correction in perturbative processes, but it also
ters the BRST identity. The form of the self-energy al
characterizes the non-Fermi liquid behavior at high den
and has a subtle influence over the divergences of the q
vertices. Without more ado, in Euclidean space we write

S~P!52g2Tf
l Tf

l 1

b (
n
E d3 lW

~2p!3
Dmn~L !gmS~L1P!gn ,

~2.1!

where L5( lW,2vn), P5(pW ,2nn), vn5ne, nn5(n1 1
2 )e,

e52pkBT and Tf
l Tf

l 5Cf5(Nc
221)/2Nc for Tf in the fun-

damental representation ofSU(Nc). Following the notation
of @18,20#, we write the quark propagator as

S~P!5
i

P”
, ~2.2!

whereP” 5g4(m1 in)2 igW •pW . In the presence of a Fermi se
it is necessary to incorporate HDLs into the gluon propaga
at leading order. While it is possible that a magnetic mass
order T exists, at high densitym@kBT the damping due to
3-2
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HDLs prevails over that due to HTLs@21#. Incorporating
HDLs, the gluon propagator in the covariant gauge takes
form

Dmn~K !5
2 i

K21sM~k,v!
Pmn

T

1
2 i

K2@11sE~k,v!/k2#
Pmn

L 2 ia
KmKn

~K2!2
,

~2.3!

whereK5(kW ,2v), K25k21v2, Pi j
T 5d i j 2 k̂i k̂ j , Pi4

T 5P4 j
T

5P44
T 50,

Pmn
L 5dmn2

KmKn

K2
2Pmn

T , ~2.4!

anda is the gauge parameter~we have adopted the notatio
ukW u5k). The electric self-energysE(k,v) and the magnetic
self-energysM(k,v) in Eq. ~2.3! are given bysE(k,v)
5mD

2 f E(v/k), sM(k,v)5mD
2 f M(v/k), with mD

2

.Nfg
2m2/2p2 and

f E~x!5F12x tan21S 1

xD G , ~2.5!

f M~x!5
x

2 F ~11x2!tan21S 1

xD2xG . ~2.6!

For more discussion of our notation or HDLs in general s
@18,20# or @21#, respectively. From Eq.~2.5! we can see tha
the Coulomb interaction is strongly screened while from E
~2.6! the magnetic interaction is not. In this paper, we sh
be interested only in the leading infrared behavior, wh
comes solely from magnetic gluon exchange, and so we s
neglect the electric contributions and regard

Dmn~K !'2 iD~k,v!Pmn
T , ~2.7!

with

D~k,v!5
1

k21v21sM~k,v!
. ~2.8!

To focus upon the infrared behavior, we separate the l
integral into two regions and rewrite the self-energy as

S~P!5Cf@J,~P!1J.~P!#, ~2.9!

where the superscripts denote integration inside and out
the infrared sensitive region: 0, l , l c , 2vc,vn,vc with
l c ,vc!m. We shall evaluate the infrared sensitive regi
only,
05401
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J,~P!.2
g2

4p2E0

l c
dl l 2E

21

1

d~cosu!

3
1

b (
n

g42 i ~ l̂ • p̂!2gW • p̂

j2 i ~vn1nm!
D~ l ,vn!, ~2.10!

wherej5u lW1pW u2m. Corrections due to the change from
discrete sum to an integral are sub-leading; they can be
tained using zeta-function techniques as demonstrated
similar processes in@20#. Thus, in pursuit of the leading
order behavior only, we immediately move to the continuo
energy limit withkBT!nm!vc . Making the change of vari-
ables fromu to j,

E
21

1

d~cosu!@g42 i ~ l̂ • p̂!2gW • p̂#

.E
jp2 l

jp1 l dj

l Fg42 i
m2

l 2p2
~j2jp!2gW • p̂G ,

~2.11!

with jp5p2m, we find

J,~n,pW !.2
g2

8p3E0

l c
dl l E

2vc

vc
dvD~ l ,v!F~n,p; l ,v!,

~2.12!

F~n,p; l ,v!5E
jp2 l

jp1 l

dj

g42 i
m2

l 2p2
~j2jp!2gW • p̂

j2 i ~v1n!
.

~2.13!

Fixing p5m for the external lines and carrying out the int
gration overj, we have

F~n,m; l ,v!52ig4tan21
l

v1n
12

v1n

l
gW • p̂

3S 12
v1n

l
tan21

l

v1n D , ~2.14!

so that

]

]n
F~n,m; l ,v!52p ig4d~n1v!

2
2i l

~v1n!21 l 2
g41

2

l

3F22
v1n

l
tan21

l

v1n

1
2~v1n!21 l 2

~v1n!21 l 2 GgW • p̂, ~2.15!
3-3
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where the delta function comes from the discontinuity of
inverse tangent function. We find the energy dependenc
the self-energy by differentiating,

]

]n
J,~n,pW !up5m5g2@A~n!1B~n!#, ~2.16!

with

A~n!52
i

4p2
g4E

0

l c
dl

l

l 21n21mD
2 f MS 2n

l D ~2.17!

and

B~n!5
1

4p3E0

l c
dlE

2vc

vc
dvD~ l ,v!

3H i l

~v1n!21 l 2
g42

1

l F2
v1n

l
tan21

l

v1n

1
2~v1n!21 l 2

~v1n!21 l 2 GgW • p̂J . ~2.18!

Noting the asymptotic behavior—thatf M(x).(p/4)uxu for
uxu!1—a scalel 0 may be introduced to divide the integra
tion in A(n) into two: unu! l 0!(mD

2 unu)1/3. For l , l 0 we
have the contribution

E
0

l 0
dl

l

l 21n21mD
2 f MS n

l D
<

1

mD
2 E0

l 0
dl

l

f MS n

l D
,

1

mD
2 f MS n

l 0
D E0

l 0
dl l

;
l 0
3

mD
2 unu

!1. ~2.19!

All of the inequalities follow straightforwardly from the defi
nition of l 0 except for the second, which is due tof M(n/ l )
being a monotonically decreasing function ofl. Therefore,
neglecting this subleading contribution, we find a logari
mic infrared singularity inA(n) arising from the second re
gion ~namely the regionl 0, l , l c). The integrationB(n) is
finite in the limit n→0. We end up with

]

]n
J,~n,pW !up5m52

ig2

4p2
g4E

l 0

l c
dl

l 2

l 31n2l 1
p

4
mD

2 unu

.2
ig2

12p2
g4ln

4l c
3

pmD
2 unu

1•••. ~2.20!
05401
e
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That the self-energy does not depend upon the spatial
mentum in the infrared limit can easily be ascertained
differentiatingJ(P) with respect topi . Noting that]/]pi

5 p̂i]/]jp , from Eqs.~2.12! and ~2.13! it is straightforward
to find

]

]jp
J,~n,pW !up5m5 ig2B~n!, ~2.21!

which is both real and finite in the limitn→0. Therefore the
logarithmic singularity cannot be attributed to a wave fun
tion renormalization. This is also the case found in a so
state physics context@13#.

To summarize, we find that in a dense quark-glu
plasma the quark self-energy exhibits non-analytic beha
only for the energy component:

S~P!up5m52
ig2

12p2
Cfg4 n ln

4l c
3

pmD
2 unu

1••• ~2.22!

~the imaginary part of the self-energy, contributing to dam
ing in the plasma@22,23#, is analytic asn→0). It is impor-
tant to note that the infrared non-analyticity in the ener
originates in the discontinuity of the pole cutting the conto
in the j integration. This feature gives rise to thed function
in Eq. ~2.15! which ultimately leads to the infrared non
analyticity. This behavior will be seen to repeat itself in Se
III A where it will lead to infrared divergences in the radia
tive corrections to the quark-gluon vertex.

From the result~2.22! it is clear that covariance is broken
this is a direct effect of the presence of a Fermi sea. We a
see thatJ,(0)50, so that the self-energy leads to n
chemical potential renormalization from the infrared sid
What is also of considerable interest is the BRST ident
How this is met in the dense quark-gluon plasma is sub
and we investigate this phenomenon in the next section.

III. BRST IDENTITY AT HIGH DENSITY

Since the quark self-energy is only non-analytic in t
external energy, one may expect from a generalization of
Ward identity of QED that the Coulomb-quark vertex h
similar behavior and is divergent while the magnetic gluo
quark vertex is not. However, it is also clear that the in
grands in the infrared region forL4

l andL i
l are mathemati-

cally identical, save for an indiced prefactor. Apparently w
have something of a paradox: from the self-energy we exp
only the Coulomb vertex to be divergent, but there appear
be no mathematical difference between the infrared con
bution to the Coulomb and magnetic vertices. We shall
solve this paradox in this section and show how the BR
identity works at high density. First of all, we shall examin
the zero energy-momentum transfer limit of the Abelian v
tex Lm(P8,P) and derive the precise expression of the Wa
identity ~1.7!:
3-4
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lim
n8→n

lim
pW 8→pW

L4~P8,P!52
]

]n
J~P!,

lim
pW 8→pW

lim
n8→n

L i~P8,P!5
]

]pi
J~P!. ~3.1!

The latter relation for the magnetic vertex was previou
investigated in@24# for a system of fermions interacting wit
transverse Abelian gauge bosons. Contrasting the Coul
and magnetic cases in Eq.~3.1! provides an important clue
hinting that the ordering of limits contributes to the subtle
we are overlooking. To show how the paradox is resolv
this identity shall be considered in the next subsection, wh
the infrared behavior of the vertices is discussed and
Abelian vertex is treated in detail. In the second subsec
we shall show how the full BRST identity works in the den
quark-gluon plasma in terms of Feynman diagrams.

A. Infrared behavior of the Abelian vertex

To explore the behavior of the quark-gluon vertices a
their relation to the BRST identity we shall analyze in det
the Abelian vertexLm

l (a) shown in Fig. 2a. We refer to thi
vertex as ‘‘Abelian’’ since it is the only physical vertex th
also appears in the Abelian theory. In order to simplify m
ters further, in this subsection we shall put both exter
quarks on shell,p5p85m.

Intuitively, we may expect the behavior of the vertex
depend subtly upon the ordering of the limits. We may d
velop this intuition from HDLs, for example, where althoug
there is an analytic result for the screening~2.5! and~2.6!, it
has different asymptotic behavior in the two orderings of
limits (x→0 and x→`). As we shall see, HDLs and th
BRST identity at high density are intimately connected an
is no surprise that the ordering of limits in Eq.~3.1! is crucial
in resolving the paradox. We write the Abelian vertex as

Lm
l (a)~P8,P!5gTf

mTf
l Tf

mLm~P8,P!

5gTf
l S 2

Cad

2
1Cf DLm

(a)~P8,P!, ~3.2!

where

FIG. 2. The physical radiative corrections to the quark-glu
vertex:~a! Lm

l (a) , the Abelian vertex,~b! Lm
l (b) , the tri-gluon vertex,

and ~c! Lm
l (c) , the triangular vertex.
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Lm
(a)~P8,P!5

ig2

b (
n
E d3 lW

~2p!3
Dnr~ l ,v!

3gnS~L1P8!gmS~L1P!gr . ~3.3!

This may be written in terms of two integrals, one inside a
one outside the infrared sensitive region, 0, l , l c , 2vc
,v,vc with l c ,vc!m,

Lm
(a)~P8,P!5 P̂m@L (a),~P8,P!1L (a).~P8,P!#,

~3.4!

with P̂m5(2 i p̂,1). In this subsection we are only intereste
in the leading infrared behavior. So we evaluate,

L (a),~P8,P!.
g2

8p3E0

l c
dl l 2E

21

1

d~cosu!

3~g42 igW • p̂ cos2u!L̃~P,P8;L !, ~3.5!

L̃~P,P8;L !5 R dv

2p

D~ l ,v!

z82z
S 1

v1z8
2

1

v2z8

2
1

v1z
1

1

v2z D ln~2v!, ~3.6!

wherez5n1 i j, j5u lW1pW u2m and z8 and j8 refer to n8,
pW 8. The logarithm in Eq.~3.6! introduces a branch cut whic
we may take to lie along the positive real axis and the c
tour to run above and below it in the normal fashion. A
shown for the self-energy, it is only the discontinuities th
occur as poles cut the contour and branch cut that induce
infrared singularity. Hence we need only focus upon the s
ond and fourth terms in Eq.~3.6!, since the other terms ar
regular. Using the convention that arg(21)50, we find that
the contribution of these poles reads

L̃disc~P8,P;L !5
p

z82z
@sgn~j!D~ l ,z!2sgn~j8!D~ l ,z8!#,

~3.7!

where the sign function comes from the discontinuity
ln(2v) crossing the cut.

We are now in a position to take the limitPm→Pm8 for the
Ward identity and we shall consider the two different ord
ings of the limits in turn:

~ i! lim
n8→n

lim
pW 8→pW

L̃disc~P8,P;L !52psgn~j!
]

]n
D~ l ,z!,

~3.8!

~ ii ! lim
pW 8→pW

lim
n8→n

L̃disc~P8,P;L !5 ip
]

]j
@sgn~j!D~ l ,z!#.

~3.9!

In both cases we are looking at the infrared limit, and thus
the external momentum to bep5p85m, jp50.
3-5
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First of all, considering case~i!, using the change of vari
ables~2.11! it is straightforward to find

lim
n8→n

lim
pW 8→pW

L (a),~P8,P!up5m

52
g2

8p2E0

l c
dl l E

2 l

l

dj sgn~j!
]

]n
D~ l ,z!

3S g42 i
j2

l 2
gW • p̂D ~3.10!

5
ig2

4p2
g4E

0

l c
dl l @D~ l ,n!2D~ l ,n1 i l !#1•••

~3.11!

5
ig2

12p2
g4ln

4l c
3

pmD
2 unu

1•••, ~3.12!

where the second term in the brackets of Eq.~3.11! contrib-
utes to the subleading terms denoted by ellipses in
~3.12!.

Second, considering case~ii !, we find that differentiation
gives two terms which will cancel in the leading order:

lim
pW 8→pW

lim
n8→n

L (a),~P8,P!up5m

5
ig2

8p2E0

l c
dl l E

2 l

l

djS g42 i
j2

l 2gW • p̂D
3Fsgn~j!

]

]j
D~ l ,z!12d~j!D~ l ,z!G .

~3.13!

The first term is identical to that evaluated for case~i! above.
With the same approximation, the second term is

2
ig2

4p2E0

l c
dl

l 2

l 31
p

4
mD

2 unu
.2

ig2

12p2
ln

4l c
3

pmD
2 unu

.

~3.14!

The two leading contributions cancel and in this ordering
limits the vertex is finite.

Now we can see how the paradox is resolved. The spa
Abelian vertex considered with the ordering of the limits
case~ii ! is finite, in agreement with the second part of t
identity ~3.1!.

B. BRST identity

The BRST identity is a generalization of the War
Takahashi identities for non-Abelian gauge theory obtain
through the BRST transformations. The BRST version of
Takahashi identity can be written as
05401
q.

f

ial

d
e

~P82P!mLm
l ~P8,P!5gTf

l @S~P8!2S~P!#1Rl~P8,P!.
~3.15!

The physical quark-gluon verticesLm
l 5Lm

l (a)1Lm
l (b)1Lm

l (c)

are represented in Fig. 2. The non-physical ghost-quark
tices induced by the BRST transformation,Rl5Rl (a)1Rl (b)

1Rl (c), are represented in Fig. 3. They vanish for on-sh
Minkowski momentaP andP8 at m50.

The nontrivial part of the BRST identity~3.15! is in the
dressing of the gluon lines of Figs. 1, 2 and 3 by HDLs a
the inclusion of Fig. 2c. The order of the perturbative expa
sion is mixed up without offsetting the simple form of th
identity. The detailed derivation of Eq.~3.15! is given in
Appendix A.

Setting pW 85pW on the Fermi level, the BRST identity
~3.15! implies that

lim
n8→n

FL4
l ~P8,P!2

Rl~P8,P!

n82n
G

pW 85pW , p5m

52gTf
l ]

]n
S~P!

5
ig3

12p2
CfTf

l g4ln
4l c

3

pmD
2 unu

. ~3.16!

It follows from the discussions of the previous subsect
that L4

l (P8,P)5L4
l (a)(P8,P)1L4

l (b)(P8,P)1L4
l (c)(P8,P)

with

L4
l (a)~P8,P!5gTf

l S 2
Cad

2
1Cf D ig2

12p2
g4ln

4l c
3

pmD
2 unu

.

~3.17!

It remains to find the logarithmic terms from Figs. 2b, 2c
3 to reconcile the BRST identity~3.15! to the leading order
of the infrared logarithms.

For pW 85pW andp5m, we have

L4
l (b)~P8,P!5 ig3f albTf

aTf
b1

b (
n
E d3 lW

~2p!3
~2vn2n82n!

3D 2~ l ,vn!~d i j 2 l̂ i l̂ j !g iS~P1L !g j

5
1

2
gCadTf

l @L4
(b),~P8,P!1L4

(b).~P8,P!#,

~3.18!

FIG. 3. The non-physical ghost diagrams generated by
BRST transformations, representing~a! Rl (a), ~b! Rl (b) and~c! Rl (c).
The open circles denote non-physical vertices generated by
BRST transformation.
3-6
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where the superscripts specify the contributions from lo
momentum inside and outside the infrared region,uvu,vc
and l , l c . The inside contribution can be approximated b

L4
(b),~P8,P!5

g2

4p3E0

l c
dl l E

2vc

vc
dv vD 2~ l ,v!

3E
2 l

l

dj

g42 i
j2

l 2
gW • p̂

i ~v1n!2j

52
g2

2p3
~ i I 1g41I 2gW • p̂!, ~3.19!

where

I 15E
0

l c
dl l E

2vc

vc
dv vD 2~ l ,v!tan21

l

v1n
~3.20!

and

I 25E
0

l c
dl l E

2vc

vc
dv vD 2~ l ,v!Fv1n

l
2tan21

l

v1nG .
~3.21!

In the limit n→0, the integrands of both integralsI 1 and I 2
are positive and can be bounded by lettingvc→` and
changing the integration variables from (l ,v) to (l ,x5v/ l ).
We have

uI 1u<E
0

`

dx

x tan21
1

x

~11x2!2 F ln
l c
2~11x2!

mD
2 f M~x!

21G ~3.22!

and

uI 2u<E
0

`

dx

xS x2tan21
1

xD
~11x2!2 F ln

l c
2~11x2!

mD
2 f M~x!

21G .

~3.23!

Both integrals are convergent and henceL4
l (b) does not con-

tribute to the infrared logarithm. It is also straightforward
verify that the BRST generated diagrams in Fig. 3 do
display any logarithmic behavior in the limitn→0. Thus the
only candidate left over is the diagram in Fig. 2c correspo
ing to gluon insertion on a HDL.

Though formidable as it looks, evaluation of Fig. 2c c
be simplified with the aid of a Ward type identity whic
relates the derivative of the gluon self-energy and the
gluon vertex with three external gluon lines. Again the a
swer is sensitive to the relative order of the limitsn8→n and
pW 8→pW . In Appendix B, we shall demonstrate that

lim
n8→n

lim
pW 8→pW

L4
l (c)~P8,P!5

ig3

24p2
CadT

lg4 ln
4l c

3

pmD
2 unu

1•••,

~3.24!
05401
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which completes the BRST identity~3.16! to the leading
logarithm level. The other order of the limits
limn8→nlimpW 8→pWL j

l (c)(P8,P), is infrared finite.
To summarize, we have shown how the BRST ident

works in a quark-gluon plasma at high density in terms
Feynman diagrams. The derivation of the identity is qu
general and that it works at high density is not surprising,
with this presentation we hope that the mystery that shro
this topic may be lifted. With the incorporation of HDLs, th
BRST identity is no longer satisfied order by order. The pa
ment for using HDLs is that orders of perturbation theo
become mixed up.

IV. COLOR SUPERCONDUCTIVITY

Perturbative QCD has been applied successfully tow
the study of color superconductivity at high baryon densiti
In this regime, single gluon exchange dominates the pair
interaction, and screening plays an important role in the n
BCS behavior of color superconductivity@12,15–17#. In
Refs. @18,20#, the superconducting pairing temperature o
dense quark-gluon plasma was investigated by means
Dyson-Schwinger approach to the pairing interaction. T
resulting problem was reduced to one of finding the smal
eigenvalue,l, of the Fredholm equation

f s
18s

28
~n8up8!5

l2

b (
n,s1 ,s2

E
0

`

dp

3Ks
18s

28 ,s1s2
~n8,nup8,p! f s1s2

~nup!,

~4.1!

with the conditionl251 yielding the critical temperature
The kernel is given by

Ks
18s

28 ,s1s2
~n8,nup8,p!

5
p2

2p (
s19s29

gs
18s

28 ,s
19s

29
~n8,nup8,p!

3Ss
19s1

~nup!Ss
29s2

~2nup!, ~4.2!

and consists of thes-wave components of the two particl
irreducible amplitude for the scattering of two quarks in th
color antisymmetric channel with zero total energy and m
mentum,gs

18s
28 ,s1s2

(n8,nup8,p), and the full quark propaga

tor Ss8s(nup). The initial energies of the two quarks ar
6 inn and the final ones are6 inn8 with nn5(n1 1

2 )e. The
initial momenta of the two quarks are6pW and the final
ones are 6pW 8. The diagrammatic expansion o
gs

18s
28 ,s1s2

(n8,nup8,p) to orderg4 andSs8s(nup) to orderg2

is shown in Fig. 4.
Collecting previous results, the perturbative expansion

the least eigenvalue reads@18,20#
3-7
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1

l2
5

g2

24p2 S 11
1

Nc
D F 4

p2log2
2

ê
1

8

p2 ~g1 log 2!

3 log
2

ê
1O~1!G2S g2

24p2D 2S 11
1

Nc
D

3FCf

4~p214!

p4 log3
2

ê
1OS log2

2

ê
D G1O~g6!,

~4.3!

where the leadingO(g2) term stems from the first diagram
of Fig. 4 with a bare quark propagator. Relative to this le
ing term, the radiative corrections and the two gluon e
change appear to be suppressed byg2 as is the case with the
remaining diagrams of Fig. 4 but may not be so becaus
the infrared logarithm, each counted asg21 for T;TC in
accordance with Eq.~1.2!. The radiative correction to the
quark propagator is such an example@12#. The logarithm of
the self-energy, contained in the last line of Eq.~4.3!, gives
rise to a significant contribution to the prefactor@18#.
Though the radiative correction to the vertex function is
able to such a logarithm according to the BRST identity, t
does not happen in the energy momentum regionup2mu
;unu, up82mu;un8u andupW 2pW 8u;(kun2n8u)1/3, where the
main contribution to the kernel~4.2! comes from; this is
indicated by the absence of the logarithm in the limitn8

→n followed by pW 8→pW of the vertex function. In what fol-
lows, we shall demonstrate this point via an explicit evalu
tion of the contribution of the Abelian vertex function to th
partial wave amplitude.

Consider the Abelian vertex Fig. 2a, withp5p85m, q
52m sin(u/2).mu. The infrared contribution is given by

L̄ j
(a)~P8,P!5ū~P8!L j

(a)~P8,P!u~P!

5g2p̂ jE
l , l c

d3 lW

~2p!3E2vc

vc dv

2p
D~ l ,v!

3
p̂• p̂82~ p̂• l̂ !~ p̂8• l̂ !

@ i ~v1n8!2j8#@ i ~v1n!2j#

5g2p̂ jE
l , l c

d3 lW

~2p!3E2vc

vc dv

2p
D~ l ,v!

FIG. 4. The diagrammatic expansion of the two particle irred
ible vertex Gs

18s
28 ,s1s2

(n8,nup8,p) to order g4 and the quark self-

energySs8s(nup) to orderg2.
05401
-
-
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3
p̂• p̂82~ p̂• l̂ !~ p̂8• l̂ !

iDn2j81j

3F 1

i ~v1n!2j
2

1

i ~v1n8!2j8
G , ~4.4!

whereDn5n82n, j5upW 1 lWu2m andj85upW 81 lW u2m with
uju< l and uj8u< l . It follows from the discussions of the
previous sections that the sensitive region of the integra
variables which is responsible to the non-Fermi liquid log
rithm corresponds to the singularities of the fractions ins
the brackets. Therefore one ofj andj8 must be kept small in
the sensitive region. If there were an infrared logarithm
would come from

L̄h
(a)~P8,P!5E

l , l c

d3 lW

~2p!3E2vc

vc dv

2p

D~ l ,v!

iDn2j81j

3F u~h l 2uju!
i ~v1n!2j

2
u~h l 2uj8u!

i ~v1n!2j8
G , ~4.5!

with h!1. Transforming the integration variables fromlW to
l, j andj8, we have

d3 lW5
m2

J
l dl dj dj8, ~4.6!

where the Jacobian isJ5u lW•pW 3pW 8u.m2Al 2u22(j2j8)2

with the approximation thatj or j8! l . Introducing

D̄~ l ,v!5E
2`

v

dv8D~ l ,v8!, ~4.7!

and carrying out the integration overj andj8, we obtain

L̄h
(a)~P8,P!5

1

8p2E0

l c
dl

l

Al 2u21Dn2E2vc

vc
dvD̄~ l ,v!

3@d~v1n!2d~v1n8!#

5
1

8p2E0

l c
dl

l

Al 2u21Dn2E2n8

2n

dvD~ l ,v!.

~4.8!

Note that ifpW 8→pW first, we have a complete exposure ofDn
in the denominator:

L̄h
(a)~P8,P!.

1

8p2

1

DnE0

l c
dl l E

2n8

2n

dvD~ l ,v!. ~4.9!

The integration will give rise ton8 lnun8u2n lnunu, which in
the limit n8→n produces the infrared logarithm. But her
with u;un82nu1/3 and l;unu1/3, such a singularity is sup
pressed through thel 2u2 term inside of the square root. In
deed, if we insertLh

(a)(P8,P) into the partial wave integra
tion, we find the corresponding contribution

-

3-8



t

e

t

d
e
d
th
t

no
ha

la

en-
ed
ex
m
dis-
with
gh
, as

d
cts
lf-
ig-
in

he
iled
the
g
of

the
nt

of
at
the
ns
he
d

or
uid
-
g
.

rgy
is

q.
of

f-

NON-FERMI LIQUID BEHAVIOR, THE BECCHI- . . . PHYSICAL REVIEW D 62 054013
g IR~n8,n!5
g4

8p2E0

uc
du uD~mu,n82n!

3E
0

l c
dl

l

Al 2u21Dn2E2n8

2n

dvD~ l ,v!.

~4.10!

g IR(n8,n) may be bounded by droppingDn inside the
square root. Then the integration overu decouples from tha
over l andv, i.e.,

ug IR~n8,n!u<
g4

8p2
IJ, ~4.11!

where

I 5E
0

uc
duD~mu,n82n! ~4.12!

and

J5E
0

l c
dlE

2n8

2n

dvD~ l ,v!. ~4.13!

It follows from the properties of the functionD( l ,v) that I
andJ are bounded from above by

I<
2p

3A3m
~kun82nu!21/3 ~4.14!

and

J<
p

A3
k21/3uun8u2/32sgn~n8n!unu2/3u, ~4.15!

where k5(p/4)mD
2 . Combining I and J, we see that

g IR(n8,n) is nonsingular in the limitn8→0 andn→0 along
any path in the (n8,n) plane.

It is important to note that this result forg IR(n8,n) only
pertains to any possible additional infrared enhancem
arising from the radiative quark-gluon vertexLh

l (a) . For the
complete partial wave amplitude,g(n8,n), the collinear
magnetic gluon exchange logarithm, already present at
tree level, i.e.,

g tree~n8,n!.
g2

6m2 ln
8m3

kuDnu
, ~4.16!

maintains its presence at the radiative level. Indeed, base
numerical evaluation of the partial wave amplitud
gAbelian(n8,n), we have confirmed that only this expecte
collinear logarithm is present. We have also evaluated
infrared contributiong IR(n8,n) numerically, and the resul
supports the above analytic arguments.

Though our conclusion that the vertex function does
contribute to the pre-exponential factor agrees with t
made in@15#, the arguments used in@15# to justify this con-
05401
nt

he

on
,

e

t
t

clusion merit further consideration. In particular, the formu
for the vertex function, taken from Ref.@21#, is not appli-
cable for the infrared contribution at a large chemical pot
tial in comparison with the temperature. This can be judg
by the absence of the infrared logarithm from their vert
function in any order of the limit of zero energy-momentu
transfer; this absence contradicts the BRST identity as
cussed above. In fact, only the expressions for diagrams
internal fermion lines only can be carried over from the hi
temperature region to the large chemical potential region
is the case with the gluon self-energy functions~2.5! and
~2.6!. For diagrams with internal gluon lines, the infrare
region makes significant contributions, leading to effe
such as the non-Fermi liquid behavior of the quark se
energy and vertex functions, which has been completely
nored by the hard thermal loop approximation employed
@21#.

By careful examination of the radiative corrections to t
quark self-energy and vertex functions, we have reconc
the non-Fermi liquid behavior in the dense plasma with
BRST identity. The incorporation of HDLs, and the resultin
resummation in the gluon propagator, leads to a mixing
orders in the perturbative expansion. Hence proof of
BRST identity involves combining diagrams of differe
loop order, as seen in Fig. 2. An important consequence
this result for color superconductivity is the verification th
there are no additional infrared logarithms accompanying
radiative correction to the vertex function. This strengthe
our previous result that the only radiative correction to t
determination ofTC comes from the quark self-energy, an
suggests that the pre-exponential factor of Eq.~1.3! is in fact
exact to leading order ing.
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APPENDIX A

In this appendix, we shall prove the BRST identity, E
~3.15!, relating the self-energy, vertex and ghost diagrams
Figs. 1, 2 and 3 in the presence of hard dense loops.

Using the standard trick

~P82P!mS~P81L !gmS~P1L !5S~P81L !2S~P1L !,
~A1!

we may trivially relate the Abelian vertex Fig. 2a with sel
energy Fig. 1,

~P82P!mLm
l (a)~P8,P!5gTf

l S 12
Cad

2Cf
D @S~P8!2S~P!#,

~A2!
3-9
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which, apart from the group theoretic factors, is nothing
the Takahashi identity of QED and is independent of
form of the gluon propagator. However, for non-Abelia
gauge theories, the group coefficients do not match; can
lation of the extra term must result from the additional v
tices.

In QCD there is a second physical process atO(g3) in
perturbation theory, formed with the tri-gluon verte
2 i f lmnGmlr , as shown in Fig. 2b. We now turn to this dia
gram to see how it may cancel the extra terms. It is straig
forward to write down an expression

Lm
l (b)~P8,P!5 f lmnTf

mTf
n g3

b (
n
E d3 lW

~2p!3
Dnl~L !~2 i !

3Gmlr~L,L2Q!Drn8~L !gnS~P1L !gn8 ,

~A3!

where i f lmnTf
mTf

n52(Cad/2)Tf
l . However, this expression

may be simplified when contracted with (P82P)m with the
aid of the identity

~P82P!mDn8l~P8!Gmlr~P8,P!Drn~P!

5 i $Vn8n
(1)

~P8,P!1Vn8n
(2)

~P8,P!1Vn8n
(3)

~P8,P!%,

~A4!

where

Vn8n
(1)

~P8,P!5 i @Dn8n~P!2Dn8n~P8!#,

Vn8n
(2)

~P8,P!5Dn8l~P8!@Plr~P8!2Plr~P!#Drn~P!,

Vn8n
(3)

~P8,P!5D~P8!Pn8
8 Pl8Dln~P!2Dn8l~P8!PlPnD~P!.

~A5!

Pmn(P) is the HDL diagram which satisfiesPmPmn(P)50
andD(P)52 i /p2 is the ghost propagator. SinceP is itself
of O(g2), we see here that the price one pays for incor
rating HDLs in the gluon propagator is the mixing of orde
in perturbation theory. To prove Eq.~A4!, we start with the
bare gluon propagator

Dmn~P!5
2 i

P2 Fdmn1~a21!
PmPn

P2 G ~A6!

and the identity

~P82P!m~2 i !Gmrl~P8,P!

5~P22P82 !drl1Pr8Pl82PrPl . ~A7!

Sandwiching Eq.~A7! betweenD(P8) andD(P), we find

2 i ~P82P!mDa8r~P8!Gmrl~P8,P!Da~P!

52 i @Da8a~P8!2Da8a~P!#1D~P8!

3Pa8
8 Pr8Dra~P!2D~P!Dar~P8!PrPa . ~A8!
05401
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The HDL-dressed gluon propagator is related to the b
propagator via the Dyson-Schwinger equation

Dmn~P!5Dmn~P!2 iD mr~P!Prl~P!Dln~P!

5Dmn~P!2 iDmr~P!Prl~P!Dln~P!. ~A9!

It follows that 2 i (P82P)mD n8l(P8)Gmlr(P8,P)Drn(P)
can be obtained by sandwiching Eq.~A8! betweendn8a8
2 iD n8b8(P8)Pb8a8(P8) on the left and dan

2 iPab(P)Dbn(P) on the right. The expression is then sim
plified by the 4-dimensional transversality of the self-ener
matrix P(p), and we end up with Eqs.~A4! and ~A5!.

Now we look at the contribution due toV(1),

i
Cad

2
Tf

l g3

b (
n
E d3 lW

~2p!3
@Dn8n~L2Q!

2Dn8n~L !#gnS~P1L !gn8

5 ig
Cad

2Cf
Tf

l @S~P8!2S~P!#. ~A10!

This expression, the origins of which are purely non-Abeli
in nature, exactly cancels the extra terms induced in
~A2!. However, the tri-gluon vertex also induces a number
extra terms which we shall now consider in turn.

The appearance of the ghost propagators inV(3) suggests
that these extra terms will be canceled by the non-phys
ghost-quark vertices generated by the BRST transformati
Indeed, we find that, when grown from a fermion line, t
ghost terms contribute,

i f lmnTf
mTf

n g3

b (
n
E d3 lW

~2p!3
Vn8n

(3)
~L,L2Q!gn8S~L1P!gn ,

~A11!

which exactly cancels the diagrams of Fig. 3.
The remaining term,V(2), is of O(g5), two orders higher

in perturbation theory, and contributes:

i f lmnTf
mTf

n g3

b (
n
E d3 lW

~2p!3
Dn8l~L2Q!@Plr~L !

2Plr~L2Q!#Drn~L !gn8S~L1P!gn . ~A12!

In the absence of HDLs this term does not appear and
BRST identity is satisfied order by order in perturbati
theory. Although with the inclusion of HDL the ordering ha
become mixed up, the identity must remain. To see how
contribution is canceled we study the triangular vert
shown in Fig. 2c.

We shall first look at one of the two loops that form th
triangular vertex, namely the quark loop with three exter
gluons, as shown in Fig. 5. With three identical vertices th
are two possible orderings for this diagram. Considering b
orderings, we write this vertex correction as
3-10
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G̃mlr
lmn ~P8,P!5

g3

b (
n
E d3 lW

~2p!3
Tr@Tf

l Tf
nTf

mglS~L1P2P8!

3gmS~L !grS~L1P!1Tf
l Tf

mTf
ngl

3S~2L2P!grS~2L !gmS~2L2P1P8!#.

~A13!

Contracting one leg of the triangular vertex with (P82P)m

we find

~P82P!mG̃mlr
lmn ~P8,P!5 ig f lmn@Plr~P8!2Plr~P!#,

~A14!

where, as discussed,P is the vacuum polarization diagram
Therefore, connecting the two free legs to a fermion line,
find that

~P82P!mLm
l (c)~P8,P!

52 f lmnTf
mTf

n g3

b (
n
E d3 lW

~2p!3
Dn8l~L2Q!

3@Plr~L2Q!2Plr~L !#Drn~L !gn8S~L1P!gn ,

~A15!

which cancels the remainder in Eq.~A12!.
At this point, we note that at nonzero chemical poten

the triangular diagram, Eq.~A13!, does not contain exclu
sively the term proportional tof lmn, and is nonvanishing
even in QED because of the breakdown of Furry’s theor
by the Fermi sea. On the other hand, the identity~A14! re-
mains valid rigorously and there is no contribution from t
triangular diagram to the Takahashi identity of QED. Fu
thermore, for low excitations near the Fermi level, the a
proximate particle-hole symmetry renders the triangular d
gram dominated by the term proportional tof lmn.

Before concluding this appendix, we shall relate the p
ticular BRST identity~3.15! to the master BRST identity a
given in Ref.@25#. Let G(A,x,x̄,c,c̄) be the generating func
tional of proper vertex functions withA, x, x̄, c and c̄ the
quantum mechanical average of the gauge potential,Vm ,
quark fieldsc, c̄ and the ghost fieldsf, f̄, i.e., Am(x)

FIG. 5. Quark loop with three external gluons,G̃mlr
lmn .
05401
e

l

-
-
-

r-

5^Vm(x)&, x(x)5^c(x)&, x̄(x)5^c̄(x)&, c(x)5^f(x)& and
c̄(x)5^f̄(x)&. The master BRST identity reads

E d4xF dG

dAm~x!
^dVm~x!&1

dG

dx~x!
^dc~x!&

1
dG

dx̄~x!
^dc̄~x!&1

dG

dc~x!
^df~x!&G

50, ~A16!

where

dVm
l 5

]f l

]xm
1g flmnVm

mfn, ~A17!

dc52 iTlf lc, ~A18!

dc̄52 iTlf l c̄, ~A19!

df l5
1

2
f lmnfmfn ~A20!

are the BRST variations of the field components. The exp
sion of the termx̄xc in Eq. ~A16! to the orderg3 and with
the bare gluon propagators replaced by the dressed one
terwards yield the identity~3.15!. Unlike an Abelian gauge
theory, the ghosts couple to other fields of the theory. T
expectation of the nonlinear term of the BRST variatio
gives rise to the additional termsRa(p8,p) with Rl (a) from
the second term of Eq.~A17!, Rl (b) from Eq.~A18! andRl (c)

from Eq. ~A19!.

APPENDIX B

In this appendix, we shall evaluate the infrared contrib
tion of the diagram in Fig. 2c, which we denote b
Lm

l (c)(P8,P) IR with P5(pW ,n) and P85(pW 1qW ,n1Dn).

ThenQ5P82P5(qW ,Dn), and bothqW andDn are soft. The
calculation is greatly simplified with the aid of the identi
~A14! for m54 in the limit qW→0 followed by Dn→0 and
for m5 j in the limit Dn→0 followed byqW→0.

~i! The triangular vertex in the limit

lim
Dn→0

lim
qW→0

L4
l (c)~P8,P! IR . ~B1!

We start with
3-11



a

WILLIAM E. BROWN, JAMES T. LIU, AND HAI-CANG REN PHYSICAL REVIEW D 62 054013
L4
l (c)~P8,P! IR52g2E

l , l c

d3 lW

~2p!3E2vc

vc dv

2p
TaTb

3@2 i G̃4m8n8
lab

~L,L2Q!#gm

i

p1 l
gn

3D~ u lW2qW u,v2Dn!D~ l ,v!

3Fdm8m2
~ lW2qW !m8~ lW2qW !m

u lW2qW u2 G ~dn8n2 l̂ n8 l̂ n!,

~B2!

whereD( l ,v) is given by Eq.~2.8! andG̃mnr
lmn by Fig. 5. Note

that we have used the continuum approximation for the M
subara sum. It follows from Eq.~A14! that

lim
Dn→0

lim
qW→0

G̃4i j
lab~L,L2Q!5 ig f lab

]

]v
P i j ~L !. ~B3!

Therefore

lim
Dn→0

lim
qW→0

L4
l (c)~P8,P! IR5

1

2
gCadT

lL~P!, ~B4!

with

L~P!52g2E
l , l c

d3 lW

~2p!3E2vc

vc
dv

]sM

]v
D 2~ l ,v!

3
g42 i ~ p̂• l̂ !2g• p̂

i ~v1n!2j

5
ig2

8p3E0

l c
dl l E

2vc

vc
dv

]sM

]v

1

@ l 21v21sM~ l ,v!#2

3E
2 l

l

djS g42 i
j2

l 2
gW • p̂D 1

i ~v1n!2j
, ~B5!
05401
t-

wherep5m andj5upW 1 lWu2m. Carrying out thej integra-
tion, we find

L~P!5
ig2

2p3E0

l cdl

l E2vc

vc
dv

]sM

]v

F~n,m; l ,v!

@ l 21v21sM~ l ,v!#2
,

~B6!

with F(n,m; l ,v) given by Eq.~2.14! The discontinuity of
the inverse tangent corresponds tov;2n and thel integra-
tion is dominated atl;(kv)1/3;(kn)1/3. We end up with

L~P!52
g2

4p3E0

l cdl

l E2vc

vc
dv

]sM

]v

F~n,m; l ,v!

@ l 21sM~ l ,v!#2

5
g2

4p2
g4E

0

l c
dlD~ l ,2n!1terms regular asn→0

5
ig2

12p2
g4log

l c
3

kunu
1terms regular asn→0. ~B7!

~ii ! The triangular vertex in the limit

lim
qW→0

lim
Dn→0

L j
l (c)~P8,P! IR . ~B8!

HereL j
l (c)(P8,P) is given by Eq.~B2! with the replacement

G̃4m8n8
lmn →G̃ jm8n8

lmn . It then follows from the identity~A14! that

lim
qW→0

lim
Dn→0

G̃ jmn
lab ~L,L2Q!5 ig f lab

]

] l j
Pmn~L !. ~B9!

Therefore

lim
qW→0

lim
Dn→0

L j
l (c)~P8,P! IR5

1

2
gCadT

l p̂jL8~P!, ~B10!

with
L8~P!52
g2

8p3E0

l c
dlE

2vc

vc
dv

]sM

] l

1

@ l 21v21sM~ l ,v!#2E2 l

l

dj jS g42 i
j2

l 2
gW • p̂D 1

i ~v1n!2j

52
g2

4p3
mD

2 E
0

l c
dlE

2vc

vc
dv

] f M

] l

l

@ l 21v21mD
2 f M~v/ l !#2 H g4S 211

v1n

l
tan21

l

v1n D1 i F S 1

3
2

~v1n!2

l 2 D
1

~v1n!3

l 3 tan21
l

v1nGgW • p̂J . ~B11!

The discontinuity of the inverse tangent function atv1n50 is now smeared by the factorv1n. This integral converges in
the limit n→0.
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