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Finite-volume analysis ofNf-induced chiral phase transitions

S. Descotes and J. Stern
IPN, Groupe de Physique The´orique, Universite´ de Paris-Sud, F-91406 Orsay Cedex, France

~Received 22 December 1999; published 27 July 2000!

In the framework of Euclidean QCD on a torus, we study the spectrum of the Dirac operator through inverse
moments of its eigenvalues, averaged over topological sets of gluonic configurations. The large-volume de-
pendence of these sums is related to chiral order parameters. We sketch how these results may be applied to
lattice simulations in order to investigate the chiral phase transitions occurring whenNf increases. In particular,
we demonstrate how Dirac inverse moments at different volumes could be compared to detect in a clean way
the phase transition triggered by the suppression of the quark condensate and by the enhancement of the
Zweig-rule violation in the vacuum channel.

PACS number~s!: 12.39.Fe, 02.70.Fj, 11.30.Rd, 12.38.Gc
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I. INTRODUCTION

Understanding the spontaneous breakdown of chiral s
metry (SBxS) remains one of the most challenging no
perturbative problems of QCD. Forthcoming experime
@1–3# should reveal some of its features, at least in the n
strange sector in which the effective number of light qua
flavors is minimal (Nf52). It is generally expected that i
Nf increases~keeping the number of colorsNc fixed!, the
theory meets phase transitions and the chiral symmetr
eventually restored. The argument is originally based
properties of the QCDb-function in perturbation theory. The
well-known statement of the ‘‘end of asymptotic freedom
for Nf>11Nc/2 @4# has been further completed by the ana
sis of the so-called ‘‘conformal window’’@5# suggesting a
restoration of chiral symmetry for lowerNf , such asNf
;10 ~for Nc53) @6#. Less perturbative and more mode
dependent investigations, based on a gap equation@7# or on a
‘‘liquid instanton model’’ @8#, also indicate that a chira
phase transition could occur forNf substantially below
11Nc/2.

It is important to understand, at least qualitatively, t
non-perturbative origin of the suppression of chiral order
rameters for an increasingNf . We have recently argued@9#
that such a suppression might result from a paramagn
effect of light ~massless! quark loops@10#, i.e. it could be
due to ‘‘sea quarks’’ and, consequently, it could escap
detection in quenched lattice simulations, or in any ot
approach neglecting the fermion determinant. An appropr
framework to develop these ideas and to ask precise q
tions is the formulation of QCD in an Euclidean boxL3L
3L3L, with periodic~antiperiodic! boundary conditions for
gluon ~fermion! fields, up to a gauge transformation. In th
framework, the SBxS pattern is reflected by the dynamics
lowest eigenvalues of the Dirac operator:

H@G#5gm~]m1 iGm!. ~1.1!

This Hermitian operator has a symmetric spectrum with
spect to zero:$H,g5%50. Positive eigenvaluesln are la-
beled in ascending order by a positive integer~one further
denotesl2n52ln and f2n5g5fn for the corresponding
eigenvectors!. SBxS is related to a particularly dense acc
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mulation of eigenvalues around zero@11–13,21#. Models of
such an accumulation in terms of random matrices@14# or
instantons@15# have been proposed. Some chiral order p
rameters are entirely dominated by the infrared extremity
the spectrum of the Dirac operator~1.1!. This makes them
particularly sensitive to the statistical weight given to sma
est Dirac eigenvalues in the functional integral, which is su
pressed in the massless limit by theNf-th power of the fer-
mion determinant. A good example is the quark condens
defined by

S~Nf !52 lim
m1 ,m2 , . . .mNf

→0
^0uūuu0&, ~1.2!

wherem1 . . . mNf
denote theNf lightest quark masses andu

represents the lightest quark field.S(Nf) receives exclusive
contributions from the smallest Dirac eigenvalues that
have in average as 1/L4, and it is consequently expected
be the most sensitive order parameter to the variation ofNf
and to a phase transition. Other order parameters are
sensitive, likeF2(Nf), defined as the SUL(Nf)3SUR(Nf)
limit of the coupling of the Goldstone bosons to the ax
current:

F2~Nf !5 lim
m1 ,m2 , . . .mNf

→0
Fp

2 . ~1.3!

F2(Nf) may be non-zero due to Dirac eigenvalues accum
lating as 1/L2 @13#. For this reason,F2(Nf) should exhibit a
weaker Nf-dependence thanS(Nf). Finally, observables
with no particular sensitivity to the infrared edge of the Dir
spectrum (r-mass, string tension, etc.! have no reason to be
strongly affected by the fermion determinant and by t
Nf-dependence.

Let us first consider the thermodynamical limit and den
by ncrit(Nc) the critical value ofNf at which the first chiral
phase transition takes place. Just belowncrit(Nc), the order
parameterS(Nf) drops out, whereas its fluctuations may
expected to become important. We have shown@9# that the
latter would manifest itself by an enhancement of the Zwe
rule violation just in the vacuum channelJPC5011. An
important Zweig-rule violation is precisely observed in t
scalar channel@16#, and nowhere else~with the exception of
©2000 The American Physical Society11-1
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the pseudoscalar channel driven by the axial anoma!.
Whilst the signature of a nearby phase transition is rat
clear just belowncrit(Nc), it is more speculative and ambigu
ous above the critical point. First, abovencrit(Nc), color
might still be confined~confinement has no obvious relatio
to small Dirac eigenvalues!. Second, despiteS(Nf)50, the
chiral symmetry need not be completely restored. The Go
stone bosons coupling to conserved axial currents with
strengthF(Nf) might survive to theNf-induced phase tran
sition. This is reflected by the possibility that th
Nf-sensitivity and suppression of the order parame
F2(Nf) might be considerably weaker than in the case of
quark condensate@13#. Of course, this is a highly non-trivia
possibility, which presumably depends on the existence
non-perturbative fixed point in the renormalization gro
flow.1 Here, we take as a working hypothesis that abo
ncrit(Nc), a partial SBxS still occurs, due toF2(Nf)Þ0. The
results of our paper allow, in particular, to test this hypo
esis.

The central question remains how far isncrit(Nc) ~for Nc
53) from the real world, in which the number of ligh
quarks hardly exceedsNf5223. Some recent investigation
actually indicate thatncrit(3) could be rather small, and/o
that the real world could already feel the influence of
nearby phase transition. First, some lattice simulations w
dynamical fermions observe a strongNf-dependence o
SBxS signals forNf as low as 4–6@18,19#. Second, a
method based on a well-convergent chiral sum rule has b
proposed, which allows to study phenomenologically
variation ofS(Nf) for small Nf @20#. It has been found tha
existing experimental information on the Zweig-rule viol
tion in the scalar channel leads to a large reduction ofS(Nf)
already betweenNf52 andNf53.

The purpose of this paper is to analyze in a mod
independent way howNf-induced chiral phase transition
manifest themselves in the finite-volume partition functio
In particular, we shall investigate the volume dependenc
the inverse spectral moments of the Dirac operator~1.1!:

sk5 (
n.0

1

~ln@G# !k
, ~1.4!

averaged over topological sets of gluonic configurations.
Nf!ncrit(Nc), the leading large-volume behavior of such i
verse moments has been worked out in detail by Leutw
and Smilga@21#. In order to investigate how this result
modified in the vicinity and abovencrit(Nc), we rely on the
basic observations and methods of Ref.@21#. For large sizes
of the box (LHL@1 with LH;1 GeV), heavy excitations
are exponentially suppressed in the partition function, wh
is then dominated by the lightest states, the pseu

1If one sticks to cut-off-dependent bare quantities, it is possible
argue thatS50 would imply F50, i.e. the full symmetry restora
tion @17#. This argument is however based on an inequality
which it is by no means obvious that it survives in the full reno
malized theory.
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Goldstone bosons of SBxS. This leads to an effective de
scription in terms of the chiral perturbation theory (xPT)
@22,23#, and it can be matched with QCD, yielding the d
sired information concerning the infrared properties of t
Dirac spectrum. Moreover, the effective Lagrangian is ide
tical to its infinite-volume counterpart, provided that period
boundary conditions are used@24#.

If Nf lies far below ncrit(Nc), the quark condensate i
large andsk behaves at large~but finite! volumes according
to the asymptotic behavior derived by Leutwyler and Smi
@21#, using standardxPT @22#. Above ncrit(Nc), the quark
condensate vanishes, and the previous analysis cannot b
plied. However, if chiral symmetry is still partially broken
the matching withxPT remains possible and it leads to
clear-cut change in the large-volume behavior ofsk: ex-
pressed through their inverse moments, the average beh
of the lowest eigenvalues forL→` should turn from 1/L4

(^q̄q&Þ0) into 1/L2 (^q̄q&50) @13#. When we approach the
critical point with Nf near but underncrit(Nc), significant
discrepancies from the asymptotic limitL→` could be seen
for large but finite boxes. The latter should then be analy
using the framework of generalizedxPT @23,35#. We have
clearly in mind the possibility to use unquenched latti
simulations, varyingNf and ~finite! lattice sizeL to eventu-
ally detect chiral phase transitions, through the volume
pendence of inverse moments~1.4!.

This article is organized as follows. In Sec. II, we briefl
review features of Euclidean QCD and of the effecti
theory on a torus. Section III explains how both theories
matched to derive the original form of Leutwyler-Smilg
sum rules belowncrit(Nc), before analyzing how they ar
modified in the phase where the quark condensate vanis
In Sec. IV, we discuss the approach to the critical poi
where a competition between a small quark condensate
higher order contributions leads to sizeable computa
finite-volume effects. Section V is devoted to the compu
tion of the next-to-leading-order corrections to the sum rul
We discuss in Sec. VI how to obtain from the inverse m
ments an unambiguous signal indicating thatNf approaches
ncrit(Nc), and we discuss the interest of lattice simulations
this framework. Section VII summarizes the main results
this work.

II. SMALL MASS AND LARGE VOLUME EXPANSION
OF THE PARTITION FUNCTION

A. Euclidean QCD on a torus

The Euclidean2 QCD Lagrangian forNf light quarks
reads

L(Nf )5
1

4g2
Gmn

a Gmn
a 2 iun2 i q̄D” q1q̄M̃q, ~2.1!

with the winding number density
o

r
2In this paper, all the expressions are written in the Euclide

metric, unless explicitly stated.
1-2



e

n
t

o

ng

r
ns

t

n

er

fie

f

es

on-

e
en

al-
the
end
ble.
ngle
ct
ty

r

the
a-

gu-

d-

FINITE-VOLUME ANALYSIS OF Nf-INDUCED CHIRAL . . . PHYSICAL REVIEW D 62 054011
n~x!5
1

32p2
Gmn

a ~x!G̃mn
a ~x!, ~2.2!

and the vacuum angleu @25#. The quark mass matrixM̃ is of
the form

M̃5
1

2
~12g5!M1

1

2
~11g5!M†, ~2.3!

whereM is aNf3Nf complex matrix, diagonal in a suitabl
quark basis with positive real eigenvalues.

We consider the partition function of this Euclidea
theory in a finite boxL3L3L3L, large enough to neglec
safely the heavy quarks:

Zu~Nf !5CE @dG#E @dc̄#@dc#expS 2E
V
d4xL(Nf )D ,

~2.4!

whereC is a normalization constant, which may depend
the volume, but not on the mass matrix.

We impose boundary conditions on the fields, by viewi
the box as a torus and identifyingxm andxm1nmL ~with nm
integers!: the gluon fields have to be periodic and the qua
fields antiperiodic in the four directions, up to a gauge tra
formation. The gauge fields are classified with respect
their winding numbern5*V dxn(x), which is a topologi-
cally invariant integer~related to the gauge transformatio
defining the periodicity of the fields on the torus!. The index
theorem asserts thatn is the difference between the numb
of left-handed and right-handed Dirac eigenvectors with
vanishing eigenvalue.

The Dirac eigenvalues satisfy a uniform bound@11#:

uln@G#u,C
n1/d

L
[vn . ~2.5!

This bound means essentially that an external gauge
lowers the eigenvalues of the free field theory@10#. It in-
volves a coefficientC, depending only on the geometry o
the space-time manifold, but neither onG, n or V5Ld. The
partition functionZ can be decomposed in Fourier mod
over the winding number:

Zu~Nf !5 (
n52`

`

einuZn~Nf !. ~2.6!

Each projection of positive winding numbern is

Zn~Nf !5CE
n
@dG#e2SYM[G] det~2 iD” 1M̃ ! ~2.7!

5CE
n
@dG#e2SYM[G]~detfM !n

3)
n

8 Fdetf~ln
21MM†!

~vn
21m2!Nf

G . ~2.8!
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*n denotes the integration over the set of the gluonic c
figurations with a fixed winding numbern, andSYM is the
pure gluonic action. detfM is the determinant of theNf
3Nf quark mass matrix@it is replaced by (detfM

†)2n for
n<0]. The primed product includes only the strictly positiv
eigenvalues: its denominator involves the Vafa-Witt
boundvn of Eq. ~2.5! and a reference mass scalem larger
than any light quark mass. It represents a convenient norm
ization of the determinant, such that each factor of
primed product is lower than 1 when the quark masses t
to zero. This normalization does not affect any observa
We check that the quark mass matrix and the vacuum a
arise in the partition function through the produ
M exp(iu/Nf), consistently with the anomalous Ward identi
for the singlet axial-vector current.

The partition function for a fixed positive winding numbe
is

Zn~Nf !5CE
n
@dG#e2SYM[G]~detfM !n S )

n
8

ln
2

vn
21m2D Nf

3expF K (
n

8 logS 11
MM†

ln
2 D L G , ~2.9!

where ^& denotes the trace over flavors. Provided that
partition function is regularized, we can expand the log
rithm for small masses~compared to the size of the box!:

Zn~Nf !5CE
n
@dG#e2SYM[G]~detfM !nS )

n
8

ln
2

vn
21m2D Nf

3expF ^M†M &s22
1

2
^~M†M !2&s41O~M6!G

~2.10!

5Cn8~detfM !nF11^M†M &^^s2&&n
(Nf )

2
1

2
^~M†M !2&^^s4&&n

(Nf )

1
1

2
^M†M &2^^~s2!2&&n

(Nf )1O~M6!G . ~2.11!

The inverse moments are defined for each gluonic confi
ration assk5(n81/ln

k . The normalization factorCn8 is inde-
pendent of the quark mass matrix:

Cn85CE
n
@dG#e2SYM[G]S )

n
8

ln
2

vn
21m2D Nf

. ~2.12!

The average over gluonic configurations with a given win
ing number is defined by
1-3
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^^W&&n
(Nf )5

E
n
@dG#e2SYM[G] S)

n
8 ln

2D Nf

W

E
n
@dG#e2SYM[G] S)

n
8 ln

2D Nf
, ~2.13!

where the denominator is a normalization factor,^^1&&n

51. In Eq. ~2.11!, this average is applied to inverse m
mentssk that are particularly sensitive to the infrared tail
the Dirac spectrum. On the other hand,^^&&n

(Nf ) includes a
product over eigenvalues, which should suppress the sta
cal weight of the lowest eigenvalues when the numberNf of
massless flavors increases. The averaged inverse mome
the exponential of Eq.~2.11! could therefore exhibit a stron
dependence onNf .

Equation~2.10! contains several sources of divergenc
Let us first consider the gluonic configuration as a fixed
ternal field. In the fermion sector, sums over the Dirac sp
trum may diverge because of its ultraviolet tail. Forl→`,
the number of eigenvalues in@l,l1Dl# is given by the free
theory:

Dn5
NC

4p2
Vulu3Dl. ~2.14!

The expected ultraviolet divergences of the inverse mom
have therefore to be subtracted. We can write

s25s̃21D2
(Nf ) , s45s̃41D4

(Nf ) , ~2.15!

where the divergent part is included inD, ands̃ is finite. For
instance, we can choose an ultraviolet cutoffL and define
the integerK such thatvK5L. The regularized inverse mo
ments then read

s̃k5 (
n51

K
1

~ln!k
, ~2.16!

and the divergent parts behave~at the leading order of the
volume! like

D2
(Nf );VL2, D4

(Nf );V ln L. ~2.17!

These short-distance contributions are the same for
winding-number sectors. If we perform this splitting in E
~2.10!, we obtain the regularized partition functionZ̃n in-
volving the inverse momentss̃, multiplied by an exponentia
factor with divergent counterterms which contribute only
the vacuum energy:

Zn~Nf !5Z̃n~Nf !expFD2
(Nf )^M†M &2

1

2
D4

(Nf )^~M†M !2&G .
~2.18!

Secondly, the product over the eigenvalues in the ferm
determinant of Eq.~2.13! needs a regularization already for
fixed gluonic configuration. Nevertheless, for observab
dominated by the lowest Dirac eigenvalues, we expect
05401
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sensitivity to the ultraviolet tail of the determinant. If w
split the product over eigenvalues into ultraviolet and inf
red parts@9,32#

D5D IRDUV , D IR5 )
n51

K S ln
2

vn
21m2D Nf

, ~2.19!

we can expect the gluonic average of the inverse momen
depend essentially onD IR , with a weak sensitivity onL.

Up to now, the gauge configuration was viewed as
external field, but the integration over the gluonic fields lea
to a third series of divergences. Fortunately, their regular
tion is rather disconnected from the fermion sector@26# ~for
instance, the cut-off may be chosen independently ofL). For
the purpose of this paper, it is sufficient to stick to a mu
plicative renormalization of the mass matrix and the Dir
eigenvalues,

M→ZmM , ln→Zmln , ~2.20!

inducing a multiplicative renormalization for^^sk&&n
(Nf ) . We

shall only consider homogeneous quantities, like ratios
inverse moments with the same degree of homogeneity inl:
the problem of the renormalization in the gluonic sector
therefore discarded in the rest of this article.

B. Effective Lagrangian

For large volumes, the massive states are exponent
suppressed. The partition function is therefore dominated
theNf

221 pseudo-Goldstone bosons resulting from the sp
taneous breakdown of chiral symmetry and described at
energies by the chiral perturbation theory (xPT). The effec-
tive Lagrangian for Goldstone bosons is written as a dou
expansion in powers of the momentap and of the quark
massesm:

Leff5(
k,l

L(k,l ) , ~2.21!

whereL(k,l ) gathers all terms contributing likepkml . In Eu-
clidean QCD, it has been shown that, on a large torus,
low energy constants inLeff are not affected by finite-size
effects@24#.

If U(x)PSU(Nf) collects the Goldstone fields, the part
tion function is

Zu~Nf !5E @dU#expF2E
V
d4xLeff

(Nf )~U,]U,Meiu/Nf !G .
~2.22!

In this framework, the projection on a given winding numb
yields @21#

Zn~Nf !5E du

2p
e2 inuE @dU#

3expF2E
V
d4xLeff

(Nf )~U,Meiu/Nf !G ~2.23!
1-4



l
o

t
rti
m

va

.

r

tic

e

c
n

-

an

-
s

of
lar

y.
er
sses.
in-

act
of

chi-
un-

e

m-
de

der
gen-

two
n:

r,
mi-
e

he

in
con-

FINITE-VOLUME ANALYSIS OF Nf-INDUCED CHIRAL . . . PHYSICAL REVIEW D 62 054011
5
1

2pE @dŨ#~detŨ !n

3expF2E
V
d4xLeff

(Nf )~Ũ,M !G , ~2.24!

with Ũ(x)5U(x)exp(2iu/Nf). The path integral over
SU(Nf) for the partition functionZu ends up with an integra
over U(Nf) for Zn . Because of the invariance properties
the measures@dU# and @dŨ#, we have for anyV1 ,V2
PU(Nf)

Zn~Nf uV1MV2!5~detV1V2!nZn~Nf uM !. ~2.25!

The low-energy constants inLeff are volume-independen
and Nf-dependent order parameters. In particular, a pa
restoration of chiral symmetry would make some of the
vanish. Since the relative size of these order parameters
with Nf , the organization of the double expansion~2.21!
depends on the phase in which the theory is considered

~1! If the number of light flavorsNf is fixed below
ncrit(Nc), the quark condensateS(Nf) is the order paramete
that dominates the description of SBxS for sufficiently small
quark masses~or sufficiently large volumes!. The leading
order of the effective Lagrangian involves only a kine
term and a term linear in the quark mass matrix:

L 2
(Nf )5

1

4
F2~Nf !^]mU†]mU&2

1

2
S~Nf !^U

†M1M†U&.

~2.26!

F is the decay constant of the Goldstone bosons andS(Nf)
is the quark condensate, introduced in Sec. I in Eqs.~1.3! and
~1.2!. The expansion of the effective Lagrangian is organiz
in this case through the standard power counting@22#: ]
;p, M;p2, so that the next-to-leading order isO(p4).

~2! On the other hand, forNf.ncrit(Nc), the quark con-
densate vanishes and we cannot rely on the previous des
tion anymore. In this case, the leading-order Lagrangia
the sum of the kinetic term,L(2,0) , and of a term quadratic in
the quark masses,L(0,2) :

L(2,0)
(Nf ) 5

F2~Nf !

4
^]mU†]mU&, ~2.27!

L(0,2)
(Nf ) 52

1

4
@A~Nf !^~U†M !21~M†U !2&1ZS~Nf !

3^U†M1M†U&21ZP~Nf !^U
†M2M†U&2

1H~Nf !^M†M &#. ~2.28!

L(0,2) appears in the standardO(p4) Lagrangian at the next
to-leading order, and the low-energy constantsZS , ZP , A
andH correspond respectively toL6 , L7 , L8 andH2 of Ref.
@22#. In this phase, the counting used to perform the exp
sion at higher orders is modified@23#: ];M;p.

In the generic caseNf>3 ~the case of two flavors is com
mented in Appendix B!, A, ZS andZP are order parameter
05401
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of SBxS. They are related to the low-energy behavior
two-point correlators of the scalar and pseudosca
densities3 Sa(x)5c̄(x)tac(x) and Pa(x)5c̄(x)taig5c(x),
where $ta% are flavor matrices.A stems from ^SaSb
2PaPb&. ZS is given by the correlator̂S0S0dab2SaSb&,
andZP by ^P0P0dab2PaPb&: ZS andZP violate the Zweig
rule in the scalar and pseudoscalar channels respectivel

H is a high-energy counterterm, which is not an ord
parameter and cannot be measured in low-energy proce
Other similar counterterms arise at higher orders: they
volve only the quark mass matrixM, but not the Goldstone
boson fieldsU. These counterterms are needed to subtr
short-distance singularities in QCD correlation functions
quark currents. Their general structure is dictated by the
ral symmetry, and it is reproduced by the high-energy co
terterms on the level of the effective Lagrangian.

~3! For Nf just below the critical pointncrit(Nc), we ex-
pect a small~but non-vanishing! condensate and a larg
Zweig-rule violation in the scalar sector@9#. Linear and qua-
dratic mass terms in the effective Lagrangian may be of co
parable size. To take into account this possibility, we inclu
both of them in the leading order of the Lagrangian:

L̃2
(Nf )5

1

4
@F2~Nf !^]mU†]mU&22S~Nf !^U

†M1M†U&

2A~Nf !^~U†M !21~M†U !2&2ZS~Nf !

3^U†M1M†U&22ZP~Nf !^U
†M2M†U&2

2H~Nf !^M†M &#. ~2.29!

This Lagrangian can be actually viewed as the lowest or
of another systematic expansion scheme, defined by the
eralized chiral counting@23#: ];M;B;O(p). In this case,
the next-to-leading order counts asO(p3).

The standard and generalized counting rules are only
different ways of expanding the same effective Lagrangia

Leff5L21L41•••5L̃21L̃31••• . ~2.30!

At a given order inp, generalizedxPT includes terms rel-
egated by standardxPT to higher orders. At the lowest orde
Eq. ~2.29! can be applied even if the quark condensate do
nates. On the other hand, standardxPT becomes inaccurat
in the vicinity of the critical point whereS;0, whereas
generalizedxPT may be more appropriate to describe t
transition.

III. LEADING LARGE-VOLUME BEHAVIOR
OF THE INVERSE MOMENTS

A. Matching QCD and the effective theory

If we analyze perturbatively the partition function~2.22!,
the only difference from the case of an infinite volume lies
the meson propagator, because of the periodic boundary
ditions

3Notice that contrary to the convention used in Refs.@23# and
@35#, the decay constantF2 is not factorized inL(0,2) : A, ZS and
ZP carry the dimension (mass)2.
1-5
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G~x!5
1

V (
p

eipx

Mp
2 1p2

, ~3.1!

wherepm52pnm /L, with nm integers. The contribution o
the modep50 in this propagator blows up when pions b
come massless@27#. Graphs containing such zero modes w
diverge in the chiral limit, whereas the non-zero modes
suppressed in the large-volume limit: the fluctuations of
zero modes are not Gaussian and cannot be treated pert
tively. To cope with them, we split the Goldstone bos
fields in two unitary matrices:U(x)5U0U1(x), where the
constant factorU0 describes the zero modes andU1(x) the
remaining non-zero modes.
05401
e
e
ba-

In a first approximation, the Gaussian fluctuations ofU1

can be neglected and the path integral inZ reduces to a group
integral over constant SU(Nf) matrices:

Z~Nf !5DE
SU(Nf )

@dU0#exp@2VL eff
(Nf )

„U0 ,M exp~ iu/Nf !…#,

~3.2!

where@dU0# is the Haar measure over the group, andD a
normalization constant, independent of the mass. The pro
tion on a topological sector~2.24! becomes
tanding.

able

or any

ngian

.

of
Zn~Nf !5
1

2p
DE

U(Nf )
@dŨ0#~detŨ0!n exp@2VL eff

(Nf )~Ũ0 ,M !#. ~3.3!

To simplify the notations, we replaceŨ0 by U in the calculations at the leading order ofZn . In addition, theNf-dependence
of the low-energy constants will not be explicitly denoted from now on, unless its presence is mandatory for unders

We want to expandZn with respect to the size of the box and to the quark mass matrix. Actually, Eq.~3.2! tells us how to
organize this from the expansion ofLeff . At the leading order, the partition function will depend on a simple scaling vari
X5MLk. Belowncrit(Nc), we havek54 @cf. Eq. ~2.26!#, whereas the phase with a vanishing condensate yieldsk52 @cf. Eq.
~2.29!#. For smallX, the expansion ofZn reads

Zn5Nn~detX!n@11an^X
†X&1bn^X

†X&21cn^~X†X!2&1O~X6!#, ~3.4!

where the coefficientsNn , an , bn , cn do not depend onM. This expansion is valid forn>0: for a negativen, (detX†) unu

arises instead of (detX)n. The calculations are very similar in both cases, and our future results can be translated f
winding number by writingunu instead ofn.

The QCD partition function was expanded as a polynomial in the quark masses in Eq.~2.11!, leading to

Zn5Cn8L
2knNf~detfX!nF11

1

L2k
^X†X&^^s2&&n

(Nf )2
1

2L4k
^~X†X!2&^^s4&&n

(Nf )1
1

2L4k
^X†X&2^^~s2!2&&n

(Nf )1O~X6!G .

~3.5!

By identifying the same powers ofX in both expansions, we obtain relations between parameters of the effective Lagra
and the leading large-volume behavior of inverse moments.

When we compare Eqs.~3.4! and ~3.5!, we have to take into account the divergences of the inverse momentssk , as
stressed in Eq.~2.18!:

Zn5Z̃n expFD2^M†M &2
1

2
D4^~M†M !2&G;Zn

x PT. ~3.6!

These counterterms, built from traces of the quark mass matrix, are also present in thexPT expression of the partition function
Therefore, the divergent behavior of the inverse moments~e.g.D2 for s2) is tracked by counterterms in thexPT Lagrangian
~in this case,H). Divergence-free sum rules are found by considering linear combinations where the relatedxPT counterterms
cancel.

B. Nf™ncrit „Nc…: Leutwyler-Smilga sum rules

This case has already been treated in great detail in Ref.@21#. We briefly review the main steps of the derivation
Leutwyler-Smilga sum rules for the reader’s convenience. Equation~3.3! yields at the leading order
1-6
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Zn~Nf !5
1

2p
DE

U(Nf )
@dU#~detU !n expFSV

2
^U†M1M†U&G . ~3.7!
h
f

er
f.

-

ou

s.

rk

rder

at

l

ce

um

t

-

VMS is the only parameter of the group integral, and t
scaling variable isX5ML4 (k54). In the general case o
an arbitrary matrixM, a formula for the integral~3.7! is
discussed in Ref.@28#. For our present purpose, it is howev
sufficient to follow the original method described in Re
@21# to expand Eq.~3.7! in powers of M. We obtain the
expansion coefficientsan , bn , . . . through two derivative
operators, applied on both expressions ofZn : the group in-
tegral ~3.7! and theX-expansion~3.4!. The latter gives

(
a

]

]Xa

]

]Xa*
Zn

5Nn~detX!nH NfK

2
an1^X†X&@~NfK11!bn

1~Nf1K !cn#1O~X4!J , ~3.8!

and

(
abcd

^tatbtctd&
]

]Xa

]

]Xb*

]

]Xc

]

]Xd*
Zn

5Nn~detX!n3
NfK

8
$~Nf1K !bn1~NfK11!cn

1O~X2!%, ~3.9!

whereK5Nf1n, and Xa are the coordinates ofX on $ta%
(a50 . . .Nf

221), which is a complete set of Hermitian ma
trices ~see Appendix A!.

The same derivative operators are applied on the gr
integral ~3.7!:

(
a

]

]Xa

]

]Xa*
Zn5

1

8
NfS

2Zn , ~3.10!

(
abcd

^tatbtctd&
]

]Xa

]

]Xb*

]

]Xc

]

]Xd*
Zn5

1

256
NfS

4Zn .

~3.11!

Once Zn is replaced by itsX-expansion~3.4! on the right
hand side of Eqs.~3.10! and ~3.11!, these equations yield
polynomials inX, which are identified with Eqs.~3.8! and
~3.9! order by order in powers ofX. We get thusan , and a
linear system of two equations forbn andcn .

Once an , bn and cn computed, the comparison of Eq
~3.4! and ~3.5! leads to the Leutwyler-Smilga sum rules:

^^s2&&n
(Nf )5an5

@VS~Nf !#
2

4K
, ~3.12!
05401
e

p

^^~s2!2&&n
(Nf )52bn5

@VS~Nf !#
4

16~K221!
, ~3.13!

^^s4&&n
(Nf )522cn5

@VS~Nf !#
4

16K~K221!
. ~3.14!

Because ofK5Nf1unu, the sum rules~3.12!–~3.14! depend
explicitly on the number of flavors, but there is another~im-
plicit and unknown! dependence stemming from the qua
condensateS(Nf). No divergent counterterm is explicitly
present: these sum rules are derived from the leading o
Lagrangian in standardxPT, and they show only an
asymptotic behavior, valid forV→`. For instance,s2 and
(s2)2 contain divergent subleading terms.4

C. NfÌncrit „Nc…: the phase with a vanishing quark
condensate

For Nf.ncrit(Nc), the integral definingZn in terms of the
effective Lagrangian~3.3! involves quadratic mass terms
the leading order:

Zn~Nf !5
1

2p
DE

U(Nf )
@dU#~detU !n

3expFV

4
$A^~U†M !21~M†U !2&

1Z S^U
†M1M†U&21Z P^U†M2M†U&2

1H^M†M &%G . ~3.15!

The scaling variable is nowX5ML2 (k52). The counter-
termH has the same structure as the divergent termD2 due
to s2 in Eq. ~3.6!. To eliminate this divergence, it is natura
to introduce the n-dependent fluctuation s̄25s2

2^^s2&&n
(Nf ) . The subtraction of this quadratic divergen

leads to the loss of a single sum rule, for instance^^s2&&0
(Nf ) .

For the other topological sectors, we can indeed write s
rules concerninĝ ^s2&&n

(Nf )2^^s2&&0
(Nf ) , since the~short-

distance! divergence due toH is insensitive to the~topologi-
cal! winding number.

Because of chirality, the integral~3.15! vanishes unless
the same power ofU and U† arises. The determinan
(detU)n counts as thenNf-th power ofU, whereas the ex-
ponential involves only the square ofU†. Therefore, the
phase of an oddNf.ncrit(Nc) discriminates between the to

4For this reason, the formulas~3.12! and~3.13! should be applied
to finite volumes with great care.
1-7
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pological sectors: the odd-n sectors are suppressed in t
large-volume limit compared to the even winding numb
~this discrimination does not occur for an even number
flavors!. As a matter of fact, the symmetryM→2M is
equivalent tou→u1pNf . From the Fourier decompositio
~2.6!, we can directly check that the odd topological sect
have a vanishing partition function at the leading order, p
vided thatNf is odd. Of course, higher orders of the effecti
Lagrangian~for instanceL̃3) contribute to the odd topologi
cal sectors, giving finally rise forZn to a different volume
dependence from the even winding numbers.

In the topologically trivial sectorn50, (detU)n disap-
pears from the group integral and the exponential in
~3.15! can be directly expanded in powers ofX and inte-
grated over U(N). Using Appendix A, the computation o
the lowest powers in theX-expansion is straightforward
leading to the sum rules:

^^~ s̄2!2&&05
V2

16Nf
2~Nf

221!
3@4~2Nf

211!~Z S
21Z P

2 !

28ZSZP28NfA~ZS1ZP!14Nf
2A 2#,

~3.16!

^^s4&&05
V2

16Nf~Nf
221!

3@12~Z S
21Z P

2 !28ZSZP

28NfA~ZS1ZP!14A 2#. ~3.17!

As emphasized in the previous section, these sum rules
pend on the number of massless flavors in an explicit w
but also implicitly through theNf-dependent order param
etersA, ZS andZP .

These sum rules predict a different large-volume beha
from the Leutwyler-Smilga sum rules~3.12!–~3.14!. This
agrees with our general expectation concerning the la
volume dependence of the~suitably averaged! small Dirac
eigenvalues@13#. The eigenvalues accumulating like 1/L4

contribute to SBxS and to the quark condensate. Cor
spondingly, forNf,ncrit(Nc), the asymptotic behavior of th
sum rules is

K K (
n

8
1

ln
2L L

0

;V2, K K (
n

8
1

ln
4L L

0

;V4.

~3.18!

On the other hand, the 1/L2-eigenvalues do not contribute t
the quark condensate, but may still contribute to SBxS in the
phase abovencrit(Nc), through a non-vanishing value o
F2(Nf). Indeed, Eqs.~3.16! and ~3.17! predict in this phase
an infinite-volume limit ofV2 for ^^(s̄2)2&&0 and^^s4&&0, as
expected.
05401
s
f

s
-

.

e-
y,

r

e-

-

IV. THE APPROACH TO THE CRITICAL POINT

A. Leading large-volume behavior

We want now to study the intermediate case, where
linear and the quadratic mass terms in the effective Lagra
ian may compete for some range of volumes. To underst
which results can be expected, it is instructive to consi
first xPT in an infinite volume and to imagine that we let th
quark masses vary. If the quark condensate is~even slightly!
different from zero, we can always find sufficiently sma
quark masses for which the linear mass term is domin
When the quarks become massive, the corrections due to
quadratic mass terms may become discernible and even
ponderant, provided that the quark condensate is not
large to hide their effects.

In this paper, we work in a box with a fixed large volum
and Mp

2 is counted asO(1/L4). The variation of the quark
masses is therefore translated into a change of the volu
For Nf,ncrit(Nc), the Leutwyler-Smilga sum rules derive
in SxPT should correctly describe the volume-dependenc
the inverse moments whenL tends to infinity. However,
close to the critical point and for a given value of the vo
ume, the quark condensate need not be large enough to m
L2, Eq. ~2.26!, dominate. This could lead to significant d
viations from the asymptotic limit even for large volumes

Hence, the leading order of the Lagrangian isL̃2, Eq.
~2.29!, andZn reads

Zn5
1

2p
DE

U(Nf )
@dU#~detU !n expFV

4
$2S^U†M1M†U&

1A^~U†M !21~M†U !2&1Z S^U
†M1M†U&2

1Z P^U†M2M†U&21H^M†M &%G . ~4.1!

X5ML2 remains the scaling parameter for the mass, a
SL2 is the expansion variable for the quark condensate. T
organizes the expansion through the power countingS;M
;1/L2, similar to GxPT. We shall therefore consider th
theory for volumes and masses so thatX and SL2 are of
order 1.

In order to evaluate~4.1!, it is convenient to define the
group integral I n for arbitrary complex numbers
(b,b̄,z,z̄,y,a,ā):

I n5E
U(Nf )

@dU#~detU !n exp@b^XU†&1b̄^X†U&1z^XU†&2

1 z̄^X†U&21y^XU†&^X†U&1a^~XU†!2&

1ā^~X†U !2&#. ~4.2!

The partition function at a fixed winding number reads

Zn5
1

2p
D exp@h0^X†X&#I n~b0,b̄0,z0,z̄0,y0,a0,ā0;X!,

~4.3!

whereI n is calculated with the values
1-8
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b05b̄05
1

2
L2S, ~4.4!

z05 z̄05
1

4
~ZS1ZP!, y05

1

2
~ZS2ZP!, ~4.5!

a05ā05
1

4
A, h05

1

4
H. ~4.6!

I n is a polynomial in (b,b̄,z,z̄,y,a,ā), and its derivatives
are not independent:

]2I n

]b2
5

]I n

]z
,

]2I n

]b̄2
5

]I n

] z̄
,

]2I n

]b]b̄
5

]I n

]y
. ~4.7!

We expand this integral in powers ofX, with coefficients that
are independent of the quark mass matrix:

I n5~detX!n@an1bn^X
†X&1gn^X

†X&21dn^~X†X!2&

1en^X
†X&31hn^~X†X!2&^X†X&1kn^~X†X!3&

1O~X8!#. ~4.8!

We identify the same powers ofX in the expression ofZn in
terms of averaged inverse moments~3.5! and in its expres-
sion at the leading order of the effective Lagrangian, o
tained from Eqs.~4.3! and~4.8!. This leads to the sum rule

^^s2&&n
(Nf )5VS bn

an
1hD ~4.9!
05401
-

^^~s2!2&&n
(Nf )52V2S gn

an
1h

bn

an
1

h2

2 D ~4.10!

^^s4&&n
(Nf )522V2

dn

an
~4.11!

^^~ s̄2!2&&n
(Nf )5V2S 2

gn

an
2S bn

an
D 2D ~4.12!

^^~ s̄2!3&&n
(Nf )5V3S 6

en

an
26

bn

an

gn

an
12S bn

an
D 3D

~4.13!

^^s̄2s4&&n
(Nf )5V3S 22

hn

an
12

bn

an

dn

an
D ~4.14!

^^s6&&n
(Nf )53V3kn . ~4.15!

If we know an , bn , . . . in terms of the low-energy con
stants ofL̃2, Eqs.~4.9!–~4.15! lead to the desired sum rules
The high-energy countertermh, which reflects the ultraviolet
divergence ins2, has to be eliminated. This can be obtain
if we consider the fluctuation ofs2 over a topological sector
s̄25s22^^s2&&n

(Nf ) , as defined in Sec. III C.
For the topologically trivial sectorn50, the computation

is very simple, following the same line as for the phaseNf
.ncrit(Nc). This leads to the expansion coefficients~for b

5b̄, z5 z̄, a5ā):
a051, ~4.16!

b05
1

Nf
~y1b2! ~4.17!

g05
1

Nf~Nf
221!

H NfFb4

2
12b2y12b2z1y212z212a2G22a@b212z#J ~4.18!

d05
1

Nf~Nf
221!

H 2Fb4

2
12b2z12b2y1y212z212a2G1Nf•2a@b212z#J ~4.19!

e05
1

Nf~Nf
221!~Nf

224!
H 6~Nf

222!Fb6

36
1b4S z

3
1

y

4D1b2S z21
y2

2
1yzD1S y3

6
1yz2D G12~Nf

212!@b21y#a2

212NfFb4

6
1b2S y

2
1zD1yzGaJ ~4.20!

h05
1

Nf~Nf
221!~Nf

224!
H 218NfFb6

36
1b4S z

3
1

y

4D1b2S z21
y2

2
1yzD1S y3

6
1yz2D G218Nf@b21y#a2112~Nf

212!

3Fb4

6
1b2S y

2
1zD1yzGaJ ~4.21!
1-9
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k05
1

Nf~Nf
221!~Nf

224!
H 24Fb6

36
1b4S z

3
1

y

4D1b2S z21
y2

2
1yzD1S y3

6
1yz2D G14~Nf

212!@b21y#a2

224NfFb4

6
1b2S y

2
1zD1yzGaJ ~4.22!

Before focusing on the resulting sum rules for the topologically trivial sectorn50, we sketch the general derivation of th
expansion coefficients for an arbitrary winding number.

B. Topologically non-trivial sectors: nÅ0

Let us begin with the leading coefficientan . Independent ofX, it can be computed forX5x•1, wherex is a complex
number.an is then given by the leading order ofI n in x ~without any power ofx* ), and it depends only on (b,z,a). As a
matter of fact,an(b,z,a) can be deduced froman(b,0,a) because of the relations between the derivatives~4.7!. The problem
reduces to obtaining the leading order inx of the group integral:

I n
a5I n~b,a;x•1!5E

U(Nf )
@dU#~detU !n exp@bx^U†&1ax2^U†2&#. ~4.23!

Appendix C 1 describes howan(b,0,a) is extracted from this integral, leading to the polynomial

an~b,z50,a!5 (
m50 . . .nNf /2

bnNf22mamcm , ~4.24!

where$cm% are purely combinatorial coefficients. Using]2an /]b25]an /]z, we obtain the general expression ofan :

an~b,z,a!5 (
l 12m12p5nNf

blamzp
~ l 12p!!

l ! p!
cm . ~4.25!

In the limit case of a vanishing quark condensate (b50), we check thatan ~and thereforeI n) vanishes ifnNf is odd, in
agreement with the parity discrimination discussed in Sec. III C.

We obtain the next coefficients by applying the derivative operators of Eqs.~3.8! and~3.9! on both representations ofI n :
the group integral~4.2! and theX-expansion~4.8!. We already know the result of the latter from the phaseNf!ncrit(Nc),
studied in Sec III B:

(
a

]

]Xa

]

]Xa*
I n5~detX!nH NfK

2
bn1^X†X&@~NfK11!gn1~Nf1K !dn#1O~X4!J , ~4.26!

and

(
abcd

^tatbtctd&
]

]Xa

]

]Xb*

]

]Xc

]

]Xd*
I n5Nn~detX!n

NfK

8
$~Nf1K !gn1~NfK11!dn1O~X2!%. ~4.27!

The two-derivative operator, applied on the group integral~4.2! that definesI n , leads to

(
a

]

]Xa

]

]Xa*
I n5FNf

2
~y1bb̄!12aā^X†X&1S Nfzb̄1ab̄1

Nf

2
byD ]

]b
1S Nfz̄b1āb1

Nf

2
b̄yD ]

]b̄
1~Nfz1a!y

]

]z

1~Nfz̄1ā!y
]

] z̄
1S 2Nfzz̄1

Nf

2
y212āz12az̄D ]

]yG I n . ~4.28!

We can now replaceI n by its X-expansion~4.8!, and identify the resulting polynomial inX with the right-hand side of Eq
~4.26!. When we identify the coefficients ofX0, we obtainbn in terms ofan and its derivatives:

an85
]an

]b
, ȧn5

]an

]a
, an95

]2an

]b2
5

]an

]z
. ~4.29!
054011-10
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The coefficients of̂ X†X& lead to an equality between a linear combination ofgn anddn , and some derivatives ofan andbn

~these derivatives can actually be rewritten only in terms of derivatives ofan , since we know howbn is related toan).
We follow the same line with the four-derivative operator. Actually, when we apply the operator to the group integra~4.2!,

we only need the lowest power ofX, to compare it with Eq.~4.27!. Factors of higher degrees, similar toaā^X†X& in Eq. ~4.28!
can be ignored, and we obtain

(
abcd

^tatbtctd&
]

]Xa

]

]Xb*

]

]Xc

]

]Xd*
I n5H Nf

8 F1

2
b2b̄21b2~Nfā1 z̄!1b̄2~Nfa1z!12bb̄y1y212zz̄12aā12Nf~az̄1āz!G

1
1

8
@bb̄~Nfby12Nfb̄z12b̄a!1b̄~6Nfyz14ay12Nf

2ay!1b~2Nfy
214Nf

2āz

14Nfzz̄14Nfaā14az̄!#
]

]b
1

1

8 F1

2
b2y21b̄2~2Nfz

214az!1bb̄~4Nfyz14ay!

1y2
„5Nfz1~Nf

214!a…14Nf
2āz218Nfaāz14Nfz

2z̄14a2āG ]2

]b2

1
1

4
@2Nfb̄yz21Nfby2z1aby214ab̄yz#

]3

]b3
1

1

4
@Nfz12a#zy2

]4

]b4

1
1

4
@ b̄212z̄#a2

]

]a
1

1

2
a2b̄y

]2

]a]b
1

1

4
a2y2

]3

]a]b2
1O~X2!J I n . ~4.30!

We replaceI n by its X-expansion on the right-hand side of this equation. We keep only the coefficient forX0 and we compare
it with Eq. ~4.27!, to end up with a second equality relating a linear combination ofgn anddn to the derivatives ofan . The
resulting expressions are listed in Appendix C 2, but it seems difficult to handle them in general.

C. Topologically trivial sector: nÄ0

From the expansion coefficientsa0 , b0 . . . of Sec. IV A, we get the sum rules for the inverse moments of degree 4
6. If we denotez5VS2/A, S̄5ZS /A and P̄5ZP /A, the sum rules read

^^~ s̄2!2&&0
(Nf )5

V2A 2

16Nf
2~Nf

221!
$z21z@4~2Nf

211!S̄24P̄24Nf #1@4~2Nf
211!~S̄21 P̄2!28S̄P̄28Nf~S̄1 P̄!14Nf

2#% ~4.31!

^^s4&&0
(Nf )5

V2A 2

16Nf~Nf
221!

$z21z@12S̄24P̄24Nf #1@12S̄2112P̄228S̄P̄1428NfS̄28Nf P̄#% ~4.32!

^^s6&&0
(Nf )5

V3A 3

32Nf~Nf
221!~Nf

224!
$z31z2@30S̄26P̄26Nf #1z@180S̄2136P̄2272S̄P̄272NfS̄16~Nf

212!#

1@120S̄32120P̄3172S̄P̄2272S̄2P̄272NfS̄
2172Nf P̄

2112~Nf
212!S̄212~Nf

212!P̄#% ~4.33!

^^s4s̄2&&0
(Nf )5

V3A 3

16Nf
2~Nf

221!~Nf
224!

$z31z2@2~2Nf
217!S̄26P̄26Nf #1z@36~Nf

211!S̄214~Nf
215!P̄228~Nf

215!S̄P̄

28Nf~Nf
215!S̄14~2Nf

211!#1@24~Nf
211!S̄3224~Nf

211!P̄318~Nf
215!S̄P̄228~Nf

215!S̄2P̄

28Nf~Nf
215!S̄218Nf~Nf

215!P̄218~2Nf
211!S̄28~2Nf

211!P̄#% ~4.34!
054011-11
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^^~ s̄2!3&&0
(Nf )5

V3A 3

8Nf
3~Nf

221!~Nf
224!

$z31z2@6~Nf
211!S̄26P̄26Nf #1z@6~2Nf

42Nf
212!S̄216~Nf

212!P̄2

212~Nf
212!S̄P̄212Nf~Nf

212!S̄19Nf
2#1@4~2Nf

42Nf
212!S̄324~2Nf

42Nf
212!P̄3112~Nf

212!S̄P̄2

212~Nf
212!S̄2P̄212Nf~Nf

212!S̄2112Nf~Nf
212!P̄2118Nf

2S̄218Nf
2P̄#%. ~4.35!

The dependence on the number of massless flavors is not limited to the polynomials inNf explicitly present in the previous
formulas, sinceS, ZS , ZP andA are unknown functions ofNf ~this dependence is here omitted for typographical con
nience!. The singularities forNf51 ~for 1/l4- and 1/l6-moments! andNf52 ~for 1/l6-moments! arise because some of th
coefficientsan , bn . . . in Eq.~4.8! are not independent in these cases, and we can only write~singularity-free! sum rules for
differences between inverse moments of the same degree, e.g. (s̄2)22s4 for Nf51.

Notice that the scaling volume parameterz5VS2/A and the ratiosS̄5ZS /A and P̄5ZP /A are invariant under the QCD
renormalization group. This invariance occurs also for ratios of inverse moments with the same degree of homogenel:

R5
^^s4&&0

^^~ s̄2!2&&0

, S5
^^~ s̄2!3&&0

^^s6&&0
, T5

^^s4s̄2&&0

^^s6&&0
, U5

^^s4&&0
3/2

^^s6&&0
. ~4.36!

We can plot ~Figs. 1 and 2! the variation ofR as a function of the volume, measured in physical unitsFp
24 (Fp

592.4 MeV). The scaling parameter isz5(Fp
4 V)/(16L̂8), where the dimensionless parameterL̂8 denotes (Fp

4 A)/(16S2) ~for
Nf53, it essentially corresponds to the SxPT low-energy constantL8 of Ref. @22#!.5 A variation of the condensate means
variation of L̂8, and consequently a redefinition of the units used to measure the volume: this reduces to a simple shi
curve ~to the right if S decreases, to the left if it increases!.

The infinite-volume limit reproduces the Leutwyler-Smilga sum rules (R→Nf). On the other hand, since the scalin
volume parameter isz5VS2/A, the limit L→0 corresponds mathematically to a vanishing condensate for the sum rule
recover the results of Sec. III C. The sum rules~4.31!–~4.35! interpolate between these regimes.

The ratiosR, S, T andU are not very sensitive toP̄ ~Zweig-rule violation in the pseudoscalar channel! until we reach small
volumes where large corrections stemming from higher orders are expected. In the case ofNf53 flavors, the valueP̄
521/2 is privileged, because it guarantees the validity of the Gell-Mann–Okubo formula, independently of the size oS. On
the other hand, it may be interesting to notice that some ratios are affected by variations ofS̄ even at intermediate volumes
For instance, the dependence of the ratioSon S̄ is plotted on Fig. 3~we chooseL̂850.1, but other values ofL̂8 can be obtained
by a simple shift of the curve!.

To simplify the analysis, it may be interesting to focus on linear combinations of the inverse moments in which the
power of V cancels. These combinations therefore vanish in the limiting case of the Leutwyler-Smilga sum rules~3.12!–
~3.14!:

Nf^^~ s̄2!2&&0
(Nf )2^^s4&&0

(Nf )5
V2

4Nf
$2Z SS2V1@2Z S

212Z P
2 1A#% ~4.37!

Nf^^s4s̄2&&0
(Nf )22^^s6&&0

(Nf )5
V3

8Nf~Nf
221!

$2Z SS4V21@18Z S
212Z P

2 24ZSZP24NfZSA1A 2#S2V

1@12~Z S
32Z P

3 !14ZSZP~ZS2ZP!24Nf~Z S
22Z P

2 !A12~ZS2ZP!A 2#%
~4.38!

Nf^^~ s̄2!3&&0
(Nf )22^^s4s̄2&&0

(Nf )5
V3

8Nf
2~Nf

221!
$2Z SS4V21@6~2Nf

211!Z S
212Z P

2 24ZSZP24NfZSA

1A 2#S2V1@4~2Nf
211!~Z S

32Z P
3 !14ZSZP~ZS2ZP!

24Nf~Z S
22Z P

2 !A12~ZS2ZP!A 2#% ~4.39!

Nf
2^^~ s̄2!3&&0

(Nf )23Nf^^s4s̄2&&0
(Nf )1^^s6&&0

(Nf )5
V3

2Nf
@3Z S

2VS212~Z S
32Z P

3 !#. ~4.40!
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The large-volume behavior of these combinations is part
larly sensitive to the condensateS and to its fluctuation de-
scribed byZS ~Zweig-rule violation in the scalar channel!.
Both these parameters are precisely expected to be stro
affected by the vicinity of the critical point.

D. Positivity conditions

(s̄2)2, s4 and s6 are by definition positive, and thei
average over any topological sector should be positive
well. ForNf!ncrit(Nc), this positivity is trivially satisfied by
the asymptotic behaviors predicted by the Leutwyler-Smi
sum rules~3.12!–~3.14!.

When Nf is near~and below! ncrit(Nc), the volume de-
pendence of the positive inverse moments is expres
through the sum rules of the previous section. They w
derived at the leading order, forn50, and are functions o
z, S̄5ZS /A andP̄5ZP /A. The positivity of^^(s̄2)2&&0

(Nf ) ,

^^s4&&0
(Nf ) and ^^s6&&0

(Nf ) puts therefore constraints on th

low-energy constants ofL̃2.
In the plane (S̄,P̄), it is instructive to draw the domain

where each of these sum rules is positive for any value
z5VS2/A: we demand the positivity of a polynomial o
second or third degree inz, whose coefficients are function
of S̄ and P̄ ~and Nf). For a given number of flavors, thi
procedure excludes some values of (S̄,P̄), which constitute
the hatched areas on Figs. 4–7. If^^(s̄2)2&&0

(Nf ) does not

constrain S̄ and P̄ very much ~Fig. 4!, the positivity of

5In SxPT, the constantL8 depends on the renormalization sca
m. At m5M r , it is estimated asL8

r (M r)5(0.960.3)31023 ~see
for instance Ref.@29#!. Close to the phase transition,L8 should
increase and become scale independent.

FIG. 1. Variations ofR5^^s4&&0 /^^(s̄2)2&&0 as a function of
the volume, measured in physical unitsFp

24 (Nf53 flavors,

ZP /A521/2 andZS /A51/6). The variation ofL̂8 is only a re-
definition of the scaling parameterz and leads to a global shift o
the curves. The vanishing for intermediate volumes is commen
in Sec. IV D.
05401
-

gly

s
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^^s4&&0
(Nf ) ~Fig. 5! and ^^s6&&0

(Nf ) ~Fig. 6! leads to stronger
conditions. IfNf increases, the excluded domains broaden
shown on Fig. 7, compared to Fig. 5. If we suppose t
Nf53 is already near the critical pointncrit(Nc), and if we
fix P̄521/2 from the Gell-Mann–Okubo formula, the pos
tivity of ^^s4&&0

(Nf ) yields the conditionS̄>1/6, explaining

the zero in the plot ofR on Fig. 1, where the parametersS̄

and P̄ have been chosen on the borderline of the positiv
domain of^^s4&&0

(Nf ) .
Obviously, these areas are obtained through the lead

order approximation to the sum rules: the border of th
domains is altered by subleading corrections, which sho
become large for small volumes. Furthermore, the pseu
Goldstone bosons do not dominate the partition function
the box becomes smaller than 1/LQCD . To sum up, when we

d

FIG. 2. Variations ofR5^^s4&&0 /^^(s̄2)2&&0 as a function of
the volume, measured in physical unitsFp

24 (Nf53 flavors,
ZP /A521/2 andZS /A51).

FIG. 3. Variations ofS5^^(s̄2)3&&0 /^^s6&&0 as a function of
the volume measured in physical unitsFp

24 , for different values of

S̄5ZS /A (Nf53, L̂850.1, P̄521/2). S is sensitive to the param

eterS̄ even for intermediate volumes. A different value ofL̂8 would
merely lead to a global shift of the curves.
1-13
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want the leading order of the sum rules to be positive for a
z, we demand too much, and the resulting area is only
approximation of the really allowed domain in the pla
(S̄,P̄).

Furthermore, these positivity plots are only relevant fo
number of flavorNf;ncrit(Nc). Above the phase transition

^^(s̄2)2&&0
(Nf ) , ^^s4&&0

(Nf ) and ^^s6&&0
(Nf ) are still positive,

but their large-volume behavior is related in a different w
to the low-energy constants of the effective Lagrangian,
described in Sec. III C. The positivity conditions stemmi
from the asymptotic behavior of^^(s̄2)2&&0

(Nf ) and^^s6&&0
(Nf )

are satisfied for anyS̄ andP̄. The only non-trivial relation is
due to the sum rule~3.17! for ^^s4&&0

(Nf ) and reads

~S̄1 P̄2Nf !
212~S̄2 P̄!2>Nf

221. ~4.41!

To obtain this relation, we demand the infinite-volume lim
of ^^s4&&0

(Nf ) to be positive. This limit is predicted by th

FIG. 4. Values of (ZS /A,ZP /A) for which the sum rule~4.31!

for ^^(s̄2)2&&0
(Nf53) is positive for any positive scaling paramet

z5VS2/A ~the forbidden zone is hatched!.

FIG. 5. Values of (ZS /A,ZP /A), for which the sum rule~4.32!
for ^^s4&&0

(Nf53) is positive for any positive scaling parameterz
5VS2/A ~the forbidden zone is hatched!.
05401
y
n

a
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sum rule~3.17! at the leading order. The subleading corre
tions to this sum rule vanish asL→` and they do not affect
Eq. ~4.41!. On the contrary to the previous positivity cond
tions obtained near the critical point, Eq.~4.41! is therefore
exact forNf.ncrit(Nc).

V. SUBLEADING CORRECTIONS

This section is devoted to the next-to-leading contrib
tions to the sum rules. In both phases, they behave asL2

compared to the leading order considered so far.

A. Nf™ncrit „Nc…

The Leutwyler-Smilga sum rules were obtained at t
leading order of the effective LagrangianL2 in the SxPT
counting, restricted to the zero modes. The subleading
rections stema priori from two sides: the non-zero mode
~present already inL2), and the zero modes~beginning at the
next-to-leading orderL4). The first subleading correction
turn out to be of order 1/L2, and they come from the non
zero modes contributions toL2. They can be expressed as
~volume-dependent! renormalization of the quark
condensate6 in the sum rules~3.12!–~3.14!.

The second type of subleading corrections arises from
zero-mode contribution toL4, quadratic in the quark mas
matrix. This Lagrangian involves, among other terms,
counterterm^M†M & corresponding to the quadratic dive
gence ofs2. Since the counting rule in this phase isM
;1/V, these quadratic terms are suppressed by a factorL4

in comparison with the linear term inL2. Consequently, they
appear as next-to-next-to-leading order contributions
will not be discussed here.

The non-zero modes arise in the decomposition of
Goldstone boson fields in Sec. III A:

6This result can be compared to the analysis performed in R
@30# concerning the finite size-effects arising in the effective d
scription of a spontaneously brokenO(N)-symmetry.

FIG. 6. Values of (ZS /A,ZP /A), for which the sum rule~4.33!
for ^^s6&&0

(Nf53) is positive for any positive scaling parameterz
5VS2/A ~the forbidden zone is hatched!.
1-14
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U~x!5U0U1~x!5U0 expS i (
a51

Nf
2
21

ja~x!ta /F D ,

ja~x!5 (
nÞ0

fn
a expS i

2p

L
n•xD , ~5.1!

where nm is a four-vector whose components are integ
(nÞ0 means(munmuÞ0). The unitarity ofU1(x) leads to
f2n

a 5(fn
a)* . The fluctuations of the non-zero modes a

small, leading to the counting rulej;f;];1/L. The lead-
ing contribution for the non-zero modes is]mj]mj and
comes from the kinetic term ofL2. It is counted with the
same power as the leading term of the zero modes~3.7!, but
it can be directly integrated and becomes a simple contr
tion to the vacuum energy@27#. At the leading order, the zer
modes are actually the only relevant degrees of freedom

At the next-to-leading order, the corrections from the no
zero modes are due to the terms]2j4 and Mj2. They are
only suppressed by a factor 1/L2 in comparison with the
leading orderL4M . The partition function~2.24! up to the
next-to-leading order is finally

Zn5D8E
U(Nf )

@dŨ0#~detŨ0!ne2Le f f(Ũ0 ,X)

3E )
n.0,a

dfn
ad~fn

a!*

3expH 2
L4

4 (
nÞ0,a,b

~fn
a!* F S 2p

L D 2n2

2
dab1QabGfn

b

2T4f1O~L24!J , ~5.2!

where the conditionn.0 means: n0.0, or (n050,n1
.0), or (n05n150,n2.0), or (n05n15n250,n3.0).
The (Nf

221)3(Nf
221) matrix arises:

FIG. 7. Values of (ZS /A,ZP /A) for which the sum rule~4.32!
for ^^s4&&0

(Nf510) is positive for any positive scaling parameterz
5VS2/A ~the forbidden zone is hatched!.
05401
s
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-

Qab5
S

2F2
^~ tatb1tbta!~Ũ0

†M1M†Ũ0!&. ~5.3!

T4f stands for the quartic term:

T4f5
2L2p2

3F2 (
abcd,npqrÞ0

fn
afp

bfq
cf r

dn•~q2p!^tatbtctd&.

~5.4!

In the integral over the non-zero modes in Eq.~5.2!, these
terms are suppressed by 1/L2 compared to the kinetic term.

We begin with the termT4f , which involves neither the
quark mass matrix nor the zero-mode matrixŨ0. We can
treat it perturbatively to perform an expansion in powers
1/L, leading to

E )
n.0,a

dfn
ad~fn

a!*

3expH 2
L4

4 (
nÞ0,a,b

~fn
a!* F S 2p

L D 2n2

2
dab1QabGfn

bJ
3~12T4f1 . . . !. ~5.5!

We should now apply Wick’s theorem and contract the fie
f in T4f . We would use the propagator stemming from t
kinetic term and the ‘‘mass term’’Qab , where the latter is
suppressed by 1/L2 compared to the first. But we want onl
the first subleading correction due to the tadpoles arising
T4f . Since this correction is already 1/L2-suppressed com
pared to the leading order of the partition function, it can
calculated with propagators restricted to their moment
part (Qab would induce 1/L4-corrections!. At the next-to-
leading order, the contribution ofT4f involves neitherM,
nor Ũ0 ~which are only present inQab): it is a global
L-dependent term which can be factorized and eliminated
a redefinition of the normalization constantD8.

Hence, the 1/L2-corrections are only due to the ‘‘mas
term’’ Qab of the non-zero modes. The partition functio
restricted to a given topological sector becomes

Zn5D9E
U(Nf )

@dŨ0#~detŨ0!n

3exp„2Le f f~Ũ0 ,X!…E )
n.0,a

dfn
ad~fn

a!*

3expH 2
L4

2 (
n.0,a,b

~fn
a!* F1

2
n2S 2p

L D 2

dab1QabGfn
b

1O~L24!J . ~5.6!

The Gaussian integral over$fn% can now be performed:
1-15
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N)
nÞ0

expF2
L2

4p2n2
Tr QG

5N expF2
L2

4p2 S (
nÞ0

1

n2D Tr QG , ~5.7!

whereN is anM-independent normalization factor. The tra
over a,b51 . . .Nf

221 leads to

Tr Q5
Nf

221

2Nf

S

F2
^MŨ0

†1Ũ0M†&. ~5.8!

The integration over the non-zero modes ends up with
renormalization

S~Nf !→S~Nf !S 11g
Nf

221

2Nf
D , g5

v

2p2F2L2
,

~5.9!

v5( 8
1

n2
.

If we include the first subleading corrections, the sum ru
~3.12!–~3.14! remain therefore correct, provided that the p
rameters of the effective Lagrangian are renormalized, in
ducing an additional 1/L2-dependence related to the regula
ization scheme. In the dimensional regularization introdu
05401
e

s
-
-

d

by Hasenfratz and Leutwyler@30#, the divergent sumv be-
comes24p2b1, whereb1 is a ‘‘shape coefficient,’’ related
to the dimension and the geometry of the space-time. F
four-dimensional torus,b150.1405~see Appendix D for fur-
ther comments!.

In this case, the first subleading corrections to E
~3.12!–~3.14! are summed up by the renormalization

S~Nf !→Sc~Nf !5S~Nf !S 12
Nf

221

Nf
•

b1

F2L2D .

~5.10!

For instance, the relative correction (S2Sc)/S remains
smaller thana if the box size is greater than

Lmin5
1

F
ANf

221

Nf

b1

a
, ~5.11!

so that, forNf53 flavors, the renormalization ofS in the
sum rules leads to a correction smaller than ten percent
box sizes larger than 1.9/F ~in the case of the dimensiona
regularization!.

B. Near the critical point

As before, two sources of subleading corrections sho
be taken into account: the non-zero modes fromL̃2, Eq.
~2.26!, and the zero modes from the next-to-leading L
grangianL̃3 @23#:
order

ive
L̃3
(Nf )5

1

4
$X~Nf !^]mU†]mU~M†U1U†M !&1X̃~Nf !^]mU†]mU&^M†U1U†M &2R1~Nf !^~M†U !31~U†M !3&

2R2~Nf !^~M†U1U†M !M†M &2R3~Nf !^M†U2U†M &^~M†U !22~U†M !2&2R4~Nf !^~M†U !21~U†M !2&

3^M†U1U†M &2R5~Nf !^M†M &^M†U1U†M &2R6~Nf !^M†U2U†M &2^M†U1U†M &2R7~Nf !

3^M†U1U†M &3%. ~5.12!

Since the counting rule isML2;1, both types of corrections are expected to contribute at the next-to-leading
O(1/L2), and could affect the previous quadratic or cubic volume-dependence of the sum rules.

The non-zero modes are explicitly defined by Eq.~5.1!. Like in the standard counting, their leading term in the effect
Lagrangian is the kinetic term]mj]mj, which is counted asO(1/L4). Its contribution~at the leading order! reduces to an
overall constant, redefining the normalization of the partition function.

The next-to-leading contributions from the non-zero modes are of the formBaMb]cjd, with 2a12b1c1d56, c andd

even, andc<d. The possible terms areBMj2, M2j2 and]2j4 from L̃2, andM]2j2 from L̃3. At the next-to-leading order
order, the path integral becomes

Zn5D8E
U(Nf )

@dŨ0#~detŨ0!n exp„2Le f f~Ũ0 ,X!…E )
n.0,a

dfn
ad~fn

a!*

3expH 2
L4

2 (
n.0,a,b

~fn
a!* Fn2S 2p

L D 2S 1

2
dab1 P̃abD1Q̃abGfn

b2T4f1OS 1

L4D J , ~5.13!

with the (Nf
221)3(Nf

221) matrices:
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P̃ab5
1

2F2
@X^$ta ,tb%~Ũ0

†M1M†Ũ0!&1X̃dab^Ũ0
†M1M†Ũ0&#, ~5.14!

Q̃ab5
1

F2 FS2 ^~ tatb1tbta!~Ũ0
†M1M†Ũ0!&1A^taŨ0

†MtbŨ0
†M1taM†Ũ0tbM†Ũ0&

1ZS^ta~Ũ0
†M2M†Ũ0!&^tb~Ũ0

†M2M†Ũ0!&1ZP^ta~Ũ0
†M1M†Ũ0!&^tb~Ũ0

†M1M†Ũ0!&G . ~5.15!

The quartic termT4f remains identical to its expression in the standard case~5.4! and it stems from the kinetic term ofL̃2,
whereasP̃ is due toL̃3 and Q̃ to the non-derivative part ofL̃2. In Eq. ~5.13!, the contributions of these three terms a
suppressed by 1/L2, compared to the kinetic term:p2L2(n.0,an2ufn

au2.
For the same reasons as in the previous section, the integration ofT4f leads at this order to a term independent ofM and

Ũ0, which merely redefines the overall normalization constantD. At the next-to-leading order, the partition function for
given winding number reads

Zn5D9E
U(Nf )

@dŨ0#~detŨ0!n exp„2Le f f~Ũ0 ,X!…E )
n.0,a

dfn
ad~fn

a!*

3expH 2
L4

2 (
n.0,a,b

~fn
a!* F1

2
n2S 2p

L D 2

~dab12P̃ab!1Q̃abGfn
bJ , ~5.16!

which yields after the integration overf

N)
nÞ0

expF2Tr P̃2
L2

4p2n2
Tr Q̃G5N expF2S (

nÞ0
1DTr P̃2

L2

4p2 S (
nÞ0

1

n2D Tr Q̃G , ~5.17!

whereN is anM- and Ũ0-independent normalization factor. The traces are taken over the indicesa,b51 . . .Nf
221:

Tr P̃5
1

F2L2

Nf
221

2Nf
~X1NfX̃!^XŨ0

†1Ũ0X†& ~5.18!

Tr Q̃5
1

2F2L4 FSL2
Nf

221

Nf
^XŨ0

†1Ũ0X†&1S A2
ZS1ZP

Nf
D ~^XŨ0

†&21^Ũ0X†&2!1S ZS1ZP2
A
ND ^~XŨ0

†!21~Ũ0X†!2&

1
2~ZS2ZP!

Nf
^XŨ0

†&^X†Ũ0&22~ZS2ZP!^X†X&G . ~5.19!

The integration over the non-zero modes ends up with a term of the same structure asL̃2, i.e. it renormalizes the paramete
of the Lagrangian in the sum rules:

S~Nf !→S~Nf !1g
Nf

221

2Nf
S~Nf !1

2u

F2V

Nf
221

2Nf
@X~Nf !1NfX̃~Nf !#, ~5.20!

A~Nf !→A~Nf !1gFZS~Nf !1ZP~Nf !2
A~Nf !

Nf
G , ~5.21!

ZS~Nf !→ZS~Nf !1gFA~Nf !

2
2

ZP~Nf !

Nf
G , ~5.22!

ZP~Nf !→ZP~Nf !1gFA~Nf !

2
2

ZS~Nf !

Nf
G , ~5.23!

H~Nf !→H~Nf !2g•2@ZS~Nf !2ZP~Nf !#, ~5.24!
054011-17
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with the sums to be regularized:

g5
v

2p2F2L2
, v5( 8

1

n2
, u5( 8 1. ~5.25!

If we consider the dimensional regularization, we getg522b1 /F2L2 andu50 ~see Appendix D!.
With the countingSL2;ML2;1, the first subleading corrections stem also from the zero modes inL̃3: they contain

therefore the low-energy constantsRi . If we consider the topological sectorn50, the resulting corrections are quite simp
to compute. When we expandZ0 ~restricted to the zero modes! as a polynomialX, the integrals with different powers ofU and
U† vanish. In particular, the terms fromL̃3 involve odd powers of the meson matrix and have to be combined withS^X†U
1U†X&. The resulting corrections are thereforeSRi and are counted asO(1/L2).

For n50 the final form of the sum rules, including the first subleading corrections, is

^^~ s̄2!2&&05
V2A 2

16Nf
2~Nf

221!
@s2

01s2
R1s2

r #, ~5.26!

^^s4&&05
V2A 2

16Nf~Nf
221!

@s4
01s4

R1s4
r #, ~5.27!

wheresk
0 is the leading term, already calculated in Sec. IV C,sk

R collects the terms from the zero modes inL̃3, andsk
r is due

to the renormalization ofL̃2 induced by the non-zero modes. The result is

s2
05z21z@4~2Nf

211!S̄24P̄24Nf #1@4~2Nf
211!~S̄21 P̄2!28S̄P̄28Nf~S̄1 P̄!14Nf

2#, ~5.28!

s2
R5

S

A 2
@16Nf~R32R4!18Nf~Nf

221!R5216Nf
2R6148Nf

2R7#, ~5.29!

s2
r 5

g

Nf
$2~Nf

221!z21z@8Nf
2~Nf

221!S̄216Nf
2P̄18Nf #1@28~Nf

221!~S̄21 P̄2!216~3Nf
211!S̄P̄

116Nf~Nf
211!~S̄1 P̄!216Nf

2#%1u•4
Nf

221

Nf

S~X1NfX̃!

F2A $z12@~2Nf
211!S̄2 P̄2Nf #%, ~5.30!

and

s4
05z21z@12S̄24P̄24Nf #1@12S̄2112P̄228S̄P̄28NfS̄28Nf P̄14#, ~5.31!

s4
R5

S

A 2
@28~Nf

221!R2116NfR3216NfR4216R6148R7#, ~5.32!

s4
r 5

g

Nf
$2~Nf

221!z21z@8~Nf
221!S̄28~Nf

211!P̄24Nf~Nf
223!#1@28~Nf

221!~S̄21 P̄2!216~Nf
213!S̄P̄132Nf~S̄1 P̄!

28~Nf
211!#%1u•4

Nf
221

Nf

S~X1NfX̃!

F2A $z12@3S̄2 P̄2Nf #%. ~5.33!
ity e

ero
the
on-
It is worth commenting the above results: in the vicin
of the critical point, characterized by the countingSL2

;ML2;1, all the terms of the leading contributionsk
0 are of

the same order 1.sk
R and sk

r collect all the next-to-leading
contributions, which are counted asO(1/L2). Consequently,
for a fixed value of the condensateS, the inverse moments
05401
^^(s̄2)2&&0
(Nf )/V2 and ^^s4&&0

(Nf )/V2 can be expressed in th
form (n521

4 anL2n. The even powersn52,4 are the original
leading terms, whereas the odd powersn521,1,3 arise
from the next-to-leading corrections due to the non-z
modes. Hence, this type of correction does not mix with
leading contribution as far as the volume dependence is c
1-18
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cerned.
This is not true forsk

R , which stems from the zero-mod

contribution ofL̃3. They modify the constant termn50 of
the sum rules, and may be considered as small to the ex
thatS is small~let us recall that the dimensional estimate
the low-energy constantsRi leads toR i;F2/LH with LH
;1 GeV). Of course, close to the critical point, one pr
cisely expectsS to become small.

In the case of thel26-sum rules~4.33!–~4.35!, the situa-
tion is similar, but now, the constantsRi already affect the
coefficient ofz1 in the sum rules~they also change the con
stant termz0).

VI. EXTRACTION OF PARTICULAR LOW-ENERGY
CONSTANTS

Near the critical pointncrit(Nc), we would like to exploit
the sum rules for̂ ^(s̄2)2&&0

(Nf ) and ^^s4&&0
(Nf ) in order to

isolate particular ratios of low-energy constants presen
L̃2. In particular, it would be interesting to obtain a rat
with a specific sensitivity to the phase transition. To rea
this goal, it is preferable to eliminate the next-to-leading c
rections, which involve either unknown parameters likeRi
or regularization-dependent quantities likeg. As already
pointed out, Eqs.~5.26! and ~5.27! can be viewed as expan
sions in the variablesSL2 and ML2. Hence, they are eve
functions ofL.

A. Varying the size of the box

To exploit the structure of the sum rules at the next-
leading order, it is therefore interesting to introduce t
derivative-like operator:

da@F#~L !5
a2

8LS L22
a2

4 D
3H S L2

a

2DF~L1a!1S L1
a

2DF~L2a!

22LF~L !J , ~6.1!

where a is an arbitrary parameter. If we consider an ev
monomialF(L)5L2k, da@F# is an even polynomial of de
greeL2k24. We obtain for the first powers

L0→0, L2→0, L4→a4, ~6.2!

L6→a4~3L212a2!, L8→a4~6L4112L2a213a2!.
~6.3!

If we denote t25^^(s̄2)2&&0
(Nf )/V2 and t4

5^^s4&&0
(Nf )/V2, we have

da@Nft22t4#~L !5
a4

2Nf
S2ZS1O~1/L6!, ~6.4!
05401
nt
f

-

in

h
-

-
e

n

da@da@ t2##~L !5
3a8

8Nf
2~Nf

221!
S41O~1/L10!. ~6.5!

In order to get a quantity which is invariant with respe
to the QCD renormalization group, we take the ratio of the
two sum rules:

r5
da@da@ t2##

da@Nft22t4#
~L !5

3a4

4Nf~Nf
221!

•

S2

ZS
1O~1/L6!.

~6.6!

The evaluation ofr requires the knowledge oft2 and t4 for
five different box sizes:L22a, L2a, L, L1a, L12a. No-
tice thata is not required to be large; it is sufficient to hav
L22a much bigger than 1/LH . On the other hand, for too
small a, the difference operatorda may be too sensitive to
numerical errors.

For a discretized torus~a lattice!, we can putL5na with
n integer anda the lattice spacing. Equations~6.4!–~6.6!
remain true, and the comparison of different volumes
translated into the evaluation of the inverse moments on
tices with the same spacing, but with various numbers
sites. The powers in the lattice spacinga on the right-hand
side of Eqs.~6.4!–~6.6! reflect merely the dimension of th
involved quantities.

Equations ~6.4!–~6.6! are independent of the next-to
leading order contributions: this allows to consider sma
volumes than previously stated@for instance, the estimateL
.1.9/F of Sec. V A, based on our next-to-leading ord
analysis does not necessarily apply to the sum rule~6.6!#.
The volume-independence of Eqs.~6.4!–~6.6! could already
be seen for smaller volumes. Moreover, the inverse mom
must satisfy another non-trivial consistency relation:

r85
da@da@ t2##

da@da@ t4##
~L !5

1

Nf
1O~1/L10!. ~6.7!

The ratio r is invariant under the QCD renormalizatio
group and its variations withNf could reflect the proximity
of the critical point in a particularly clean way, as discuss
in the next section.

B. Relevance of the ratioZS ÕS
2

We have argued in a previous paper@9# that the approach
to ncrit(Nc) could result into a large Zweig-rule violation i
the scalar channel. Let us recall briefly the argument.
consider the chiral limit for the firstNf light flavors of com-
mon massm→0, and denote bys the (Nf11)-th quark,
whose massms is non-zero, but still considered as light com
pared to the scale of the theory~real QCD corresponds to
Nf52). Here, we typically considerNf such thatNf11
,ncrit(Nc)<Nf12. S(Nf) is a function of ms , with the
derivative

]

]ms
S~Nf !5 lim

m→0
E dx^ūu~x!s̄s~0!&c[PZ~ms!,

~6.8!
1-19
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where the superscriptc stands for the connected part. Sin
S(Nf)→S(Nf11) for ms→0, one can write

S~Nf !5S~Nf11!1E
0

ms
dmPZ~m!

5S~Nf11!1msZeff~ms!1O~ms
2 logms!,

~6.9!

where Zeff(ms), defined in Ref.@9#, is essentially 2ZS(Nf
11), up to corrections of the order„S(Nf11)…2, which are
small in the vicinity of the critical point. Close toncrit(Nc),
the condensate term need not dominate the expansion~6.9!
in powers ofms , due to the suppression ofS(Nf11). The
large variation of the quark condensate fromNf to Nf11 is
then reflected by a large value ofZS(Nf11), related to the
Zweig-rule violation in the 011 channel. Once expresse
through the Dirac spectrum,S can be interpreted as the a
erage density of small eigenvalues, whereasPZ is related to
the density-density correlation. The ratioZS /S2 measures
therefore the fluctuation of the quark condensate. ForNf near
the critical pointncrit(Nc) whereS vanishes, one may expec
a suppression ofS and an enhancement of its fluctuatio
ZS .

We can express the ratioZS /S2 by introducing the Gell-
Mann–Oakes–Renner ratio@31#, measuring the condensa
in physical units:

XGOR~Nf !5
2mS~Nf !

Fp
2 Mp

2
, ~6.10!

wherem denotes the common mass of theNf lightest quarks
@m5(mu1md)/2 for Nf52]. Following the analysis of Ref
@9#, one obtains from Eq.~6.9!, in the approximationZeff
;2ZS

Fp
4 ZS~Nf11!

S2~Nf11!
;

Fp
4 Zeff

2S2~Nf11!
~6.11!

5
XGOR~Nf !2XGOR~Nf11!

@XGOR~Nf11!#2
•

Fp
2

2rM p
2

1•••,

~6.12!

where r stands forms /m and the dots denote higher-ord
terms. ForNf!ncrit(Nc), the right-hand side of Eq.~6.12! is
very small. It can be illustrated by choosingNf52, X(2)
;0.9 andr;26 ~standardxPT estimates!. The difference of
the GOR ratios satisfies in this case the lower bound:X(2)
2X(3).0.2 @10,20#, and we consider this bound conserv
tively as an equality. In this case, the right-hand side of
~6.12! is of the order of 1022 @let us notice that in this case
this quantity is related to 16L6(m) at a typical hadronic scale
m;M r , cf. Ref. @20# #. The proximity of a phase transitio
05401
-
.

could be detected by a considerable increase of the r
~6.11! compared to its typical size;1022.

C. Application to the lattice

An evaluation of the inverse moments through latti
simulation represents a few interesting features. We wor
finite volumes: the volume dependence is crucial to obt
information on the relevant low-energy constants of the
fective Lagrangian, and the extrapolation to an infinite v
ume is avoided. The limitation to the topologically trivia
sector is natural on the lattice by choosing strictly perio
boundary conditions.

We do not aim at solving full QCD on the lattice. W
want to compute Dirac inverse moments, averaged over
gluonic configurations with the statistical weight~2.13!. To
perform this more limited task, we have to know the Dir
spectrum for each gluonic configuration. It can be obtain
through the square of the Dirac operator:D” 25D2

1 iF mnsmn . It seems much simpler to discretize this ope
tor instead ofD” itself. In particular, the doubling problem
are not expected to arise in the spectrum of an elliptic ope
tor like D2. It should be stressed that, while this procedu
could be applied in our particular problem, it can hard
represent a general solution for doubling in the spectrum
lattice fermions.

For a given gluonic configuration, we can therefore co
pute the inverse moments from the Dirac spectrum~which is
independent of the number of flavors!. The essential contri-
bution to each inverse moments stems from the lowest eig
values. In this case, theNf-dependence in the averag
^^&&0

(Nf ) is expected to arise mainly through theNf-th power
of the product of the lowest Dirac eigenvalues, i.e. from t
infrared part of the truncated fermion determinant, cf. E
~2.19!. The ultraviolet part of the determinant should then
included by a matching with the perturbative tail as d
cussed in Ref.@32#. A first possibility consists in generatin
the gluonic configurations in the quenched approximati
and to include explicitly the fermion determinant in the o
servable. The advantage of this method is that it would all
to change easily and continuouslyNf while keeping the same
set of gluonic configurations. On the other hand, Mon
Carlo simulation of the pure gauge theory could lead to
rather different distribution of small Dirac eigenvalues than
simulation including the fermion determinant into the stat
tical weight: the quenched generation of the configuratio
may therefore lead to biased results, when we use these
figurations to compute quantities including explicitly a fe
mion determinant as an observable. If this reweighting p
cedure turns out to be inefficient, the generation of
gluonic configurations would have to include the product
the lowest Dirac eigenvalues in the statistical weight. T
configurations should be regenerated for each value ofNf .

The computation of the ratior seems particularly attrac
tive on the lattice. We have to compare five different latti
sizes to calculate this ratio, invariant under the QCD ren
malization group and protected from next-to-leading ord
effects. WhenNf increases, an enhancement of 1/r would
clearly indicate the vicinity of the critical pointncrit(Nc)
1-20
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where the condensate vanishes.

VII. CONCLUSION

Two descriptions of Euclidean QCD on a torus can
fruitfully matched: the first involves the spectrum of th
Dirac operator whereas the second relies on the effec
theory of Goldstone bosons. The spontaneous breakdow
chiral symmetry can be related to the large-volume beha
of inverse moments of the Dirac eigenvalues,(n.01/ln

k ,
averaged over topological sets of gluonic configurations.
cause of their sensitivity toNf , these inverse moments ca
be used to detect chiral phase transitions occurring when
number of massless flavors increases.

The quark condensateS(Nf) is the chiral order paramete
that is the most sensitive toNf . It is conceivable that jus
above the first critical pointncrit(Nc) whereS vanishes, the
chiral symmetry is only partially restored. Below this critic
point, the large-volume behavior of the inverse spectral m
ments is given by the Leutwyler-Smilga sum rules~3.12!–
~3.14! and it is driven by the quark condensate~this behavior
corresponds to eigenvalues accumulating as 1/L4). Above
ncrit(Nc), the asymptotic volume dependence of the inve
moments changes@see Eqs.~3.16!,~3.17!#, corresponding to
eigenvalues behaving as 1/L2. In this case, the dominan
contribution comes from terms in the effective Lagrang
quadratic in quark masses.

When Nf increases and approachesncrit(Nc), the quark
condensate becomes small, and its fluctuations~related to the
Zweig-rule violation in the scalar channel! are expected to
become large: the terms of the effective Lagrangian lin
and quadratic in the quark masses may therefore contri
with a comparable magnitude. Hence, it may become ne
sary to include both of them into the leading order of t
expansion ofLeff , in order to derive the large-volume beha
ior of the inverse spectral moments, which interpolates
tween both phases. The resulting sum rules have been
lyzed in the topologically trivial sectorn50 @see Eqs.
~4.31!–~4.35!#. In particular, the formulas concerning pos
tive inverse moments restrict the parameters of the effec
Lagrangian.

For Nf!ncrit(Nc), the first subleading corrections t
Leutwyler-Smilga sum rules are due to the non-zero mod
and reduce to a volume-dependent redefinition of the lo
energy constantS. The next-to-leading corrections to the
formulas have been calculated also forNf close to the critical
point ncrit(Nc). The part arising from non-zero modes
translated into a redefinition of the low-energy constantsS,
ZS , ZP andA. The NLO contribution due to zero modes ca
be computed directly forn50. All NLO corrections behave
asO(L22) relatively to the leading contribution.

We have shown that combining inverse spectral mome
at different volumes allows one to isolate the ratio of lo
energy constantsZS /S2 which is particularly sensitive to the
chiral phase transition. The resulting ‘‘five-volume formula
~6.6! is furthermore insensitive to NLO finite-size corre
tions, and it is invariant under the QCD renormalizati
group.

The study of the inverse spectral moments of the Di
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operator seems a promising tool to investigate chiral ph
transitions in association with lattice simulations. The su
over eigenvalues can be computed from a set of gluonic c
figurations withn50 and the corresponding Dirac spectr
obtained after the diagonalization ofD21Fs/2. The
Nf-dependence is explicit, via the infrared part of the tru
cated fermion determinant and the finite-volume effects
not only taken into account, but essential for our purpose

The possibility to vary on the lattice parameters fixed
the real world, likeNf ~andNc) could open a new window
on the chiral structure of QCD vacuum. This investigati
could lead to a better understanding of QCD-like theories
general. For instance, among electroweak symmetry bre
ing models, technicolor and similar proposals have of
been ruled out, assuming a smooth and simple depend
on Nf andNc leading to a direct link with actual QCD phe
nomenology@33#. If the chiral phase structure of vector-lik
confining gauge theories turned out to be richer, the ch
symmetry could be broken following a different pattern fro
actual QCD, offering new possibilities for technicolor-lik
models @34#. The study ofNf-induced chiral phase trans
tions could therefore represent a step towards alterna
theories of electroweak symmetry breaking.

ACKNOWLEDGMENTS

We thank Ph. Boucaud, L. Girlanda, P. Hasenfratz,
Leutwyler, G. Martinelli, B. Moussallam and C. Roiesnel f
valuable discussions. This work was partially supported
the EEC, TMR-CT98-0169, EURODAPHNE Network.

APPENDIX A: INTEGRATION OVER UNITARY
MATRICES

In the flavor space, we can define a complete set$ta% of
Nf

2 Hermitian Nf3Nf matrices generating U(Nf). a is an
index from 0 toNf

221: t0 is proportional to the identity, and
the other matrices are traceless. They are normalized by

^tatb&5
1

2
dab , (

a
tata5

1

2
Nf , ~A1!

with the interesting identities for any matricesA andB:

(
a

^taA&^taB&5
1

2
^AB&, ~A2!

(
a

taAta5
1

2
^A&,

(
a

^taAtaB&5
1

2
^A&^B&. ~A3!

We can decompose any complex matrix on this basisX
5(aXata . If we want to perform integrations over U(Nf)
involving a unitary matrixU, the non-vanishing integrals
have as many components fromU5(aUata as from U†

5(aUa* ta . The first ones are
1-21
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E
U(Nf )

@dU#51 ~A4!

E
U(Nf )

@dU#UaUb* 5
2

Nf
dab ~A5!

E
U(Nf )

@dU#UaUb* UcUd* 5
4

Nf
221

~dabdcd1daddbc!2
16

Nf~Nf
221!

^tatbtctd1tatdtctb& ~A6!

E
U(Nf )

@dU#UaUb* UcUd* UeU f* 5
8

Nf~Nf
221!~Nf

224!
$~Nf

222!@dabdcdde f1dabdc fded1daddcbde f1daddc fdeb1da fdcbded

1da fdcddeb#24Nf@dab^tctdtet f1tct f tetd&1dad^tbtct f te1tbtet f tc&1da f^tbtctdte1tbtetdtc&

1dcb^tatdtet f1tat f tetd&1dcd^tatbtet f1tat f tetb&1dc f^tatbtetd1tatdtetb&

1deb̂ tatdtct f1tat f tctd&1ded̂ tatbtct f1tat f tctb&1de f^tatbtctd1tatdtctb&#116̂ tatbtctdtet f

1tatbtetdtct f1tatbtet f tctd1tatbtct f tetd1tatdtctbtet f1tatdtetbtct f1tatdtet f tctb1tatdtct f tetb

1tat f tctdtetb1tat f tetdtctb1tat f tetbtctd1tat f tctbtetd&%. ~A7!

APPENDIX B: LEADING-ORDER GENERALIZED LAGRANGIAN FOR TWO FLAVORS

For Nf52, the situation is slightly different from the generic case, because SU(2) representations are pseudo
particular, the correlator̂(ūu)(d̄d)&, which definesZ S

(2) , contains a determinant-like invariant and is no more an or
parameter. The leading order of the generalized Lagrangian for SU(2) is@35#

L̃2
(2)5

1

4
$F2~2!^]mU†]mU&22S~2!^U†M1M†U&2A~2!^~U†M !21~M†U !2&2ZP~2!^U†M2M†U&2

2H~2!^M†M &2H8~2!~detM1detM†!%. ~B1!
e
et
g-
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e

er
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E
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The new countertermH8(2) is consistently countedO(p2)
in GxPT, since detM involves two powers of the mass.

Despite similarities betweenH8(2) andH(2) ~terms with
no mesonic fields, absent from the low-energy process!,
H8(2) is not necessarily divergent. In the Minkowskian m
ric, it can be defined through the chiral limit of the Zwei
suppressed correlator:

2i E d4xeipx^0uT$ūu~x!d̄d~0!%u0&

5H8r~2!~m!1O~p2!Gx PT. ~B2!

It is easy to prove that, in the chiral limit, the identity oper
tor, the quark condensate and the gluon condensate
not contribute to the operator product expansion

^(ūu)(d̄d)&,7 The correlator~B2! is dominated byd56 op-

7Basically, the quark condensate cannot appear in OPE of
~B2! without a mass term, vanishing in the chiral limit, whereas
discrete symmetryuL→2uL rules out the identity operator and th
gluon condensate. We thank B. Moussallam for this remark.
05401
s
-

do
f

erators and it behaves asO(1/p4) for large momenta. It is
therefore superconvergent.H8(2) can be related to the scala
spectrum through a dispersion relation with no subtracti
similarly as in Ref.@20#. Despite the difficulty of estimating
the resulting integral,H8(2) can be determined in principl
from experimental data in the 01 sector, including not only
the low-energy dynamics, but also information about high
resonances.

Since H8(2) is free of ultraviolet divergences, we ca
formally rewrite the GxPT leading order of the two-flavo
Lagrangian in the generic form (Nf>3). We use the iden-
tity, true for any 232 matrixC: ^C&22^C2&52 detC. This
leads to a formal identification:

A~Nf !↔A~2!2H8~2!/2, ZS~Nf !↔H8~2!/4, ~B3!

ZP~Nf !↔ZP~2!1H8~2!/4, H~Nf !↔H~2!, ~B4!

which enables us to treat the two-flavor Lagrangian in
same framework as the generic case, even though the
nomenological interpretation of its parameters is differen

q.
e
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APPENDIX C: EXPANSION COEFFICIENTS
OF THE PARTITION FUNCTION

This section is devoted to the calculation of the coe
cients arising when the partition function is expanded
powers ofX5ML2 for Nf near~but under! the critical point
ncrit(Nc). The main lines of the computation are exposed
Sec. IV B, but its technical details and the results for
arbitrary winding number are presented here. The coe
cientsan , bn . . . are defined in Eq.~4.8!.

1. Leading coefficientan

To computean(b,z,a), we begin withan(b,0,a), given
by the leading order inx of the group integral:

I n
a5I n~b,a;x•1!

5E
U(Nf )

@dU#~detU !n exp@bx^U†&1ax2^U†2&#.

~C1!
05401
-

n
n
-

We can use Weyl’s formula to transform the group in
gral into an integration over the eigenvalues ofU: exp(ifk)
(k51 . . .Nf):

E
U(Nf )

@dU#→ 1

Nf !
E S )

k51

Nf dfk

2p D uPu2, ~C2!

with P5)k, l(e
ifk2eif l). P is a linear combination of

exp(i(nkfk), with nk integers, antisymmetric under the e
change of two angles, so that forkÞ l , nk and nl must be
different. Their set forms one of theNf ! permutations of
(0,1,2 . . .Nf21), andP collects all of them, with a sign
depending on the signature of the permutation. If the in
grand is symmetric under the angle permutations,PP* can
be rewritten@21#

uPu25Nf ! (
sPP(Nf )

e~s!expF i (
k51

Nf

„s~k!2k…fkG , ~C3!

with P(Nf) the set of the permutations over (1 . . .Nf) ande
the signature.
he
The group integralI n
a becomes

I n
a5

1

Nf !
E S )

k51

Nf dfk

2p D uPu2)
k51

Nf

~einfk exp@bxe2 ifk1ax2e22ifk# !. ~C4!

When uPu2 is replaced by its symmetrized value~C3!, the integrals over the angles become independent of each other:

I n
a5 (

sPP(Nf )
e~s!)

k51

Nf E dfk

2p
ei „k2s(k)1n…fk exp@bxe2 ifk1ax2e22ifk# ~C5!

5 (
sPP(Nf )

e~s!)
k51

Nf

xs(k) (
pk12qk5s(k)

pk ,qk>0

1

pk!qk!
bpkaqk, ~C6!

with s(k)5k2s(k)1n. Obviously, ifs(k),0 for at least onek, the permutation does not contribute. ButP(Nf) includes the
identical permutation andn>0: there is at least one contributing term inI n

a , and all these contributions lead actually to t
same leading power inx:

)
k51

Nf

xs(k)5x(k2s(k)1n5xnNf , ~C7!

which is consistent with the factor (detX)n in the expansion~4.8!. We get therefore

an~b,z50,a!5 (
m50 . . .nNf /2

bnNf22mamcm , ~C8!

with the purely combinatorial coefficients:

cm5 (
sPP(Nf )

e~s! (
$qk51 . . .s(k)/2%

(qk5m

F)
k

qk! „s~k!22qk…! G21

. ~C9!

Another way to describecm is the generating polynomial:
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(
m50 . . .nNf /2

wmcm5U Xn Xn11 Xn12 ••• Xn1N21

Xn21 Xn Xn11 ••• Xn1N22

Xn22 Xn21 Xn ••• Xn1N23

A A A � A

Xn2N11 Xn2N12 Xn2N13 ••• Xn

U , ~C10!

with the polynomials inw:

Xj5 (
q50 . . . j /2

wq

q! ~ j 22q!!
. ~C11!

Since the derivatives ofI n with respect tob andz are not independent, Eq.~4.7! yields the general expression ofan :

an~b,z,a!5 (
l 12m12p5nNf

blamzp
~ l 12p!!

l ! p!
cm . ~C12!

2. Subleading coefficientsbn , gn , dn

We denote the various derivatives ofan :

an85
]an

]b
, ȧn5

]an

]a
, an95

]2an

]b2
5

]an

]z
. ~C13!

For b5b̄, a5ā, z5 z̄, for N flavors, and denotingK5N1unu, the coefficients are

b5a
1

K
~y1b2!1a8

1

KN
b~2Nz12a1Ny!1a9

2

NK
y~Nz1a! ~C14!

g5aH 1

K221
Fb4

2
12b2y12b2z1y212z212a2G2

1

K~K221!
2a@b212z#1

~K2N!~KN11!

K~K221!~N221!
2a2J

1a8H 1

K221
b@b2y12b2z12y216yz14z2#2

1

K~K221!
2ab@y12z#1

1

N~K221!
2ab@b212y12z#

2
1

KN~K221!
2a2b2

K1N

K~K221!~N221!
2a2bJ 1a9H 1

K221
F1

2
b2y214b2yz12b2z215y2z14z3G

2
1

NK~K221!
8a2z1

1

N~K221!
4a@b2y1b2z1y212z2#2

1

K~K221!
a@y214z2#1

KN11

NK~N221!~K221!
2a2b2J

1a-H 1

K221
2byz@2z1y#1

1

N~K221!
2aby@4z1y#1

KN11

NK~K221!~N221!
4a2byJ

1a-8H 1

K221
2y2z21

1

N~K221!
4ay2z1

KN11

NK~K221!~N221!
2a2y2J 2

K1N

NK~K221!~N221!
@ȧ2a2~2z1b2!

1ȧ84a2by1ȧ92a2y2# ~C15!
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d5aH 2
1

K~K221!
Fb4

2
12b2z12b2y1y212z212a2G1

1

K221
2a@b212z#2

~K2N!~K1N!

K~K221!~N221!
2a2J

1a8H 2
1

K~K221!
b@b2y12b2z12y216yz14z2#1

1

K221
2ab@y12z#2

1

NK~K221!
2ab@2y12z1b2#

1
1

N~K221!
2a2b1

KN11

K~K221!~N221!
2a2bJ 1a9H 2

1

K~K221!
F1

2
b2y214b2yz12b2z215y2z14z3G

1
1

N~K221!
8a2z2

1

NK~K221!
4a@b2y1b2z1y212z2#1

1

K221
a@y214z2#2

K1N

NK~N221!~K221!
2a2b2J

1a-H 2
1

K~K221!
2byz@2z1y#2

1

NK~K221!
2aby@4z1y#2

K1N

NK~K221!~N221!
4a2byJ

1a-8H 2
1

K~K221!
2y2z22

1

NK~K221!
4ay2z2

K1N

NK~K221!~N221!
2a2y2J 1

KN11

NK~K221!~N221!
@ȧ2a2~2z1b2!

1ȧ84a2by1ȧ92a2y2#. ~C16!

APPENDIX D: DIMENSIONAL REGULARIZATION ON A TORUS

Following the regularization procedure described by Hasenfratz and Leutwyler@30#, we want to regularize sums like

GH5
1

V (
p

H~p!, ~D1!

whereH is a function andp is summed over 2p/L•Z4. The Fourier transform ofH(p) is

H̃~x!5E ddp

~2p!d
eipxH~p!, ~D2!

and satisfies the identity

GH5
1

V (
p

H~p!5(
l

H̃~ l !, ~D3!

wherel is summed overL•Z4. Because of the relation

lim
V→`

GH5 lim
V→`

1

V (
p

H~p!5E ddp

~2p!d
H~p!5H̃~0!, ~D4!

it is possible to separate inGH the cutoff and the volume dependences:

GH5 lim
V→`

GH1gH , gH5(
l

8 H̃~ l !. ~D5!

The infinite volume limit ofGH contains the divergences ford→4 and has to be regularized~for instance through the
dimensional regularization!, whereasgH depends only on the volume.

For v5(81/n2, we have the relations

1

V (
p

8
1

p2
5 lim

M→0
F 1

V (
p

1

p21M2
2

1

VM2G5 lim
M→0

FGH2
1

VM2G , ~D6!

with H(p)51/(p21M2). In the case of the dimensional regularization, Eq.~D5! involves
054011-25
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GH5
M2

8p2
~ ln M1c1!1gH , gH5

1

VM2
2

b1

L2
1O~M2!, ~D7!

wherec1 contains a pole ford54, andb1 is a constant called ‘‘shape coefficient,’’ depending on the geometry of the box
a four-dimensional torus,b150.1405. The dimensional regularization yields finally

v5 (
nÞ0

1

n2
↔24p2b1 . ~D8!

For u, we can follow the same guideline and takeH(p)51 for pÞ0 and H(0)50. Its Fourier transform isH̃( l )
5d (4)( l ). gH vanishes, and we know that dimensionally regularized integrals like*@ddp/(2p)d# vanish as well, so that

u5 (
nÞ0

1↔0. ~D9!
in

w-

hy

.
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s-
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