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Finite-volume analysis ofN¢-induced chiral phase transitions
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In the framework of Euclidean QCD on a torus, we study the spectrum of the Dirac operator through inverse
moments of its eigenvalues, averaged over topological sets of gluonic configurations. The large-volume de-
pendence of these sums is related to chiral order parameters. We sketch how these results may be applied to
lattice simulations in order to investigate the chiral phase transitions occurringNytieareases. In particular,
we demonstrate how Dirac inverse moments at different volumes could be compared to detect in a clean way
the phase transition triggered by the suppression of the quark condensate and by the enhancement of the
Zweig-rule violation in the vacuum channel.
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I. INTRODUCTION mulation of eigenvalues around zdrbl—-13,2]. Models of
such an accumulation in terms of random matrice$| or
Understanding the spontaneous breakdown of chiral syminstantons/15] have been proposed. Some chiral order pa-
metry (SByS) remains one of the most challenging non-rameters are entirely dominated by the infrared extremity of
perturbative problems of QCD. Forthcoming experimentsthe spectrum of the Dirac operat@t.1). This makes them
[1-3] should reveal some of its features, at least in the nonparticularly sensitive to the statistical weight given to small-
strange sector in which the effective number of light quarkest Dirac eigenvalues in the functional integral, which is sup-
flavors is minimal y=2). It is generally expected that if pressed in the massless limit by tNe-th power of the fer-
N; increasegkeeping the number of colomd, fixed), the  mion determinant. A good example is the quark condensate,
theory meets phase transitions and the chiral symmetry idefined by
eventually restored. The argument is originally based on o
properties of the QCIB-function in perturbation theory. The 2 (Ng) =~ lim (0Juu|0), (1.2
well-known statement of the “end of asymptotic freedom” mp,mp, ..My —0
for N;=11N./2 [4] has been further completed by the analy-
sis of the so-called “conformal window5] suggesting a Wherem; ... my_denote theN; lightest quark masses and
restoration of chiral symmetry for loweN;, such asN; represents the lightest quark fiell(N¢) receives exclusive
~10 (for N;=3) [6]. Less perturbative and more model- contributions from the smallest Dirac eigenvalues that be-
dependent investigations, based on a gap equBtioor ona  have in average aslif, and it is consequently expected to
“liquid instanton model” [8], also indicate that a chiral be the most sensitive order parameter to the variatioNof
phase transition could occur fdN; substantially below and to a phase transition. Other order parameters are less
11IN./2. sensitive, likeF?(N;), defined as the SWN;) X SUr(Njy)
It is important to understand, at least qualitatively, thelimit of the coupling of the Goldstone bosons to the axial
non-perturbative origin of the suppression of chiral order pacurrent:
rameters for an increasird; . We have recently argud®]
that such a suppression might result from a paramagnetic F2(N¢)= lim FfT. (1.3
effect of light (masslessquark loops[10], i.e. it could be my,my, ...my —0
due to “sea quarks” and, consequently, it could escape a
detection in quenched lattice simulations, or in any othef*(Ny) may be non-zero due to Dirac eigenvalues accumu-
approach neglecting the fermion determinant. An appropriatéating as 1£.2 [13]. For this reasonF?(N;) should exhibit a
framework to develop these ideas and to ask precise queweaker Ni-dependence thax (N¢). Finally, observables
tions is the formulation of QCD in an Euclidean bbx L  With no particular sensitivity to the infrared edge of the Dirac
x Lx L, with periodic(antiperiodi¢ boundary conditions for ~spectrum p-mass, string tension, elcave no reason to be
gluon (fermion) fields, up to a gauge transformation. In this strongly affected by the fermion determinant and by the
framework, the SBS pattern is reflected by the dynamics of Ni-dependence.

lowest eigenvalues of the Dirac operator: Let us first consider the thermodynamical limit and denote
by n¢i(N¢) the critical value ofN; at which the first chiral
H[G]=7y,(d,+iG,). (1.1  phase transition takes place. Just belmw(N,), the order

parametet, (N;) drops out, whereas its fluctuations may be
This Hermitian operator has a symmetric spectrum with reexpected to become important. We have sh¢@inthat the
spect to zero{H,ys}=0. Positive eigenvalues,, are la- latter would manifest itself by an enhancement of the Zweig-
beled in ascending order by a positive integene further rule violation just in the vacuum channdP=0"". An
denotes\ _,=—\,, and ¢_,= ys¢, for the corresponding important Zweig-rule violation is precisely observed in the
eigenvectors SByS is related to a particularly dense accu- scalar chann€dl16], and nowhere els@vith the exception of
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the pseudoscalar channel driven by the axial anomaly Goldstone bosons of SE8. This leads to an effective de-
Whilst the signature of a nearby phase transition is rathegcription in terms of the chiral perturbation theoryRT)

clear just belown;(N,), it is more speculative and ambigu- [22,23, and it can be matched with QCD, yielding the de-
ous above the critical point. First, abovg;(N.), color  sired information concerning the infrared properties of the
might still be confinedconfinement has no obvious relation Dirac spectrum. Moreover, the effective Lagrangian is iden-
to small Dirac eigenvalugsSecond, despit& (N) =0, the tical to its infinite-volume counterpart, provided that periodic
chiral symmetry need not be completely restored. The Goldhoundary conditions are us¢24].

stone bosons coupling to conserved axial currents with the If N; lies far belown.(N.), the quark condensate is
strengthF (N¢) might survive to theN;-induced phase tran- |arge ando, behaves at largéut finite) volumes according
sition. This is reflected by the possibility that the to the asymptotic behavior derived by Leutwyler and Smilga
N;-sensitivity and suppression of the order paramete[21], using standargyPT [22]. Above ng(N.), the quark
F2(N¢) might be considerably weaker than in the case of thezondensate vanishes, and the previous analysis cannot be ap-
quark condensat3]. Of course, this is a highly non-trivial plied. However, if chiral symmetry is still partially broken,
possibility, which presumably depends on the existence of ghe matching withyPT remains possible and it leads to a
non-perturbative fixed point in the renormalization groupclear-cut change in the large-volume behaviorogf ex-
flow." Here, we take as a working hypothesis that abovepressed through their inverse moments, the average behavior
neie(Ne), a partial SRS still occurs, due t&*(Ns)#0. The  of the lowest eigenvalues fdr— should turn from 14

results of our paper allow, in particular, to test this hypoth—«aqﬁo) into 112 ((ECD:O) [13]. When we approach the
esis. _ _ _ critical point with N; near but unden.;(N.), significant
The central question remains how famigy(Nc) (for Ne  giscrepancies from the asymptotic linit—oc could be seen
=3) from the real world, in which the number of light {5 4156 but finite boxes. The latter should then be analyzed
quarks hfirdlly exceed$;=2—3. Some recent investigations using the framework of generalizegPT [23,35. We have
actually indicate than(3) could be rather small, and/or ciearly in mind the possibility to use unquenched lattice
that the real world could already feel the influence of simulations, varying\; and (finite) lattice sizeL to eventu-

nearby. phase trgnsition. First, some lattice simulations witfé”y detect chiral phase transitions, through the volume de-
dynamical fermions observe a strong;-dependence of pendence of inverse momerits4).

SBYS signals forN; as low as 4-6[18,19. Second, a This article is organized as follows. In Sec. I, we briefly
method based on a well-convergent chiral sum rule has begRyiew features of Euclidean QCD and of the effective
proposed, which allows to study phenomenologically theeary on a torus. Section Il explains how both theories are
variation of% (N¢) for smallNy [20]. It has been found that maiched to derive the original form of Leutwyler-Smilga
e_X|st_|ng experimental information on the Zwelg.—rule viola- sum rules belown,«(N.), before analyzing how they are
tion in the scalar channel leads to a large reductioB @)  mqgified in the phase where the quark condensate vanishes.
already betwee;=2 andN;=3. _ In Sec. IV, we discuss the approach to the critical point,

~ The purpose of this paper is to analyze in a modelyyhere a competition between a small quark condensate and
independent way howN¢-induced chiral phase transitions higher order contributions leads to sizeable computable
manifest themselves in the finite-volume partition function.finite-volume effects. Section V is devoted to the computa-
In particular, we shall investigate the volume dependence Ofipn of the next-to-leading-order corrections to the sum rules.

the inverse spectral moments of the Dirac operétal): We discuss in Sec. VI how to obtain from the inverse mo-
ments an unambiguous signal indicating tNatapproaches
1 nqitf(N¢), and we discuss the interest of lattice simulations in
”k:n>o m (1.4 this framework. Section VII summarizes the main results of
. this work.

averaged over topological sets of gluonic configurations. For
Ni<ngii(N.), the leading large-volume behavior of such in- Il. SMALL MASS AND LARGE VOLUME EXPANSION
verse moments has been worked out in detail by Leutwyler OF THE PARTITION FUNCTION

and Smilga[21]. In order to investigate how this result is A. Euclidean QCD on a torus

modified in the vicinity and abova.(N.), we rely on the
basic observations and methods of Refl]. For large sizes
of the box AyL>1 with Ay~1 GeV), heavy excitations
are exponentially suppressed in the partition function, which

is then dominated by the lightest states, the pseudo- £ (Np) —

The Euclideah QCD Lagrangian forN; light quarks
reads

1 S —
—G?% G® —igv—igbg+gMq, (2.1

4g2 HrTmY

with the winding number densit
1f one sticks to cut-off-dependent bare quantities, it is possible to 9 y

argue tha® =0 would imply F=0, i.e. the full symmetry restora-

tion [17]. This argument is however based on an inequality for

which it is by no means obvious that it survives in the full renor- 2In this paper, all the expressions are written in the Euclidean
malized theory. metric, unless explicitly stated.
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~ J, denotes the integration over the set of the gluonic con-
5 G, (X)GL, (%), (2.2 figurations with a fixed winding number, andSy,, is the
pure gluonic action. dgil is the determinant of théN;
X N; quark mass matrifit is replaced by (deM™)~" for
v=0]. The primed product includes only the strictly positive
eigenvalues: its denominator involves the Vafa-Witten
1 1 boundw, of Eq. (2.5 and a reference mass scalelarger
M=3(1-y)M+ 5 (1+ys)MT, (2.3  thanany light quark mass. It represents a convenient normal-
2 2 ization of the determinant, such that each factor of the
. L ) . primed product is lower than 1 when the quark masses tend
whereM is aN; XNy complex matrix, diagonal in a suitable {5 ;616 This normalization does not affect any observable.
quark basis .W'th positive r.e.al elgen\{alues. . , We check that the quark mass matrix and the vacuum angle
We _cons_ld_er the partition function of this Euclidean jise in the partition function through the product
theory in a finite box. XL XL XL, large enough to neglect \; o.nigN,), consistently with the anomalous Ward identity
safely the heavy quarks: for the singlet axial-vector current.
The partition function for a fixed positive winding number

( )
v(X)=
327

and the vacuum angle[25]. The quark mass matrid is of
the form

Z"(Nf)=Cf [dG]f [da][dw]exp{—fvd“xﬁ('“f)), is

(2.4) N
A2 f

whereC is a normalization constant, which may depend on Zv(Nf):Cf [dGJe SmlCl(detM)”
the volume, but not on the mass matrix. !
We impose boundary conditions on the fields, by viewing F{<
X ex

1;[ a)ﬁ-l- ,u,2
e : MMT
the box as a torus and identifying, andx,+n L (with n, 1+ —; , (2.9
integers: the gluon fields have to be periodic and the quark Aq
fields antiperiodic in the four directions, up to a gauge trans-

formation. The gauge fields are classified with respect tQyhere () denotes the trace over flavors. Provided that the
their winding numberv= [, dxr(x), which is a topologi-  partition function is regularized, we can expand the loga-

cally invariant integer(related to the gauge transformation jthm for small masse&ompared to the size of the box
defining the periodicity of the fields on the tojuhe index

theorem asserts thatis the difference between the number

> log

n

of left-handed and right-handed Dirac eigenvectors with a _ ” / )\ﬁ .
vanishing eigenvalue. Zv(Nf):CL[dG]e Sl€l(detM) 1;[ W2+ u?
The Dirac eigenvalues satisfy a uniform bodrdd]: i
1
nd xex;n[ M™M)o,— =((MTM)?) s+ 0 MG}
icl=c™ =, 05 (MTM) o= 5 ((MTM)?) 04+ O(M°)
(2.10
This bound means essentially that an external gauge field
lowers the eigenvalues of the free field thed@y]. It in-
volves a coefficienC, depending only on the geometry of =C,(detM)” 1+<MTM><(02>>(VN')
the space-time manifold, but neither @ n or V=LY, The
partition functionZ can be decomposed in Fourier modes 1 N
over the winding number: - §<(MTM)2><<U4>>(V 0
Z"(Nf)=va e"’Z,(Ny). (2.6) + %(MTM)2<((02)2>>(VN”+O(M6)}. (2.11)

Each projecti f iti indi i . ) . '
ach projection of positive winding numberis The inverse moments are defined for each gluonic configu-

5 ration aso,=3,1/\K. The normalization facto€/, is inde-
ZV(Nf)=Cf [dG]le SmlClde(—iD+M) (2.7  pendent of the quark mass matrix:

2 N¢

A
=cf[de]e*SleGl(depM)V c;ch[dG]eSleGl(H’ ——
v v n o w,tu

(2.12

det(A\2+MMT)
Z)Nf

<1’

n

(2.8 The average over gluonic configurations with a given wind-
ing number is defined by

(it p
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Cero D Nt sensitivity to the ultraviolet tail of the determinant. If we
[dG]eSwlC] H An| W split the product over eigenvalues into ultraviolet and infra-
n

)N, , (2.13  red partg9,32

14

(W)=

f[dG]e‘SYM[G](H’ )\ﬁ
g N . (219

K 22
A=ARAyy, AIR:H ( 2 . >
n=1\w,tu

where the denominator is a normalization fact¢{l)),

=1.1In Eﬂ' (2.1, this aI1v<a|rage IS .applle(:l to :cnvercsje '_TO; we can expect the gluonic average of the inverse moments to

ment;akt at are particularly sensitive to t(Nef)lr? rared tail o depend essentially of 5, with a weak sensitivity on.

the Dirac spectrum. On the other harid)), ™ includes @ ~  yp to now, the gauge configuration was viewed as an

product over eigenvalues, which should suppress the statistéxternal field, but the integration over the gluonic fields leads

cal weight of the lowest eigenvalues when the nuniteof  to a third series of divergences. Fortunately, their regulariza-

massless flavors increases. The averaged inverse momentsiih is rather disconnected from the fermion se¢28] (for

the exponential of Eq2.11) could therefore exhibit a strong instance, the cut-off may be chosen independently ofFor

depende.nce ONl¢ . _ _ the purpose of this paper, it is sufficient to stick to a multi-
Equation(2.10 contains several sources of divergences plicative renormalization of the mass matrix and the Dirac

Let us first consider the gluonic configuration as a fixed exeigenvalues,

ternal field. In the fermion sector, sums over the Dirac spec-

trum may diverge because of its ultraviolet tail. Ror oo, M—=Z.M, N—Zu\n, (2.20
the number of eigenvalues|iih,A + AN ] is given by the free N
theory: inducing a multiplicative renormalization f«é(ak»(v 0. We

shall only consider homogeneous quantities, like ratios of
~ N¢ 3 inverse moments with the same degree of homogeneity in
An= 4 2V|)‘| AX. (219 the problem of the renormalization in the gluonic sector is
T . . . .
therefore discarded in the rest of this article.

The expected ultraviolet divergences of the inverse moments
have therefore to be subtracted. We can write B. Effective Lagrangian

For large volumes, the massive states are exponentially
suppressed. The partition function is therefore dominated by
. . -~ the Nf—l pseudo-Goldstone bosons resulting from the spon-
where the divergent part is included ando is finite. For  5n66u5 breakdown of chiral symmetry and described at low
instance, we can choose an ultraviolet cutdffand define energies by the chiral perturbation theoyRT). The effec-
the integeK such thatwy = A. The regularized inverse mo- e | agrangian for Goldstone bosons is written as a double

022772+D(2Nf), 0'4:’6'4+D51Nf), (215)

ments then read expansion in powers of the momengaand of the quark
K massesn:
~ 1
o= 21 e (2.16
=1 (An) Eeﬁ:; L1y s (2.21
and the divergent parts behatat the leading order of the
volume like where L,y gathers all terms contributing likem'. In Eu-
clidean QCD, it has been shown that, on a large torus, the
D(ZNf)~VA2, DiNf)~VIn A. (2.17  low energy constants iff.; are not affected by finite-size
effects[24].

These short-distance contributions are the same for all If U(x) e SU(N;) collects the Goldstone fields, the parti-
winding-number sectors. If we perform this splitting in Eq. tion function is

(2.10, we obtain the regularized partition functidh, in-

volving the inverse moments, multiplied by an exponential Zo(Nf):f [dU]ex;{ _f d4x£(?ff)(u,aU,Me‘ 9/Nf)}_
factor with divergent counterterms which contribute only to v €

the vacuum energy: (2.22

- (No) 1 In this framework, the projection on a given winding number
zy<Nf>=zV<Nf)ex;{D2 ’(M'M)- 5D, f<(M*M)2>] yields [21]

(2.18

Secondly, the product over the eigenvalues in the fermion
determinant of Eq(2.13 needs a regularization already for a
fixed gluonic configuration. Nevertheless, for observables xexp{—f d4X£(Nf)(U Me ¥Nry | (2.23
dominated by the lowest Dirac eigenvalues, we expect less % eff ’

ZV(Nf)=fs—ie_i”0f [dU]
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1 ~ ~ of SByS. They are related to the low-energy behavior of
= %J [dU](detU) two-point correlators of the scalar and pseudoscalar
densitied S,(X) = ¢(X)tah(x) and Py(x)= y(X)tai ysh(X),
| qay AN where {t,} are flavor matrices.A stems from (S,S,
xex;{ fvd XLt (U*M)}’ (.24 —P,P,). Zg is given by the correlatofSySyda,— SaSh),
and Zp by (PP 8.~ PaPp): Z5 and Zp violate the Zweig
with U(x)=U(x)exp(~i@/IN). The path integral over rule in the scalar and pseudoscalar channels respectively.
SU(Ny) for the partition functiorz’ ends up with an integral __'* IS @ high-energy counterterm, which is not an order

over U(N;) for Z, . Because of the invariance properties of Parameter and cannot be measured in low-energy processes.
f v Other similar counterterms arise at higher orders: they in-

the measuregdU] and [dU], we have for anyVi,V,  yolve only the quark mass matrd, but not the Goldstone
e U(Ny) boson fieldsU. These counterterms are needed to subtract
short-distance singularities in QCD correlation functions of
Z,(Nf|ViMV5)=(detVyV,)"Z,(N¢IM).  (2.29  quark currents. Their general structure is dictated by the chi-

_ _ ral symmetry, and it is reproduced by the high-energy coun-
The low-energy constants e are volume-independent (arterms on the level of the effective Lagrangian.

and Ni-dependent order parameters. In particular, a partial (3) For N; just below the critical pointigi(N.), we ex-
restoration of chiral symmetry would make some of thempect a small(but non-vanishing condensate and a large
vanish. Since the relative size of these order parameters vaiveig-rule violation in the scalar sectf®]. Linear and qua-
with N¢, the organization of the double expansith2l)  dratic mass terms in the effective Lagrangian may be of com-
depends on the phase in which the theory is considered. parable size. To take into account this possibility, we include

(1) If the number of light flavorsN; is fixed below both of them in the leading order of the Lagrangian:
ngit(Nc), the quark condensad(Ny) is the order parameter

that dominates the description of 8 for sufficiently small Z(sz)z E[FZ(Nf)wMUT&MU)—ZE(Nf)<UTM +MTU)
quark massegor sufficiently large volumés The leading 4
order of the effective Lagrangian involves only a kinetic — AND{(UTM)2+(MTU)?) — Z4(N;)

term and a term linear in the quark mass matrix:
X (U™ +MTU)2= Zp(Np)(UTM —MTU)?

1 1
L= ZFAN)(9,UT3,U) = SZ(N)(UTM+MTU). —H(N(MM)]. 2.29

(226 This Lagrangian can be actually viewed as the lowest order
) of another systematic expansion scheme, defined by the gen-
F is the decay constant of the Goldstone bosons3{Md;)  eralized chiral counting23]: 9~M ~B~0O(p). In this case,
is the quark condensate, introduced in Sec. | in EpS) and e next-to-leading order counts &¢p°).
(1.2). The expansion of the effective Lagrangian is organized The standard and generalized counting rules are only two

in this case through the standard power counfiB@l: ¢ gjfferent ways of expanding the same effective Lagrangian:
~p, M~p?, so that the next-to-leading order@(p*).

(2) On the other hand, foN;>n(N,), the quark con- Log=Lo+ Lo+ =L+ L+ . (2.30
densate vanishes and we cannot rely on the previous descrip- ) _ . .
tion anymore. In this case, the leading-order Lagrangian i€\t @ given order inp, generalizedyPT includes terms rel-

the sum of the kinetic termz, o, and of a term quadratic in egated by standardPT to higher orders. At the lowest order,
the quark massegq - ’ Eqg. (2.29 can be applied even if the quark condensate domi-

nates. On the other hand, standgfdT becomes inaccurate

(N F2(Ny) in the vicinity of the critical point where~0, whereas
Lo~ 7 (9,U%3,U), (220 generalizedyPT may be more appropriate to describe the
transition.
1
(Ng) _ )2 t11)2 I1l. LEADING LARGE-VOLUME BEHAVIOR
L 5=——[A(N U'M)“+(M'U)%)+ Z4N
02~ ~ gLANH(UIM)ITHMIU)D + Z4(Ny) OF THE INVERSE MOMENTS
X(UTM+MTU)2+ Zp(N;)(UTM—MTU)? A. Matching QCD and the effective theory
+H(ND(MTM)]. (2.29 If we analyze perturbatively the partition functio®.22,

the only difference from the case of an infinite volume lies in

L 0.2 appears in the standa@(p?) Lagrangian at the next- thg meson propagator, because of the periodic boundary con-
to-leading order, and the low-energy constafits Zp, A  ditions
and’H correspond respectively to;, L;, Lg andH,, of Ref.
[22]. In this phase, the counting used to perform the expan-
sion at higher orders is modifig@3]: 9~M~p. 3Notice that contrary to the convention used in Ré&3] and

In the generic cashl;=3 (the case of two flavors is com- [35], the decay constar? is not factorized iNCo2: A, Zs and
mented in Appendix B A, Z5 and Zp are order parameters 2z, carry the dimension (mass)
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1 elPx In a first approximation, the Gaussian fluctuationdJgf
(3.1 can be neglected and the path integrat ireduces to a group
integral over constant SB;) matrices:

S00=Y 3 g

wherep,=2mn,/L, with n, integers. The contribution of

the modep=0 in this propagator blows up when pions be-

come massleg®7]. Graphs containing such zero modes will Z(Nf):Df [dUolexd — VL glff)(UO’M expli 6IN/))],
diverge in the chiral limit, whereas the non-zero modes are SU(Ny)

suppressed in the large-volume limit: the fluctuations of the 3.2

zero modes are not Gaussian and cannot be treated perturba-

tively. To cope with them, we split the Goldstone boson

fields in two unitary matricest) (x) =UyU(x), where the where[dU,] is the Haar measure over the group, dhd
constant factot), describes the zero modes add(x) the  normalization constant, independent of the mass. The projec-
remaining non-zero modes. tion on a topological sectd?2.24 becomes

1 ~ - -
Z,(Ng)= EDL(Nf)[dUO](detUO)”ex;{—VE(G'f\‘f')(UO,M)]. (3.3

To simplify the notations, we repladgé, by U in the calculations at the leading order®f. In addition, theN;-dependence

of the low-energy constants will not be explicitly denoted from now on, unless its presence is mandatory for understanding.
We want to expand , with respect to the size of the box and to the quark mass matrix. Actually3E).tells us how to

organize this from the expansion 6. At the leading order, the partition function will depend on a simple scaling variable

X=ML*. Belowng(N.), we havex=4 [cf. Eq.(2.26)], whereas the phase with a vanishing condensate yietd? [cf. Eq.

(2.29]. For smallX, the expansion oZ , reads

Z,=N,(detX)"[1+a,(XTX)+b,(XTX)2+c,((XTX)2)+ O(X®)], (3.9

where the coefficients/,, a,, b,, ¢, do not depend oM. This expansion is valid for=0: for a negativev, (detXT)|”‘
arises instead of (det)”. The calculations are very similar in both cases, and our future results can be translated for any
winding number by writing »| instead ofv.

The QCD partition function was expanded as a polynomial in the quark masses (2. Et), leading to

2~ G M(@eh)"| T (XX (021~ (X4~ (XX () + 00 |
(3.9

By identifying the same powers &f in both expansions, we obtain relations between parameters of the effective Lagrangian
and the leading large-volume behavior of inverse moments.

When we compare Eg$3.4) and (3.5), we have to take into account the divergences of the inverse moragntas
stressed in Eq2.18):

szzyexp{D2<MTM>—%D4<(MTM)2> ~ZXPT, (3.6

These counterterms, built from traces of the quark mass matrix, are also presentRite&pression of the partition function.
Therefore, the divergent behavior of the inverse moménts D, for o) is tracked by counterterms in thé®T Lagrangian
(in this case). Divergence-free sum rules are found by considering linear combinations where the xédtedunterterms
cancel.

B. Ny<n;(N,): Leutwyler-Smilga sum rules

This case has already been treated in great detail in [R&f. We briefly review the main steps of the derivation of
Leutwyler-Smilga sum rules for the reader’s convenience. EquaBid) yields at the leading order
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Z(Nf)=ipf [dU](detU)” ex (U'M+MTU)|.
' 2m U(N¢)

VMY is the only parameter of the group integral, and the

scaling variable iX=ML* (k=4). In the general case of
an arbitrary matrixM, a formula for the integral3.7) is

discussed in Ref28]. For our present purpose, it is however
sufficient to follow the original method described in Ref.

[21] to expand Eq.(3.7) in powers of M. We obtain the
expansion coefficienta,, b,, ... through two derivative
operators, applied on both expressionZgf the group in-
tegral (3.7) and theX-expansion(3.4). The latter gives

E Jd d

z,
a IXa (3’X;

N(K
=Ny(detX)”[Tav+ (XTXO)[(N{K+1)b,

+(Nf+K)cy]+0(x4)], (3.9
and
J J d Jd
ttptoty) =0 —— ——
a%d< atb Cd>axa ax.{; &Xc axg v

NK
ZNV(detX)”X%{(Nf-FK)bv+(NfK+ 1)c,

+0(X?)}, (3.9

whereK=N;+ v, and X, are the coordinates of on {t,}
(a=0.. .N?— 1), which is a complete set of Hermitian ma-
trices (see Appendix A

The same derivative operators are applied on the grou

integral (3.7):
> J az—lszz (3.10
a 0Xq gX* g e
E(tttt)a i az—lNE“z
& atbtctd axa ﬁx; &Xc ﬂx; v 956 f v-

(3.11

OnceZ, is replaced by itsXx-expansion(3.4) on the right
hand side of Egs(3.10 and (3.11), these equations yield
polynomials inX, which are identified with Eqs3.8) and
(3.9 order by order in powers of. We get thusa,,, and a
linear system of two equations fbr, andc,, .

Oncea,, b, andc, computed, the comparison of Egs.
(3.4) and(3.5) leads to the Leutwyler-Smilga sum rules:

[VZ(Np?

(o) =a, =1

(3.12
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SV
> (3.7
[
V(N4
<<(Uz)2>>iNf):2bV:%, (3.13
4
(o)M= ¢, LYXNOI (314

T 1eK(K2—1)

Because oK =N;+|v|, the sum rule$3.12—(3.14 depend
explicitly on the number of flavors, but there is anotkier-

plicit and unknown dependence stemming from the quark
condensate> (N;). No divergent counterterm is explicitly
present: these sum rules are derived from the leading order
Lagrangian in standardyPT, and they show only an
asymptotic behavior, valid fov—«. For instanceg, and
(0,)? contain divergent subleading terrhs.

C. Ny>ngi:(N,): the phase with a vanishing quark
condensate

For N;>ngi(N.), the integral definin@,, in terms of the
effective Lagrangian3.3) involves quadratic mass terms at
the leading order:

1
Z,(N¢)= ZDJU(Nf)[dU](detU)
V
XeXF{z{A((UTM)2+(MTU)2>
+Z(UTM+MTU)2+ Z(UTM =M TU)2

+H(MTM)}|. (3.15

rIlhe scaling variable is nol=ML? (k=2). The counter-
termH has the same structure as the divergent tBgrdue
to o, in EQ. (3.6). To eliminate this divergence, it is natural

to introduce the wv-dependent fluctuation o,=o05
—(<02>>(VNf). The subtraction of this quadratic divergence
leads to the loss of a single sum rule, for insta((a@})é”f) .

For the other topological sectors, we can indeed write sum
rules concerning((oz»(va)—((02>)E)Nf), since the(short-
distance divergence due t@{ is insensitive to thétopologi-

cal) winding number.

Because of chirality, the integr&B.15 vanishes unless
the same power ofU and U’ arises. The determinant
(detU)” counts as the’N;-th power ofU, whereas the ex-
ponential involves only the square &ff. Therefore, the
phase of an oddN¢>n.;(N.) discriminates between the to-

“For this reason, the formuld8.12 and(3.13 should be applied
to finite volumes with great care.
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pological sectors: the odd-sectors are suppressed in the IV. THE APPROACH TO THE CRITICAL POINT
large-volume limit compared to the even winding numbers
(this discrimination does not occur for an even number of
flavors. As a matter of fact, the symmetriyl ——M is We want now to study the intermediate case, where the
equivalent tod— 6+ 7N, . From the Fourier decomposition linear and the quadratic mass terms in the effective Lagrang-
(2.6), we can directly check that the odd topological sectorgan may compete for some range of volumes. To understand
have a vanishing partition function at the leading order, proWwhich results can be expected, it is instructive to consider
vided thatN; is odd. Of course, higher orders of the effective first xPT in an infinite volume and to imagine that we let the
Lagrangian(for instance’s) contribute to the odd topologi- quark masses vary. If the quark condensateven slightly

cal sectors, giving finally rise foZ, to a different volume different from zero, We can a_lways find sufﬁmgntly small
dependence from the even winding numbers. quark masses for which the linear mass term is dominant.

In the topologically trivial sectow=0, (detU)” disap- When the quarks become massive, the corrections due to the
pears from the group integral and thé exponential in quuadratlc mass terms may become discernible anql even pre-
(3.15 can be directly expanded in powers X¥fand inte- ponderant, provided that the quark condensate is not too

grated over UN). Using Appendix A, the computation of large to hide their effects.

the lowest powers in theX-expansion is straightforward, In ”;'S_ paper, we work in f box with "?‘f'.x ed large volume,
leading to the sum rules: andMZ is counted aD(1/L"). The variation of the quark

masses is therefore translated into a change of the volume.
For N;<ngi(N.), the Leutwyler-Smilga sum rules derived

A. Leading large-volume behavior

o 2 in SYPT should correctly describe the volume-dependence of
{(0)H)0= ——5 5 X[4@2N; +1)( 25+ 23) the inverse moments wheh tends to infinity. However,
16Nf(Nf—1) close to the critical point and for a given value of the vol-
_ _ 2 (2 ume, the quark condensate need not be large enough to make
8Zs2p— BN A(Zs+ Zp) +4ANTAT], L,, Eq.(2.26, dominate. This could lead to significant de-
(3.16 viations from the asymptotic limit even for large volumes.
Hence, the leading order of the Lagrangianfs, Eq.
(2.29, andZ, reads
2
o))o= ———5——X[12 2%+ Z3)— 8242, 1 %
<< 4>>0 16Nf(N%_1) [ P S P) S<Pp ZV:_'Df [dU](detU)”exp{—{ZE(UTM+MTU)
27 Juy 4
—8N;A(Zs+ Zp)+4A2]. 3.1
AlZsTZe) A 317 + A((UTM)2+(MTU)?) + ZUTM+MTU)?
As emphasized in the previous section, these sum rules de-  + Z(UTM—MTU)?+ H(MTM)}}. (4.9
pend on the number of massless flavors in an explicit way,

but also implicitly through theN;-dependent order param- y _ ;| 2
etersA, Zgand Zp.

These sum rules predict a different large-volume behavio
from the Leutwyler-Smilga sum rule€3.12—(3.14). This
agrees with our general expectation concerning the larg
volume dependence of thisuitably averagedsmall Dirac
eigenvalueg13]. The eigenvalues accumulating likeL#/
contribute to SRS and to the quark condensate. Corre-
spondingly, folN¢<n;(N.), the asymptotic behavior of the

remains the scaling parameter for the mass, and
> L2 is the expansion variable for the quark condensate. This
Brganizes the expansion through the power countingM
~1/L?, similar to GyPT. We shall therefore consider the
e[heory for volumes and masses so tiaand L2 are of
order 1.

In order to evaluaté4.l), it is convenient to define the
group integral 1, for arbitrary complex numbers

sum rules is (b.b.z,2y,a,3):
|V:f [dU](detU)” exg b(XU™)+b(XTU)+z(XUT)?
, 1 ) s 1 . U(Nr)
2 A2 ONV’ 7\ va' +Z(XTU) 2+ y(XUTHXTU) +a((XUT)?2)

(318 +al(x'u)?)]. 4.2

On the other hand, the l1?-eigenvalues do not contribute to The partition function at a fixed winding number reads
the quark condensate, but may still contribute tg¢SBn the 1 L o

phase aboven;(Nc), through a non-vanishing value of  Z,=-—D exg h%X™X)11,(b%b°,2°,2%,y%,a°,a% X),
F2(N¢). Indeed, Eqs(3.16 and(3.17) predict in this phase & 4.3
an infinite-volume limit ofv2 for (((,)%))o and({o4))o, as '
expected. wherel , is calculated with the values
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— 1 , h?
bP=b0=5 L%, (4.9 (((02)?) =2V +hf—+ 5 (4.10
0_0_ 1 0_ 1 (N¢) 2 51/
= _Z(ZS+ZP)1 y _E(ZS_ZP)v (4.9 ((oa)), "=—2V . (4.11
1 1 2
0_,0_" 0_ " — Yv BV
|, is a polynomial in b,b,z,2,y,a,a), and its derivatives . B FRE
are not independent: <<(;2)3>>(Nf):\/3(6 v_oghr v, (_V) )
v aV al/ aV aV
A, a, A, a, A, a, (4.13
> =, TZZ—_, —_— = . (47)
db* 9z gb* gz obob Iy - B
n _ _ » ((0'20'4)>(Nf)=V3( _pv ol —”) (4.14
We expand this integral in powers ¥f with coefficients that g o, a,a
are independent of the quark mass matrix: N
P=3V3,. 4.1
= (detX)"[a,+ BAX"X)+ y,(X"X)?+ 8,{(X"X)?) Koo K” 419
+ (XX 3+ 7, ((XTX)2UXTX) + i, ((XTX) ) If we kngw a,, B,, ... in terms of the low-energy con-
8 stants ofL,, Egs.(4.9—(4.15 lead to the desired sum rules.
+O(XM)]. (4.8 The high-energy counterterlm which reflects the ultraviolet

divergence ino,, has to be eliminated. This can be obtained

We identify the same powers ofin the expression oZ, in . _ ) .
fy b P if we consider the fluctuation af, over a topological sector:

terms of averaged inverse mome(8s5 and in its expres- (NJ) _ _

sion at the leading order of the effective Lagrangian, obo2=0,—({02)),"", as defined in Sec. il C.

tained from Eqs(4.3) and(4.8). This leads to the sum rules For the topologically trivial sector=0, the computation
is very simple, following the same line as for the phase

(o ))(Nf)zv &+h 4.9 >nci(N). This leads to the expansion coefficierfsr b
2/ v a ' =b, z=z, a=a):
ap=1, (4.1
1 2
Bo=N—f(y+b ) (4.17
Yo= _r [Nf b—4+2b2y+2b22+y2+222+2az —2a[b?+27] (4.18
Ne(NF=1) [ 12
1 4
80= N D) (— 7+2bzz+2|ozy+y2+2zz+2az +N;- 2a[ b2+ 27] (4.19
6 z y2 y3
€= 6(N?— 2)| 35 +b4 )+b2 +yz)+(—+y22 +2(N?+2)[b?+y]a?
N (NZ—1)(N?-4) 34 6 f
b* [y
—1N{| = +b* S+z|+yzja (4.20
1 [ 6 z y y2 y3
No= 18N¢| == +b* = )+b2 T +yz|+| T +yZ| |- 18N b?+yla?+ 12(N?+ 2)
N¢(NF=1)(Nf—4) %' 13" T2 ®
b* [y
X| g th*5+z|tyzja (4.2
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1 ( b° +p% = z y +b2 y2—|— + 3+ 2 +4(N2+2)[b2+ ] 2
Ko= z —_ Z a
TNNE-1(NE—a) | 13677 (374 rie Y * Y
b4
—24Ni| & —+b? = >tz]+yzja ] (4.22

Before focusing on the resulting sum rules for the topologically trivial seectof, we sketch the general derivation of the
expansion coefficients for an arbitrary winding number.

B. Topologically non-trivial sectors: v#0

Let us begin with the leading coefficieat,. Independent oK, it can be computed foX=x-1, wherex is a complex
number.«, is then given by the leading order bf in x (without any power o*), and it depends only orb(z,a). As a
matter of fact,«x,(b,z,a) can be deduced from,(b,0,a) because of the relations between the derivatided. The problem
reduces to obtaining the leading ordendiof the group integral:

=|V(b,a;x-1)=f [dU](detU)”exd bx(UT)+ax®(U'?)]. 4.23
U(N¢)
Appendix C 1 describes how,(b,0a) is extracted from this integral, leading to the polynomial

a,(b,z=0Q)= >, b"Ni—2mgmc_. (4.24

m=0"_.vN;/2
where{c,,} are purely combinatorial coefficients. Usinga,/db?= da,/9z, we obtain the general expressiondf:

(1+2p)!

a,b,za)= b'amszcm. (4.25

I+2m+2p=vN;

In the limit case of a vanishing quark condensdte=Q), we check that, (and thereford ,) vanishes ifyN; is odd, in
agreement with the parity discrimination discussed in Sec. Il C.

We obtain the next coefficients by applying the derivative operators of Bd®.and(3.9) on both representations bf:
the group integral4.2) and theX-expansion(4.8). We already know the result of the latter from the phakezn i (N,),
studied in Sec Il B:

Jd d , N¢K : \
2 X x|~ (@0 5= B (XDOLINGK + 1) 3, % (e K) 8, ]+ O(XY) (4.26

a

and

d

N¢K
v 2
e XE T X 1= N, (detX) " —g—{(Ny+K) 3, +(NiK +1)5,+ O(X?)}. (4.27)

2 (tatptc td>

The two-derivative operator, applied on the group inte¢fa) that defined ,,, leads to

2(9 O N s bb)+ 2aa0X1X) + | N zbt abt ~by| L+ N b+b+Nb 2 (Nz+a)y—
= (9Xa aX; v 2(y ) aa< > fZ a 2 y b fZ a y H ( iZ a)y
_ Ny, p
+(Nsz+a)y—=+| 2Nszz+ —y?+2az+2az|—|I,. (4.29
9z 2 ay

We can now replacé, by its X-expansion(4.8), and identify the resulting polynomial i with the right-hand side of Eq.
(4.26). When we identify the coefficients &€°, we obtaing, in terms ofa, and its derivatives:

da, . da, . Pa, da,
a=— @, PR (4.29

[

v b

o
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The coefficients of X"X) lead to an equality between a linear combinatiorypfand 5,, and some derivatives af, and g3,
(these derivatives can actually be rewritten only in terms of derivatives, ofsince we know howg,, is related toa,).
We follow the same line with the four-derivative operator. Actually, when we apply the operator to the group i@etyral

we only need the lowest power ¥f to compare it with Eq(4.27). Factors of higher degrees, similaraE(XTX) in Eq.(4.28
can be ignored, and we obtain

Jd dJ 4

E (tatpte td> X, ax* X, pve l,=

NifLl - —_ - S
5 §b2b2+bZ(Nfa+z)+bZ(Nfa+z)+2bby+y2+222+2aa+2Nf(az+az)
Y Th- 1 - T 2 2 2,

+ g[bb(N¢by+2N¢bz+2ba) + b(6N;yz+4ay+2Nray) + b(2Njy*+4Nraz

c7
+4Nzz+4N;aa+4az)]—-

513l3 b2y +b2(2N;z%+ 4az) + bb(4Ny z+ 4ay)

2

+y2(5Nsz+ (N?+4)a)+4N%az? + 8N;aaz+ 4N 2%z + 4a24@

1 — & 1 9
+ —[2N;byZ+ N;by?z+aby?’+4abyz]— +—[N;z+2a]zy*—
4 ob® 4 ob*

? 1 9

+ —a?y?
dadb 4 y dadb?

1 g 1
+ = [b2+2z]a ats azby +0(X?) ¢ 1 (4.30

We replacd , by its X-expansion on the right-hand side of this equation. We keep only the coefficiex? od we compare
it with Eq. (4.27), to end up with a second equality relating a linear combinatiof,afind 8, to the derivatives otr,. The
resulting expressions are listed in Appendix C 2, but it seems difficult to handle them in general.

C. Topologically trivial sector: »=0

From the expansion coefﬂmenbs) Bo ... of Sec. IV A, we get the sum rules for the inverse moments of degree 4 and
6. If we denoter=V3?/ A, S=Zs/ A andP=Zp/ A, the sum rules read

2 12
(o)) = m{{2—1—§[4(2N?+1)§—4E—4Nf]+[4(2N%+1)(§2+32)—8§—SNf(§+E)+4N?]} (4.3))
f f
2
(o)M= ——— {2+ {[125— 4P— 4N/]+[ 125"+ 12P?— 8SP+ 4— 8NS— 8NP]} (4.32
16N;(N?—1)
3 43
(N VA 31 £2[305—6P— 6N 18052+ 36P%— 72SP — 72N, S+ 6(N2+ 2
<< 6>> 39N (N2 1)(N2 4) {g +§[ f]+§[ + f + ( f+ )]
f f f
+[1208% - 120P3+ 72SP2— 7287P — 72N;S?+ 72N;P?+ 12(N?+ 2) S— 12(N?+ 2) P]} (4.33
Vv3as

{3+ [2(2N?+7)S— 6P — 6N+ {[36(N?+ 1) S*+ 4(N?+ 5)P2— 8(N?+5)SP

—\\(Np) _
(4020} 16N2(N2—1)(N2—4)

—8N{(N?+5)S+4(2N?+1)]+[24N?+1)S*— 24(N?+ 1) P3+ 8(N?+5)SP?— 8(N?+5)S*P

—8N;(N?+5)S?+ 8N (N?+5)P?+ 8(2N?+1)S—8(2N?+1)P]} (4.34
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3 43

(o)) =

NN (=) {23+ (Y 6(N?+1)S— 6P — 6N+ {[6(2NF— N?+2)S?+ 6(N2+ 2) P2
f f f

—12(N?+2)SP — 12N;(N?+2) S+ 9N?]+[4(2N# — N2+ 2) S®— 4(2N7 — N2+ 2) P3+ 12(N?+ 2) SP?
—12(N?+2)SP— 12N;(N?+2) S+ 12N;(N?+ 2) P2+ 18N?S— 18N?P]}. (4.39

The dependence on the number of massless flavors is not limited to the polynomiglexplicitly present in the previous
formulas, since, Z5, Zp and A are unknown functions ofN; (this dependence is here omitted for typographical conve-
nience. The singularities foN;=1 (for 1/\*- and 1A8-moment$ andN;=2 (for 1/\5-moment$ arise because some of the
coefficientse,,, B, ... in EQ.(4.8) are not independent in these cases, and we can only (shitgularity-fre¢ sum rules for
differences between inverse moments of the same degreepg)§—(o, for Ny=1.

Notice that the scaling volume parameter V3,2/ A and the ratioS= Z5/ A andP= Z,/ A are invariant under the QCD
renormalization group. This invariance occurs also for ratios of inverse moments with the same degree of homogeneity in

_ aa)o {020 (74020 ~(oa)d?
@ O oo T Qoao T 0T oo 439

We can plot(Figs. 1 and 2 the variation ofR as a function of the volume, measured in physical umfs“ (F,
=92.4 MeV). The scaling parameterjs- (FiV)/(lGﬁg), where the dimensionless paramdigrdenotes F4.A)/(1632) (for
N;=3, it essentially corresponds to thgST low-energy constaritg of Ref.[22]).°> A variation of the condensate means a
variation ofI:8, and consequently a redefinition of the units used to measure the volume: this reduces to a simple shift of the
curve (to the right if 3 decreases, to the left if it increages

The infinite-volume limit reproduces the Leutwyler-Smilga sum rulBs—-(N;). On the other hand, since the scaling
volume parameter is=V22?/ A, the limitL—0 corresponds mathematically to a vanishing condensate for the sum rules: we
recover the results of Sec. Ill C. The sum ru{ds31)—(4.35 interpolate between these regimes.

The ratiosR, S, T andU are not very sensitive tB (Zweig-rule violation in the pseudoscalar channaitil we reach small
volumes where large corrections stemming from higher orders are expected. In the ddse Dfflavors, the valueP
= —1/2 is privileged, because it guarantees the validity of the Gell-Mann—Okubo formula, independently of thetsiZenof
the other hand, it may be interesting to no_tice that some ratios are affected by variat®eyearf at intermediate volumes.
For instance, the dependence of the r&an Sis plotted on Fig. 3we choosdA_8= 0.1, but other values (ffg can be obtained
by a simple shift of the curye

To simplify the analysis, it may be interesting to focus on linear combinations of the inverse moments in which the leading
power of V cancels. These combinations therefore vanish in the limiting case of the Leutwyler-Smilga sur(8ri®es

(3.149:
_ \V&
Ni(((a) 2N = ()M = aN (22857V 228+ 220+ Al} (4.37)

3

Ni((o402)) " = 2(( o)) N = (2252418224222 4252 — AN, ZsA+ A2]32V

8N{(Nf—1)

+[1A 23~ 23) +4252p( 25— Zp) — AN{( 25~ Z3) A+2(Zs— Zp) A%]}
(4.38

3

Ni(((a2)3) N = 2(( o400 = (22342 +[6(2N2+1) 22+ 222~ 4Z5Zp— 4N ZsA

8NZ(N?—1)
+ AZIS2VAH[4(2NZ+1)( 23— 22) + 425 20( 25— Zp)
—4AN((23-20) A+2(2s— Zp) A%} (4.39

_ _ V3
N2(((02)3) 0" = 3N ({4 )) 0 + () VP = an [328vEP+2(2¢- 23] (4.40
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3 -
. 2 +
a el
—— L8=0.1 / —— L8=0.1
——-18=0.03 - 1 ——-18=0.03 -
—-— L8=0.01 —-— L8=0.01
---- L8=0.003 ---- L8=0.003
~~~~~~~~~~~~ L8=0.001 e 820,001
1 o 1 1 1 1 1
3 4 -2 -1 0 1 2 3 4
Log10(V.F*4) Log10(V.F*4)
FIG. 1. Variations ofR=({c4))0/{{(02)?))o as a function of FIG. 2. Variations ofR=({04))o/{{(05)?))o as a function of

the volume, measured in physical unit‘s;4 (N¢=3 flavors, the volume, measured in physical unit‘s;4 (N¢=3 flavors,
Zp/A=—1/2 andZ/ A=1/6). The variation of_g is only a re-  Zp/A=—1/2 andZs/A=1).

definition of the scaling parametérand leads to a global shift of

the curves. The vanishing for intermediate volumes is commenteg<g4>>(()Nf) (Fig. 5) and<<06>)éNf) (Fig. 6) leads to stronger

in Sec. IV D. o . .
conditions. IfN; increases, the excluded domains broaden, as

The large-volume behavior of these combinations is particu—shOWn on Fig. 7, compared to Fig. 5. If we suppose that

larly sensitive to the condensateand to its fluctuation de- Nfz_g is already near the critical poimk;(Nc), and if we _
scribed by Zg (Zweig-rule violation in the scalar chanpel fix P=—1/2 from the Gell-Mann—Okubo formula, the posi-

Both these parameters are precisely expected to be stronglyity of ((04>>8Nf) yields the conditionS=1/6, explaining
affected by the vicinity of the critical point. the zero in the plot oR on Fig. 1, where the parameteBs
and P have been chosen on the borderline of the positivity
D. Positivity conditions domain 0f<<0.4>>éNf) _

(;2)2’ o, and o are by definition positive, and their Obviously, these areas are obtained through the leading-

average over any topological sector should be positive a@der approximation to the sum rules: the border of these
well. ForN;<ng;(N,), this positivity is trivially satisfied by ~domains is altered by subleading corrections, which should

the asymptotic behaviors predicted by the Leutwyler-Smilgd€come large for small volumes. Furthermore, the pseudo-
sum rules(3.12—(3.14. Goldstone bosons do not dominate the partition function if
When N; is near(and below ngi(N.), the volume de- the box becomes smaller tham\ycp. To sum up, when we

pendence of the positive inverse moments is expressed
through the sum rules of the previous section. They were ' : ' ' :

derived at the leading order, for=0, and are functions of - 53’2?;3
{, S=Zs/A andP=Zp/A. The positivity of(((a5) %)), ol —_ Zaacip |
---- Zs/A=1/3

<<a4)>ng) and((as»f)Nf) puts therefore constraints on the
low-energy constants of,.

In the plane §,P), it is instructive to draw the domain
where each of these sum rules is positive for any value of
{=V32 A: we demand the positivity of a polynomial of [T 77~ -
second or third degree ify whose coefficients are functions

of Sand P (andN;). For a given number of flavors, this
procedure excludes some values 8fR), which constitute
the hatched areas on Figs. 4—7.({1’(;2)2>>E)Nf) does not 0 . . . . .
constrainS and P very much (Fig. 4), the positivity of ) ) Log 10(V.FA)

------------ Zs/A=1/6

FIG. 3. Variations ofS=(((a3)%))o/{{c6))o as a function of
. . _4 .
5In SYPT, the constantg depends on the renormalization scale € volume measured in physical urﬁ§. , for d'|f.ferent values of
w. At u=M,, itis estimated as§(M,)=(0.9+0.3)x10 ® (see  S=Zs/A(N;=3,Lg=0.1,P=—1/2). Sis sensitive to the param-
for instance Ref[29]). Close to the phase transitiohg should  eterS even for intermediate volumes. A different valuelgfwould
increase and become scale independent. merely lead to a global shift of the curves.
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05 . . . 15 ; . . .
04 | 1
10 |
03 | .
< <
N 9
02} .
05 |
01} .
0.0 e . 0.0
A 0 1 > 3 40 05 00 05 1.0 15 20
Zp/A Zp/A
FIG. 4. Values of €5/ A, Zp/A) for which the sum rulg4.31) FIG. 6-&/3';65 of €s/ A, Zp/A), for which the sum rulé4.33
for (((02)2)") is positive for any positive scaling parameter for {{oe)), * " is positive for any positive scaling parameter
{=V3?% A (the forbidden zone is hatched =VX?/A (the forbidden zone is hatched

want the leading order of the sum rules to be positive for anypum rule(3.17) at the leading order. The subleading correc-
¢, we demand too much, and the resulting area is only af{ons to this sum rule vanish as—c and they do not affect
approximation of the really allowed domain in the planeEd-. (4.41. On the contrary to the previous positivity condi-
=5 tions obtained near the critical point, E@.41) is therefore
(S,P).

Furthermore, these positivity plots are only relevant for aexact forNs=>ngi(Ne)-
number of flavolN;~n.;;(N.). Above the phase transition,
()N (o) and ((o6)) ' are still positive,
but their large-volume behavior is related in a different way This section is devoted to the next-to-leading contribu-
to the low-energy constants of the effective Lagrangian, asions to the sum rules. In both phases, they behavelzs 1/
described in Sec. Il C. The positivity conditions stemmingcompared to the leading order considered so far.

from the asymptotic behavior «é((;z)z))g“f) and<<a6))éNf)

V. SUBLEADING CORRECTIONS

are satisfied for ang andP. The only non-trivial relation is A. N<=<ncir(Ne)

due to the sum rulé3.17) for <<a-4)>éNf) and reads The Leutwyler-Smilga sum rules were obtained at the
o o leading order of the effective Lagrangiafy in the §PT
(S+P—N{)?+2(S—P)?= Nfz—l. (4.4 counting, restricted to the zero modes. The subleading cor-

rections stera priori from two sides: the non-zero modes
To obtain this relation, we demand the infinite-volume limit (present already if,), and the zero modebeginning at the

of <<U4>>g\'f) to be positive. This limit is predicted by the Next-to-leading order,). The first subleading corrections
turn out to be of order 17, and they come from the non-

4 : : : : : : : zero modes contributions t6,. They can be expressed as a
(volume-dependept renormalization of the quark
condensafein the sum rule$3.12—(3.14).

The second type of subleading corrections arises from the
zero-mode contribution t&,, quadratic in the quark mass
matrix. This Lagrangian involves, among other terms, the
counterterm{M ™M) corresponding to the quadratic diver-
gence ofo,. Since the counting rule in this phase Né
~ 1NV, these quadratic terms are suppressed by a fadtdr 1/
in comparison with the linear term ifi,. Consequently, they
appear as next-to-next-to-leading order contributions and
will not be discussed here.

The non-zero modes arise in the decomposition of the
Goldstone boson fields in Sec. Il A:

Zs/A
M)

Zp/A

FIG. 5. Values of £s/.A, Zp/.A), for which the sum rul¢4.32 ®This result can be compared to the analysis performed in Ref.
for ((04))E)N"3) is positive for any positive scaling parametér [30] concerning the finite size-effects arising in the effective de-
=V3?/ A (the forbidden zone is hatched scription of a spontaneously brok€@(N)-symmetry.
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FIG. 7. Values of €5/ A, Zp/.A) for which the sum rulg4.32
for ((04)>E)Nf:1°) is positive for any positive scaling parametér
=V3?/ A (the forbidden zone is hatched

Nf—l
U<x>=uoul<x>=uoexp(i > §a<x>ta/F>,

a=1

£(x)= (5.1

2
¢ﬁexp<|—n~x>,
) L

wheren,
(n#0 meansX ,[n,|#0). The unitarity ofU,(x) leads to

is a four-vector whose components are integer

PHYSICAL REVIEW D 62 054011

3 - -
Qabzﬁ«tatb—i—tbta)(UEM +M™g)). (5.3

T44 stands for the quartic term:

21272

T4¢:—

32 brdpdadin- (q—p)(tatptety).

(5.9

abcdnpqr#0

In the integral over the non-zero modes in E§.2), these
terms are suppressed by #/compared to the kinetic term.

We begin with the ternT,,, which involves neither the
quark mass matrix nor the zero-mode matidy. We can
treat it perturbatively to perform an expansion in powers of
1/L, leading to

| I aszacspr

n>0a

L* 27\ ?n?
Xexp{ -7 ng’a]b (¢ﬁ)*[(%) 75ab+ Qab} ¢ﬁ}

X(1=Tapt ...). (5.9

SWe should now apply Wick’s theorem and contract the fields

¢ in T,,. We would use the propagator stemming from the

a __ a H
¢~,=(¢n)". The fluctuations of the non-zero modes areyjnetic term and the “mass termQ,,,, where the latter is

small, leading to the counting rue~ ¢~ d~1/L. The lead-
ing contribution for the non-zero modes ig,§d,¢ and
comes from the kinetic term of,. It is counted with the
same power as the leading term of the zero md8€s, but

suppressed by Il compared to the first. But we want only
the first subleading correction due to the tadpoles arising in
T44. Since this correction is alreadyLP£suppressed com-
pared to the leading order of the partition function, it can be

it can be directly integrated and becomes a simple contriblgg|culated with propagators restricted to their momentum
tion to the vacuum enerdy7]. At the leading order, the zero 5 (Q.p would induce 1L4-corrections. At the next-to-

modes are actually the only relevant degrees of freedom.
At the next-to-leading order, the corrections from the non-

zero modes are due to the term&® and M &2, They are
only suppressed by a factorL¥/ in comparison with the
leading orderL*M. The partition function(2.24) up to the
next-to-leading order is finally

Zv:D’J' [dDo](detoo)V67£3ff(00'x)
U(N¢)
X f I1 dghd(en)*
n>0a

L4 s 24\ 2n? b
Xexp{ -7 m&;’a'b (¢én) [(T) 5 Japt Qab} ®n

—Tap+ O(L4)], (5.2

where the conditionn>0 means:ny>0, or (Ng=0,n,;
>0), or (hp=n;=0n,>0), or (Ng=n;=n,=0,n3>0).
The (N?—1)X (N?—1) matrix arises:

leading order, the contribution df,, involves neitherV,
nor U, (which are only present irQ,): it is a global
L-dependent term which can be factorized and eliminated by
a redefinition of the normalization constaht.

Hence, the 1/?-corrections are only due to the “mass
term” Q,, of the non-zero modes. The partition function
restricted to a given topological sector becomes

zV:D"f [dU,](detU,)”
U(Ny)

X exp(— Les(Uo ,X))J nga depd(4p)*

L4 1 24 2
__ . .
XE'Xp[ 2 n>;,a,b (¢n) 2N ( L ) 5ab+Qab}d>n

+O(L4)}. (5.6

The Gaussian integral ovép"} can now be performed:
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by Hasenfratz and LeutwyldB0], the divergent sun» be-
comes— 423, whereg, is a “shape coefficient,” related
to the dimension and the geometry of the space-time. For a
four-dimensional torus3; = 0.1405(see Appendix D for fur-
(5.7) ther comments
In this case, the first subleading corrections to Egs.

(3.12—(3.14) are summed up by the renormalization
whereA is anM-independent normalization factor. The trace ,
1- Ni—1 B )
2

overa,b=1...N?—1 leads to
N 2 2
N £ FL

13 . .
TrQ=—y E(MUSJr UM ™. (5.9 (5.10
f
For instance, the relative correctior® ¢ 3.)/3 remains
The integration over the non-zero modes ends up with thémaller than if the box size is greater than

renormalization 5
1 /Nf—1p,
NZ—1 v Lmin=¢ N, (5.12)

Tr QJ,

472\ AZ0 n?

=Nexp[ —L—Z( >

E(Nf)—&c(Nf)ZE(Nf)

f
2(Np)—2(Ng)| 1+g )1 9=,
22y 2
2N 2mFL 59 so that, forN;=3 flavors, the renormalization & in the
(5.9 sum rules leads to a correction smaller than ten percent for
1 box sizes larger than 1B/(in the case of the dimensional
v=2' F regularization.

. . ) . B. Near the critical point
If we include the first subleading corrections, the sum rules

(3.12—(3.14 remain therefore correct, provided that the pa- As before, two sources of subleading corrections should
rameters of the effective Lagrangian are renormalized, introbe taken into account: the non-zero modes frém Eq.
ducing an additional 12-dependence related to the regular- (2.26, and the zero modes from the next-to-leading La-
ization scheme. In the dimensional regularization introducedyrangianz; [23]:

= {X(Nf)<a UT9,U(MTU+U™™))+X(N;)(3,UT9,UNMTU+UTM) =Ry (N)((MTU)3+(UTM)3)

—Rao(N)((MTU+UTM)MTM) = R3(N))(MTU=UM}((MTU)?= (UTM)?) = R4(N)((MTU)?+ (UTM)?)
X(MTU+UTM) = Rs(N)(MTMYMTU+UTM) = Re(N )(MTU—-UTM)AMTU+UTM) — R(N¢)
X(MTU+UTM)3}. (5.12

Since the counting rule i#1L%~1, both types of corrections are expected to contribute at the next-to-leading order
O(1/L?), and could affect the previous quadratic or cubic volume-dependence of the sum rules.

The non-zero modes are explicitly defined by Eg1). Like in the standard counting, their leading term in the effective
Lagrangian is the kinetic term, &4, £, which is counted a®(1/L%. Its contribution(at the leading ordmreduces to an
overall constant, redefining the normalization of the partition function.

The next-to-leading contributions from the non-zero modes are of the BSvPs°£9, with 2a+2b+c+d=6, c andd
even, ancc=<d. The possible terms a@M¢&?, M2£2 and 92£* from Z,, andM #2£2 from L. At the next-to-leading order
order, the path integral becomes

z, Df [dUo](detUo)”eXp( Let(Uo, X))f H dend(n)*

,(2m\?(1 1
n T 25 b+Pab +Qab ¢ T4¢+O |_

>0.a,b

L4
><exp| -5 > () ] , (5.13

with the (N?—1)X (N?—1) matrices:
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- 1 ~ ~ ~ ~ -
Pab= 5[ U{ta:to} (UM +MTTg)) + X6:(UgM +M o)1, (5.14

1 E nt 17 ot ot 1 1
Qab:; E((tatb+tbta)(U0M+M U0)>+A<taU0MthOM +t,M ' 'Uyt,M U0>
+ Z5to(OIM=MTT) )(tn(O M —MTT)) + Zo(to(O M+ MTT ) ) (t,(DIM +MTT)) | (5.19

The quartic ternil,, remains identical to its expression in the standard ¢ask and it stems from the kinetic term df,,

whereasP is due toL; and Q to the non-derivative part of,. In Eq. (5.13, the contributions of these three terms are
suppressed by L7, compared to the kinetic termt?L2S,,-.n?| 3.
For the same reasons as in the previous section, the integratiby), ééads at this order to a term independentvbaind

Uy, which merely redefines the overall normalization consfantAt the next-to-leading order, the partition function for a
given winding number reads

20| [dTgl(delo) expt— Lori@o ) | T] deu(ap”
U(Ny) n>0a

L4
xexp{ 5 > ()

>0.a,b

1 2m\2 - -
EnZ(T> (8abt 2Pap) + Qap ¢E] (5.1

which yields after the integration ovef

~ L ~ - L2 1) -
NI exg —TriP———=Tr Q|=Nexg —| > 1|TrP———| > =|Tr 0|, (5.17)
n#£0 47°n? n#0 472\ nZo n?
where V' is anM- and U,-independent normalization factor. The traces are taken over the iralioesl .. .N?—1:
- 1 Nf-1 ot ot
TrP= 2 2 Z—Nf(X+ NfX)<XUO+ UpX > (5.18
1 NF-1 . _ Zs+Zp| - Ay ~
_ 2 t t _ s =P T2 2 _ - t\2 12
TrQ= 2F2L4[EL N, (XUg+UgX )+(A N, )((XU()) H(UgXND)+| Z5+ 2Zp N)<(XU0) +(UpX")?)
2(Zs—Zp)  ~ -
+N—f(xu?,)(x*uo)—2(zs—zp)<xTx> : (5.19

The integration over the non-zero modes ends up with a term of the same strucfiyeias it renormalizes the parameters
of the Lagrangian in the sum rules:

2 u N?-1 -
2(Ny)—2(Ng)+g 2N, E(Nf)""mz—l\lf[X(Nf)"_NfX(Nf)]- (5.20
A(Ny)
A(Ng)— A(N¢) +9| Z5(N¢) + Zp(N¢) — N, |’ (5.21)
A(N Zs(N
Z4(Np)— 2Ny +g T~ T f)}, (522
f
A(N Z«N
Zp(Ng)— Zp(Nf) +9g (2 f)—%ff)}, (5.23
H(N¢)—H(N¢) —g-2[ Z5(N¢) — Zp(Ny) ], (5.29
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with the sums to be regularized:

e v=2’i2. u=>"1 (5.29

C 2m2F2L?’ n

If we consider the dimensional regularization, we get—23,;/F2L? andu=0 (see Appendix D

With the countingSL?~ML?~1, the first subleading corrections stem also from the zero modé‘%:inhey contain
therefore the low-energy constari®s. If we consider the topological secter=0, the resulting corrections are quite simple
to compute. When we exparzt (restricted to the zero modess a polynomiak, the integrals with different powers &f and
UT vanish. In particular, the terms fro; involve odd powers of the meson matrix and have to be combined3xi#i U
+UTX). The resulting corrections are theref®®,; and are counted a3(1/L?).

For »=0 the final form of the sum rules, including the first subleading corrections, is

2 412
<<(02)2>>0:W[33+ sy+sh], (5.26

2 12
<<U4>>o=m[5’2+5§+5§], (5.27)

wheres! is the leading term, already calculated in Sec. I\&€ collects the terms from the zero modesdg, ands;, is due
to the renormalization of, induced by the non-zero modes. The result is

$9= 2+ {[4(2N?+1)S— 4P — 4N{]+ [ 4(2N?+1)(S*+ P?) — 8SP— 8N;(S+ P) + 4N?], (5.28
py
Sf= 516N (R = Ra) + 8N{(Nf—1)Rs— 16N{Re+48NFR], (5.29
sh= N%{z(Nf—1)g2+g[8Nf(N$—1)§—16N$E+8Nf]+[—8(N%—1)(§2+32)—16(3N$+ 1)SP
_ NZ—1 3(x+N;A _
+16N;(NZ+1)(S+P)— 16N2]} +u- 4 fN ( F2A*”{§+2[(2N$+ 1)S—P—N;]}, (5.30
f
and
S9={?+{[12S— 4P—4N]+[125°+ 12P?>— 8SP— 8N;S— 8NP+ 4], (5.31
R 2 2
sy = E[—S(Nf —1)R,+ 16N;R3— 16N{R,— 16R 6+ 48R ], (5.32

sgzN%{z(Nf—l)g% {[8(N?—1)S—8(N?+1)P—4N;(N?—3)]+[ —8(N?—1)(S?+ P?) — 16(N?+ 3)SP+32N((S+ P)

NZ—1 3(X+N;X)
Ny F2A

—8(N?+1)]}+u-4 {{+2[3S—P—N]}. (5.33

It is worth commenting the above results: in the vicinity <<(;2)2>>8Nf)/v2 and<<g4>>é’“f)/v2 can be expressed in the
of the critical point, characterize(_d by the_ co_untilfg_2 form =4__,a,L2". The even powera=2,4 are the original
~ML2~1, all the terms of the leading contributisfi are of leading terms, whereas the odd powers —1,1,3 arise
the same order Is{ ands; collect all the next-to-leading from the next-to-leading corrections due to the non-zero
contributions, which are counted 81/L%). Consequently, modes. Hence, this type of correction does not mix with the
for a fixed value of the condensate the inverse moments leading contribution as far as the volume dependence is con-
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cerned. 8
This is not true forsl", which stems from the zero-mode  8,[ 8,[t,]](L)=

contribution of Z5. They modify the constant term=0 of

the sum rules, and may be considered as small to the extent
that2, is small(let us recall that the dimensional estimate of
the low-energy constant®,; leads toR ;~F?/Ay with Ay
~1 GeV). Of course, close to the critical point, one pre-
cisely expects, to become small.

————— 34+ 0(1L1Y), 6.

In order to get a quantity which is invariant with respect
to the QCD renormalization group, we take the ratio of these
two sum rules:

4 2
In the case of tha ~6-sum rules(4.33—(4.35), the situa- p= Oal %4l ta1] = 3a2 ,E_+O(1/|_6).
tion is similar, but now, the constanf®; already affect the Sal Nit2—t4] 4N¢(N7—-1) 2Zs
coefficient of! in the sum rulesthey also change the con- (6.6)

stant term%). , _
The evaluation op requires the knowledge @ andt, for

five different box sizest —2a, L—a, L, L+a, L+2a. No-
tice thata is not required to be large; it is sufficient to have
L —2a much bigger than ¥y . On the other hand, for too
Near the critical poinh.;(N.), we would like to exploit small a, the difference operato$, may be too sensitive to

the sum rules for((o5)2)"" and ((a4))" in order to ~ Numerical errors.

isolate particular ratios of low-energy constants present in .For a discretized ‘Or“.@" Iattlcq, We can p.ull_znawnh
~ . . . . . . ninteger anda the lattice spacing. Equation$.4)—(6.6)
L,. In particular, it would be interesting to obtain a ratio

th i e he bh on. T remain true, and the comparison of different volumes is
with a specific sensitivity to the phase transition. To reachy;nq|ated into the evaluation of the inverse moments on lat-
this goal, it is preferable to eliminate the next-to-leading cor-

: > MIE ) ices with the same spacing, but with various numbers of
rections, which involve either unknown parameters lRe  gjta5 The powers in the lattice spaciagn the right-hand
or regularization-dependent quantities like As already e of Egs (6.4—(6.6) reflect merely the dimension of the
pointed out, Eqs(5.26) and (5.27) can be viewed as expan-

. . . > 5 involved quantities.
fsl:?]réficmstgil_va”ablem' andML". Hence, they are even £ ations (6.4)—(6.6) are independent of the next-to-

leading order contributions: this allows to consider smaller
_ _ volumes than previously stat¢tbr instance, the estimate
A. Varying the size of the box >1.9F of Sec. VA, based on our next-to-leading order

To exploit the structure of the sum rules at the next-to-analysis does not necessarily apply to the sum (6l6)].

leading order, it is therefore interesting to introduce the'he volume-independence of Ed6.4)—(6.6) could already
derivative-like operator: be seen for smaller volumes. Moreover, the inverse moments

must satisfy another non-trivial consistency relation:

VI. EXTRACTION OF PARTICULAR LOW-ENERGY
CONSTANTS

2

a
S[FI(L)=——— ,sft]] 1 .
8L(L2—az p'= 5a[5a[t4]](L)— N; +0(1/L19). (6.7)
a a The ratio p is invariant under the QCD renormalization
X4l L= 5) F(L+a)+|L+ E) F(L—a) group and its variations withl; could reflect the proximity
of the critical point in a particularly clean way, as discussed
in the next section.
—2LF(L)], (6.1

B. Relevance of the ratioZ¢/>?
wherea is an arbitrary parameter. If we consider an even
monomial F(L)=L2¢, 3 F] is an even polynomial of de-
greeL?"*. We obtain for the first powers

We have argued in a previous pap@t that the approach
to ngi(N.) could result into a large Zweig-rule violation in
the scalar channel. Let us recall briefly the argument. We
consider the chiral limit for the firdil; light flavors of com-
mon massm—0, and denote by the (N;+1)-th quark,
whose masg, is non-zero, but still considered as light com-
pared to the scale of the theofyeal QCD corresponds to
N;=2). Here, we typically consideN; such thatN;+1
<Ngit(No)<N;+2. X(N¢) is a function ofmg, with the
derivative

L°-0, L?-0, L*-a? (6.2

L®—a*3L%+2a%), L8—a*6L*+12L%a%+3a?).
(6.3

If we denote t,=(((o2)?)"/V2 and t,

= (o)) "1V2, we have
Jd

amg

4

a 3(Ng)= lim f dx(uu(x)ss(0))°=II(m),
5a[th2—t4](L)=2—l\IfEZZS+ O(1L5), (6.4)

m—0

(6.9
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where the superscrift stands for the connected part. Since could be detected by a considerable increase of the ratio
3 (N¢)—2(N;+1) for m¢—0, one can write (6.11) compared to its typical size- 10 2.

ms C. Application to the lattice
S(N)=Z(N¢+1)+ | dullz(n) . . .
0 An evaluation of the inverse moments through lattice

simulation represents a few interesting features. We work at

finite volumes: the volume dependence is crucial to obtain
(6.9 information on the relevant low-energy constants of the ef-
fective Lagrangian, and the extrapolation to an infinite vol-
ume is avoided. The limitation to the topologically trivial
sector is natural on the lattice by choosing strictly periodic
boundary conditions.

We do not aim at solving full QCD on the lattice. We
want to compute Dirac inverse moments, averaged over the
gluonic configurations with the statistical weigf&.13. To
perform this more limited task, we have to know the Dirac
spectrum for each gluonic configuration. It can be obtained
through the square of the Dirac operatoB?=D?
+iF*"a,,. It seems much simpler to discretize this opera-
tor instead oflD itself. In particular, the doubling problems
are not expected to arise in the spectrum of an elliptic opera-
tor like D2. It should be stressed that, while this procedure
could be applied in our particular problem, it can hardly
represent a general solution for doubling in the spectrum of
lattice fermions.

For a given gluonic configuration, we can therefore com-
pute the inverse moments from the Dirac spectfurhich is
independent of the number of flavor3he essential contri-
bution to each inverse moments stems from the lowest eigen-
2m3 (Ny) valu%s. In this case, th&;-dependence in the average
, (6.10 (())é " is expected to arise mainly through thg-th power

of the product of the lowest Dirac eigenvalues, i.e. from the
infrared part of the truncated fermion determinant, cf. Eq.
wherem denotes the common mass of fRelightest quarks (2.19. The ultraviolet part of the determinant should then be
[m=(m,+my)/2 for Ny=2]. Following the analysis of Ref. included by a matching with the perturbative tail as dis-
[9], one obtains from Eq(6.9), in the approximatiorZ,;  cussed in Refl32]. A first possibility consists in generating
~22Zg the gluonic configurations in the quenched approximation,
and to include explicitly the fermion determinant in the ob-
4 4 servable. The advantage of this method is that it would allow
Fr2s(Ni+1) Falet 6.1 to change easily and continuoudly while keeping the same
S2(Ng+1)  232(Ng+1) ' set of gluonic configurations. On the other hand, Monte
Carlo simulation of the pure gauge theory could lead to a
rather different distribution of small Dirac eigenvalues than a
XeorNf) —Xgor(N¢+1)  F2 simulation including the fermion determinant into the statis-
= P : R tical weight: the quenched generation of the configurations
[Xcor(Ns+1)] 2rMme .
6.12) may th_erefore lead to biased _r_esul_ts, Wh_en we use these con-
figurations to compute quantities including explicitly a fer-
mion determinant as an observable. If this reweighting pro-
wherer stands formg/m and the dots denote higher-order cedure turns out to be inefficient, the generation of the
terms. FolN;<n;(N,), the right-hand side of Ed6.12 is  gluonic configurations would have to include the product of
very small. It can be illustrated by choosimg=2, X(2) the lowest Dirac eigenvalues in the statistical weight. The
~0.9 andr ~ 26 (standardyPT estimates The difference of configurations should be regenerated for each valug;of
the GOR ratios satisfies in this case the lower bou\(@) The computation of the ratip seems particularly attrac-
—X(3)>0.2[10,20, and we consider this bound conserva-tive on the lattice. We have to compare five different lattice
tively as an equality. In this case, the right-hand side of Eqsizes to calculate this ratio, invariant under the QCD renor-
(6.12 is of the order of 102 [let us notice that in this case, malization group and protected from next-to-leading order
this quantity is related to 16(u) at a typical hadronic scale effects. WhenN; increases, an enhancement op Would
u~M,, cf. Ref.[20] ]. The proximity of a phase transition clearly indicate the vicinity of the critical poinfg;(N)

=3 (N¢+ 1)+ MgZe(mg) + O(m; log m),

where Z.4(ms), defined in Ref[9], is essentially Zg(N;
+1), up to corrections of the ordéE (N;+ 1))?, which are
small in the vicinity of the critical point. Close to.(N.),
the condensate term need not dominate the expari6ién
in powers ofmg, due to the suppression &f(N:+1). The
large variation of the quark condensate frofnto N¢+1 is
then reflected by a large value g&(N;+ 1), related to the
Zweig-rule violation in the 0" channel. Once expressed
through the Dirac spectrund, can be interpreted as the av-
erage density of small eigenvalues, wherHasis related to
the density-density correlation. The ratifs/>? measures
therefore the fluctuation of the quark condensate Nranear
the critical pointn.;;(N.) where, vanishes, one may expect
a suppression ok and an enhancement of its fluctuations
ZS.

We can express the ratifis/>? by introducing the Gell-
Mann—Oakes—Renner rat[@1], measuring the condensate
in physical units:

Xcor(N¢) = W
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where the condensate vanishes. operator seems a promising tool to investigate chiral phase
transitions in association with lattice simulations. The sums
VII. CONCLUSION over eigenvalues can be computed from a set of gluonic con-

figurations withy=0 and the corresponding Dirac spectra,

Two descriptions of Euclidean QCD on a torus can bepptained after the diagonalization ob2+Fo/2. The
fruitfully matched: the first involves the spectrum of the Nf-dependence is exp|icit, via the infrared part of the trun-
Dirac operator whereas the second relies on the effectiveated fermion determinant and the finite-volume effects are
theory of Goldstone bosons. The spontaneous breakdown @bt only taken into account, but essential for our purposes.
chiral symmetry can be related to the large-volume behavior The possibility to vary on the lattice parameters fixed in
of inverse moments of the Dirac eigenvaluds,. ,1/\K, the real world, likeN; (andN;) could open a new window
averaged over topological sets of gluonic configurations. Been the chiral structure of QCD vacuum. This investigation
cause of their sensitivity tdl;, these inverse moments can could lead to a better understanding of QCD-like theories in
be used to detect chiral phase transitions occurring when thgeneral. For instance, among electroweak symmetry break-
number of massless flavors increases. ing models, technicolor and similar proposals have often

The quark condensa®e(N;) is the chiral order parameter been ruled out, assuming a smooth and simple dependence
that is the most sensitive td;. It is conceivable that just on N; andN, leading to a direct link with actual QCD phe-
above the first critical pointi(N.) whereX vanishes, the nomenology{33]. If the chiral phase structure of vector-like
chiral symmetry is only partially restored. Below this critical confining gauge theories turned out to be richer, the chiral
point, the large-volume behavior of the inverse spectral mosymmetry could be broken following a different pattern from
ments is given by the Leutwyler-Smilga sum rul@l2-  actual QCD, offering new possibilities for technicolor-like
(3.14) and it is driven by the quark condensétieis behavior models[34]. The study ofN¢-induced chiral phase transi-
corresponds to eigenvalues accumulating as*)1/Above  tions could therefore represent a step towards alternative
nqit(No), the asymptotic volume dependence of the inversgheories of electroweak symmetry breaking.
moments changgsee Eqs(3.16),(3.17)], corresponding to

eigenvalues behaving asL?/ In this case, the dominant ACKNOWLEDGMENTS
contribution comes from terms in the effective Lagrangian _
quadratic in quark masses. We thank Ph. Boucaud, L. Girlanda, P. Hasenfratz, H.

When N; increases and approaches,(N.), the quark Leutwyler, G. Matrtinelli, B. Moussallam and C. Roiesnel for
condensate becomes small, and its fluctuaticelated to the valuable discussions. This work was partially supported by
Zweig-rule violation in the scalar chanhedre expected to the EEC, TMR-CT98-0169, EURODAPHNE Network.
become large: the terms of the effective Lagrangian linear
and quadratic in the quark masses may therefore contribute ~ APPENDIX A: INTEGRATION OVER UNITARY
with a comparable magnitude. Hence, it may become neces- MATRICES

sary to include both of them into the leading order of the In the f defi | f
expansion o, in order to derive the large-volume behav- , h the flavor space, we can detine a comp ete{s}Qto
Nf Hermitian N¢ X N¢ matrices generating ;). a is an

ior of the inverse spectral moments, which interpolates be- 5 ' ) i )
tween both phases. The resulting sum rules have been anfdex from 0 toNf—1: t, is proportional to the identity, and
lyzed in the topologically trivial sectow=0 [see Egs. the other matrices are traceless. They are normalized by
(4.3)—(4.39]. In particular, the formulas concerning posi- 1 L
tive inverse moments restrict the parameters of the effective _ - _=
Lagrangian. <tatb> 2 ap ; tata 2 Nt, (A1)
For Ni<ngi(N.), the first subleading corrections to
Leutwyler-Smilga sum rules are due to the non-zero modegyith the interesting identities for any matricésand B:
and reduce to a volume-dependent redefinition of the low- L
fenergy constant. The next-to-leading corrections tq _these 2 (AN t,B) = = (AB),
ormulas have been calculated also fgrclose to the critical ) 2
point n.(N;). The part arising from non-zero modes is
translated into a redefinition of the low-energy constaits 1
Zs, Zp andA. The NLO contribution due to zero modes can 2 tAL= §<A>,
be computed directly for=0. All NLO corrections behave a
asO(L " ?) relatively to the leading contribution. 1
We have shown that combining inverse spectral moments _-
at different volumes allows one to isolate the ratio of low- ; (LALE) 2<A><B>' A3)
energy constant€s/3.? which is particularly sensitive to the
chiral phase transition. The resulting “five-volume formula” We can decompose any complex matrix on this baXis:
(6.6) is furthermore insensitive to NLO finite-size correc- =2 ,X,t,. If we want to perform integrations over N¢)
tions, and it is invariant under the QCD renormalizationinvolving a unitary matrixU, the non-vanishing integrals
group. have as many components frobh=3,U,t, as from U’
The study of the inverse spectral moments of the Dirac==,U}t,. The first ones are

(A2)
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J [dU]=1 (A4)
U(Ny)
2

[ IAU S (A5

U(Ny) N¢
f [dUJU UfUUE = 4 (8ap0cdt 0adOpe) 16 (tatptety+tatgtety) (AB)
U(NY) a~b“c d_Nfz_l ab®cd ad®bc Nf(Nfz_l) atbtctd atd‘c'b

8

JU(N )[dU]UaU§ UCUE UeU? = {(N?— 2)[5ab50daef+ 5ab5cf5ed+ 5ad5cb5ef+ 5ad50f5eb+ 5af5cb5ed
f

N¢(Nf—1)(Nf—4)
+ SarOcaden] — ANl Sap(tetatels + tetitela) + aaltoletitet thtelte) + dar(tolctatet thtelqtc)
+ Sepltatatels + talitel) + Sealtatptets + tatftetn) + Scr(tatpleta+ tatatetn)

+ 5eb<tatdtctf+tatftctd>+ 5ed<tatbtctf+tatftctb> + 5ef<tatbtctd+tatdtctb>] + lG(tatthtdtetf
+tatptetatets+ tatplelteta+ tatptetstety+ tatatotptets + tatatetptots + tatatetitetn+ tatatet ety

+tatitctately +tatftetgtety T tatitelpteta+ tatitetpteta) (A7)

APPENDIX B: LEADING-ORDER GENERALIZED LAGRANGIAN FOR TWO FLAVORS

For Ny=2, the situation is slightly different from the generic case, because SU(2) representations are pseudoreal. In

particular, the correlato((Uu)(Ed)), which definesZ®, contains a determinant-like invariant and is no more an order
parameter. The leading order of the generalized Lagrangian for SU(3}lis

2(22)=%{F2(2)((9ﬂUTaMU)—22(2)<UTM +MTUY—A2)((UTM)2+(MTU)2) — Zp(2)(UTM — M TU)?

—H(2)(MTM)—H'(2)(detM + detM T)}. (B1)

The new counterterrt{’(2) is consistently counte®(p?) erators and it behaves &(1/p*) for large momenta. It is

in GxPT, since deM involves two powers of the mass. therefore superconvergert{’ (2) can be related to the scalar
Despite similarities betweeH’ (2) andH(2) (terms with  spectrum through a dispersion relation with no subtraction,

no mesonic fields, absent from the low-energy processessimilarly as in Ref[20]. Despite the difficulty of estimating

H’(2) is not necessarily divergent. In the Minkowskian met-the resulting integral’(2) can be determined in principle

ric, it can be defined through the chiral limit of the Zweig- from experimental data in the*Osector, including not only

suppressed correlator: the low-energy dynamics, but also information about higher
resonances.
, _ Since H'(2) is free of ultraviolet divergences, we can
ZiJ d*xePX(0|T{uu(x)dd(0)}|0) formally rewrite the GPT leading order of the two-flavor
Lagrangian in the generic formrNg=3). We use the iden-
=H'"(2)(n) +O(p?) gy pr- (B2) tity, true for any 2<2 matrixC: (C)?—(C?)=2 detC. This

leads to a formal identification:

It is easy to prove that, in the chiral limit, the identity opera-
tor, the quark condensate and the gluon condensate do ,
not contribute to the operator product expansion of A(Np) = A(2)=H'(2)/2,

((Uu)(ad»,7 The correlato(B2) is dominated byd=6 op-

Zo(Ng) = Zp(2)+H' (2)14, H(Np)—H(2), (B4

"Basically, the quark condensate cannot appear in OPE of Eq.
(B2) without a mass term, vanishing in the chiral limit, whereas thewhich enables us to treat the two-flavor Lagrangian in the
discrete symmetry, — —u, rules out the identity operator and the same framework as the generic case, even though the phe-
gluon condensate. We thank B. Moussallam for this remark. nomenological interpretation of its parameters is different.
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APPENDIX C: EXPANSION COEFFICIENTS We can use Weyl's formula to transform the group inte-
OF THE PARTITION FUNCTION gral into an integration over the eigenvalueslofexp(d¢,)

(k= Ny):

This section is devoted to the calculation of the coeffi-
cients arising when the partition function is expanded in Ni d ey
powers ofX=ML? for N; near(but undey the critical point f [dUl— S ( H )|F’|2 (C2
nqitl(Nc). The main lines of the computation are exposed in U(N) r
Sec. IVB, but its technical details and the results for anwith P=1I,_ (e'?—e'#). P is a linear combination of
arbitrary winding number are presented here. The coeffiexpi=n.¢,), with n, integers, antisymmetric under the ex-

cientsa,, B, ... are defined in Eq4.9). change of two angles, so that fkr:1, n, and n; must be
different. Their set forms one of thN;! permutations of
1. Leading coefficienta,, (0,1,2...Ny—1), andP collects all of them, with a sign

depending on the signature of the permutation. If the inte-
grand is symmetric under the angle permutatidhB* can
be rewritten[21]

(b,a;x-1) N¢
IPP=N{ X e(0) exp[ 2, (k- k)d)k}, (C3)
zf [dU](detU)” exd bx(UT)+ax3(UT?)]. o <P
U(NY) with P(Ns) the set of the permutations over (1 Ny) ande
(Cy the signature.

To computea,(b,z,a), we begin witha,(b,0a), given
by the leading order ix of the group integral:

The group integral i becomes

1 de
I":—f 1= |P|2H (e'"?xexg bxe '?k+ax?e”21%]). (C4)
YONg! =y 2
When|P|? is replaced by its symmetrized valg€3), the integrals over the angles become independent of each other:
1e= > el f — Xl k=09 b exf hxe S+ axle 2 %] (C5)
o € P(Ny) k=1 ) 2w
Ny
= > eo)]] x® ——bPkal, (C6)
o€ P(Ng) k=1 Pt 20 =s(k) Pk’ Ak’
Pk .Ak=0

with s(k) =k— o (k) + v. Obviously, ifs(k) <O for at least ond, the permutation does not contribute. BR(N;) includes the
identical permutation and=0: there is at least one contributing termlif, and all these contributions lead actually to the
same leading power iRr:

N¢

I!Z[l XS(k):XEK—u’(k)-Fv:XVNf’ (C?)

which is consistent with the factor (d€}” in the expansiori4.8). We get therefore

a,(b,z=0@)= > bNi—2mgme,_ | (C
m=0"..oN/2

with the purely combinatorial coefficients:
-1

= X eo) X lqu!(s(k>—2qk)! : (C9)

cPND  {a=1t s
Eqk=m

Another way to describe,, is the generating polynomial:
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XV Xv+1 Xv+2 Xv+N—1

Xv—l XV Xv+l Xv+N—2
Wmc = XV*Z XV*l XV Xv+N73 y (ClO)

m=0...vN¢/2 .
XV*N+1 XV*N+2 XV*N+3 XV
with the polynomials inw:
w

X = (C11)

q:(;.jIZ ql(j—2g)!"

Since the derivatives df, with respect tdb andz are not independent, E¢4.7) yields the general expression ef,:

| (I1+2p)!
a,(b,z,a)= b'amzP ———c,,. (C12
I+2m32p=vN; [Tp!
2. Subleading coefficients8,,, v, , 8,
We denote the various derivatives @f;:
, da, _da, _&Za,, _Jda, c13
ST MmN (€13
Forb=b, a=a, z=z, for N flavors, and denotinégt =N+ ||, the coefficients are
o b? ’1b2N 2a+N .2 N C14)
B—aR(y-i- )+am ( Z+2a+ y)+a Wy( z+a) ( )
1 [b* 1 K—N)(KN+1
y=a — +2b%y+2b%z+y?+ 272+ 2a%| - ———2a[b2+227]+ ( A ) 2a?
K2—-1[2 K(K?-1) K(K2=1)(N?-1)
+a’ ;b[b2y+ 2b%z+2y?+6yz+47°]— ———2ab[y+2z]+ ;Zab[szr 2y+27]
K2-1 K(K?—1) N(K?—1)
K 1 [1
- 2a’b— 2a’b; +a” [—b2y2+4b2yz+2b222+5y22+4z3
KN(K?—1) K(K?—1)(N?-1) K2-112
1 1 1 KN+1
- 8a%z+ 4a[b?y+b%z+y?+272]— ————a[y?+4z2%]+ 2a’b?
NK(K?-1) N(K?—1) K(K?-1) NK(N?—1)(K?-1)
+a” 2byd22+y]+ — > 2abydz+y]+ ANTL a2
[e% z —FZzZa z a
K2—1 y Y N(K2—1) y NK(K?—1)(N?—1) Y
1 1 KN+1 K+N .
+a™ 2y%7%+ day’z+ 2a%y?} — [@2a?(2z+b?)
K2-1 N(K?—1) NK(K?—1)(N?—1) NK(K?—1)(N?-1)
+a'4a’by+ a"2a%y?] (C15
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b4

— +2b%z+2b%y +y?+ 27°+ 2a2

> +

2a[b%+2z2]— (K= MK+ 2a2]

1
5: -
a{ K(K?—1) K21 K(K2—1)(N2—1)

1
b[b2y+ 2b2z+ 2y2+ 6yz+ 422]+ zab[y+ 2z]— N—Z&b[2y+ 2z+ b2]

“ |_ K(K2—1) K2—1 K(K2—1)

1 2 KN+1 2 1 1 2,,2 2 252 2 3
+ ———2a‘b+ 2ab; +a"{ — ————| zb°y*+4b°yz+2b“z°+5y“z+4z
N(K?—1) K(K?—1)(N?—1) K(K?-1)[2

1 1 K+N
+ 8a%z— 4a[b%y+b%z+y?+272%]+ a[y?+4z%]— 2a%b?
N(K?—1) NK(K2-1) K?2-1 NK(N2-1)(K?-1)

1 K+N
2by42z+y]- —————2aby[4z+y]- 4azby]

e { T K(K2-1) NK(K2—1) NK(K2—1)(N2—1)

1 1 K+N
+a™{ — 2y222_ 4ay22_
K(K?—1) NK(K?—-1) NK(K?—1)(N°-1)

KN+1 .
2a%y? | + [@2a%(2z+b?)
NK(K?—1)(N?—1)

+a'4a’by+ a"2a%y?]. (C16

APPENDIX D: DIMENSIONAL REGULARIZATION ON A TORUS

Following the regularization procedure described by Hasenfratz and Leuti@flerwe want to regularize sums like

1
Gu=y 2 H(p), (bD)

whereH is a function and is summed over 2/L - Z*. The Fourier transform ofl(p) is

H(x)= f &% ePH(p) (D2)
(2m)° ’
and satisfies the identity
1 ~
GH=V§ H<|o>=2I D, (D3)
wherel is summed ovet - Z*. Because of the relation
im Gy = lim > S H(p) f T p=Fi0) (D)
im Gy= lim = = = ,
PR VAVE R EPWT

it is possible to separate B, the cutoff and the volume dependences:

Gy=lim Gy+gy, gH=§|:/ﬁ(l). (D5)

V—oo

The infinite volume limit of G,; contains the divergences fak—4 and has to be regularizgdor instance through the
dimensional regularizationwhereasgyy, depends only on the volume.
Forv=23'1/n?, we have the relations

1 ) 1 1
—2= lim vz

—————|=lim
p p’+M? VM?

M—0

<~

%!

1
P m—o0 GH_VMZ]’ (0®)

with H(p)=1/(p?>+M?). In the case of the dimensional regularization, H2f) involves
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M?2 1 B1

Gy=——(nM+cy)+gy, = ——=+0(M?), D7
H 8772( DtOh. Ou VM2 L2 (M%) (D7)

wherec; contains a pole fod=4, andg; is a constant called “shape coefficient,” depending on the geometry of the box. For
a four-dimensional torug3,;=0.1405. The dimensional regularization yields finally

1
v=2, S4By, (D8)

For u, we can follow the same guideline and takdp)=1 for p#0 and H(0)=0. Its Fourier transform i$(l)
=8™)(1). gy vanishes, and we know that dimensionally regularized integralsf[ikép/(27)9] vanish as well, so that

u=>, 1<0. (D9)
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