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Convergence of the expansion of the Laplace-Borel integral in perturbative QCD improved
by conformal mapping
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The optimal conformal mapping of the Borel plane was recently used to accelerate the convergence of the
perturbation expansions in QCD. In this work we discuss the relevance of the method for the calculation of the
Laplace-Borel integral expressing formally the QCD Green functions. We define an optimal expansion of the
Laplace-Borel integral in the principal value prescription and establish conditions under which the expansion
is convergent.

PACS number~s!: 13.35.Dx, 12.38.Bx, 12.38.Cy
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I. INTRODUCTION

A suitable method for accelerating the convergence
power series is based on conformal mappings. As is kno
a power series converges inside a circle passing through
nearest singularity of the function to be approximated. So
time ago, in Ref.@1#, it was shown that, if the position of th
singularities of the expanded function is known, one c
reach the fastest convergence rate by expanding in powe
the function that conformally maps thewhole holomorphy
domain onto a unit disk. In addition, the convergence reg
extends over the whole holomorphy domain. In a recent
per @2# we applied the technique proposed in@1# to the Borel
transform of the Green functions in perturbative QCD.
discussed in@2#, the Borel plane is very suitable for applyin
the method, since some information about the singularitie
the Borel transform is available from the study of certa
classes of Feynman digrams and from nonperturbative a
ments. By the technique of conformal mapping, this ad
tional information can to a certain extent be incorpora
even into the lowest-order terms. In this way, the conv
gence of the perturbative expansion is improved, allow
one in particular to approximately predict the next-order p
turbative terms from the calculated low-order ones@2#.

In Ref. @2# the expansion in powers of the optimal co
formal mapping variable1 was also used to calculate th
Borel-Laplace integral, which is supposed to give, with
certain prescription of treating the infrared renormalons,
Borel summation of the large orders in the Green functio
The numerical results on mathematical models discusse
@2# indicate that the power expansion in the optimal varia
makes also the calculation of the Borel integral converge

1The conformal mapping that maps the whole holomorphy
main of the expanded function onto the unit disk will be call
optimal. In this case, the singularities are mapped onto the boun
circle, and the requirement of holomorphy implies convergence
the power series at every point of the disk, which is the map of
holomorphy domain.
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in addition with a very high convergence rate. However, o
qualitative arguments explaining the results were given,
the problem of whether the improved expansion of the in
gral is convergent or signs of divergence might appea
large orders remained open. In the present paper we add
this problem and investigate the convergence of the exp
sion of the Borel integral in perturbative QCD, improved b
the use of conformal mapping.

II. OPTIMAL EXPANSION OF THE LAPLACE-BOREL
INTEGRAL

We study the following integral

I ~a!5E
0

`

e2u/aB~u! du, ~1!

whereB(u) is assumed to be analytic nearu50, where it
can be expanded as a Taylor series

B~u!5 (
n50

`

bn un ~2!

converging inside a circle of nonvanishing radius. The fun
tion I (a) is of interest for the Borel summation of the Gree
functions in perturbative QCD; note, however, that the in
gral on the right hand side of Eq.~1! is ill defined ifB(u) has
singularities along the positive real semiaxis, which is t
case of QCD. First, the singularities ofB(u) ~renormalons of
either kind and instantons! make the expansion~2! badly
divergent along the integration path. Second, the funct
B(u), being singular at positiveu, is not uniquely defined
along the integration path. We shall discuss both these p
lems below in this paper.

We shall consider for illustration the Adler functionD(s)
of the massless QCD vacuum polarization, which can
expressed formally as@3–6#

D~s!511
1

pb0
I ~a!, ~3!
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with a5b0as(2s), whereas(2s) is the running coupling,
and b05(3322nf)/12p is the first coefficient of theb
function. Expression ~3! formally reproduces the
renormalization-group-improved expansion of the Ad
function

D~s!511 (
n51

`

Dn S as~2s!

p D n

~4!

by taking coefficientsbn in the expansion~2! of the form

bn5
1

n!

Dn11

~pb0!n
. ~5!

We consider also Minkowskian quantities, such as the h
ronic decay rate of thet lepton,Rt , which can be expresse
formally as@5#

Rt53~11dEW!F11
1

pb0
E

0

`

du

3expS 2
u

b0as~mt
2! D B~u! F~u! G . ~6!

Here dEW is an electroweak correction,B(u) is the Borel
transform of the Adler function, and

F~u!5
212 sin~pu!

p u~u21!~u23!~u24!
. ~7!

The extra factor sin(pu) in the Laplace-Borel integral is ge
neric for Minkowskian quantities. Note that, strictly spea
ing, expressions~3! and ~6! are not equivalent to the Bore
summation method, which requires an analytic continuat
of B(u) from the convergence disk to an infinite strip
nonvanishing width, bisected by the real positive semia
This condition is not satisfied in QCD because of instant
and infrared renormalons, which produce branch points
B(u) located along the real positive semiaxis.

We shall be concerned with the evaluation of the integ
~1! for complexa of the general forma5uaueic, wherec
5arga is the phase ofa. In the case of the Adler function
with the running coupling at one loop in theV scheme
as

(V)(2s)51/@b0 ln(2s/LV
2)#, and writing 2s5usu ei (f2p),

we have

1

a
5 ln

usu
LV

2 2 i ~p2f!. ~8!

Outside the Landau region, i.e., forusu.LV
2 , we have

cosc.0, so that

ucu,
p

2
, ~9!

andc is related to the momentum plane variables by

c5arctanF ~p2f!/ ln
usu
LV

2 G . ~10!
05400
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The phasec is positive fors in the upper half of thes plane,
where 0,f,p, negative fors in the lower half-plane,
wherep,f,2p, and 0 along the Euclidean axis.

As concerns the Minkowskian quantity~6! we combine
the additional factors exp(6ipu) due to the sinus with the
exponential, which amounts to takinga complex with

c56arctan@pā#, ~11!

whereā5b0as(mt
2).

As already mentioned, the Borel transformB(u) has sin-
gularities in the complex plane, correlated to the factor
increase of the perturbative coefficients of the Green fu
tions at large orders@7–9#. The precise form of the singu
larities is not known for the exact theory, but the positi
and the nature of the first renormalons can be inferred fr
general principles. In the case of the Adler function the fi
ultraviolet ~UV! renormalon is situated atu521 and the
first infrared~IR! one atu52, and they are branch points o
the type (11u)g1 and (22u)g2, respectively, withg1 com-
puted in@10# andg2 in @7#. We mention also that the sum
mation of the one-renormalon chains in massless QCD in
largeb0 limit gives @8#

B~u!5
32e2Cu

3~22u! (
k52

`
~21!k k

@k22~12u!2#2
; ~12!

i.e., all the singularities are poles@C is a scheme-dependen
constant, withC525/3 in the modified minimal subtraction
(MS) scheme, andC50 in the V scheme# @3,6#.

The series~2! converges only inside the circleuuu,R,
passing through the nearest singularity (R51 for the Adler
function!. Since the integration range in Eq.~1! extends far
outside this region, by inserting Eq.~2! into Eq. ~1! and
integrating term by term one obtains a divergent expans
@11–13#. By the technique of conformal mappings one e
tends the domain of convergence of a series beyond the
imposed by the first singularity. In@2# we used the optima
conformal mapping

w5w~u!5
A11u2A12u/2

A11u1A12u/2
, ~13!

with the inverseu(w)58w/(322w13w2). The transfor-
mation ~13! preserves the origin and maps the complexu
plane, cut along the real axis foru.2 and foru,21, onto
the interior of the circleuwu,1, all the singularities of the
Borel transform being mapped onto the boundaryuwu51.
The expansion in powers ofw,

B~u!5 (
n50

`

cn wn, ~14!

is called optimal because it converges inside the circleuwu
,1, i.e.,in the whole domain of holomorphy of B(u) ~which
is the doubly cut complexu plane in our case!, up to points
close to the branch cuts produced by renormalons. As
already pointed out above, this power expansion yie
7-2
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CONVERGENCE OF THE EXPANSION OF THE . . . PHYSICAL REVIEW D 62 054007
when compared with other conformal mappings,the fastest
large-order convergence rate~see a proof in@1#!. In practice,
as discussed in@2#, the expansion~14! is obtained by suitably
reorganizing the summation of the original series~2!. More
precisely, consider the expansion of eachun in powers ofw,
truncated at a finite orderN. In particular, in our case this
expansion has the general form

uN
n 5(

j 5n

N

cn jw
j , ~15!

with the coefficientscn j obtained by expressingu in terms of
w @in our caseu(w) is given explicitly after formula~13!#.
Starting now with the expansion~2! truncated at finite orde
N, and replacing eachun by its approximantuN

n , one obtains
a truncated expansion of the functionB in powers of w,
which in the limit N→` gives Eq.~14!.

By inserting the optimal expansion~14! into the integral
~1! we obtain the formal development

I ~a!5 (
n50

`

cnI n~a!, ~16!

with

I n~a!5E
0

`

e2u/awn du. ~17!

In the present work we shall adopt Eq.~16! as the optimal
expansion of the Laplace-Borel integral. We point out tha
the physical case this seems to be a natural definition.
deed, when attempting to make the Borel summation o
perturbation expansion in QCD, one starts with a finite s
of the form

I N~a!5 (
n50

N

bnE
0

`

e2u/aun du. ~18!

By replacing here the powersun with the approximations
~15!, we replaceI N(a) by an expansion of the form

(
n50

N

cnI n~a!, ~19!

which in the limit N→` leads to Eq.~16!.
Actually, as mentioned above, the conditions for the Bo

summation are, because of the instantons and infrared re
malons, not satisfied. Therefore, Eq.~16! can be considered
as a definition ofI (a), provided that~i! the integration path
in expressions such as Eq.~1! or ~17! is consistently defined
and ~ii ! the series~16! is convergent. Let us devote a brie
discussion to these conditions.

~i! As concerns the integration contour, let us notice t
the expansion~16! has not a precise mathematical sense w
I n(a) defined by Eq.~17!, because the integration path ru
along the positive real semiaxis, where thewn have cuts. We
shall adopt, as in@2#, the generalized principal value~PV!
prescription, defining theI n

PV(a) as
05400
n
n-
a

l
or-
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h

I n
PV~a!5

1

2EC1

e2u/a @w~u!#n du1
1

2EC2

e2u/a @w~u!#n du

~20!

for n50,1,2, . . . , where C1 (C2) are lines parallel to the
real positive axis, slightly above~below! it. While the PV
prescription does not always give the expected results@14#,
in QCD it has the advantage that it reproduces, to a lar
extent than other choices, the momentum plane analyti
properties of the Green functions derived from the gene
principles of field theory. In particular, as discussed in@15#,
the Adler function calculated with the PV prescription has
unphysical singularities in the regionusu.L2. The functions
I n

PV(a), n51,2 . . . , arechosen so as to share some of t
known properties with the unknownI PV(a). This makes
them suited for the definition ofI PV(a) by means of the
expansion

I PV~a!5 (
n50

`

cnI n
PV~a!. ~21!

~ii ! The convergence of the series~21! for complexa is
not a priori obvious. Indeed, the expansion~14! converges at
pointsuwu,1, therefore in the neigborhood of the integratio
axis, but not necessarily on the boundary. One might the
fore expect that the boundary singularities could manifes
a dramatic way for very large ordersN, making the series
~21! divergent, like in the case of the original expansion~2!.
In @2# we investigated mathematical models withB(u) hav-
ing a few number of isolated branch point singularities a
real values ofa. The numerical results confirm that the e
pansion~2! in powers ofu gives results which deviate dra
matically from the exact value for largeN, which is typical
for a divergent expansion. On the other hand, the impro
series~14! in powers of the optimal variable led to resul
improving continuously with increasingN, and no signs of
divergence appeared even at very highN. In the next section
we shall discuss the convergence of the optimal expansio
the Laplace-Borel integral, bringing analytic argumen
which explain the numerical results obtained in@2#.

III. CONVERGENCE OF THE OPTIMAL EXPANSION

We investigate the expansion~21! with the functions
I n

PV(a) defined by means of the PV prescription~20!. We
consider in our discussion analytic functionsB of real type,
i.e., which satisfyB* (u)5B(u* ), whereu* is the complex
conjugate ofu. Therefore, the coefficientsbn in the expan-
sion ~2!, as well as the coefficientscn in the expansion~14!,
are real.

The contribution to Eq.~20! of the integral along the con
tour C1 can be written as

I n
1~a!5E

C1

e2Fn(u) du, ~22!

where
7-3
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Fn~u!5
u

a
2n ln w~u!. ~23!

We evaluate the integral~22! for large n by applying the
method of steepest descent@11,14#. The saddle points are
given by the equation

w8~u!

w~u!
5

1

an
, ~24!

which has four solutions, having at largen the form

11 i

21/4
Aan,

12 i

21/4
Aan,

211 i

21/4
Aan,

212 i

21/4
Aan.

~25!

Of interest for the evaluation of Eq.~22! is the point

u05221/4~11 i !Aan5uu0ueia, ~26!

with

uu0u521/4Auaun, a5
p

4
1

c

2
, ~27!

which is situated in the first quadrant of theu plane. Indeed,
since the phasec of the parametera satisfies the condition
~9!, then Reu0.0 and Imu0.0.

Near the saddle pointFn(u) can be expanded as

Fn~u!5Fn~u0!1
1

2
Fn9~u0!~u2u0!21•••. ~28!

By using the expansion ofw(u) for large u in the upper
half-plane@w'z(12 iA2/u), wherez5(A21 i )/(A22 i )],
we obtain, after a straightfoward calculation,

e2Fn(u0)'zn S 12
23/4i

~11 i !Aan
D n

e2221/4(11 i )An/a

'zne223/4(11 i )An/a ~29!

and

Fn9~u0!'
21/4~12 i !

Ana3
5uFn9~u0!ueib, ~30!

where

uFn9~u0!u5
23/4

Anuau3
, b52

p

4
2

3c

2
.

Therefore Eq.~22! becomes

I n
1~a!'zne223/4(11 i )An/a

3E
C1

expS 2
uFn9~u0!u

2
eib ~u2u0!2 Ddu. ~31!
05400
In order to evaluate the integral we first rotate the contourC1

in the trigonometric direction in the upper half-plane, until
becomes a line passing through the origin and the sa
point u0. The rotation is possible sinceB(u) ~and therefore
alsow) has no singularities outside the real axis, and the
of the circle at infinity gives a vanishing contribution, as c
be easily verified. Along the rotated lineu5eia t, wherea is
the phase ofu0 defined in Eq.~27! and t is real, so the
integral in Eq.~31! becomes

eia E
0

`

expS 2F uFn9~u0!u
2

ei (2a1b) ~ t2uu0u!2G Ddt. ~32!

Since cos(2a1b).0 for c satisfying the condition~9!, the
integration axis lies in the two valleys near the saddle po
u0. Therefore it can be deformed into the path of steep
descent throughu0, without passing outside the valleys. W
take the integral along the path going to infinity,

u2u0'A2/uFn9~u0!u e2 ib/2 r, ~33!

with real r. The phase of (u2u0)2 exactly compensates th
phase ofFn9(u0), making the exponent of the integrand

Eq. ~31! real. The integrand can be written as e2r2
and the

integral done explicitly gives

I n
1~a!'zne223/4(11 i )An/a

e2 ib/2

AuFn9~u0!u/2

Ap

2
, ~34!

i.e., up to a constant independent ofn:

I n
1~a!'n1/4zne223/4(11 i )An/a. ~35!

It is important to note that the path of steepest descent m
not cross the real axis, whereB(u) has singularities. From
Eq. ~33! this implies2b/25p/813c/4.0 which is written
as

c.2
p

6
. ~36!

The evaluation of the integral along the contourC2 in Eq.
~20! proceeds in a similar way. The saddle point of interes

u085221/4~12 i !Aan521/4Auaun e2 i (p/42c/2), ~37!

which satisfies Reu0.0 and Imu0,0 for c in the range
given in Eq.~9!. Instead of Eq.~31! we have

I n
2~a!'~z* !ne223/4(12 i )An/a

3E
C2

expS 2
uFn9~u08!u

2
eib8 ~u2u08!2Ddu, ~38!

where b85p/423c/2 . We rotate the contourC2 in the
lower half-plane up to a line passing through the pointu08 ,
and then deform it into the steepest descent path. One
easily verify that this path does not cross the real axis f
2p/813c/4,0 which is written as
7-4
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c,
p

6
. ~39!

Collecting the terms we obtain the coefficientsI n(a) in the
PV prescription~20! as

I n~a!'n1/4zne223/4(11 i )An/a1n1/4~z* !ne223/4(12 i )An/a.
~40!

In order to examine the convergence of the expansion~21!,
we consider the ratio

U cnI n~a!

cn21I n21~a!
U ~41!

for largen. If the coefficientscn do not grow too rapidly, i.e.,

ucnu,Ceen1/2
, ~42!

for all e.0, then the expansion~21! converges fora com-
plex in the domain

Re@~16 i !a21/2#.0. ~43!

As we already discussed these conditions are equivalen
Eq. ~9!. If the coefficientscn behave at largen like

ucnu'ecn1/2
~44!

for some positivec, then the expansion~21! converges in the
domain

Re@~16 i !a21/21c#.0, ~45!

while for coefficientscn which grow faster than exp (cn1/2)
the new series~21! is also divergent. We mention that such
behavior is not excluded in general for series of the fo
~14! with a radius of convergence equal to 1@14#.

We recall, however, that the expression~40! is valid only
for c which satisfy the conditions~36! and ~39!, i.e.,

ucu,
p

6
, ~46!

which define a sector in thea complex plane~we recall that
c is the phase ofa). This inequality is a condition of the
applicability of the steepest descent method used by us.
found therefore that the expansion~21!, improved by the
optimal conformal mapping of the Borel plane, is converg
if the Taylor coefficientscn of the expansion~14! satisfy the
condition~42!, at least inside the sector~46! of the complex
plane ofa, or, if they behave like Eq.~44!, in the smallest of
the domains~45! and ~46!. For the Adler function in mass
less QCD, using Eq.~10! we write the condition~46! in the
form

up2fu,
1

A3
ln

usu
LV

2 , ~47!

where f is the phase ofs and we haveusu.LV
2 . For the

Minkowskian quantities, from Eq.~11! we obtain
05400
to

e

t

pā,
1

A3
, ~48!

which means in particular that for thet-hadronic decay rate
the expansion defined as in Eq.~21! is convergent for
as(mt

2),4/(9A3)'0.257.
The behavior of the coefficientscn depends on the singu

larities of B(w). By the conformal mapping~13! all the in-
stantons and renormalons are situated on the circleuwu51,
appearing in conjugate pairs sinceB(u) is of real type. As-
suming that all the singularities are poles or branch pointscn
has the generic form

cn5
1

n!
Re(

j
~21!pjr j pj~pj11!~pj12!•••~pj1n21!

3eia j (pj 1n), ~49!

where exp(6iaj) denote the position of the renormalon in th
w plane,r j the residue, andpj the exponent of the singular
ity. In Ref. @2# we investigated simple models with a finit
number of singularities, and real values of the parametea,
for which the conditions of convergence are satisfied. In
physical case, one knows only that for the first UV renorm
lon a15p and p152g1, and for the first IR renormalon
a250 andp252g2. In the largeb0 case, as seen from Eq
~12!, all the singularities are poles,pj in Eq. ~49! is indepen-
dent of j, and r j are known. In this case the condition o
convergence, Eq.~42!, is satisfied. Therefore, the optima
expansion on the Laplace-Borel integral, in the PV presc
tion, for the summation of one renormalon chains in the la
b0 limit, is convergent, at least in the sector of the comp
a plane defined by the condition~46!.

In conclusion, we investigated the expansion of t
Laplace-Borel integral in perturbative QCD, improved by t
analytic continuation of the Borel transform outside the p
turbative convergence disk~and, simultaneously, by reachin
the fastest convergence rate! by means of optimal conforma
mapping@2#. The convergence properties of the new expa
sion depend on the strength of the singularities of the Bo
transform, reflected in the behavior of the Taylor coefficie
of the expansion~14!. If the Taylor coefficients satisfy the
condition~42!, the new expansion of the Laplace-Borel int
gral converges in the sector of the complex plane of
couplinga defined by Eq.~46!. The conditions are satisfie
in the case of the resummation of one-loop renormalons
the large-b0 limit. We mention that in the region where th
series converges the functionI (a) must be analytic. For the
Adler function in the complex momentum plane this corr
sponds to the region described by Eq.~47!, whereD(s) is
analytic.
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