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Convergence of the expansion of the Laplace-Borel integral in perturbative QCD improved
by conformal mapping
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The optimal conformal mapping of the Borel plane was recently used to accelerate the convergence of the
perturbation expansions in QCD. In this work we discuss the relevance of the method for the calculation of the
Laplace-Borel integral expressing formally the QCD Green functions. We define an optimal expansion of the
Laplace-Borel integral in the principal value prescription and establish conditions under which the expansion
is convergent.

PACS numbd(s): 13.35.Dx, 12.38.Bx, 12.38.Cy

[. INTRODUCTION in addition with a very high convergence rate. However, only
qualitative arguments explaining the results were given, and

A suitable method for accelerating the convergence othe problem of whether the improved expansion of the inte-
power series is based on conformal mappings. As is knowrgral is convergent or signs of divergence might appear at
a power series converges inside a circle passing through tHarge orders remained open. In the present paper we address
nearest singularity of the function to be approximated. Soméhis problem and investigate the convergence of the expan-
time ago, in Ref[1], it was shown that, if the position of the sion of the Borel integral in.perturbative QCD, improved by
singularities of the expanded function is known, one carfh® use of conformal mapping.
reach the fastest convergence rate by expanding in powers of
the function that conformally maps theghole holomorphy Il. OPTIMAL EXPANSION OF THE LAPLACE-BOREL
domain onto a unit disk. In addition, the convergence region INTEGRAL
extends over the whole holomorphy domain. In a recent pa-
per[2] we applied the technique proposed i to the Borel
transform of the Green functions in perturbative QCD. As o
discussed if2], the Borel plane is very suitable for applying |(a)=f e Y#B(u) du, (1)
the method, since some information about the singularities of 0
the Borel transform i; available from the study of _CertainwhereB(u) is assumed to be analytic near-0, where it
classes of Feynman pllgrams and from nonpe_rturbat!ve argisan pe expanded as a Taylor series
ments. By the technique of conformal mapping, this addi-
tional information can to a certain extent be incorporated o
even into the lowest-order terms. In this way, the conver- B(u)=>, b,u" 2
gence of the perturbative expansion is improved, allowing

one in particular to approximately predict the next-order per- L . I .
turbative terms from the calculated low-order ofi2h converging inside a circle of nonvanishing radius. The func-

In Ref. [2] the expansion in powers of the optimal con- tion I (a) is of interest for the Borel summation of the Green
formal mapping variablewas also used to calculate the functions in perturbative QCD; note, however, that the inte-
Borel-Laplace integral, which is supposed to give, with adral on the right hand side of E) is ill defined ifB(u) has
certain prescription of treating the infrared renormalons, thingularities along the positive real semiaxis, which is the
Borel summation of the large orders in the Green functions¢@Se of QCD. First, the singularities B{u) (renormalons of
The numerical results on mathematical models discussed @ther kind and instantopsmake the expansior2) badly
[2] indicate that the power expansion in the optimal variabledivergent along the integration path. Second, the function

makes also the calculation of the Borel integral convergentB(U), being singular at positive, is not uniquely defined
along the integration path. We shall discuss both these prob-

lems below in this paper.
We shall consider for illustration the Adler functi@(s)

1 .
The conformal mapping that maps the whole holomorphy do-o¢ the massless QCD vacuum polarization, which can be
main of the expanded function onto the unit disk will be called expressed formally 48—6]

optimal. In this case, the singularities are mapped onto the boundary

circle, and the requirement of holomorphy implies convergence of 1

the power series at every point of the disk, which is the map of the D(s)=1+—I(a), 3
holomorphy domain. TPo

We study the following integral
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with a= Bgas(—S), whereag(—Ss) is the running coupling, The phase/ is positive forsin the upper half of the plane,
and By=(33—2n;)/127 is the first coefficient of thes where 0<¢<, negative fors in the lower half-plane,
function. Expression (3) formally reproduces the wherem<¢<2sw, and O along the Euclidean axis.

renormalization-group-improved expansion of the Adler As concerns the Minkowskian quantit$) we combine

function the additional factors exp(i7u) due to the sinus with the
. exponential, which amounts to takimgcomplex with
Ds)=1+3, b, |22 4 —
(s)= 2 Pl (4) Y=+ arctar| ma], (12)
by taking coefficientd, in the expansiori2) of the form wherea= Boa(m?).
As already mentioned, the Borel transfoB(u) has sin-
1 Dnis gularities in the complex plane, correlated to the factorial
bn:n|(wﬁ )n- ©) increase of the perturbative coefficients of the Green func-
: 0

tions at large order§7—-9]. The precise form of the singu-
We consider also Minkowskian quantities, such as the had@rities is not known for the exact theory, but the position
ronic decay rate of the lepton,R,, which can be expressed and the nature of the first renormalons can be inferred from
formally as[5] general principles. In the case of the Adler function the first
ultraviolet (UV) renormalon is situated ai=—1 and the
1 (= first infrared(IR) one atu=2, and they are branch points of
1+ W_’&)jo du the type (&+u)?t and (2—u)”2, respectively, withy; com-
puted in[10] and y, in [7]. We mention also that the sum-
mation of the one-renormalon chains in massless QCD in the
: (6) large B, limit gives [8]

R,=3(1+ dew)

u
Xexp{ - m) B(u) F(u)

Here g is an electroweak correctio(u) is the Borel B(u) = 32¢ i (—D*k (12
transform of the Adler function, and 3(2—u) &2 [k2— (1—u)?]?’
F(u)= —12sin(mu) 7) i.e., all the singularities are pol¢€ is a scheme-dependent
mu(U=1)(u=3)(u—4) constant, withC= —5/3 in the modified minimal subtraction

(MS) scheme, an€=0 in the V schemg[3,6].

The series(2) converges only inside the circlel| <R,
passing through the nearest singulari®=1 for the Adler
function). Since the integration range in E{.) extends far

The extra factor sintu) in the Laplace-Borel integral is ge-
neric for Minkowskian quantities. Note that, strictly speak-
ing, expression$3) and (6) are not equivalent to the Borel
summation method, which requires an analytic continuatiorbu,[Siole this region, by inserting Eq2) into Eq. (1) and

. B(u)_ fl,r](-)m th_ztﬁogyergfréci d{ﬁk to ?n |nf|tn|te strip O_f integrating term by term one obtains a divergent expansion
Qﬁf‘va”'sd.'t'f‘g wi t 'Sf(;.ed oy C(E)rsa posi |v](ca_setm|e;X|s 11-13. By the technique of conformal mappings one ex-
Is condition is not satisfied in Q ecause ol Instantonge s the domain of convergence of a series beyond the limit

and infrared renormalons, whic_h produc_e pranch points 0mposed by the first singularity. I[2] we used the optimal
B(u) located along the real positive semiaxis. Fonformal mapping

We shall be concerned with the evaluation of the integral

(1) for complexa of the general forma=|ale”, where f N

=arga is the phase o&. In the case of the Adler function, w=w(u)= 1t ! u/2' (13)

with the running coupling at one loop in thé scheme 1+u++V1—u/2

a)(—s)=1/[B, In(—s/A2)], and writing —s=|s| e'(¢~ ™,

we have with the inverseu(w)=8w/(3—2w+3w?). The transfor-

mation (13) preserves the origin and maps the complex

—=Inﬁ—i( — &) ®) plane, cut along the real axis far>2 and foru<—1, onto
a A2 m : the interior of the circldw|<1, all the singularities of the

Borel transform being mapped onto the boundhmy=1.
Outside the Landau region, i.e., fds|>A\2,, we have The expansion in powers o,
cosy>0, so that

- B(u)=>, c,w", (14)
<3, 9) =0

is called optimal because it converges inside the cirale
<1, i.e.,in the whole domain of holomorphy of 8) (which
is the doubly cut complex plane in our case up to points
) (10) close to the branch cuts produced by renormalons. As was
already pointed out above, this power expansion yields,

and ¢ is related to the momentum plane variablby

Is|
AY

Y= arcta+(w— ¢)ln
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when compared with other conformal mappintse fastest 1 1
large-order convergence rateee a proof ifil]). In practice, I, (&)= Ef e YA w(u)]"du+ EJ e Y2 w(u)]" du
as discussed if2], the expansioi(14) is obtained by suitably C+ - 20)
reorganizing the summation of the original seri@s More
precisely, consider the expansion of eafhin powers ofw,
truncated at a finite ordeX. In particular, in our case this
expansion has the general form

for n=0,1,2 ..., whereC, (C_) are lines parallel to the
real positive axis, slightly abovéelow it. While the PV
prescription does not always give the expected re$ui$
N in QCD it has the advantage that it reproduces, to a larger
URJZE anwj, (15) extent than other choices, the momentum plane analyticity
j=n properties of the Green functions derived from the general
] o ) o principles of field theory. In particular, as discussediB],
with the coefficientss,; obtained by expressingin terms of  he Adler function calculated with the PV prescription has no
w [in our caseu(w) is given explicitly after formula13)].  ynphysical singularities in the regi¢g) > A2. The functions
Starting now with the expansiai2) truncated at finite order IEV(a), n=1,2..., arechosen so as to share some of the
N, and replacing each" by its approximantiy,, one obtains known properties with the unknowtP¥(a). This makes
a truncated expansion of the functi@ in powers ofw,  ihem suited for the definition ofPV(a) by means of the

which in the limitN—« gives Eq.(14). expansion
By inserting the optimal expansidi4) into the integral
(1) we obtain the formal development w
. IPV(@)= 2 cili¥(a). (21)
=0
(@)= 2, coln(a), (16)

(i) The convergence of the seri€al) for complexa is
with nota priori obvious. Indeed, the expansi@) converges at
points|w|< 1, therefore in the neigborhood of the integration
N T axis, but not necessarily on the boundary. One might there-
In(@)= Jo e "w du. (17 fore expect that the boundary singularities could manifest in
a dramatic way for very large ordefd, making the series

In the present work we shall adopt E@6) as the optimal (22 divergent, I@ke in the case of the original expansi@n
expansion of the Laplace-Borel integral. We point out that inln [2] we investigated mathematical models wifu) hav-
the physical case this seems to be a natural definition. Inng & few number of isolated branch point singularities and
deed, when attemp“ng to make the Borel summation of éeal values ofa. The numerical results confirm that the ex-

perturbation expansion in QCD, one starts with a finite sunPansion(2) in powers ofu gives results which deviate dra-
of the form matically from the exact value for largé, which is typical

for a divergent expansion. On the other hand, the improved
N % series(14) in powers of the optimal variable led to results
NEEDD bnj e Yay"du. (18 improving continuously with increasinty, and no signs of
n=0 0 divergence appeared even at very higHn the next section
we shall discuss the convergence of the optimal expansion of
the Laplace-Borel integral, bringing analytic arguments
which explain the numerical results obtained 2.

By replacing here the powens” with the approximations
(15), we replacd y(a) by an expansion of the form

N

go Cnln(@), (19 IIl. CONVERGENCE OF THE OPTIMAL EXPANSION

o o We investigate the expansiof2l) with the functions
which in the limitN—c leads to Eq(16). IPV(a) defined by means of the PV prescripti¢20). We

Actually, as mentioned above, the conditions for the Borel.sider in our discussion analytic functioBf real type,

summation are, because of the instantons and infrared renqra. which satisfyB* (u) =B(u*), whereu* is the complex
malons, not satisfied. Therefore, E46) can be considered conjugate ofu. Therefore, the coefficients, in the expan-
as a definition of (a), provided that(i) the integration path g, (2), as well as the coefficients, in the expansiori14)
in expressions such as E@) or (17) is consistently defined are rea'I. '
and (ii) the serieg16) is convergent. Let us devote a brief The contribution to Eq(20) of the integral along the con-
discussion to these conditions. tour C. can be written as

(i) As concerns the integration contour, let us notice that "
the expansioli16) has not a precise mathematical sense with
I,(2) defined by Eq(17), because the integration path runs IF(a)=| e Fnlquy, (22)
along the positive real semiaxis, where th&have cuts. We Cy
shall adopt, as if2], the generalized principal valu®V)
prescription, defining thel¥(a) as where
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Fa(u)= (23

: I

a—n nw(u).
We evaluate the integrdR?2) for large n by applying the
method of steepest descdritl,14. The saddle points are
given by the equation

w'(u) 1 04
w(u) an’ 24
which has four solutions, having at largehe form
1+i 1—i —1+i —1-i
W an, ﬁ an, W\/ﬁ, W\/ﬁ
(25
Of interest for the evaluation of E@22) is the point
UO:271/4(1+i)\/E:|U0|eia, (26)
with
™oy
lugl =2Y*\|a|n, a=7+7, (27)

which is situated in the first quadrant of thelane. Indeed,
since the phas@ of the parametea satisfies the condition
(9), then Raupy>0 and Imuy>0.

Near the saddle poirf,(u) can be expanded as

1
Fa(U)=Fn(Uo)+ 5 Fr(Uo)(u—ug)?+ - (28)

By using the expansion ofv(u) for large u in the upper

half-plane[w~ ¢(1—i+2/u), where /= (y2+i)/(V2—-1)],

we obtain, after a straightfoward calculation,
2904
(1+i)+an

%gne—23/4(1+i)¢m5

n
g Flto)~ gn ( 1— ) o2 Vi) ia

(29

and

1/4( )
Vna3

Fr(ug)~ =|Fn(up)|€?, (30

where

23/4

|Fh(ug)|=——, B
[ | |3 4
Therefore Eq(22) becomes

_ 53/4 AW,
|:(a)%§ne 2°"%(1+i)ynla

x L+ex;< .

eiB(U_Uo)2

|Fr(uo)|
5 du. (31)
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In order to evaluate the integral we first rotate the contbur

in the trigonometric direction in the upper half-plane, until it
becomes a line passing through the origin and the saddle
point ug. The rotation is possible sind&(u) (and therefore
alsow) has no singularities outside the real axis, and the arc
of the circle at infinity gives a vanishing contribution, as can
be easily verified. Along the rotated line=€“ t, wherea is

the phase ofu, defined in Eq.(27) andt is real, so the
integral in Eq.(31) becomes

(e Fr(ug)| .
e'“f exp(—[%e'(z”m(t—wobz
0

Since cos(a+ B)>0 for ¢ satisfying the conditior(9), the
integration axis lies in the two valleys near the saddle point
Uo. Therefore it can be deformed into the path of steepest
descent througl,, without passing outside the valleys. We
take the integral along the path going to infinity,

21[Fr(ug) e '#2p,

with real p. The phase of {—u,)? exactly compensates the
phase ofF}(ug), making the exponent of the mtegrand in

Eqg. (31 real. The integrand can be written as’eand the
integral done explicitly gives

) dt. (32

U—Ugp~ (33

—iBI2
(A e 23414y ra | ﬁ
Iy (a)=("e - 5 (34
[Fr(uo)|/2
i.e., up to a constant independentrof
I,T(a)w nt4sng- 23/4(1+i)\ﬁ/5' (35)

It is important to note that the path of steepest descent must
not cross the real axis, wheB{u) has singularities. From
Eq. (33) this implies— B/2= w/8+ 3y/4>0 which is written

as

a

The evaluation of the integral along the contdurin Eq.
(20) proceeds in a similar way. The saddle point of interest is

u6:2—1/4(1_i)\/5:21/4 /|a|ne—i(7r/4—¢/2)' (37)

which satisfies Ray>0 and Imuy<0 for ¢ in the range
given in Eq.(9). Instead of Eq(31) we have

Iy (a)~(£*)e” 2 a0 a

<J o -

where B8’ = w/4—3y/2 . We rotate the contouf_ in the
lower half-plane up to a line passing through the paift

and then deform it into the steepest descent path. One can
easily verify that this path does not cross the real axis for
— /8+ 3y/4<0 which is written as

|Fn 0

e'ﬁ (u—ug)?|du, (38
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¢<g. (39)

Collecting the terms we obtain the coefficiehtga) in the
PV prescription(20) as

n1/4§ne—23’4(1+i) Via nY4(¢* e 23411y ey
(40)

In(a)~

In order to examine the convergence of the expané&ip
we consider the ratio

Cnln(a)
Cn-1ln-1(a)

(41)

for largen. If the coefficient,, do not grow too rapidly, i.e.,

2

[cal <ce” (42)

for all e>0, then the expansiof®1) converges fola com-
plex in the domain

R (1+i)a Y?>0. (43

As we already discussed these conditions are equivalent t;?n

Eq. (9). If the coefficientsc,, behave at large like

1/2

|Cqf ~€°" (44)

for some positives, then the expansiof21) converges in the
domain

R (1+i)a Y2+c]>0, (45)

while for coefficientsc, which grow faster than exgh/?)
the new serie€?]) is also divergent. We mention that such a

PFBICAL REVIEW D 62 054007

— 1
a e
which means in particular that for thehadronic decay rate
the expansion defined as in E¢{R1) is convergent for
a(M?)<4/(9/3)~0.257.

The behavior of the coefficients, depends on the singu-
larities of B(w). By the conformal mappingl3) all the in-
stantons and renormalons are situated on the cireje-1,
appearing in conjugate pairs sinBéu) is of real type. As-
suming that all the singularities are poles or branch poats,
has the generic form

(48)

1
o= RS (= DPIDy (B + 1P +2)- - (py+0=1)

x dePitn), (49
where expf-iq;) denote the position of the renormalon in the
w plane,r; the residue, ang; the exponent of the singular-
ity. In Ref.[2] we investigated simple models with a finite
number of singularities, and real values of the paramater
for which the conditions of convergence are satisfied. In the
ysical case, one knows only that for the first UV renorma-
lon ;== and p;=2y;, and for the first IR renormalon
a,=0 andp,=2v,. In the largeB, case, as seen from Eq.
(12), all the singularities are polep; in Eq. (49) is indepen-
dent ofj, andr; are known. In this case the condition of
convergence, Eq(42), is satisfied. Therefore, the optimal
expansion on the Laplace-Borel integral, in the PV prescrip-
tion, for the summation of one renormalon chains in the large
Bo limit, is convergent, at least in the sector of the complex
a plane defined by the conditioi6).

In conclusion, we investigated the expansion of the

behavior is not excluded in general for series of the fOmeap|ace_Bore| integra| in perturba’[ive QCD, improved by the

(14) with a radius of convergence equal td14].
We recall, however, that the expressi@id) is valid only
for ¢ which satisfy the condition&36) and(39), i.e.,

ul<g. (40

which define a sector in the complex plangwe recall that
¢ is the phase oh). This inequality is a condition of the
applicability of the steepest descent method used by us.
found therefore that the expansi@¢@l), improved by the
optimal conformal mapping of the Borel plane, is convergen
if the Taylor coefficients,, of the expansioril4) satisfy the
condition(42), at least inside the secto46) of the complex
plane ofa, or, if they behave like Eq44), in the smallest of
the domaing45) and (46). For the Adler function in mass-
less QCD, using Eq.10) we write the condition46) in the
form

|s|
A_Q'V,

1
|7 —¢|<

ﬁln

where ¢ is the phase of and we haves|>AZ2. For the
Minkowskian quantities, from Eq11) we obtain

(47)

05400

analytic continuation of the Borel transform outside the per-
turbative convergence digknd, simultaneously, by reaching
the fastest convergence ratey means of optimal conformal
mapping[2]. The convergence properties of the new expan-
sion depend on the strength of the singularities of the Borel
transform, reflected in the behavior of the Taylor coefficients
of the expansior(14). If the Taylor coefficients satisfy the
condition(42), the new expansion of the Laplace-Borel inte-

ral converges in the sector of the complex plane of the

uplinga defined by Eq(46). The conditions are satisfied

in the case of the resummation of one-loop renormalons in
the largeB, limit. We mention that in the region where the
series converges the functiéfa) must be analytic. For the
Adler function in the complex momentum plane this corre-
sponds to the region described by E47), whereD(s) is
analytic.
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