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Model of quark and lepton masses: The neutrino sector

P. Q. Hung*
Department of Physics, University of Virginia, 382 McCormick Road, P. O. Box 400714, Charlottesville, Virginia 22904-471

~Received 7 April 2000; published 9 August 2000!

If neutrinos have masses, why are they so tiny? Are these masses of the Dirac type or of the Majorana type?
We are already familiar with the mechanism of how to obtain a tiny Majorana neutrino mass by the famous
seesaw mechanism. The question is: Can one build a model in which a tinyDirac neutrino mass arises in a
more or less ‘‘natural’’ way? What would be thephenomenological consequencesof such a scenario, other
than just merely reproducing the neutrino mass patterns for the oscillation data? In this article, a systematic and
detailed analysis of a model is presented, with, as key components, the introduction of a family symmetry as
well as a new SU~2! symmetry for the right-handed neutrinos. In particular, in addition to the calculations of
light neutrino Dirac masses, interesting phenomenological implications of the model will be presented.

PACS number~s!: 12.15.Ff, 12.10.Dm, 14.60.Pq, 14.60.St
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I. INTRODUCTION

There are strong indications—the latest of which ca
from the SuperKamiokande Collaboration@1#—that neutri-
nos do have a mass, albeit a very tiny one, and, as a re
‘‘oscillate.’’ The exact nature of the masses as well as
oscillation angles is an important subject which is under
tense investigation@2#. Consequently, there exists many i
teresting models which, in one way or another, try to acco
modate most of the known data. It is perhaps pruden
think that the subject of neutrino masses and oscillation
still a very open one.

It is fair to say that the extreme smallness of neutr
masses suggests something very peculiar about these
ticles. This peculiarity could come from the way the neut
nos obtain their masses and/or from the very special na
of the neutrinos themselves which distinguish them from
other particles. For example, do right-handed neutri
~present in most models of neutrino masses! carry quantum
numbers which are absent in some or all other~left- or right-
handed! fermions? After all, right-handed neutrinos,
present, would be singlets under SU(3)^ SU(2)L ^ U(1)Y
anyway.

Most efforts on the problem of neutrino masses, at le
on the model-building front, are concentrated on the c
struction of lepton mass matrices based on variousAnsätze.
There is one common assumption present in many of s
models: light neutrino masses arise from a seesaw me
nism @3#. The smallness of the neutrino masses would co
from an expression that goes asmD

2 /M, wheremD is the
Dirac mass andM is the Majorana mass which typically i
very much larger thanmD . In these models, the scale of ne
physicsM, as suggested by the lightness of neutrino mas
would be some kind of grand unified scale or even the bre
ing scale of left-right symmetry models@4#. ~Lepton number
is not a conserved quantity in this class of models.! The
seesaw mechanism is a very elegant approach whic
widely embraced.

However, one could not help but wonder if there might
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some other mechanism for obtaining tiny neutrino mass
and if so, how it would fare compared with the see-s
mechanism. Would this new mechanism shed light on ot
important issues? What would be its scale of new physi
Can one find an experimental distinction between the t
mechanisms? This was the topic discussed in Ref.@5#.

At the present time, it is not clear that, if neutrinos d
have a mass, it would be of the Majorana or Dirac type.
we have mentioned above, with Majorana neutrinos and
seesaw mechanism, one could ‘‘easily’’ obtain small ne
trino masses. Now if the mass were to be of the Dirac ty
one can straightforwardly write down a gauge-invaria
Yukawa coupling in the SM itself~endowed with right-
handed neutrinos, of course!. But to obtain a small neutrino
mass, one has to put inby handa Yukawa coupling which is
incredibly small, of the order of 10211. Such a fine tuning is
highly unnatural and that might be the reason why little
tention is given to the construction of models based on Di
neutrino masses. Did we leave something out by ignoring
What if the mass is truly of the Dirac type? Until this que
tion is settled, it is worthwhile to investigate possible alte
natives to the seesaw mechanism. This paper and a prev
one @5# propose one of such alternatives by constructing
model ofDirac neutrino masses where the smallness of th
values arises dynamically. One of the criteria used in bu
ing such a model is the wish to go beyond the mere pres
tation of a neutrino mass matrix. In particular, we would li
to see if there might be otherphenomenological conse
quenceswhich could be testable: New particles, new phys
signals, etc. This is the aim we had in mind in building o
model.

The construction of the model presented in Ref.@5# was
based on the following questions. If neutrino masses were
small compared to all other known masses, would there
an appearance of a special symmetry when one lets the m
go to zero? Could this special symmetry, if it exists, be
peculiar feature of the right-handed neutral leptons alo
Could there be additional purposes for its existence ot
than providing a small mass for the neutrinos? In oth
words, can one learn something more from it? It was fou
in Ref. @5# that there is indeed an interesting symmetry wh
acts only on the right-handed neutrinos and which, in ad
©2000 The American Physical Society15-1
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P. Q. HUNG PHYSICAL REVIEW D 62 053015
tion to providing a reason for the smallness of the neutr
masses, also constrains the nature~even or odd! of the num-
ber of generations. Furthermore, the way in which neutr
masses are constructed can be used to build a mode
charged lepton and quark masses. In addition, this partic
way of constructing masses might even have some bea
on the strongCP problem. Last but not least, are there a
ditional tests of various neutrino models other than neutr
oscillations? For the seesaw mechanism with Majorana n
trinos, one already sees that one of such additional signa
for example, the phenomenon of neutrinoless double b
decay. As it will be presented below, the addtional signals
the model presented here will involve a number of very c
crete predictions: the absence of neutrinoless double beta
cay, the possible presence of ‘‘low mass’’~a couple of hun-
dreds of GeV, e.g.! vectorlike fermions, among other thing
In particular, the detection of these vectorlike fermions
not in any way involve neutrinos.

One particularly important feature of our model is t
following predictions for neutrino oscillations, assumin
only the validity of the atmostpheric and solar neutrino da
~1! The three light neutrinos are nearly degenerate;~2! If the
light neutrinos have a mass large enough to form a com
nent of the hot dark matter~HDM! @6# then only the
Mikheyev-Smirnov-Wolfenstein~MSW! solution to the solar
neutrino oscillation is favored;~3! If the vacuum solution to
the solar neutrino problem turns out to be the correct o
our model will only be able to accomodate tiny neutri
masses, around 1023 eV or less, ruling out near-degenera
neutrinos as components of HDM. As a result, in our mod
one cannot have both vacuum solution and HDM. We w
show below the correlation between the masses and the
ferences of mass squared,Dm2, which enter the neutrino
oscillation phenomena.

Assuming the existence of the aforementioned symme
how can one construct Dirac neutrino masses to be dyna
cally small? By ‘‘dynamically,’’ it is meant that the mass
zero at tree level and that any nonzero value would hav
arise at the one-loop~or more! level. Now, the peculiar~and
toughest! thing about neutrinos is the fact that their mass
so small—at least eleven orders of magnitude smaller t
the electroweak scale. In constructing our model for Di
neutrino masses, it is then reasonable to ask under what
ditions would the dynamical Dirac mass of the neutrin
obtained at the one loop level be ‘‘naturally’’ small, i.e
devoid of excessive fine-tuning. In this paper, we present
following interesting results. In the four-generation model
is found that the fourth neutrino can be naturally heavy wh
the other three obtain their masses at one loop, with
result that these masses can be tiny provided some ratio
masses of particles which participate in the loop integrat
are ‘‘large,’’ regardlessof their actual values. This is inter
esting because, as we shall see below, some of the par
which participate in the loop integration, in particular th
lightest ones, can have masses as low as a few hundred G
and which could provide a direct test of this model. We w
also see that, in order to obtain very small neutrino mas
at least one of the particles needs to be much heavier tha
lightest one—a result which is somewhat reminescent of
05301
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seesaw mechanism. We will also see that the mass of
light neutrinos is intrinsically tied to the extra global sym
metry present in the scalar sector of the model. In fact,
extra Nambu-Goldstone~NG! bosons which are not absorbe
by the @family and SU(2)nR

] gauge bosons acquire a ma
due to the presence of the gauge-invariant ‘‘cross-couplin
terms in the potential which explicitely break the extra glob
symmetry.

The above brief statement will be made clearer in
discussion of neutrino masses. Notice, in particular, that
result given for light neutrino masses in Ref.@5# is only a
very special case of the present discussion.

The plan of the paper is as follows. First, the model
presented with a description of the gauge structure al
with its particle content. It is shown how a new symmet
prevents neutrinos from obtaining a mass unless it is brok
Next, the special properties of this extra symmetry associa
with the right-handed neutrinos are discussed. In particu
if that symmetry is a chiral SU~2! as is the case in this pape
nontrivial constraints coming from the nonperturbative W
ten anomaly@7# can be applied to the nature of the number
families. This is the extra bonus mentioned above. The pa
then proceeds to discuss the generation of light neut
masses, principally by radiative corrections of the type m
tioned above. It is then followed by a discussion of the ne
trino mass matrix. In particular, we will present the corre
tion between the values of the neutrino masses andDm2.
Most importantly, we will show howDm2 increases or de-
creases with the masses themselves, with two resulting
plications: either one has HDMand MSW or vacuum solu-
tion and no HDM. Either of these solutions will have a
important cosmological implication. We end the paper with
brief discussion of the charged lepton mass matrix, the
mary purpose of which being the wish to complete the d
cussion by presenting some examples of what the oscilla
angles might look like. A follow-up paper will deal sepe
ately with the charged lepton sector and, as a conseque
with a full discussion of the angles.

We would like to emphasize for the purpose of clarity th
the charged lepton sector~which will be dealt with in a sepa-
rate paper! is different in structure from the neutrino secto
as we shall see below, and does not have the same hiera
cal structure. The fact that, in this model, the three lig
neutrinos are nearly degenerate does not imply that it wo
be the same in the charged lepton sector. In fact, it is no
we will show in a subsequent paper.

Finally, a section will be devoted to various other ph
nomenological implications of the model. We shall assu
throughout this paper the existence of right-handed neu
nos.

Since this manuscript is meant to be comprehensive,
hence lengthy, one could skip the three subsections of
next section, after first reading its introduction.~Its reading is
nevertheless recommended because the physics motiva
are discussed there.!

II. A MODEL

It is well known that all that is needed to give neutrinos
mass is to simply add extra right-handed neutrinos to
5-2
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MODEL OF QUARK AND LEPTON MASSES: THE . . . PHYSICAL REVIEW D 62 053015
standard model. One can then construct a~Dirac! mass term
with an arbitrary Yukawa couplinggn l̄ LfnR1H.c., which
can be made to be as small as one wishes. This, of cours
unsatisfactory because, if neutrinos have masses in the
range or less, this would require the Yukawa couplinggn to
be of O(10211) or less. Fine-tuning to such a precision
normally considered to be unnatural. At this point, one mi
be tempted to try to explain this fact by simply invoking
fourth generation with a democratic mass matrix, at least
the neutrinos, as has been done by Ref.@8#. The diagonaliza-
tion of the neutrino mass matrix would then give one hea
eigenstate and three massless states. By adding some
trary phases to the mass matrix, one can ‘‘provide’’ a sm
mass~depending on the values of those phases! to the three
neutrinos. This purely phenomenologicalAnsatz~Ref. @8#!
appears to ‘‘fit’’ the recent data on neutrino oscillations w
the appropriatechoicesof the phases. However, the four
generation lepton masses came out to be extremely h
and split, which practically seems to be ruled out by analy
of precision experiments@9#.

In Ref. @5#, a model of Dirac neutrino masses was co
structed and based on a four generation scenario that
very different from the democraticAnsatzmade in Ref.@8#.
One of the reasons for using such a scenario is the fact
as of the present time, a fourth generation isnot ruled out by
experiment and, as a consequence, it is interesting to exp
its possible implications. A recent review@11# gave a com-
prehensive discussion of various topics concerning qua
and leptons beyond the third generation, including
present experimental status and future searches.

If a fourth generation were to be used in the investigat
of neutrino masses, one should keep in mind various p
nomenological constraints concerning not only leptons
also quarks. For instance, constraints on ther parameter
limit the mass splitting within each doublet of extra quar
and leptons: the up and down members of a fourth gen
tion should be very close in mass. They should be long-liv
enough to escape present detection. This, in turns, tell
something about the mixing between the fourth genera
and the other three. All of these issues have been descr
in Ref. @11#. In the construction of the model presented
Ref. @5#, these phenomenological constraints were kep
mind.

As mentioned briefly in the Introduction, our approach,
described in Ref.@5#, is based on a dynamical justificatio
for the small value of the neutrino Yukawa couplings. T
question that was asked was: Could there be a scenar
which a symmetry appears as one lets the Yukawa coup
go to zero? The tiny Yukawa coupling which would give t
neutrino a very small mass would then arise dynamica
when that symmetry is broken. These Yukawa couplin
then appear as effective couplings which could be small
dynamical reasons and are not fundamental parameters
are put in by hand and which are needed to be fine-tun
What is the nature of that symmetry and how a dynam
Yukawa coupling appears will be the subject of this sect
and the following two.

It is obvious that an extension of the standard model~SM!
is needed in addressing the above issues. One simply ca
05301
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stay solely within the SM if one wishes to deal with the ma
of the neutrinos. What it is that one needs when one g
beyond the SM is a matter of taste, modulo a very obvio
requirement: predictability of new phenomena or partic
which can be tested.

We first describe the model, presenting its gauge struc
and representations. Next, explanations are provided for
reasons behind the choices of the extended gauge group
its particle content. The crucial assumption here is the e
tence of two new symmetries, one of which will be particu
to right-handed neutrinos, as alluded to earlier, and the o
one is a family gauge symmetry. As we shall see below, i
the breaking of these new symmetries that will give a m
to the neutrinos.

In this work, the SM is extended in the following way
Generically, it takes the form SU(3)c^ SU(2)L ^ U(1)Y
^ (family symmetry!^~right-handed neutrino special sym
metry!. Why a ‘‘family symmetry’’? This is so for two rea-
sons:~a! We wish to investigate the family replication prob
lem and the mixing among different generations and~b! the
special symmetry endowed by the right-handed neutri
might have some bearing on the family symmetry itself. A
ter all, if one would like to investigate the family problem
some kind of family symmetry—be it discrete or continuou
global, or gauge—is needed. Why a special symmetry for
right-handed neutrinos? The reasons were already
pounded above: To provide a framework for an understa
ing of the smallness of neutrino masses. Our next task is t
to determine what this special symmetry might be and w
form the family symmetry might take.

Our model is described by

SU~3!c^ SU~2!L ^ U~1!Y^ SO~Nf ! ^ SU~2!nR
, ~1!

where SO(Nf) and SU(2)nR
are the family gauge group an

the special gauge group for the right-handed neutrinos,
spectively. The particle content of the model is listed
Table I. Notice that we have denoted the right-handed n
trinos by hR5(nR

a ,ñR
a) because they are assumed to tra

form as doublets under SU(2)nR
. The two options listed for

the right-handed neutrinos as well as the meaning of
nonstandard particles will be discussed below. We wo
first like to explain the choices of the extra gauge grou
Here, the extra symmetries are chosen to begauge symme-
tries because, as it is well known, powerful constraints c
be obtained from models built on the gauge assumption.

A. Why SU„2…nR
?

Let us first look at Table I. In this model, all standa
~left-handed and right-handed! particles are singlets unde
SU(2)nR

. Hence the subscriptnR . In this respect, SU(2)nR
is

very different from SU(2)R of the popular left-right model
@4#. In that model, right-handed quarks and leptons fo
doublets under SU(2)R , for every family. Because of ou
assignment, all weak interactions among standard parti
are pureV-A, in contrast with the left-right model. What i
the motivation behind our choice that makes it so differe
from the left-right model? To answer that question, let
5-3
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P. Q. HUNG PHYSICAL REVIEW D 62 053015
recall an interesting feature of chiral SU(2): thepresence or
absence of the so-called Witten global anomaly.

If chiral fermions transform as doublets under SU(2),
there exists a nonperturbative anomaly—the so-called Wi
anomaly @7#—associated with anodd number of doublets.
Briefly speaking, this is so because the fermionic deter
nantAdeti¹” (Am) changes sign under a ‘‘large’’ gauge tran
formationAm

U5U21AmU2 iU 21]mU if the number of chiral
doublets is odd. This would make the partition functionZ
vanish and the theory would be ill defined. This nonpert
bative anomaly would then require the number of Weyl do
blets to beevenin order for the theory to be consistent.„This
ambiguity in sign stems from the fact that the fourth hom
topy groupP4@SU(2)#5Z2 .… Other groups that also hav
similar nontrivial constraints are Sp(N) for anyN andO(N)
for N<5.

It is amusing to recall a well-known but forgotten fa
about the SM. There the chiral gauge group is SU(2)L . Each
family contains one lepton and three quark doublets and
such, is free from the global Witten anomaly.~Let us recall
that the cancellation of theperturbativetriangle anomaly in
the SM only relates the lepton charge to that of the quark.! If,
instead of three, the number of colorsNc were arbitrary, the
freedom from such an anomaly would require 11Nc to be
even, and hence,Nc to be odd, namely,Nc53,5, . . . . Why
nature choosesNc53 instead of some other odd number is
question which can only be answered in the context of so
deeper theory such as, e.g., SU(5). Although the Witten
anomaly does not fix the size ofNc , it is nevertheless a
powerful constraint in the sense that,once a fermion conten
is known@e.g., one color singlet~leptons! and one fundamen
tal representation~quarks! in the SM#, Nc is constrained
~e.g., odd in the case of the SM!.

The above simple lesson taught us something about
powerful constraint that a chiral SU(2) exerts on the num
of chiral doublets. This is the reason why it is chosen to

TABLE I. Particle content and quantum numbers of SU(3c

^ SU(2)L ^ U(1)Y^ SO(Nf) ^ SU(2)nR
.

Standard fermions qL5(3,2,1/6,Nf ,1)
l L5(1,2,21/2,Nf ,1)

uR5(3,1,2/3,Nf ,1)
dR5(3,1,21/3,Nf ,1)

eR5(1,1,21,Nf ,1)

Right-handedn ’s Option 1:hR5(1,1,0,Nf ,2)
Option 2:hR5(1,1,0,Nf ,2);

hR85(1,1,0,1,2)

Vectorlike fermions FL,R5(1,2,21/2,1,1)
M1L,R5(1,1,21,1,1)

M2L,R5(1,1,0,1,1)

Scalars Va5(1,1,0,Nf ,1)
r i

a5(1,1,0,Nf ,2)
f5(1,2,1/2,1,1)
05301
n

i-

-
-

-

as

e

he
r
e

the special symmetry of the right-handed neutrinos. Let
contrast the constraint coming from SU(2)nR

with that com-

ing from SU(2)R ~left-right model!. For our model, with
SU(2)nR

, only hR transforms as doublets. Absence from t

Witten anomaly then requires the number of such doublet
be even. If hR carries, in addition, family indices then th
anomaly requirement restricts the number of generation
be evensuch as in option 1 as indicated in Table I. If the
exists anhR which is a family singlet~denoted byhR8 ), the
number of generations would beodd such as in option 2 of
Table I. With the left-right model,each familycontains four
doublets of SU(2)R : (nR ,eR) and (uR ,dR) i with i
51, . . . ,3.Therefore, the Witten anomaly requirement is a
tomatically satisfiedper family. This is one of the few dif-
ferences between our model and the left-right model.

A final word of caution is in order here. Although th
Witten anomaly constraint allows us to make a statemen
the evenness or oddness of the number of generation
subject to which we shall come back in the ne
subsection—itdoes notdetermine that number. This shou
come from a deeper and as-yet-unknown theory. Our goa
much more modest: Given a fermion content~option 1 or 2
below!, we can say whether or not the number of generati
is odd or even, and that is all. We shall, however, try
constraint that number from a different route which is mo
phenomenological in nature, and point out the differen
between options 1 and 2.

B. Why SO„Nf…?

In the construction of any model, there is a time-honor
requirement: the absence of the perturbative trian
anomaly. Even if the Witten anomaly were absent, this
quirement is a must for any gauge theory.~It just happens
that, in the SM, both requirements are simultaneously sa
fied.! In our case, if a family index is assigned to all standa
fermionsand to hR , the family gauge group that is chose
cannot be a vectorlike theory, which is anomaly-free, b
causehR posseses an additional quantum number, tha
SU(2)nR

. This is unlike QCD or even the left-right model
left and right-handed fermions carry similar family quantu
numbers. A safe group and representations have to be
sen.

The choice made in this paper is SO(Nf) for the family
gauge group, with chiral~left- and right-handed! fermions
transforming as~real! vector representations withNf compo-
nents each. As such, the model is also free of the perturba
triangle anomaly. Our model based on SU(3)c^ SU(2)L
^ U(1)Y^ SO(Nf) ^ SU(2)nR

with an even number of

SU(2)nR
doublets and chiral fermions transforming asvector

representationsof SO(Nf) is free from both nonperturbative
and perturbative anomalies.

C. Constraints on Nf

As shown in Table I, there are two options forhR , each
of which should contain an even number of SU(2)nR

dou-
blets.
5-4
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MODEL OF QUARK AND LEPTON MASSES: THE . . . PHYSICAL REVIEW D 62 053015
~a! Option 1: hR
a carries the family indexa51 . . .Nf

whereNf52,4,6,8, . . . .
~b! Option 2: Here we havehR8 ~a family singlet! andhR

a .
The constraint is now 11Nf5 even, which means thatNf

53,5,7, . . . ~excluding the trivial case of 1 family!.
Unlike the SM where one knows the fermion content

each family, i.e., quarks and leptons, and hence the natu
Nc—it is odd—our scenario involves incomplete experime
tal informations, and as such, the nature~odd or even! of Nf

cannot be completely fixed. Each choice, however, rep
sents a distinct particle content~no family singlets for the
even option and one family singlet for the odd option! which
implies a possible distinct route for a yet-unknown unific
tion.

Recognizing the fact that there are deep differences
tween the even and odd options—a point to be discus
below—and in the absence of a deeper theory, one m
wonder what can be done to narrow down the choices,
between odd or even, but within each option itself. Below
present an argument that could help in finding a way to f
ther restrictNf . This argument is only suggestive, being
combination of ‘‘theoretical prejudice’’ and phenomenolog
cal constraint.

One might require that gauge couplings are free fr
Landau singularities below the Planck scale in such a w
that unification of the SM gauge couplings, if it exists, o
curs in the perturbative regime@10#. With this criterion, one
can see that the even option can only accomodateNf
52,4,6, while the odd option can only accomodateNf
53,5. This is because forNf>7, one or more gauge cou
plings will ‘‘blow up’’ before the Planck scale. There are n
reasons, in the absence of a deeper theory, to rule out an
the above choices. This will require other yet-unknown co
ditions. The only thing one can say, in the context of o
model, is that electroweak precision experiments appea
rule outNf>5 @9# and and that existential facts tell us th
Nf is at least three. This leaves us with the choiceNf54 for
the even option andNf53 for the odd option.

If Nf<4 comes from the above argument, what then
the role of the Witten anomaly in all of this? It tells us abo
the particle content of the right-handed neutrinos. ForNf
54, the right-handed neutrinos are simplyhR5(1,1,0,4,2)
while for Nf53, one hashR5(1,1,0,3,2) plus a family sin-
glet hR85(1,1,0,1,2). What observed differences can there
between these two options? The former predicts the e
tence of a fourth generation whose consequences have
recently discussed in Refs.@10# and @11,12#. The latter pre-
dicts the existence of a neutral family-singlethR8 @doublet
under SU(2)nR

] which could have cosmological conse
quences of a yet-unknown nature. In addition, as we p
out below, it appears that the even option prefers three
most degenerate light neutrinos while the odd option pre
a hierarchical structure for the light neutrinos. If a four
generation is discovered, which alone does not necess
imply the even option presented here, and if the light n
trino masses are convincingly ‘‘proven’’ to be nearly dege
erate ~instead of a hierarchical structure!, the even option
might be viable. Furthermore, as we shall see below, ano
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possibility for testing this model is to look for signals o
some of the lightest particles—the vectorlike fermions
which participate in the loop diagram of Fig. 1. As discuss
below, the light neutrino masses depend only on the ratio
these masses and not on their magnitudes and these ve
like fermions can be as light as a few hundred GeVs.

III. NEUTRINO MASSES

This section will be devoted to the discussion of ho
neutrino masses can be generated in our model for optio
We shall comment on option 2 at the end of the manuscr
We shall concentrate only on the lepton sector and, in p
ticular, on the neutrino one, leaving the full discussion of t
charged lepton and quark sectors for a subsequent pub
tion.

Since we will be dealing only withDirac neutrino masses
we shall require thatall fermions be endowed with a globa
B-L symmetry. Since we are concerned only with leptons
this section, a globalL symmetry is sufficient for the presen
purpose. This globalL symmetry wouldpreventa Majorana
mass term of the typehR

i ah i a R , where i 51,2 and a
51, . . . ,4.Only Dirac masses will be allowed.

There might be other suggestive reasons as to why D
masses for the neutrinos might be attractive. For exampl
combined fit of massive neutrinos as components of hot d
matter ~HDM! and atmospheric neutrino oscillations see
to prefer a scenario in which two or three light neutrinos a
nearly degenerate and have mass in theO(eV) range. Recent

FIG. 1. Feynman graph showing the computation ofG̃n , where

mn5G̃n(v/A2).
5-5
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P. Q. HUNG PHYSICAL REVIEW D 62 053015
data on neutrinoless double beta decay~or absence thereof!
@13# appear to rule out Majorana neutrinos heavier than
eV, at least in the simplest versions. Here it will be sho
how, in our scenario, one can obtain three near-degene
neutrinos whose mass can be of the order of a few eV’s
is of the Dirac type. Consequently, in our model, there w
beno neutrinoless double beta decay, and hence no cont
on the Dirac neutrino masses from such a search.

As we have discussed above, option 1 contains no fam
singlet fermion field and freedom from the Witten anoma
dictates that the number of families should be even. Furth
more, we have argued that this even number should be f
As a result, the gauge group for this option is

SU~3!c^ SU~2!L ^ U~1!Y^ SO~4! ^ SU~2!nR
~2!

The reader is referred to Table I for a list of particles th
participate in this model.

A. Computation of the diagonal elements
of the 4Ã4 neutrino mass matrix

Without the extra vector-like fermions,F, M1, and M2,
the only gauge-invariant Yukawa coupling involving lepto
would beLY5gEl̄ L

afea R1H.c. ~where a51, . . . ,4 is the
family index!, giving rise to equal masses for the charg
leptons. Unbroken SU~2!nR forbids a similar term for the
neutrinos and they remain massless at this level.~Notice that,
since we are only interested in Dirac neutrino masses
gauge-invariant Majorana mass term of the typehR

i ah i a R is
forbidden byL symmetry.! We knowthat the charged lepton
are not degenerate in mass. We alsoknow that the width of
theZ boson@14# constrains the mass of the fourth neutrino
be larger than half theZ mass. This is where the vectorlik
fermions listed in Table I come in. Because of their vect
like nature, they can havearbitrary gauge-invariant bare
masses. We shall assume that theF fermions which trans-
form as a doublet under SU(2)L are degenerate in mass. It
seen below that some of these masses can be as low as
hundred GeV and are thus accessible to future experime
searches. As for the S parameter constraint, it is well-kno
that, to leading order, vectorlike fermions which carry ele
troweak SU(2)L quatum numbersdo not contribute toS if
one has adegenerateSU(2) doublet. The reason for thi
being so is because the right-handed contribution can
exactly the left-handed contribution. Therefore, to lead
order, there is no constraint from theSparameter on the mas
of the F fermions. This point and other issues concern
quarks and leptons beyond the third generation are discu
in Ref. @12#.

The Yukawa part of the Lagrangian involving leptons c
be written as

L lepton
Y 5gEl̄ L

afea R1G1 l̄ L
aVaFR1GM1

F̄LfM1R

1GM2
F̄Lf̃M2R1G2M̄1LVaeR

a1G3M̄2Lrm
a haR

m

1MFF̄LFR1M1M̄1LM1R1M2M̄2LM2R1H.c.

~3!
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The assumption of an unbrokenL symmetry forbids the pres
ence of Majorana mass terms as mentioned above.

Notice that the values ofMF,1,2 are arbitrary. What they
might be will be the subject of the discussion presented
low. After integrating out theF, M1, and M2 fields, the
relevant part of the effective Lagrangian belowMF,1,2 reads

L lepton
Y,eff 5gEl̄ L

afea R1GEl̄ L
a~VafVb!eb R

1GNl̄ L
a~Vaf̃r i

b!hb R
i 1H.c., ~4!

where

GE5
G1GM1

G2

MFM1
; GN5

G1GM2
G3

MFM2
. ~5!

This is a tree-level effective Lagrangian whose consequen
are now presented.

Let us discuss the implication of each term on the rig
hand side of Eq.~4!. As stated in the preceding paragrap
the first term gives rise to equal masses for the charged
tons. The second term would lift the degeneracy of
charged lepton sector onceV acquires a vacuum expectatio
value ~VEV!. The third term gives rise to a neutrino ma
onceboth V and r acquire a VEV. It is clear that, in ou
model, neutrino masses can appear only whenboth SO(4)
and SU(2)nR

are spontaneously broken while the charg

lepton masses are nonzero~but equal! even if SO(4) is un-
broken. Only when SO(4) is broken will the charged lept
mass degeneracy be lifted.

Let us assumêV&5(0,0,0,V) and ^r&5(0,0,0,V8^ s1),
wheres15(0

1). Notice that each component@under SO(4)]
of r transforms as a doublet under SU(2)nR

. If we denote the

fourth element ofhR by (NR , ÑR), one can use the abov
two VEV’s along with^f&5(0,v/A2) (v'246 GeV! in Eq.
~4! to write down a Dirac mass term for the fourth generati
neutrino, namely,

G̃N

v

A2
N̄LNR1H.c.; G̃N5G1GM2

G3

V V8

MF M2
, ~6!

giving

mN5G̃N

v

A2
. ~7!

At tree level, all other neutrinos are massless. Their mas
arise at the one-loop level as shown below. TheDirac mass
of the fourth neutrino could be ratherheavy. In fact, it is not
unreasonable to expectG1 , GM2

, andG3 to be of the order
of unity. In consequence, as long as

V V8/MF M2;O~1!, ~8!

one might expect the fourth neutrino to be even as heav
175 GeV. Certainly, the CERNe1e2 collider LEP bound of
MZ/2 can easily be satisfied.
5-6
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MODEL OF QUARK AND LEPTON MASSES: THE . . . PHYSICAL REVIEW D 62 053015
Why are the other three neutrinos massless at tree le
First, it is so because, from Eq.~3! and Eq.~4!, one can see
that, after integrating out the heavy vectorlike fermion
there is no~tree-level, dimension 6! operator which contains
as a factor, a term such asl̄ L

mf̃h iR
m , wherem51,2,3 is a

family index, which would give rise to a mass term for th
three light neutrinos. An effective~dimension 6! operator
which contains the aforementioned term would necessa
come from a loop integration such as the one shown in F
1. Just like the various terms which appear in Eq.~4!, this
effective operator would also contain the scalar fieldsV and
r. It would appear as

l̄ L
mf̃h iR

m ~Vara i !. ~9!

As pointed out in the Appendix, a term such as (Vara i)
appears as part of a quartic term in the potential which
plicitely breaks the extra global symmetry that the sca
sector posesses. As a result, the extra NG bosons are, in
pseudo-NG bosons and acquire a mass which is proporti
to the couplingl4 as shown in Eq.~A8! of the Appendix.

In order to compute the one-loop contributions to neutr
masses, let us recall, in this section, the results obtaine
the Appendix concerning the relevant mass eigenstates in
scalar sector. We have

H45cosaH̃42sinah̃4 , ~10a!

h45sinaH̃41cosah̃4 , ~10b!

V i5cosbṼ i2sinb Rer̃ i , ~10c!

Rer i5sinbṼ i1cosb Rer̃ i , ~10d!

wherei 51,2,3 and where the states with the tildes sign
mass eigenstates. The Yukawa couplings which will be
volved in the computation of neutrino masses can now
written in terms of the mass eigenstates. For exam
G1 l̄ L

aVaFR can be written as

G1 l̄ L
4V4FR5G1 l̄ L

4~cosaH̃42sinah̃4!FR , ~11!

G1 l̄ L
i V iFR5G1 l̄ L

i ~cosbṼ i2sinbRer̃ i !FR , ~12!
b
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where i 51,2,3. Also,G3M̄2Lrm
a haR

m (m51,2) can now be
written as

G3M̄2Lr1
4h4R

1 5G3M̄2L~sinaH̃41cosah̃4

1 i Im r4!1h4R
1 , ~13!

G3M̄2Lr1
i h iR

1 5G3M̄2L~sinbṼ i1cosb Rer̃ i

1 i Im r i !1hR
1,i . ~14!

The above equations, in addition toGM2
F̄Lf̃M2R , form the

basis for constructing the one-loop diagrams as shown
Fig. 1. As one can immediately see, the only scalars t
participate in the loop integration areH̃4 , h̃4 , Ṽ i , and r̃ i .
The contributions to the light neutrino masses will contain
factor cosb sinb5sin(2b)/2 for Ṽ i and 2cosb sinb for
Rer̃ i .

The masses of the physical Higgs scalarsH4 andh4, and
those of the pseudo-NG bosons Rer̃ i ( i 51,2,3), are given
by Eqs.~A4!,~A8! in the Appendix. Since the one-loop con
tributions to the fourth neutrino mass are expected to
small compared with its tree-level value, we shall conce
trate in this section on the light neutrino masses. There
shall be concerned only withṼ i ~NG bosons! and Rer̃ i
~pseudo-NG bosons! ( i 51,2,3). In the ’t Hooft-Feynman
gauge, the NG bosons will have a propagator with a m
which is that of the family gauge bosons. We shall denot
by MG . We shall call the mass of the pseudo-NG boso
M P .

The result obtained from the diagrams as shown in Fig
for the three light neutrinos is

mn5G̃n

v

A2
, ~15!

where

G̃n5G1GM2G3

sin~2b!

32p2
@ I ~Ṽ !2I ~Rer̃ !#, ~16!

and where
I ~Ṽ !2I ~Rer̃ !5
1

MF2M2
H MF$MF

2@MG
2 ln~MG

2 /MF
2 !2M P

2 ln~M P
2 /MF

2 !#1MG
2 M P

2 ln~M P
2 /MG

2 !%

~MG
2 2MF

2 !~M P
2 2MF

2 !
2~MF↔M2!J .

~17!
For notational convenience, we shall define

DI ~G,P![I ~Ṽ !2I ~Rer̃ !, ~18!

It is convenient to express the mass of the light neutrinos
the following ratio:
y

mn

mN
5

MFM2

VV8

sin~2b!

32p2
DI ~G,P!, ~19!

wheremN is defined by Eq.~7!.
5-7
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P. Q. HUNG PHYSICAL REVIEW D 62 053015
One should mention for completeness the tiny one-lo
contribution to the fourth neutrino mass. If we denote by t
contribution bydm4, it is straightforward to see that it i
given precisely by the same formula for the light neutri
mass, Eq.~15!, with the following replacements:b→a,
MG→MH4

, M P→Mh4
, namely,

dm45G̃4

v

A2
, ~20a!

G̃45G1GM2G3

sin~2a!

32p2
DI ~G,P!, ~20b!

where the form ofI (H̃4)2I (h̃4) is identical to Eq.~17! with
the replacements as mentioned above. This contribution
play an insignificant role in the mass matrix, but it has to
mentioned for completeness.

The above results were obtained at one loop. One w
ders if higher loop contributions might be significant. It tur
out that, because of the nature of the interactions, the
correction occurs at the three loop level. It means that
correction to the one-loop light neutrino mass is at the tw
loop order. Considering that already the one-loop resul
O(,10210), a two-loop correction to that result would mo
likely be insignificant, even for the mass splitting to be d
cussed below. Above all, the experimental results are
from being precise enough to even contemplate such a
correction. From here on, we shall assume that these th
loop corrections are insignificant in the computation of t
mass splittings.

FIG. 2. The ratioR[mn /mN @Eq. ~23!# as a function ofM2 ~in
units of MF , and hence the notationMF51), for M P55 and for
various values ofMG . For visibility purpose, a few curves hav
been inflated by factors3102,3,5,6.
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At this stage, the three light neutrinos are degenerate
discussion of the lifting of the degeneracy will follow a mo
general discussion of the implications of Eq.~19!. It is clear
that the ‘‘light family’’ symmetry would have to be broke
in order for the ‘‘light’’ fermions to mix. It is also clear tha
the neutrino masses~one heavy and three light! derived so
far represent only the diagonal elements of a 434 neutrino
mass matrix. If the discussion presented in this section
light neutrino masses is to be at all interesting, it is impe
tive to assume that the bulk of at least one, if not all, of t
light neutrino masses comes from Eq.~15!.

At this point, an important remark is in order here. As w
have stressed above, the near degeneracy of the light ne
nos in no way implies that a similar situation will occur
the charged lepton sector. In fact, we will show in a separ
paper that this will not be the case.

Under what conditions willG̃n be of the order of 10211 or
less? First of all, as we have seen from Eq.~7!, in order to
have a ‘‘heavy’’ fourth neutrino, one should hav
G1GM2G3(V V8/MF M2)'O(1). This puts a condition on
the angleb itself, namely, (tanb[V8/V)

tanb'
1

G1GM2G3

MFM2

V2
. ~21!

As we have stated earlier, it is not unreasonable to ass
that G1 , GM2

, and G3 to be of the order of unity. With

MG
2 ;g2V2 @whereg is the SO(4) gauge coupling#, Eq. ~21!

becomes

tanb'g2
MF

MG

M2

MG
. ~22!

The above estimate for the constraint on the angleb will be
used in our computation of the light neutrino masses. W
this in mind, we can now proceed to make an estimate of
ratio mn /mN , where nowV V8/MF M2;O(1) and Eq.~19!
becomes

mn

mN
5

sin~2b!

32p2
@ I ~Ṽ !2I ~Rer̃ !#. ~23!

As we have seen above, the result~23! depends only on
ratios of masses of the particles in the loop integral and
on their absolute values. Because of that fact, the results
be shown in units ofMF which can be as small or as large
one wishes.

Before moving on to discuss the implications of Eqs.~19!
and~23!, one remark is in order here. From Eq.~17!, one can
see that the light neutrino mass vanishes whenMG5M P .
Since there is no reason~as far as the present construction
the model is concerned! for this equality to be valid, we shal
dismiss this possibility. We shall concentrate instead on
criteria for having smallmn for arbitrary MG and M P ~and
MF andM2 as well!.

The results are shown in Figs. 2–5. A few comments
in order here. First of all, as we have mentioned above,
results depend on ratios of the four masses which enter
5-8
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MODEL OF QUARK AND LEPTON MASSES: THE . . . PHYSICAL REVIEW D 62 053015
loop integralMF , M P , MG , andM2. One can symbolically
denote one of the masses asM51, and the other three wil
be multiples of that chosen one. Which one should be cho
is a matter of convenience and phenomenological interes

FIG. 3. The ratioR[mn /mN @Eq. ~23!# as a function ofM2 ~in
units of MF , and hence the notationMF51!, for M P550 and for
various values ofMG . For visibility purpose, a few curves hav
been inflated by factors3102,3,5,6.

FIG. 4. The ratioR[mn /mN @Eq. ~23!# as a function ofM2 ~in
units ofMF , and hence the notationMF51), for M P5500 and for
various values ofMG . For visibility purpose, a few curves hav
been inflated by factors3102,3,5,6.
05301
en
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particular, we chooseMF51 because there is a possibilit
that the vectorlike fermionsF could be detected if their
masses are low enough.

A glance at Figs. 2–5 reveal that it is relatively easy
obtain a very small ratioR[mn /mN . In particular, one can
see that large values ofM2, the mass of the singlet fermio
field M2, are sufficient to obtain small values forR
[mn /mN . For instance, one can see that, roughly speak
R[mn /mN&10211 when M2*106 ~in units of MF). Al-
though conceptually quite different, the above fact is ve
reminescent of the seesaw mechanism in that there is
large scale: Majorana for seesaw,M2 for this scenario, and
one ‘‘small’’ scale: Dirac massmD for seesaw,MF for this
scenario. The important point that we wish to make is
fact that the general result obtained here, namely the sm
ness of light neutrino masses, does not depend on one
ticular combination of masses which would imply fine tu
ing, a point which was not made quite clear in Ref.@5#, but
only on ‘‘large’’ ratio of masses whatever they might be.
this sense, the smallness of neutrino masses in our scena
no less natural than the ones obtained from the see
mechanism.

In Figs. 2–5, we show the results for the caseM2
.MG . There is, of course, absolutely no reason for t
ordering. It is a matter of presentation. We obtain exactly
same results with the roles ofM2 andMG reversed. As can
be inferred from the figures, for a given value ofM P (MF
51), R[mn /mN&10211 if the ratio MG /M2 is below a
certain value. For example, forMG&105, one hasMG /M2
&1023, while for MG*107, one has MG /M2'1022

21021. What this says is that the larger the mass is~e.g.,
MG), the less mass splitting is needed in order to hav
small R.

FIG. 5. The ratioR[mn /mN @Eq. ~23!# as a function ofM2 ~in
units of MF , and hence the notationMF51!, for M P55000 and
for various values ofMG . For visibility purpose, a few curves hav
been inflated by factors3102,3,5,6.
5-9
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P. Q. HUNG PHYSICAL REVIEW D 62 053015
At this stage, we can only say thatmn can be very small.
What we cannot say is exactly what its value should be. T
should come from some deeper theory. Instead, we shall
present constraints to restrict the range of values forMG,P,2 .

Having seen how one can obtainvery small mn , the next
question would be: How small can one allowmn to be if one
takes into account the neutrino oscillation data? First of
atmospheric neutrino oscillation data gives a difference
mass squaredDm2'1023 eV2 while solar neutrino oscilla-
tion data gaveDm2'1025 eV2 ~MSW! or 10210 eV2

~vacuum!. In anticipation of new data, the Liquid Scintilla
tion Neutrino Detector~LSND! results are not taken into
account in our rough estimation of various mass sca
Without any need for a specific model, one can say that
atmospheric data implies that at least one of the three n
trinos should have a mass ofat least331022 eV, while the
solar data implies that at least one of the remaining t
should have a mass ofat least331023 eV ~MSW! or 1025

eV ~vacuum!. As we have seen above, the fourth neutri
can be quite heavy. For the sake of argument, let us ass
here that its mass is approximately 100 GeV. Since our th
light neutrinos are practically degenerate—a lifting of whi
will be discussed below, the atmospheric data alone c
strainsR to be greater than approximately 10214. This in turn
constrainsM2&1012 ~in units of MF) for the caseM2
.MG , or MG&1012 for the reverse case. Notice that th
rough estimate is only for illustration purpose.

There is, however, one interesting piece of informat
which could be quite interesting, phenomenologically spe
ing: the presence of vectorlike fermions which carry we
quatum numbers and which could be relatively ‘‘light.
These are the fermionsF with massMF as indicated above
Let us recall from the above discussions thatMG,P,2 are all
expressed in units ofMF which itself could take on any
value, even a few hundreds of GeV. The sole restriction w
be from experimental constraints, a subject to which we s
come back below. Furthermore, we can see from the res
that the mass of the pseudo Nambu-Goldstone~NG! bosons
can also be ‘‘low’’ as well~Fig. 1! which could provide a
further experimental clue.

We now turn to an important issue: the lifting of the ma
degeneracy of the light neutrinos. The analysis presented
low will reveal quite interesting implications such as the c
relation between the actual values of the masses andDm2,
which can have a profound cosmological consequence.
neutrino masses which are large enough to provide par
HDM, the MSW solution of the solar neutrino problem
preferred. If the vacuum solution turns out to be the corr
one, the neutrino masses will be much too light in our s
nario to play a role in HDM.

We shall divide the discussion presented below into t
parts. First we analyze the case when there is no mix
between the fourth neutrino and the lighter three. It will
seen that an interesting feature emergesDm23

2 'Dm21
2 —a

quasisymmetric splitting. (Dm31
2 is of the same order.! This

phenomenon could be called a mass splitting quaside
eracy. Of course, solar and atmospheric neutrino data sug
otherwise. Next, we will show how this mass splittin
quasidegeneracy can be lifted, suggesting—at least in
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scenario—the presence of a fourth neutrino.
In what follows, we will neglect any possibleCP phase in

the neutrino mass matrix since we will be concerned o
with Dm2 and present data on neutrino oscillations are
sensitive to the presence of such a phase. In addition,
shall concentrate in the next two subsections only onDm2. A
full comparison with the data will necessitate the inclusion
the leptonic ‘‘Cabibbo-Kobayashi-Maskawa’’~CKM! angles
coming fromVL5Ul

†Un . In the two subsections presente
below, we shall see whatUn might look like. To complete
the discussion, we shall use a model forUl in order to make
some statements about the size of the mixing angles.
subject of the charged lepton mass matrix itself will be de
with in a subsequent publication.

B. Neutrino mass matrix I: What if there is no mixing
between the fourth and the lighter three neutrinos?

The 434 neutrino mass matrix obtained at this point
purely diagonal. We would like to examine how mass mix
ing might arise. In particular, we would like to lift the de
generacy of the three light neutrinos. In this section we w
concentrate on the scenario where there is mass mixing
among the three light neutrinos. We will show that, in th
scenario,Dm23

2 'Dm21
2 . If this were experimentally the case

it would be hard to detect the influence of the fourth neutr
since it does not mix with the other three. Since the atmo
pheric and solar data appear to point toDm23

2 @Dm21
2 , we

will present in the next section what can be done in orde
be in agreement with the data. It turns out that this can
accomplished if one introduces a mixing with the fourth ne
trino. This implies that, at least in our model,Dm23

2 @Dm21
2

implies the existence of a fourth neutrino, and hence a fou
generation.

The degeneracy of the three light neutrinos at this le
comes from the fact that there is a remaining global SO
symmetry which manifests itself through the equality of t
masses of the family gauge bosons (MG) as well as those of
the pseudo-NG bosons (M P). It is then clear that one need
to break that remaining global symmetry in order to remo
the degeneracy of the light neutrino masses. We would w
to do this in such a way as to preserve the quasidegene
of the light neutrinos. There are probably several ways
achieve this, and we will present one of them here.

Since we have seen how the diagonal elements of
neutrino mass matrix for the three light neutrinos are o
tained at the one loop level, it is natural to envision a s
nario in which the mixings themselves are obtained atone
loop. A look at Figs. 1 reveals that the most ‘‘straightfo
ward’’ way to induce mixings at one loop is forṼ i and/or
Rer̃ i to have mixed couplings, i.e., to bothnLi and nL j as
well as to bothhRi andhR j . This could come from mixings
amongṼ i with different family indices and/or the mixing
among Rer̃ i . Before getting into the details of what kinds o
interactions are needed to break the remaining global SO
symmetry and hence inducing the mixings, it is instruction
to assume that such a mixing among the boson masses
curs and to write down the Yukawa couplings~13!,~14! in
5-10
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terms of the new boson mass eigenstates.
Let us first look at the statesṼ i . As we have discusse

earlier, these are the NG bosons which are absorbed by
corresponding family gauge bosons. When these NG bos
get mixed, there will be mass mixings among the cor
sponding family gauge bosons. Let us denote the orthog
matrix which diagonalizes these family gauge bosons
AV . We shall choose the following representation forAV :

AV5S c2c3 2s1s2c31c1s3 c1s2c31s1s3

2c2s3 c1c31s1s2s3 2c1s2s31s1c2

2s2 2s1c2 c1c2

D ,

~24!

wherec ands represent the cosine and sine. If we denote
Ṽ i8 the longitudinal components of the gauge boson m

eigenstates, its relationship withṼ i in the unmixed case is
given by

S Ṽ1

Ṽ2

Ṽ3

D 5AV
T S Ṽ18

Ṽ28

Ṽ38
D , ~25!

whereAV
T is given by

AV
T 5S c2c3 2c2s3 2s2

2s1s2c31c1s3 c1c31s1s2s3 2s1c2

c1s2c31s1s3 2c1s2s31s1c2 c1c2

D .

~26!

The masses of the corresponding gauge bosons are now
noted by

MG1

2 5MG
2 1d1 ; MG2

2 5MG
2 1d2 ; MG3

2 5MG
2 ,

~27!

whered1,2 can be positive or negative. Notice thatd1,2 and
the mixing angles shown above arerelated, i.e., they are all
derived from the same boson mass matrix. We will show
example of such fact below.

We can now replace the unprimed states in Eqs.~12!,~14!
by the primed states using Eq.~25!. We can then compute
the one-loop contributions to the elements of the neutr
mass matrixMn . Let us first look at the contributions to th
light neutrino masses and mixings coming from theṼ i
states. The two terms which are crucial for this computat
are
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G1 l̄ L
i cosbṼ iFR5G1 l̄ L

i cosbAV,i
T, j Ṽ j8FR ~28!

and

G3M̄2L sinbṼ ihR
1,i5G3M̄2L sinbṼ j8AV,i

j hR
1,i . ~29!

In the loop integrations, one will encounter the followin
propagators:

1

k22MG3
2

5
1

k22MG
2

, ~30a!

1

k22MG1
2

5
1

k22MG
2

1
d1

~k22MG1
2 !~k22MG

2 !
, ~30b!

1

k22MG2
2

5
1

k22MG
2

1
d2

~k22MG2
2 !~k22MG

2 !
. ~30c!

With the above remarks in mind, let us proceed to cal
late the contributions ofṼ8 to the neutrino mass matrix. W
shall concentrate first on the 333 submatrix of the light
neutrino sector. As a prelude to the computation of the
submatrix, let us show how two elements are calculat
M n

11 andM n
12. In these computations. we shall use, as

example, the explicit form forAV shown in Eq.~24!. For the
complete calculations of the matrix elements, we shall
the notationsAi j for AV .

~a! In the calculation of the contribution ofṼ8 to M n
11,

one combines Eq.~25! with Eq. ~26! to get the following
combination ofṼ8:

~c2c3Ṽ182c2s3Ṽ282s2Ṽ38!2, ~31!

which gives the combination of propagators

c2
2c3

2^Ṽ18Ṽ18&1c2
2s3

2^Ṽ28Ṽ28&1s2
2^Ṽ38Ṽ38&. ~32!

Upon using the propagators listed in Eqs.~30! in the one-
loop integral~Fig. 1!, one obtains the following replacemen
@the reader is referred to Eq.~16! for a comparison#:

sin~2b!

32p2
I ~Ṽ !→ sin~2b!

32p2
@ I ~Ṽ !1c2

2c3
2d1I ~MG ,MG1!

1c2
2s3

2d2I ~MG ,MG2!#, ~33!

where (i 51,2)
d i I ~MG ,MGi!5
1

MF2M2
H MF$MF

2@MG
2 ln~MG

2 /MF
2 !2MGi

2 ln~MGi
2 /MF

2 !#1MG
2 MGi

2 ln~MGi
2 /MG

2 !%

~MG
2 2MF

2 !~MGi
2 2MF

2 !
2~MF↔M2!J .

~34!
5-11
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One can see that, in the symmetry limit whered i→0 (MGi
→MG), d i I (MG ,MGi) vanishes identically.

One interesting remark worth mentioning is the follow
ing: In Eq. ~33!, the first term I (Ṽ) contains no mixing
angles. In fact, the coefficient in front ofI (Ṽ) is c2

2c3
2

1c2
2s3

21s2
251, which is the result ofAV being an orthogo-

nal matrix.
We do not give the explicit form forI (Ṽ) because, after

taking into account the contribution of Rer̃ i , one obtains the
combinationI (Ṽ)2I (Rer̃) which is already given by Eq
~17!. When the boson mass differences, represented byd i ,
are small compared withMG

2 , another useful form which
could be used is given by (i 51,2)

d i I ~MG ,MGi!52xi I ~MG ,xi !, ~35!

where

I ~MG ,xi !

5
MG

2

MF2M2

3H MF$2MF
2@11xi1 ln~MG

2 /MF
2 !#1MG

2 ~11xi !%

~MG
2 2MF

2 !2$11xi@MG
2 /~MG

2 2MF
2 !#%

2~MF↔M2!J , ~36!

and where

xi5
d i

MG
2

, ~37!

so that

MG3
2 5MG

2 ; MG1
2 5MG

2 ~11x1!; MG2
2 5MG

2 ~11x2!.
~38!

Here one could explicitely see the vanishing
d i I (MG ,MGi) in the symmetry limit because of the explic
appearance ofd i on the right-hand side of the equation.

The other diagonal elements of the neutrino mass ma
can be analogously calculated. One just needs to replac
combination of angles in Eq.~32! with the appropriate ones

~b! For the 1-2 element, the appropriate combination
propagators is given by

c2c3~2s1s2c31c1s3!^Ṽ18Ṽ18&2c2s3~c1c31s1s2s3!

3^Ṽ28Ṽ28&1s1s2c2^Ṽ38Ṽ38&. ~39!

It is now straigthforward to computeM n
12. It is given by
05301
ix
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M n
12~Ṽ !5

sin~2b!

32p2
@c2c3~2s1s2c31c1s3!d1I ~MG ,MG1!

2c2s3~c1c31s1s2s3!d2I ~MG ,MG2!#, ~40!

where we have the appearance of the samed i I (MG ,MGi).
Notice thatM n

12(Ṽ) denotes the contribution coming from

Ṽ only. The full element will also include the contributio
coming from Rer̃.

Notice that the termI (Ṽ) is not present in Eq.~40!. Again
this is due to the orthogonality ofAV . The coefficient ap-
pearing in front of I (Ṽ) is c2c3(2s1s2c31c1s3)
2c2s3(c1c31s1s2s3)1s1s2c250. The orthogonality ofAV

implies that the product of any two columns is equal to ze
As a result we can see that, in the symmetry limit,M n

12

vanishes identically. This applies to all the other off-diagon
elements.

In order to complete the computation of the matrix e
ments~including the 1-1 and 1-2 elements!, one has to say
something about the contributions coming from t
pseudo-NG bosons themselves. One might imagine that
same mechanism which breaks the global SO(3) symm
also induces mixing among the degenerate pseudo
bosons. We willassumethat the same matrixAV diagonal-
izes the pseudo-NG boson sector so that, instead of the c
bination of Ṽ i and Rer̃ i used in Eqs.~12! for the NG and
pseudo-NG bosons, we shall useAVṼ and AV Rer̃, where
Ṽ and Rer̃ are now column vectors. With these definition
one simply getsṼ† Rer̃5Ṽ†AV

21AV Rer̃ . This simple as-
sumption is used for two purposes:~1! To reduce the numbe
of arbitrary parameters and~2! to see how far one can g
with it before one needs to modify it. With this assumptio
the mass splitting among the pseudo-NG bosons are give
in Eq. ~38!, namely,

M P3
2 5M P

2 ; M P1
2 5M P

2 ~11x1!; M P2
2 5M P

2 ~11x2!,
~41!

with the samexi as for the gauge boson masses. Furth
more, the mixing angles are the same as above. The co
butions of the ‘‘rotated’’ pseudo-NG bosons to the neutri
mass matrix elements will therefore be accompanied b
factor 2sin(2b)/32p2, just as in Eq.~33!.

As mentioned above, in the full computation of the mat
elements, we shall use, for convenience,Ai j to denote the
matrix elements ofAV instead of the representation of E
~24!. One should then recall that, becauseAV is an orthogo-
nal matrix, one has( jAi j

2 51 and(kAkiAk j50. The form of
the neutrino mass matrix elements will make use of th
properties, just as we have done above.

With the above remarks in mind, the full 434 neutrino
mass matrix is now given by
5-12
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Mn /mN5S m11 m12 m13 0

m12 m22 m23 0

m13 m23 m33 0

0 0 0 1

D , ~42!

where mN is the mass of the fourth generation neutri
shown in Eq.~7!. In Eq. ~42!, we have ignored the tiny
one-loop contribution tom44[1, in particular when there is
no mixing between the fourth neutrino and the lighter thr
As we shall see later on, it can be ignored even if there
mixing, the reason being the fact thatmi j , i , j 51,2,3, are so
much smaller thanm44[1. A change ofm44 to a value
slightly less than or greater than one will not significan
affect the eigenvalues, as we shall see in the numerical
amples below.

With

DI ~G,P,xi ![I ~MG ,xi !2I ~M P ,xi !, ~43!

where I (M P ,xi) is given by Eq.~36! with the substitution
MG→M P , one obtains formi j

m115
sin~2b!

32p2
$DI ~G,P!2A11

2 x1DI ~G,P,x1!

2A12
2 x2DI ~G,P,x2!%, ~44a!

m225
sin~2b!

32p2
$DI ~G,P!2A21

2 x1DI ~G,P,x1!

2A22
2 x2DI ~G,P,x2!%, ~44b!

m335
sin~2b!

32p2
$DI ~G,P!2A31

2 x1DI ~G,P,x1!

2A32
2 x2DI ~G,P,x2!%, ~44c!

m1252
sin~2b!

32p2
$A11A21x1DI ~G,P,x1!

1A12A22x2DI ~G,P,x2!%, ~44d!

m1352
sin~2b!

32p2
$A11A31x1DI ~G,P,x1!

1A11A32x2DI ~G,P,x2!%, ~44e!

m2352
sin~2b!

32p2
$A21A31x1DI ~G,P,x1!

1A22A32x2DI ~G,P,x2!%, ~44f!

whereAi j denote the matrix elements ofAV , as mentioned
above, and whereDI (G,P) was already defined in Eq.~18!.

A few remarks are in order here. First, one can see tha
the limit xi→0, Mn reduces to a diagonal matrix with thre
equal diagonal elements@sin(2b)/32p2#DI (G,P). Secondly,
05301
.
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apart from various mixing angles, the off-diagonal eleme
depend on results of loop integrals,DI (G,P,xi) which, in
turns, depend on the same parameters as the ones that
the loop integrals of the diagonal elements in the unbro
caseDI (G,P). The ratioRI[DI (G,P,xi)/DI (G,P) is plot-
ted in Figs. 6,7, for two values of the parameterx, as a
function of M2 in the similar manner to Figs. 2–5.~The two
values ofx were chosen for the purpose of illustration and
coincide with the two examples given below.! It can be seen
that the ratioRI is at most ofO(1022), even forx as large as
0.5. Therefore, in our model, a small mass splitting in t
scalar and gauge sectors results in a scenario with alm
degenerate light neutrinos. The difference of the m
squared,Dm2, depends, however, on the size of the o
diagonal elements. To see how it actually works, a sim
model of mixings will be presented below along with som
numerical examples.

We starts out with a very simplistic model of mixing an
try to see how far one can go. It is

MG,P
2 5MG,P

2 S 1 b 0

b 1 0

0 0 1
D , ~45!

where b is a small parameter less than unity. This simp
model has the merit of elucidating the points that we ha
made above.~An extension of this model, showing simila
results, will be discussed below.! The above mass mixing
~45! could come, for example, from a term in the Lagrangi
of the form: l5@(Vara8 )(Vbrb9 )1(rara8 )(rbrb9 )#. Assum-
ing ^r8&5(v8,0,0,0), ^r9&5(0,v9,0,0), with v8,9!V,V8,
one can obtain the above mass mixing matrix.

It is easy to see that the eigenvalues of Eq.~45! are

FIG. 6. The ratioRI[DI (G,P,xi)/DI (G,P) for b50.035.
5-13
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MG1,P1
2 5MG,P

2 ~11b!, MG2,P2
2 5MG,P

2 ~12b!,

MG3,P3
2 5MG,P

2 . ~46!

AV as discussed above is now given by

AV5S 1

A2

1

A2
0

2
1

A2

1

A2
0

0 0 1

D . ~47!

Now we can make the following identifications:x1[b, x2
[2b. The various angles are given inAV . The matrix ele-
ments of the neutrino mass matrix are now fairly simple:

m115
sin~2b!

32p2 H DI ~G,P!2
1

2
b@DI ~G,P,b!

2DI ~G,P,2b!#J , ~48a!

m225
sin~2b!

32p2 H DI ~G,P!2
1

2
b@DI ~G,P,b!

2DI ~G,P,2b!#J , ~48b!

m335
sin~2b!

32p2
$DI ~G,P!%, ~48c!

m1252
sin~2b!

32p2 H 1

2
b@DI ~G,P,b!1DI ~G,P,2b!#J ,

~48d!

m1350, ~48e!

m2350. ~48f!

The above matrix elements are surprisingly easy
handle. When they are substituted into Eq.~42!, one obtains
straightforwardly the following mass eigenvalues:

m15mN

sin~2b!

32p2
$DI ~G,P!2bDI ~G,P,b!%, ~49a!

m25mN

sin~2b!

32p2
DI ~G,P!, ~49b!

m35mN

sin~2b!

32p2
$DI ~G,P!1bDI ~G,P,2b!%,

~49c!

m45mN . ~49d!
05301
o

The matrix which diagonalizes the above neutrino mass
trix is simply

Un5S 1

A2

1

A2
0 0

0 0 1 0

2
1

A2

1

A2
0 0

0 0 0 1

D . ~50!

One obtains the following mass splittings:

m3
22m2

25S mN

sin~2b!

32p2 D 2

$2bDI ~G,P!DI ~G,P,2b!

1@bDI ~G,P,2b!#2%, ~51a!

m2
22m1

25S mN

sin~2b!

32p2 D 2

$2bDI ~G,P!DI ~G,P,b!

1@bDI ~G,P,b!#2%. ~51b!

In general,DI (G,P,xi)!DI (G,P), and combined with the
fact that b,1, one has @bDI (G,P,2b or b)] 2

!2bDI (G,P)DI (G,P,2b or b). One can then neglect th
last terms in Eq.~51!. Numerically, one hasDI (G,P,b)
'DI (G,P,2b). This implies that m3

22m2
2'm2

22m1
2, a

quasidegenerate mass splitting. This holds for any value ob.
Solar and atmospheric data suggest otherwise. This nec
tates the lifting of this quasidegeneracy of the mass splitti
To do this, we need to invoke some kind of mixing betwe
the fourth neutrino and the lighter three. In an indirect wa
the disparity betweenDm23

2 and Dm21
2 indicates—in our

model—the influence of a fourth generation. Before discu
ing this issue which will be presented in the next section,
us illustrate numerically a few examples of the quasideg
erate case.

First, a few useful points are in order here. Sincem2
5mN@sin(2b)/32p2#DI (G,P), one can rewrite the abov
equations~51! as~neglecting the last terms on the right-han
side!

m3
22m2

25m2S mN2b
sin~2b!

32p2
DI ~G,P,2b!D , ~52a!

m2
22m1

25m2S mN2b
sin~2b!

32p2
DI ~G,P,b!D . ~52b!

For a fixed value ofm2, the size of the mass splitting,Dm2,
depends on the size of the factormN(2b) @sin(2b)/
32p2#DI (G,P,2b or b). At first glance, it appears that on
can obtainDm2 to be as small as one wants with the app
priate choice ofb. Although it is true that it can be so, w
will show that,Dm2 can also be very small (,10210 eV2),
even whenb'1. This depends on how large the masses
5-14
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some of the particles participating in the loop diagrams a
As a result, by limitingDm2>10210 eV2, one puts a con-
straint on those masses.

In Fig. 8, we present the ‘‘median’’ massm2 as a function
of M2 andMG for a givenM P ~as presented in Figs. 2–5!.
The mass is given in units of (mN/100 GeV!. Similarly, we
present in Figs. 9,10m3

22m2
2 and m2

22m1
2 as a function of

the same masses, but also for a given value ofb. The results
are expressed in units of (mN/100 GeV)2. For a more stream

FIG. 7. The ratioRI[DI (G,P,xi)/DI (G,P) for b50.000095.

FIG. 8. The median massm2 as defined by Eq.~49b!. Notice the
correlation withm2

22m1
2 and m3

22m2
2 shown in the next two fig-

ures.
05301
e.

lined presentation of the results, we shall limit ourselves
the casem2&1.67 eV, coming from the suggestion that th
sum of neutrino masses lies between 4 and 5 eV in orde
form a component of HDM. Similarly, we shall restric
Dm2,1 eV2. In our model, for a given value ofb, m2 and
Dm2 are correlated as one can see from Figs. 8,9,10.

Three major remarks are in order here.~1! One can see
from Figs. 9,10 the quasidegeneracy of the mass splittin
this particular scenario.~In the next section, we shall see ho
one can lift that degeneracy.! ~2! One can also see from Figs
8–10 that, were the vacuum solution to the solar neutr
problem favored, i.e.,Dm2'10210 eV2, the median value
m2 will always be less than 0.1 eV.~The lifting of the mass
splitting degeneracy to satisfy the atmospheric neutrino d
will not change this conclusion.! This simply means that, a
least in this model, the solar vacuum solution is incompati
with the light neutrinos being significant components
HDM. ~3! Also from Figs. 8–10 it can be seen that the MS
solution Dm2'1025 eV2 can correspond to values ofm2
larger than 1 eV.~Again, the lifting of the mass splitting
degeneracy to satisfy the atmospheric neutrino data will
change this conclusion.! So, in our scenario, the MSW solu
tion is compatible with the light neutrinos being significa
components of HDM while the vacuum solution is not. Th
is a very specific prediction of this model.

The above discussion leaves out the question of the
of the mixing angles. As mentioned above, we have alre
fixed the neutrino mixing matrixUn , as given by Eq.~50!.
To complete the task, one has to model the charged lep
mixing matrix Ul . This is something that we shall do in th
last section. We wish however to reemphasize the main
sult of this section: the values ofDm2 are independentof
Ul . As one can see from Figs. 9,10,Dm2 depends only on
the various masses and on the parameterb, regardless ofUl .
As a consequence, the large angle or small angle solution
deduced from the data basically constrains, in our scena
the matrixUl (Un being already fixed!.

To finish the discussion of this section, we wish to pres
another form for the boson mass matrix, namely,

MG,P
2 5MG,P

2 S 1 b 0

b 1 b

0 b 1
D . ~53!

The mass eigenvalues are

MG1,P1
2 5MG,P

2 ~11A2b!, MG2,P2
2 5MG,P

2 ~12A2b!,

MG3,P3
2 5MG,P

2 . ~54!

AV is now given by

AV5S 1

2

1

A2

1

2

1

2
2

1

A2

1

2

2
1

A2
0

1

A2

D . ~55!
5-15
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It is now straightforward to see that the neutrino mass ma
elements are

m115m335
sin~2b!

32p2 H DI ~G,P!2
b

2A2

3@DI ~G,P,b!2DI ~G,P,2b!#J , ~56!

m225
sin~2b!

32p2 H DI ~G,P!2
b

A2
@DI ~G,P,b!

2DI ~G,P,2b!#J , ~57!

m125m2352
sin~2b!

32p2 H 1

2
b@DI ~G,P,b!

1DI ~G,P,2b!#J , ~58!

m1352
sin~2b!

32p2 H b

2A2
@DI ~G,P,b!

2DI ~G,P,2b!#J . ~59!

The eigenvalues are now simply given by

m15mN

sin~2b!

32p2
$DI ~G,P!2A2bDI ~G,P,b!%,

~60a!

m25mN

sin~2b!

32p2
DI ~G,P!, ~60b!

m35mN

sin~2b!

32p2
$DI ~G,P!1A2bDI ~G,P,2b!%,

~60c!

m45mN . ~60d!

These masses have exactly the same form as those o
~49!, except for the factor ofA2b instead ofb. The matrix
05301
ix

Eq.

Un which diagonalizes the above matrix is exactly the sa
as in Eq.~50!. Furthermore,m3

22m2
2 andm2

22m1
2 are of the

same form as Eqs.~51!, with the following replacement in
Eqs. ~51!: b→b85A2b. The analysis which follows is ex
actly the same as the one presented above.

One can envision various scenarios for the boson m
matrices, but it is certainly beyond the scope of this pap
To make things more complicated than the simple assu
tion ~45! does not appear to add much to the discussi
Although it might be possible that a more involvedAnsatz
than Eq.~45! could lead to the lifting of the mass splittin
‘‘quasidegeneracy,’’ we have not succeeded in finding it. F
this reason, we now turn our attention to the more appea
scenario, at least within our model: the mixing between
fourth neutrino and the rest.

C. Neutrino mass matrix II: Mixing between the fourth
and the lighter three neutrinos

We have seen above that the simple ansatz for the bo
mass matrices~45! leads to a situation in which the mas
splittings are quasidegenerate. This, of course, is in con
diction with the data. In this model, in order to lift that quas
degeneracy, one needs a mixing between the fourth neu
and at least one of the lighter three. To get a feel for w
might be needed, we shall first present a few numerical
amples. Based on these examples, we shall attempt to g
theoretical basis for these numerical examples.

As an example, we shall choose a specific value for
parameterb and for the massesM2 , MG , M P , and MF

which enter the loop integrals for the neutrino masses. T
will fix a definite value for the matrix elements of the ne
trino mass matrix. As we have already discussed earlier,
integrals depend only on the ratio of the above masses.
will present two examples for the purpose of comparis
We shall see the reasons why we wish to do so below.

~1! First example. We shall set~in units of MF): MF

51, M P55, MG5106, M252.53109. For b, we shall
chooseb50.035.~A smaller value ofb will give a smaller
mass splitting.! The reason for this choice~other choices are
equally valid! is the fact that it will give a typical mass o
approximately 1.5 eV and a desired mass splitting. Putt
these values into the expressions for the integrals as give
Eq. ~36!, we obtain the following neutrino mass matri
wheremN is assumed to be 100 GeV for convenience:
Mn5~100 GeV!S 21.579332216310211 0.8697647852310217 0 0

0.8697647852310217 21.579332216310211 0 0

0 0 21.579332184310211 0

0 0 0 1

D . ~61!
5-16
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Notice that the above matrix has no mixing between
fourth neutrino and the lighter three. The eigenvalues are

um1u51.579331346 eV, um2u51.579332184 eV,

um3u51.579333086 eV, um4u5100 GeV. ~62!

As we have discussed in the previous section, this give
quasidegenerate mass splitting, namely,

Dm32
2 51.60119536731026 eV2, ~63!

Dm21
2 51.53575707931026 eV2, ~64!

whereDmji
2 5mj

22mi
2 .

Let us now assume that the mixing with the fourth ne
trino is nonzero. We start out with thesimplest assumption,
namely, one in which only the third neutrino mixes with th
fourth one. This means thatm34 and m43 are both nonvan-
ishing. If we wish to havem3

22m2
2'1023 eV2 as suggested

by the atmospheric neutrino data, it turns out thatm34 and

FIG. 9. m3
22m2

2 as defined by Eq.~52a! for b50.000095.
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m43 cannot be too small nor too large, being of ord
1027mN . Notice thatm34 andm43 do not have to be equal
We shall see how it might be possible to obtain such a nu
ber. Let us first see how it works from a numerical view
point.

To guide our understanding of how things work, let
notice that, by addingm34 and m43 to Mn above, one
changes only one of the three light mass eigenvalues, lea
the other two the same. Now the two unchanged eigenva
will be the ones that fix one of the two mass splittingsDm2.
For convenience, we shall choose theDm2 corresponding to
the unmodified mass eigenvalues as the one which co
sponds to the solar neutrino problem. As we have lear
from the above analysis in Sec. III B, if one chooses
MSW solution, then one can find masses which are la
enough for HDM, while, if the vacuum solution is chose
the masses will be too small to form any significant comp
nent of HDM. For the numerical example given here, w
shall choose the MSW solution as shown above. Form34 and
m43, we shall first choose a symmetric case~there is no
particular reason for this being so! as an example. We hav

FIG. 10. m2
22m1

2 as defined by Eq.~52b! for b50.000095.
Mn5~100 GeV!S 21.579332216310211 0.8697647852310217 0 0

0.8697647852310217 21.579332216310211 0 0

0 0 21.579332184310211 0.831027

0 0 0.831027 1

D . ~65!

The eigenvalues are

um1u51.579331346 eV, um2u51.579333086 eV, um3u51.579972184 eV, m45100 GeV. ~66!

We then get
5-17
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Dm32
2 52.0231023 eV2, ~67!

Dm21
2 55.49731026 eV2. ~68!

The matrix which diagonalizes the mass matrix is

Un5S 2
1

A2
2

1

A2
0 0

1

A2
2

1

A2
0 0

0 0 21 0.831027

0 0 0.831027 1

D . ~69!

Two remarks are in order here. First, from the values of the light neutrino masses, one obtains( i 51
3 umi u'4.7 eV, which is

in the range of mass for HDM. Secondly, Eq.~67! corresponds to the best fit for the atmospheric neutrino data, while Eq.~68!
corresponds to the best fit for the~small angle! MSW solution to the solar neutrino data. One word of caution: this is n
prediction because we chose the masses (MG , M2, etc.! in such a way as to ‘‘reproduce’’ the experimental results.
nevertheless shows adynamicalbasis for these numbers. Also, for nothing more than a numerical example, the values ofm34,43
were chosen arbitrarily in order to have the desired mass splitting. How to justify these values is the subject to be d
below.

The next numerical example deals with the case whenm34Þm43. In doing the analysis, we notice that it does not mat
whetherm34 is greater thanm43 or the other way around. One obtains the same result either way. We shall requir
Dm32

2 (eV2)5102321022. It turns out thatm34 andm43 can range~in units ofmN) only between approximately 0.431026 and
0.831028. To be explicit, one has

Mn5~100 GeV!S 21.579332216310211 0.8697647852310217 0 0

0.8697647852310217 21.579332216310211 0 0

0 0 21.579332184310211 0.431026

0 0 0.831027 1

D ~70!

givesDm32
2 (eV2)'1022, while

Mn5~100 GeV!S 21.579332216310211 0.8697647852310217 0 0

0.8697647852310217 21.579332216310211 0 0

0 0 21.579332184310211 0.431026

0 0 0.831028 1

D ~71!

givesDm32
2 (eV2)'1023. Notice thatDm21

2 stays the same. The above numerical results show thatm34 can differ fromm43 by
a large factor~50 in this case! while keepingDm32 within the desired range.

~2! Second example. In this example, we choose~in units of MF): MF51, M P55, MG5104, M251.23109. For b, we
shall choose:b50.000095. For simplicity, we shall assume, as we have already done above, the following values form34,43,
namely,m345m4350.831027(100 GeV!. The mass matrix is now

Mn5~100 GeV!S 1.382258467310211 0.981382953310217 0 0

0.981382953310217 1.382258467310211 0 0

0 0 1.382258467310211 0.831027

0 0 0.831027 1

D . ~72!

The eigenvalues are

m151.382259448 eV, m251.382257486 eV, m351.381618467 eV, m45100 GeV, ~73!

with the corresponding diagonalization matrix given by
053015-18
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Un5S 2
1

A2
2

1

A2
0 0

1

A2
2

1

A2
0 0

0 0 21 0.831027

0 0 0.831027 1

D .

~74!

The mass splittings are

uDm32
2 u51.7731023 eV2, ~75!

uDm21
2 u55.4231026 eV2. ~76!

The above two examples are chosen solely for illustrati
Other values ofDm2 are possible with different choices o
various masses (MG , M2, etc.! and/or the parameterb.

Before turning to the discussion on the possible origins
m34,43, let us briefly discuss the ‘‘tiny’’ one-loop contribu
tion to m44, namely,dm4 as given by Eq.~20!. One might
wonder how it would affect the light mass eigenvalues
turns out, however, that, as long asdm4!1 ~which is the
case in this paper!, it does not matter what value it takes. It
easy to see how. A 232 matrix of the form (a,c;c,b),
where a,c!b, has as eigenvaluesb1c2/b1(1/4)a2/b
1O(c4,a4) and a2c2/b2(1/4)a2/b1O(c4,a4). One can
see that, for the smaller eigenvalue, a small change ib
affects very little its value. As an example, we put 0.99
stead of 1 in Eq.~71!. We obtainDm32

2 (eV2)'1.0231023

instead of 1.0631023 ~for 1!. If we put 1.1 instead of 1, we
obtain Dm32

2 (eV2)'0.92331023. Considering the kind of
accuracy that one has at the present time, this is comple
irrelevant.

There are probably several scenarios for calculat
m34,43. However, considering the fact that the present exp
mental status is not accurate enough for a detailed mode
will present below a more or less ‘‘generic’’ scenario whi
will show how one can obtainm34,43 of the right order of
magnitude.

What might be the origin ofm34,43? It might be obvious
up until now that the vacuum expectation values ofV andr
shown in Sec. III A cannot generate such a mixing. O
needs at least one additional scalar with a nonvanish
vacuum expectation value along the third direction. Let t
field be V8 and let us assume that^V8&5(0,0,ṽ,0). Let us
also assume that there are couplings of the type

l34V
aVa8rbrb ; l43V

araV8,brb , ~77!

where, for convenience, we have omitted the SU(2)nR index
in r. With the above couplings, one can construct diagra
for m34 andm43 as shown in Fig. 11.

We shall denote the masses ofH̃4 and h̃4 by MH4
and

Mh4
, respectively. Let us define the following quantities:
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DM2~G,H̃4!5MG
2 2MH4

2 , ~78a!

DM2~G,h̃4!5MG
2 2Mh4

2 , ~78b!

DM2~P,H̃4!5M P
2 2MH4

2 , ~78c!

DM2~P,h̃4!5M P
2 2Mh4

2 . ~78d!

From Fig. 8, we obtain

m34/mN5S l34

16p2D S ṽMFM2

V
D S cb

2sa
2 DI ~G,H̃4!

DM2~G,H̃4!

1cb
2ca

2 DI ~G,h̃4!

DM2~G,h̃4!
1sb

2sa
2 DI ~P,H̃4!

DM2~P,H̃4!

1sb
2ca

2 DI ~G,h̃4!

DM2~G,h̃4!
D , ~79a!

m43/mN5S l34

16p2D S ṽMFM2

V
D S sb

2ca
2 DI ~G,H̃4!

DM2~G,H̃4!

1sb
2sa

2 DI ~G,h̃4!

DM2~G,h̃4!
1cb

2ca
2 DI ~P,H̃4!

DM2~P,H̃4!

1cb
2sa

2 DI ~G,h̃4!

DM2~G,h̃4!
D , ~79b!

wherec ands stand for cos and sin, andDI (G,H̃4) and the
other similar quantities in Eq.~79! are given by Eq.~18!,
with the substitution of the appropriate masses taken
account.

As one can see from the above equations, the express
appear rather complicated at first look. However, one
make an estimate as to which term inm34 and m43 is the
most important. Each term in Eqs.~79! is of the form
l( ṽ/V)(MF /M2)(M2

2/DM2)DI ~mixing angles!, where l
stands forl34,43. First, we have seen from the above nume
cal analysis that, if we wish to have a mass ofO(1 – 2 eV!,
then MF /M2'1029. It is reasonable to assume th

FIG. 11. Diagram form34,43.
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l( ṽ/V)3(mixing angles)<1. If one of the terms in Eq.~79!
were to be the dominant one and thatm34,43'1027, then one
should have (M2

2/DM2)DI *102. Let us first look at the

(G;H̃,h̃) contribution. Assuming thatMH4 ,h4
,MG so that

(M2
2/DM2)'M2

2/MG
2 , it turns out numerically that

(M2
2/MG

2 )DI is always less than;10. ForMH4 ,h4
.MG , DI

is larger in value than the previous case, but then w
(M2

2/DM2)'M2
2/MH4 ,h4

2 , one will again have

(M2
2/MH4 ,h4

2 )DI less than 102. Taking into account the ac

tual calculation ofm34,43 which includes mixing angles an
various factors, the (G;H̃,h̃) would be too small to actually
affect the mass splittings. This leaves us with the contri
tion coming from (P;H̃,h̃). Here, as we have done abov
we will set M P55 in units ofMF . There are several poss
bilities that one can explore. We will present here one
such possibilities. The main purpose will be to show th
under reasonable assumptions, one can obtain the de
order of magnitude form34,43. In addition, one would like to
see phenomenological implications coming from such
scenario—something extra other than just a mass matrix

Let us assume that, by an appropriate choice of par
eters in the Higgs potential, one hasMH4

to be of O(MG),

and thatMh4
!M2. Furthermore, let us assume that one a

hasb'a. Although it is not really necessary, let us furth
assume thatl34;l43. Now numerically, (M2

2/DM2)DI
,102 when one of the masses inDM2 is much larger than
the other one and not too much different fromM2. This is
just the case forMH4

5O(MG)@M P . Under these assump

tions, we are left with the (P;h) contribution. In this case
one hasm34'm43. So we get

um34u'um43u'mNl34

ṽ
V

MF

M2
U M2

2

M P
2 2Mh4

2 UDM2~G,h̃4!sb
2ca

2 .

~80!

Typically, DM2(G,h̃4)5O(1027210211). In most of our
examples, MF /M2;1029. So one would expec
(MF /M2)DM2(G,h̃4);10216210220. If we wish m34
'm43'mN0.831027, for example, the other factors have
be sufficiently large. First, the ratiouM2

2/(M P
2 2Mh4

2 )u can be

rather large ifMh4
is small compared withM2. Secondly,

even if the previous ratio can be large, it can still be offset
sb

2ca
2 . Let us recall from Eq.~21! that tanb'g2(MF /

M2)(M2
2/MG

2 )'g21029(M2
2/MG

2 ). Therefore the angle ca
be very small ifMG is too ‘‘close’’ in mass toM2. A nu-
merical investigation reveals that, if one wants to have
mass ofO(1 eV! and, at the same time, a large enou
angle,MG can be relatively ‘‘low’’ (;104 in units of MF).
~This would imply that the scale of family symmetry cou
be a few thousands of TeV ifMF is a few hundred GeV.! We
now give a couple of numerical estimates. We shall take
second example as a prototype. There one can calculat
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factor sb
2ca

2 to be '0.134.~1! For Mh4
5100 with all other

masses being the same as those of the second exampl
obtain

m34'm43'mNl34

ṽ
V

34.731027. ~81!

If we wish m34'm43'mN0.831027, thenl34( ṽ/V)'0.17.
So one could either havel34'0.2 andṽ'V, or some other
combination.~2! For Mh4

510, we have

m34'm43'mNl34

ṽ
V

31.431025, ~82!

which would imply l34( ṽ/V)'0.006—a reasonable con
straint.

It turns out that the cases withMh4
>1000 ~in units of

MF) do not work because then the mass ratios are not la
enough to compensate for the smallness of the integrals.
interesting that one can have scenarios whereh̃4 is light
enough~i.e. not too much heavier thanF)—a feature which
could have interesting phenomenological implications.

D. Oscillation angles

To discuss the neutrino oscillation angles, one need
give the leptonic ‘‘CKM’’ matrix, namely,VL5Ul

†Un . It is
beyond the scope of this paper to discuss the charged le
sector, and henceUl . This will be the subject of the follow-
ing publication. However, we can give an example ofUl by
adopting, at least for this paper, a simple model of char
lepton masses of Ref.@15#, which is a phenomenologica
model based on a generalization to the lepton sector of
‘‘democratic mass’’Ansatzof the quark sector. The reaso
why we use, as an example, Ref.@15# is because the matrix
which diagonalizes the neutrino mass matrix,Un , is identi-
cal to the 333 submatrix of our Eq.~50! ~apart from a
difference in the overall sign!, namely,

Un
(3)5S 2

1

A2
2

1

A2
0

1

A2
2

1

A2
0

0 0 21

D . ~83!

Although Ref. @15# discussed anAnsatz for three genera-
tions, we will use it here because the mixing with the fou
generation is not relevant for the oscillation angles we
interested in.~It was relevant for the mass splitting.! So,
basically, we will be usingonly the phenomenological ansa
for the charged leptonmass matrix of Ref.@15#. In fact, we
will only use the matrix which diagonalizes that mass mat

The 333 leptonic ‘‘CKM’’ matrix written down by Ref.
@15# is
5-20
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Vl5~ABl !
†Un

'S 1 2~1/A3!Ame /mm ~2/A6!Ame /mm

Ame /mm 1/A3 22/A6

0 2/A6 1/A3
D ,

~84!

whereABl is the matrix which diagonalizes the charged le
ton mass matrix,Un is given above, andme andmm are the
electron and muon masses, respectively. Now, the proba
ity for ne→nm is

P~ne→nm!'2~V11
2 V21

2 1V12
2 V22

2 2V13
2 V23

2 !

3sin2~1.27Dm12
2 L/E!, ~85!

where the usual notation sin2(2u12) is simply the coefficient
of sin2(1.27Dm12

2 L/E). Similarly

P~nm→nt!'4V23
2 V33

2 sin2~1.27Dm23
2 L/E!, ~86!

with sin2(2u23) being the coefficient of sin2(1.27Dm23
2 L/E).

Putting in the values ofme and mm to evaluate the matrix
elements ofVl , one readily obtains

sin2~2u12!'6.531023; sin2~2u23!'0.89. ~87!

These results correspond to thesmall angleMSW solution,
and to thelarge angle atmospheric solution, respectivel
This is consistent with the best fit for the two neutrino osc
lation problems.

The above results should be viewed with caution. T
small angleMSW solution given above, as well as thelarge
angle solution for the atmospheric oscillation, depends
the charged lepton sector—the neutrino sector diagonaliz
matrix being already fixed by Eq.~50!. One can easily imag
ine how these angles can drastically change if the char
lepton mass matrix has a different texture. This will be t
subject of a subsequent paper where we will examine
charged lepton mass matrix in the context of the pres
model—the basic interaction Lagrangian being already gi
by Eq. ~3!.

IV. EPILOGUE

The above discussions focused entirely on the atm
spheric and solar neutrino data. We have left out the LS
@16# result for two reasons. First, it is because it might
prudent to wait for future experiments, either to confirm or
refute these results. Secondly, it is because it is extrem
hard to incorporateall threeexperiments simultaneously in
‘‘natural’’ model. In general, one needs to invoke some ki
of sterile neutrino that mixes with the lightest neutrino
explain the solar data. If this sterile neutrino were to ar
from some kind of model, it is rather hard to invent, in
‘‘natural’’ way, a scenario to explain why this sterile ne
trino is so light and close in mass to one of the three ac
light neutrinos.

Let us suppose that the LSND result are verified by fut
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experiments. What does the model presented in this pa
have to say about a sterile neutrino? Let us remember
hR5(nR

a ,ñR
a) is an electroweaksinglet. Furthermore we

have seen that it isnR
a which mixes withl L

a to give masses to

the neutrinos. Its SU(2)nR
partner, (ñR

a), remains massless, a
least within the framework of the preceding sections. Co
these be the so-called sterile neutrinos? If so, how wo
they get a mass? How would they mix with the light neut
nos? These are the questions which are under investiga

We have concentrated in this manuscript on the even
tion. One might wonder about the odd option and its imp
cation on neutrino masses. It is beyond the scope of
paper to investigate this issue, however, a preliminary inv
tigation of the odd option, with three families and one fam
singleth8, appears to indicate that the preferred solution
the neutrino masses is that in which there is a hierarchym1
!m2!m3.

There are numerous phenomenological consequence
be worked out in subsequent publications. One can, howe
make one rather solid prediction: neutrinos, being of
Dirac nature, will not give rise to the phenomenon of ne
trinoless double beta decay. Another interesting conseque
is the possible existence of ‘‘light’’~i.e., 200 GeV or so!
vectorlike fermions:F, as well as TeV-scale pseudo-N
bosons which carry family and SU(2)nR

quantum numbers
This will be dealt with in a separate paper.

Several other phenomenological issues remain to be
vestigated. For instance, what are the consequences of a
ken SU(2)nR and what might the cosmological implication
of ñR’s and hR8 be? When SU(2)nR is broken byr i

a , the
gauge bosons are expected to acquire a mass of O(V8) and
can be quite heavy. Since onlyright-handedneutral leptons
participate in SU(2)nR interactions, a place where the effec
of those gauge bosons might show up is in the decays
neutrinos. Without going into detail, it is easy to see that
decay of the light~near-degenerate! neutrinos into each othe
is completely negligible for lack of phase space and for
fact that neutrino masses aretiny compared withV8 ~even if
the latter is in the TeV region!. This leaves us with the deca
of the ~heavy! fourth-generation neutral leptonN for which
we haveN→Ñ1n i1 ñ i ~1! via the exchange of SU(2)nR

gauge bosons, andN→ l i
21 l j

11n j ~2! if mN,mW or N
→ l i

21W ~3! if mN.mW . In addition, one could haveN
→E1 l j

11n j when mN.mE , via the exchange ofW.
Whether or notmN is larger or smaller thanmE , the relevant
decays to compare with each other are~1! and~3!. To make
an estimate, let us assume the the family gauge couplin
about the same size as the electroweak coupling (g;0.7).
The ratio of the decay widths for~1! and~3! is approximately

G~1!/G~3!;7.531024~MW /MG̃!2~mN /MG̃!2

3@12~MW /mN!4#22x22,

whereMG̃ represent the mass of the SU(2)nR
gauge bosons

and x represents the mixing cofficient between the fou
neutrino and a light charged lepton. Now let us remem
that the computation of the neutrino masses does not inv
5-21
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MG̃ and as a result there appears to be no constraint th
However, MG̃;gV8 and MG;gV, and as a result tanb
[V8/V;MG̃ /MG;g21029(M2

2/MG
2 ). In the second ex-

ample discussed in the previous example,V8;V ~with MG

5104MF) which implies MG̃;MG . Now G(1)/G(3) can
also be appreciable ifmN is close tomW . For example, if
MF;200 GeV andmN;82 GeV, G(1)/G(3);1 provided
x;1029. If this were the case, the signal would be qu
interesting: a long-lived massive neutral lepton whose e
troweak decay width is not what it should be. It is certain
beyond the scope of this paper to explore numerous phen
enological consequences which might arise from our s
nario.

Other phenomenological issues such as the magnitud
flavor-changing neutral currents, e.g.,m→eg, will be dis-
cussed in an upcoming paper dealing with the charged le
sector. However, a preliminary statement can be made.
example, in the case ofm→eg, there are two kinds of con
tributions: One coming from the propagation of neutrin
with a nonzero mass inside the loop diagram for the proc
and the other one coming from diagrams involving the n
vectorlike fermions. It turns out that both contributions a
negligible:~1! In the first case, it is becausemn!MW , ~2! in
the second case, it is because of the cancellations of the
described in Sec. III B. It is beyond the scope of this pape
discuss these points in more detail. They will be part of
phenomenological consequences of the charged lepton
tor.

As for the cosmological consequences ofñR’s andhR8 , if
they are massless, one should recall our earlier discuss
These particlesonly have family and SU(2)nR gauge inter-
actions~both for ñR’s and the latter only forhR8 ). Therefore,
theycannotinfluence big-bang nucleosynthesis. One can
timate their decoupling temperatures by comparing the in
action rateG int;G2T5, where G2;1/(64V(8)4), with the
Hubble rateH;T2/mpl . Decoupling occurs whenG int,H

which gives a temperature ofO(106) GeV if V(8);109 GeV,
for example. After this, their temperature would scale asT
;1/R. It is not clear what else they can do except to exist
almost noninteracting relativistic relics with an energy de
sity negligible compared with normal matter. At this stage
is also not clear if they really do need to have a mass.
cosmology of these objects is probably worth exploring f
ther.

Another interesting cosmological subject to explore is
‘‘heaviest’’ particle in our scenario: The vectorlike neutr
fermion M2 which is singlet under all the listed gaug
groups in Eq.~2!. M couples to other fermions via 3. Th
decay modes obtained from~3! are M 2R→f6FL

7 ~1! and
M2L→raha ~2!. Notice that, in the examples given abo
for the calculations of the neutrino masses, the mass of
fermion is typicallyM2;109MF . So, if MF;200 GeV~or a
few hundred GeV!, one would then expect the mass ofM2
to be around a few times 1011 GeV. If MF;1 TeV, M2
would have a mass around 1012 GeV. The questions that w
would like to investigate are~1! how manyM2 are left in the
present universe? and~2! could the decay of the relicM2’s
05301
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manifest itself as ultra high energy cosmic rays~UHECR!
~with energy exceeding 1020 eV51011 GeV! whose origins
are still unknown? It does appear that the mass ofM2 is in
the right energy ballpark. This would be the case of a n
accelerated source of UHECR and is part of the ‘‘top-dow
approach to UHECR@17#. For example,M2R would decay
into the longitudinal component ofW (f6) and FL

7 . f6

would in turn decay into extremely high-energy quarks a
leptons. The quarks will hadronize into hadrons such
pions which will eventually convert into photons, neutrino
etc.

Last but not least, in the subsequent series of papers
shall deal with the charged lepton sector and with the qu
sector. In particular, we shall see how the generalization
Eq. ~3! to the quark sector might yield interesting results.

Note added. It has come recently to the attention of th
author that there exists a class of models@18# based on the
left-right symmetry model which made use of vectorlike fe
mions to achieve loop-suppressed Dirac masses for ne
nos. The model presented in this manuscript is very differ
from the aforementioned class of models.
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APPENDIX: HIGGS POTENTIAL

In this appendix, we shall discuss a simple form of t
Higgs potential for the group SO(4)̂SU(2)nR

. For simplic-
ity, we shall assume that there is no cross coupling betw
(V, r) and the SM Higgs fieldf. ~One might wonder abou
the fact that even if the cross coupling were vanishing
might still be induced through radiative corrections. Th
however, would be very small in our model.!

The potential containingV andr reads

V~V,r!5l1~VaVa2V2!21l2~r† ara2V8 2!2

1l3@~VaVa2V2!2~r† ara2V82!#2

1l4@~VaVa!~r† brb!2~Vara
† !~Vbrb!,

~A1!

where ^V&5(0,0,0,V) and ^r&5(0,0,0,V8^ s1), with s1

5(0
1). Here, we will assume thatV is real andr is complex.

We will be particularly interested in the mass eigensta
resulting from Eq.~A1!.

With V45H41V and

r45S h41V81 if4

r48
D ,

Eq. ~A1! gives rise to the following mass matrix forH4 and
h4:
5-22
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8S ~l11l3!V2 2l3VV8

2l3VV8 ~l21l3!V82D . ~A2!

The eigenvectors are

H̃45cosa H41sina h4 , ~A3a!

h̃452sina H41cosa h4 . ~A3b!

The associated eigenvalues are

mH4

2 54~l21l3!V82m1
2 , ~A4a!

mh4

2 54~l21l3!V82m2
2 , ~A4b!

where

m1,2
2 5

11a6A~12a!214b2

2
, ~A5a!

a5S l11l3

l21l3
D tan2 b, ~A5b!

b5S l3

l21l3
D tanb, ~A5c!

tanb5
V8

V
, ~A5d!

cosa5
1

A11@~12m1
2!/b#2

. ~A5e!
nd

th
A

he

l
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The mass matrix forV i and Rer i with i 51,2,3, is

2l4S V82 2VV8

2VV8 V2 D . ~A6!

The eigenvectors are

Ṽ i5cosb V i1sinb Rer i , ~A7a!

Rer̃ i52sinb V i1cosb Rer i , ~A7b!

The associated eigenvalues are

mṼ50, ~A8a!

mRe r̃52l4~V21V82!. ~A8b!

Notice thatṼ i are NG Goldstone bosons which are absorb
by some of the SO(4) gauge bosons.

Since it is not of immediate relevance to the paper,
will simply quote the masses of the other scalars obtai
from Eq. ~A1!. Scalars~pseudo NG bosons! which have a
mass 2l4V2: Im r i , Rer i8 , Im r i8 . Goldstone bosons which
are absorbed by some of the SO(4)^ SU(2)nR

gauge bosons

Rer48 , Im r48 . Notice that the pseudo-NG boson masses
all proportional tol4. As a result, their masses tend to ze
asl4→0.
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