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Magnetic moments of decuplet baryons in light cone QCD
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We calculate the magnetic moments of decuplet baryons containing strange quarks within the framework of
light cone QCD sum rules taking into account ®&(3) flavor symmetry breaking effects. It is obtained that
magnetic moments of the neuti&r® and Z*° baryons are mainly determined by tB&J(3) breaking terms.

A comparison of our results on the magnetic moments of the decuplet baryons with the predictions of other
approaches is presented.

PACS numbegps): 13.40.Em, 14.20-c

I. INTRODUCTION magnetic moments of the nucleon using LCQSR approach

I as studied if18].
For the determination of the fundamental parameters of' The paper is organized as follows. In Sec. I, the light

hadrons from experiments, some information about physicg, o QCD sum rules for the magnetic moments of the de-
at large distances is required. The large distance physic§piet haryons are derived. In Sec. Ill, we carry out numeri-
cannot be calculated directly from the fundamental QCD Lag] calculations. Comparison of the predictions of this ap-
grangian because at large distance perturbation theory canngloach on the magnetic moments of the decuplet baryons

be applied. For this reason a reliable nonperturbative apyith the results of other methods, and the experimental re-
proach is needed. Among the nonperturbative approachesylts is also presented in this section.

QCD sum ruleg1] occupies a special place in studying the

properties of ground state hadrons. This method is applied to || sumM RULES FOR THE MAGNETIC MOMENTS

various problems in hadron physics and extended in many OF DECUPLET BARYONS

works (see, for example, Refi2—4] and references thergin _

The magnetic moments of hadrons are one of their charac- A Sum rule for the magnetic moment can be constructed
teristic parameters in low energy physics. The calculation oY €duating two different representations of the correspond-

the nucleon magnetic moments in the framework of the Qcnd correlator, written in terms of hadrons and quark-gluons.
sum rules method using an external fields technique, firsf/€ Pegin our calculations by considering the following cor-
suggested iff5], was carried out iri6,7]. They were later elator:

refined and extended to the entire baryon octd8if].

In [10,11], the magnetic moments of the decuplet baryons I,,=i f dx épx<0|Tnﬁ(x);E’(0)|0>F , (1)
are calculated within the framework of QCD sum rules using
the external field method. Note that 0], from the de-
cuplet baryons, only the magnetic momentsAdft and ()~
were calculated. At present, the magnetic momenta of
[12], A° [13], and Q™ [14] are known from experiments.
The experimental information provides new incentives for
theoretical scrutiny of these physical quantities.

Recently, we have calculated the magnetic moments
the A baryons[15] within the framework of an alternative
approach to the traditional sum rules, i.e. the light cone QC
sum rules(LCQSR. In this work, the magnetic moments of
other members of the decuplet which contain at least ong,
s-quark, namely the&* =0, E*%~ andQ ", are calculated

where7 is the time ordering operatoF, means electromag-
netic field, and theyﬁ’s are the interpolating currents of the
corresponding baryon, B, carrying the same quantum num-
bers. This correlator can be calculated on one side phenom-
enologically, in terms of the hadron parameters, and on the
0gther side by the operator product expansi@PE in the
eep Eucledian regiomp?— —o, using QCD degrees of

I:Ireedom. By equating both expressions, we construct the cor-
fesponding sum rules.

Saturating the correlator, E(L), by ground state baryons
e get

within the same approach. The novel feature of the present <0|778|51(P1)>
work is that we take into account ti8J(3) flavor symmetry Hw(pi,pz) = %(Bl(pm B.(p2))e
breaking effects. p1—Mj

A few words about the LCQSR method are in order. The (B | Bl
LCQSR is based on the operator product expansion on the XM 2
light cone, which is an expansion over the twists of the op- p3—M3

erators rather than dimensions as in the traditional QCD sum

rules. The main contribution comes from the lower twist op-wherep,=p;+q, q is the photon momentum arid; is the
erator. The matrix elements of the nonlocal operators bemass of the baryo; .

tween the vacuum and hadronic state defines the hadronic The matrix elements of the interpolating currents between
wave functions(More about this method and its applications the ground state and the state containing a single baBon,
can be found iM16,17] and references therginNote that  with momentump and having spirs is defined as
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<0|77,L|B(D,S)>=>\BU,L(D.S), 3 value of gy at g>=0 gives the magnetic moment of the
baryon in units of its natural magnetoe#/2mgc. Hence,
where\g is the residue, and,, is the Rarita-Schwinger spin- among the many structures in the correlator, for determina-
vector (for a discussion of the properties of the Rarita-tion of the magnetic moments, only the structarg p; £,
Schwinger spin-vector see, e.gL9]). In order to write down  js needed. The appearance of the factor 3 can be understood
the phenomenological part of the sum rules from B).it  from the fact that in the nonrelativistic limit, the maximum
follows that one also needs an expression for the matrix elenergy of the baryon in the presence of a uniform magnetic
ement(B(p1)|B(p2))r, i-e., the electromagnetic vertex of field with magnitudeH is 3(f,+f,)H=gyH [20,15. An-
spin 3/2 baryons. In the general case, this vertex can be wribther advantage of choosing toe b, p, structure is that
ten as spin 1/2 baryons do not contribute to this structure. Indeed,
their overlap is given by

(B(P1)[B(P2))e= €,U,(p1) OF*"(p1,p)u,(P2),  (4)

where €, is the polarization vector of the photon and the (017,,19=1/2)=(Ap,+By,)u(p), ®)

Lorentz tensoi® #?” is given by
where @—m)u(p)=0 and Am+4B)=0 [20,21], and we

OHP¥(pq,P2) cannot construct the structugg, ,p,£p,.
For calculating the correlatdd) from the QCD side, first
— gy (Fy+ )+(P1+pz)pf g f of all, suitable interpolating currents should be chosen. For
g vl i 2Mg 2 03 the baryons under study, they can be chosefses for ex-
ample[11])
9. (P11 P2),
(ZMB)Z[YP(G1+G2)+ Mg G,+0q,G3|,
w1
(5) 77;24, :ﬁeabc[z(uaTc,yﬂsb)uC_i_(uaTc,yMub)SCL

where the form factor$; and G; are functions ofg?=(p;
—p,)2. In our problem, the values of the form factors only at
one point,q2=0, are needed.

In the calculations, a summation over spins of the Rarita- %0 \ﬁ ab aT by C aT by c
Schwinger spin vector is performed: M 3¢ T Cy,d?)s™+ (AT Cpasu
+(s?TCy,uP)d ],

ZS Uy(p,S)U.(p,s)

(p+MB) il 1 b T b T b
- 7 =ﬁea 12(d*TCy,s?)d°+ (d3TCy,d°)s°],
> . } . 2p0'p7' S P
E*Ozi ab aT by «C aT by, ,C
(6) Un \/55 2(s*'Cy,u”)s°+(s* Cy,s’)uc],

Using Egs.(2)—(6), one can see that the correlator contains

many structures, not all of them independent. To remove the

dependencies, an ordering of the gamma matrices should be .

chosen. For this purpose the orderipgp,£p,y, is chosen. E*_ T _ab aT by C aT by 4c
With this ordering, the correlation function becomes M €P2(s7'Cy,d")s*+ (s Cy, ") dY,

/3

2
m,,=\2

wv

g
0,ub1ébog

(Pi—Mg)(p5—Mp) :
P1—Mg)(P2 1.3 o 7’2 = (3 TCy, sP)s", (9)
+ other structures withy,, at the beginning

whereC is the charge conjugation operatarp,c are color
andy, at the end, (7)  indices.
After some calculations, for the theoretical parts of the
wheregy, is the magnetic form factogy/3=f,+f,. The correlator, we get
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* + * + 1 R — ’ ' ’
I, =T, — 5 e J d*x &P y(q)|u?A U 2A, S8y, ST+ 2A, 8,01y, S0+ 282%7,A] 7,
+2ATr(y,S,%"y, S0+ S Tr( v, Al v, Sih + 281y, SPey A+ 2S5y A 7,905+ 280y, STy A
+ 28 Tr(y, A 7,909+ S Tr( v, S, Ty A} + S°ASP 2830y, Ay, S5 +252%, 5.y A+ 2A, 7,82, S
+2329Tr(y,8 Ty, A) + A Tr(y,S,2%,5391|0), (10)

- 1
Q _y17r Q
I, =1,~ +

F e f d*x &P y()[S'ASY 28"y, 8L 0y, A+ 280"y Al 7, 805+ 2A 7,80y, S¢°

+SSTr(y, S8y, A) + S Tr(y, Al 7,829 + A Tr(y,S.°%y,S2%)}H0), (11)

whereA;=1,y, ,oaﬁl\/zi Ya¥5, Vs, @ sum overd implied, S'=CS'C, A{zCAiTC, with T denoting the transpose of the
matrix, andS, is the full light quark propagator with both perturbative and nonperturbative contributions. We calculate the
theoretical part of the sum rules in linear order in the strange quark mas$§ he calculations show that the terms quadratic

in the strange quark mass give smaller contributions than the terms linegr(about8%). For thepropagator of quarks, we
will use the following expression:

Sq=(07a(x)q(0)|0)
i my  (qa) img X2, — ( img
T omid amid 12\ 177 X7 gpmelaa| 15X

1
—igsf dv
0

« i img
T 47°x% 3272

MGMV(UX)UMV_UXMGMV(UX)

—x2A2
G,uvo-,uv InT+2yE

: (12

whereA is an energy cutoff separating perturbative and nonperturbative regimes.
In Egs.(10),(11), the first termsl’[ﬁ, describe diagrams in which the photon is emitted from the freely propagating quark.
Their explicit expressions can be obtained from the remaining terms by substituting all occurences of

ba
qa(X)AiquiaB—>2< J dy Fuvyysgert(x—ymsge”(y)) : (13)
ap

where the Fock-Schwinger gauge,A ,(x) =0 is used, antsge” is the perturbative part of the quark propagator, i.e., the first
two terms in Eq(12). Here,F ,, is the electromagnetic field strength tensor.

For customary, here we presented theoretical results only for the correlafis'adnd() ~ [see Egs(10) and(11)]. The
corresponding expressions for the theoretical parts of the correlators fa&*the 3*°, £*° and Z*~ baryons can be
obtained from Eq(10) as follows: ForS* ~, substituted quarks instead ofi quarks; for=*° exchangeu ands quarks; and
for E* 7, substitutes quarks instead afl quarks, andl quarks instead of quarks. The theoretical part of the correlator for the
>*0 paryon is half the sum of the theoretical parts of the correlators foBthe and>* ~ baryons in exac8U(2) flavor
symmetry limit.

For calculating the QCD part of the sum rules, one needs to know the matrix eleppéqisgA;q|0). Up to twist-4, matrix
elements contributing to the selected,p,£p, structure are expressed in terms of the photon wave functiof@2as4

— f 1 )
<7(q)|q7a75q|0>:ZeqeaﬁpoeﬂquUJO du équw(u),

_ _ 1 X
(v()|go,eal0)=ieq(qq) fo du €' (e,05~ €30)[x () +X°[1(U) = Go(U) ]T+ [ AX(€,X 5~ €5X,)

+ eX(Xop—Xpla) 192(W)}, (14)
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wherey is the magnetic susceptibility of the quark condensateegnid the quark charge. The functioggu) and (u) are
the leading twist-2 photon wave functions, whie(u) andg,(u) are the twist-4 functions.
Using Egs.(12) and(14), after some algebra, and performing Fourier transformation, the result for the strggciwrep,
can be obtained. As stated earlier, in order to construct the sum rules, we must equate the phenomenological and theoretical
expressions for the correlator. Performing the Borel transformation on the varjatbéesl (p+q)? in order to suppress the

contributions of the higher resonances and the continuum, the following sum rules for the magnetic moment of the baryons are
obtained:

2 2
x+ € M= [ f Uo) °G? Ut 'S ut
o = ;* [fz(wg <g48>—M4f (est2ey)+ <UU>(91(UO)—gz(uO))[<SS>(es+eu)+<uu>eu]
+X¢(Ug)<uu>[ 2 —aMm?f, 2 )1<SS>(ES+GU)+<UU>eu)+ <Uu>(es(iu)+2eu<§s))
+<92G2>M2f So. (et 26 )+3|\/|6f (i)(e 126 )+mS_M2f (ﬂ)(e <§s}—e Uu})
76874 O\ M2 TV  an2 2\ m2) s Y T 2 0 )t «
_m5<Uu>< _InA_z) m2e+& 262 ) +Mf i e —2e( )— ))_e
- Ye 2 es g(g Yop(Ug) x 2 ol 73 [esve u(91(Uo) —g2(Ug ul
e,mg(uu g°G?
+%( (gl<uo> gz<uO>)< >+3W2f¢(uo)+X¢(Uo) “f M—Z))] (19
2 2
cro_ €=M (fy(ug) [ (6262 s 8 ~ m E
9= = T | ‘1”2(772 <g48 >—M4fl M—Oz) (eut2eg) + 3(55)(9a(Uo) —Ga(Up))[(Uu)(ey +eg) +(ss)e]
N X¢(Ug)<SS) —AM?f, 1(<uu>(eu+ e,) +(ss)eg) + §<SS>(eu<35>+zes<UU>)

3M6f So mg _ _
( u+zeS)+647T2 2 W (eu+zes)_?(gl(uo)_gz(uo))(<ss>es+<uu>eu)

|A2 mamges
YE an P

So _
M zfo(W) [4yees((ss)+(uu))

<92G2>M 2
7687*

MZ

(9°G%))
18M2

st’(uO)
7212

(g°G?)((ss)es+(uu)ey)

({ss)+(uu))

2M2f <—°2>+

2

2 mg
f¢(Uo)+ a2

S

- — m
X ((uuyest(ss)ey) + a2

A2
—In— 2 +mg

—(5(uu)es+3(ss)e,) ]+ ————

st’( 0) MAf (_o (16)

Mz) ((ss)es+(uuye,) |

~ e 2,00 fi(ug) [ (gPG? _ (Up)(ss
gi _)\E)GMQ/M[% <g48>—M4f1 = +8<ss>2[gl<uo>—gz<uo>]+w[ m3—4M>f, M—ZH
— (9°G*)M? [ s 9M® So < > 91(Ug) —g2(Ug)  x¢p(ug)
+2<SS>2+—256774 fo 2 +@f2 YE 2 +—
A? 6 b [so| 3mp A?
X —“’IW —?ms<53>(91(uo)—gz(uo))|\/| fO(W +Qms<55> 2—75+|0W
AT et |+ P m i ) t
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As is stated earlier, the sum rules ®F =, and=* ~ can be T T T T

obtained from Eq(15) and Eq.(16), respectively, as follows: o 7

To obtain the sum rules foE* ~ and 3*° from Eq. (15),

replacee, by eq and (g, +ey)/2 respectively. To obtain the 25 | 4

sum rules for=* 7, replacee, by ey in Eqg. (16).
In Egs.(15—-(17), the functions

Hys+

20 B
n k — 2 —
X s0 = 4.1 GeV27 ms = 0.00 GeV
fa)=1-e*3 (19 L TIRZIh G m IO Gy
k=0 % OF so =43 GeV2 m, = 0.15 GeV.
————— 90 =4.5 Ge 3 My = 0.00 GeV
are used to subtract the contributions of the contin(it&) . = 4.5 GeV ) o = 0.15 GEVI
. . 1.0
andsy is the continuum threshold, 11 12 13 14
2 2
M2 M?* (GeV#)
Up=—5—, .
0 Mf+ M% FIG. 1. The dependence of the magnetic momer®f on the
Borel parameterM? (in units of nuclear magnetonfor three dif-
1 1 1 ferent values of the continuum threshosd, and for the casemg
—=—t . =0 andmy=0.15 GeV.
M M7 Mj

ment, the working region for the Borel parametdt?, is
found to be 1.1 Ge¥<M?2<1.4 GeV for 3* baryons and
1.1 GeVV=M?<1.7 GeV for Z* and()~ baryons. In the
case of2* and()~ baryons, the working region of the Borel
parameter is wider due to the relatively large masses of these
I1Il. NUMERICAL ANALYSIS baryons.

From the sum rules, one sees that, besides several con- N Figs. 1-6, we present the dependence of the magnetic
stants, one needs expressions for the photon wave functiofi@oment of each baryon on the Borel parameliét for three
in order to calculate the numerical value of the magneticalués of the continuum threshold and for the cases 0
hence, we shall use the following photon wave functions6% by a variation o6, and are also very weakly dependent

As we are working with just a single baryon, the Borel pa-
rametersM? and M3 should be taken to be equal, i.842
=M3, from which it follows thatuy=1/2.

[23,24): onM?2. From these figures we can deduce the following con-
clusions. When we take into account mass of strange quarks,
H(u)=6uu, the results for the magnetic moments of charged decuplet
baryons change about 25%, but for the neutral decuplet bary-
Y(u)=1, ons, the situation changes drastically, i.e., the results increase

by more than a factor of four. This fact can be explained in
- the following way. In exac8U(3) limit, magnetic moments
g1(u)=— §U(3_U)' of 3*% and 2*° are proportional to €,+e4+es) and (g,
+2e,), respectively. For example, tH&*° case is evident

1
gz(U):—ZU ) T T T T

- 0.20 :_'_:':_':_':_':_':'_:'_‘_'_‘_':_':;:'_‘_'_‘_'_‘_'_‘_':_':'_'_'_‘_'___________:
where u=1—u. The values of the other constants that )
are used in the calculation aréd=0.028 Ge\¥, y | T = i1 Gy me =00 Gy
=—4.4 GeV? [25] (in [26], x is estimated to bey < 015 gofi-g gg;;, ms—g-(l)g ggg 7]

— - 0 = 2. , My = UL

=-3.3 GeV?), (g°G?=0.474 GeV, (uu)=(ss)/0.8 wnol 50 =45 GeV% my = 0.00 GeV.
_ 2_ 10_10 I sp = 4.5 GeV?, my, = 0.15 GeV a
=—(0.243¢ Ge\®?, m;=(0.8+0.2) GeV¥ [27], A\«

=0.043 GeV, \=x=0.053 GeV, and \,=0.068 GeV
[28]. For the energy cutoffA, we will take A=0.5 GeV. 0.05 | .

Having fixed the input parameters, our next task is to find
a region of Borel parameteM?, where dependence of the L

magnetic moments ol ? and the continuum threshos is 11 1.2 L3 1.4
rather weak and at the same time higher states and cor M? (GeVQ)

tinuum contributions remain under control. We demand that

these contributions are less than 35%. Under this require- FIG. 2. The same as Fig. 1, but f&r°.
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-1.0 T T T 0.0 T T T T T
2 =0. -0.5 so=4.8 GeV2, m, = 0.00 GeV
Vpm=000Gey | Wer o T so= 4.8 GeV2 m, = 0.15 GeV
1.5 | eVim,=000Gv 4 | so=15.0 GeV2, m, = 0.00 GeV.
il eV m' =0.15 GeV 10 e sp=5.0 GeVZ m, =0.15 GeV -
eV m. = 0.00 GeV [ sp = 5.2 GeV2, m, = 0.00 GeV
eV2 m, = 0.15 GeV A s = 5.2 GeV?, m, = 0.15 GeV

My x—

L L L 1 -3.0 L L L L L

1 12 13 14 11 12 13 14 15 16 L7
M? (GeV?) M? (GeV?)

FIG. 3. The same as Fig. 1, but f&* ~. FIG. 5. The same as Fig. 1, but f&* "

from Eq. (16) if in this equation we pums—0 and(uu) APPENDIX

=(ss). In other words, magnetic moments bt ° and Z*° In this appendix, derivation of the rules for Fourier and
are exactly zero i8U(3) symmetry limit.[In Figs. 2 and 4, Borel transformation which we have used in our calculations
they are slightly different from zero. This is due to the factwill be presented.

that in the calculations we takéss)#(qq) (q=u,d).] In coordinate representation, the structures that contribute

Hence, the main contribution to the magnetic moments of0 the structurey,,,p,£p, arex,x,xéq andg,, Xéd. Let us
3*0 and=*° come fromSU(3) breaking terméthe mass of ~ Start with the following expressions:

s-quark, s-quark condensate, etc.For this reason, for the

magnetic moments of the neutral decuplet bary8m¥3) XXX,

breaking effects play an essential role. Note that all the f d*x e'PX#i“ (A1)
graphs are plotted foy=—4.4 GeV? andm3=0.8 Ge\’. (=x%)

Our final results on the magnetic moments of the decuplet

baryons am=0.15 GeV is presented in Table I. For com- @"

pleteness, in this table, we also depicted our previous predic-

tions on the magnetic moments Af baryons and also the A ip o

predictions of other methods. The quoted errors in Table | f d*x € Xﬁ, (A2)
are due to the uncertainties i, so, variation of the Borel (=%

parameteM? and the neglecteth? terms. Note that in our bi h | ional o
calculations, we have neglected higher twist wave functiond0r arbitraryn [_t ere are also terms proportiona to+r?(),
these terms will be discussed ldteNote that we are inter-

and corrections to the leading twist 2 photon wave function. ; )
Our calculations show that these corrections can bring afiStéd only in the part of the Fourier transforms that are pro-

H 2_ 2
addition 5% error to the above quoted errors. One final repomgnal ©0g,,. In Egs. (A1) and (A2), P*=(p+udq)

. - . _ A2 2 _ H H H
mark is that our predictions on the magnetic momerEdP ~ =Piu+pzu whereu=1—u. The derivation will be demon-
differ from the QCD sum rule results not just in magnitude, strated for Eq.(Al), as generalization is quite trivial. One
but also, more essentially, by sign. can replace every occurrencexf by —i(a/dP):
0.5 I I I I I I 0.0 I I I I I I
04 i
S et ot et et et -05F 89 = 5.4 GeV2 m, =0.00 GeV
e sp = %-é gegg, m, = 8-(1](5] 865
o 03} o= 4.8 GeV?, m, = 0.00 GeV - =36 Cev? mt =015 Ce
11— sp = 4.8 GeV?2, m, = 0.15 GeV so=58G
[0 Y PP so = 5.0 GeV?2, m, = 0.00 GeV 3 =58 G
3 g0k s9=5.0 GeV?% m, = 0.15 GeV.
02 sp = 5.2 GeV2, m, = 0.00 GeV
————— so = 5.2 GeV?, m, = 0.15 GeV
01 i
0.0 1 1 1 1 1 1
11 12 13 14 15 16 17
M? (GeV?)
FIG. 4. The same as Fig. 1, but f&*°. FIG. 6. The same as Fig. 1, but &~
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TABLE I. Comparisons of decuplet baryon magnetic moments from various calculations: thisM@RISR, QCDSR[11] lattice QCD(Latt) [21], chiral
perturbation theory ¥ PT) [29], light-cone relativistic quark modelRQM) [30], nonrelativistic quark modefNQM) [31], chiral quark-soliton model
(x QSM) [32], and chiral bag modely B) [33]. For the magnetic moments af baryons in LCQSR, we have used the resuftld]. All results are in units
of nuclear magnetons.

Baryon AT AT A° A 2*+ E*O S E*O E*— Q-

Expt. 45-1.0 ~0 —2.024+0.056
LCQCD 4.4-0.8 2.2£0.4 0.00 —2.2+0.4 2.70.6 0.20:0.05 —2.28£0.5 0.40:0.08 —2.0£0.4 —1.65+0.35
QCDSR 4.3%1.00 2.1$-0.50 0.00 —2.19-0.50 2.13:0.82 0.32:0.15 -1.66£0.73 -0.69t0.29 —-1.51+t0.52 —1.49+0.45
Latt. 4.91+0.61 2.46-0.31 0.00 246031 255-0.26 0.27#40.05 -—2.02+0.18 0.46-0.07 1.68-0.12 —1.40+0.10
xPT 4.0:04 2.1+0.2 -0.17£0.04 -2.25t0.25 2.0:0.2 -—0.07+0.02 —2.2+0.2 0.1+0.04 —2.0£0.2 input
RQM 4.76 2.38 0.00 —2.38 1.82 —-0.27 —2.36 —0.60 —2.41 —2.48
NQM 5.56 2.73 —0.09 —2.92 3.09 0.27 —2.56 0.63 —2.2 —1.84

x QSM 4.73 2.19 —0.35 —2.90 2.52 —0.08 —2.69 0.19 —2.48 —2.27

xB 3.59 0.75 —2.09 —-1.93 2.35 0.79 —-3.87 0.58 —-2.81 —-1.75

where
f d4x eIPX XpXiXa
X Lo MM
B (_,L) Mi+M3'
B P, P
(—i) f M3
X d*x | dte Pxn-le ¢ Up= ——.
)I‘(n " M2+M3
(A3) -
Similarly
where we have switched to the Euclidean space in the inte-
gral and used the identity . X, 272 [M2\n-2
d4X e|Px L -
f (—x)n T(n)
—=—f n—lgmty, (A4)
y' T o XMZ28(u—uy), (A8)

In Eq. (A3) one should be careful in taking the derivatives as ) ) o2 5
the derivatives are with respect to the Minkowskian four vec- f 4 eipxm(—x o 27 (_) MZ[ In(M—>
tor P but the integrand is expressed in terms of the Euclidean (—x3)" I'(n) 4
vector P. The four dimensional integral is now a trivial
Gaussian integration. After performing the integration over
Euclidean space time, and taking the derivatives, the coeffi-
cient ofg,,,P, is found to be

XXX, 72 (e o, f 4 .len(—xz)xﬂxyxa w? /M_Zn 3 , M_2
jd4xelpx(#xz)n 4I‘(n)J’0 dtt"Se P74 (A5) d*x € (2" _)F(n)\ 2 M4 In 2

d
— ﬁln F(n)] S(u—ug), (A9)

Using the Borel transformation of the exponential - diln F(n)] S(u—up).
n
1 u)[1 u
-Pls_ o — - _ - (A10)
Bpinge 8 Ve o YE 4t) (AB)
_ ' _ _ The corresponding transformation rules for terms contain-
and carrying out the integration, one obtains ing In(—x?) have been obtained by making use of the identity
2 2\n-3
4y AlPX M Xa - 2 _ J 1
J o ) r(n)( ) MEo(U o) In(—x2)=— - (A1)
Je (_X2)e
(A?) e=0
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