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We present a model-independent method for determining anomalous gauge boson couplings from ongoing
and futuree*e” —W" W~ experiments. First we generalize an already existing method, which relies on the
study of four observables constructed through appropriate projections of the unpolarized differential cross
section. In particular, we retain both linear and quadratic terms in the unknown couplings, and compute
contributions to these observables originating from anomalous couplings which do not separately conserve the
discreteC, P, andT symmetries. Second, we combine the above set of observables with three additional ones,
which can be experimentally obtained from the total cross sections for polarized finaWstadsons. The
resulting set of seven observables may provide useful information for constraining, and in some cases for fully
determining, various of the possible anomalous gauge boson couplings.

PACS numbd(s): 14.60.Cd, 13.40.Gp, 14.70.Fm

[. INTRODUCTION tioned above, are six; therefore, one is not able to extract
experimental information for all anomalous couplings, but
Anomalous gauge boson couplinft,2] have attracted only for a few of them. In addition, the fact that the observ-
significant attention in recent years, and their direct studyables constructed by this method are rather strongly corre-
through the procese™e”—W*"W~ has been one of the lated further reduces the predictive power of the PM.
main objectives of the CERN Large Electron Positron col- The purpose of this paper is twofold:
lider LEP2 [3-8]. In addition, the trilinear gauge self- (i) The contribution ofall anomalous couplings is com-
couplings have also been probed through dik¥gtandWZ  puted, and terms linear and quadratic are retained. This not
production at the Fermilab Tevatrd®,10]. The study of only augments the PM, but as we will see later, results in the
such couplings is expected to continue at the CERN Largadditional advantage of reducing the correlation among the
Hadron Collider(LHC), as well as the Next Linear Collider four original PM observables.
(NLC) [11]. (i) The aforementioned four observables of the PM are
Recently a model-independent method has been propos@dmbined with three additional observables, which can be
for extracting values or bounds for the anomalous gauge baextracted, at least in principle, from measurements of polar-
son couplings frome™e” —W"W~ experimentd12]. The ized total cross sections. Specifically, the observables corre-
basic idea is to study projections of the differential crossspond to the total cross section for having two transverse,
section which arise when the latter is convoluted with a setwo longitudinal, and one transverse and one longitudiial
of appropriately constructed polynomials in éhsvheredis  bosons in the final state. These quantities have already been
the center-of-mass scattering angle. This construction leadgudied in the literatur¢14], and are usually denoted by
to a set of four novel observables, which are related to thert, o, andot, respectively. In fact, it is expected that
anomalous couplings by means of simple algebraic equaexperimental values for the aforementioned observables can
tions. The experimental determination of these observablese extracted from the available LEP2 experimental fb5a
can in turn be used in order to impose bounds simultaneously The inclusion ofott, o, andoy, to the original PM
on all anomalous couplings, without having to resort toobservables gives rise to a set of seven observables, thus
model-dependent relations among them, or invoke any furincreasing the predictive power of the method. For practical
ther simplifying assumptions. This method has also beempurposes in this paper we present the case where the afore-
generalized to the case of hadron collidel8], and its com- mentioned three cross-sections are calculated keeping linear
patibility with the inclusion of structure function effects has and quadratic parts of th€, P, and T invariant couplings
been established. In what follows we will refer to this only. To the best of our knowledge the explicit closed form

method as the “projective method(PM). of these cross-sections in terms of the anomalous couplings
The PM as presented [12] only includes terms linear in is presented here for the first time.
the unknown anomalous coupling@®rm factorg which are The outline of the paper is as follows: In Sec. Il we

individually invariant under the discretg@ P, andT symme-  present the complete expressions for the PM observables,
tries. However, the inclusion of the quadratic terms as welkeeping all terms. In Sec. lll we compute the closed expres-
as theC, P, andT non-invariant couplings is necessary for a sions for the polarized cross sections, keeping quadratic cor-
complete experimental analysis. In addition, the observablegection but, assuming the presence @f and P invariant
constructed by means of the PM are only four, whereas theouplings only. In Sec. IV we focus on the system of equa-
unknown form factors, even with the simplifications men-tions obtained when the results of the previous two sections
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€ (k1,0) W= (p1, M) We now proceed to compute the unpolarized differential
cross sectiondo/dx) corresponding to this process, i.e. we

z 2 Y average over the initial spins and sum over the final polar-
y izations. We have
et(kz,—0)  W(pz, o) do (1) B \g* . )
(@) (b) (©) a—(g (E>ZMEM2 M7\ N7 (2.4

FIG. 1. The procese’e —W'W" at tree level, including The first fraction is the flux factor, the second is a phase

anomalous gauge boson couplings. space factor, and the factor of 1/4 is due to the averaging
over the initial helicities. All conventions are identical to

are combined; at this stage the linear and quadratic terms @hose of{ 12] except that we have now pulled out the overall
the C and P invariant couplings are retained, giving rise to coupling constant factor and have denoted the remaining
seven equations for six unknown couplings. We discuss varisym of amplitudes by\1.
ous issues, and carry out an elementary analysis of the cor- the vWrw~ vertex T'V s (V=1,Z) we use has the
relations among some of these observables. In Sec. V wg,m, e
present some numerical examples; in particular, we solve the
resulting system of seven equations for some randomly cho- ry ,=ro +erVv (2.5
sen values of the PM and polarized observables, and find the pep = pap pap
corresponding values for the anomalous gauge couplings. Fighere
nally, in Sec. VI we present our conclusions.

T 5(d,=P1,—P2) = (P2~ P1) w9+ 2(Us0 00— aTp,)
Il. THE COMPLETE EXPRESSIONS (2.6

FOR THE o; OBSERVABLES . .
: is the canonical standard mod@M) three-boson vertex at

In this section we extend the analysis presentdd#iby  tree level, assuming that the twit-bosons are on-shell, and
including the linearand quadratic contributions oéll pos-  thus dropping terms proportional m, andp,z. The term
sible anomalous couplings. We consider the processT) . contains all possible deviations from the SM canoni-
e (kq,o1)e" (kp,02) =W (p1,A)W'(p2,\;), shown in  cal form, compatible with Lorentz invariance, i.e.

Fig. 1. The electrons are assumed to be masskedabel the
spins of the initial electron and positron, i.ey=—o0, 8T} 50, —P1,—P2)
=0/2, o=*1, whereas th&; label the the polarizations of

the producedV bosons, with\;=0,*+1. v o fy 5 .,
The relevant kinematical variables in the center-of-mass =fi(p2—p1)*g _2M2 qg”(p2—p1)
frame are w

(ky+kz)*=(ps-+p2) +21Y(aPg e —q g’ +if{(aPg" +q°g")
S= + = + ,
1 2 P1T P2 +ifge““BP(Pz—pl)p+f2;/6““3”qp

t=(ky—p1)?=(p2—kp)? £y
s gz (P2 PO e (PP (27)
=—Z(1+,82—2Bcosa) w
The deviation form factorg are all zero in SM. In what
_ %(z—x) (2.1) follows they will also be referred to as trilinear couplings or
2 ’ ' anomalous couplings. We assume all anomalous couplings to
be real.
where The calculation is straightforward but lengthy; it is impor-

tant to emphasize that the inclusion of the additional terms in
M the vertex, namely those that are not separa@lgnd P
B=/1- —% (2.9  invariant (fy,f5,f¢,f7) doesnot change the functional de-
S pendence of the differential cross section on the center-of-
mass angled, which was established if12]. Thus, the ex-
is the velocity of theW bosons,x=cos6, where # is the  pression for o,,/dx), the part of the differential cross-

angle between the incoming electron and the outg@hgin section which contains the anomalous couplings, assumes

the center of mass frame, and again the form
1+ B2 dUan_ g* B
2= 3 (2.3 (20 = gan s & TIPS (29
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with P;(s,x) the same polynomials ixfirst obtained irf12]:
namely,

Pi(x)=z-Xx,
Po(x)=(z=x)(1=x?),
P3(x)=1—x2,
PL(x)=1—px. (2.9

In arriving at this result the following algebraic identities

1
X(z—X)=—— e

P+ Pyt
Bl 3

P4

x—,8=—2P1+%P4 (2.10

may be found useful.

Notice that the explicit closed expressions of the coeffi-

cientso; have changed with respect to those reportgd #],

PHYSICAL REVIEW D 62 053011

c,.. .~ 2 Cs.afr 4 (2.11
we have that ther;, wherei=1, ... ,4, can bevritten as
O'iZEk: LLCk"'Ek Izk Qlir1) CKCi - (2.12
Defining the following abbreviations
s
77_ 4MW1
s
u= ,
s—M3
u
y=—=,
Ch
r=v?+a? (2.13

since both thdinear as well as thejuadraticdependence on the explicit forms of the coefficientk| and Qi[k][,] of the
all couplings has now been included. Using the followinglinear and quadratic terms respectively in E@.12 are

uniform short-hand notation

Li=—8s2[4s2+v(4ci—1)y],
LI,=—8u[4vsi+r(4c2—1)y],

Q[ls][a] =16sy,78°,
Qs = — 16as], 7%y,
Qfaypay =8vSynB°U,
Qisyis) = 45w 78",
Q[15][12] =8usg 7By,
Q[lG][ll] = —Saﬁ,nu,
Qioj20= 1678%ru?,
Q[1111[11] =49p%u?,
Qlizjaz=4nBru?,

Li=siB%[2(3—2n)(vu+s) —(1+27n)vy],

Li=—4B%npsi[2(vu+sy) —yv],

LE=—2B2nu[2(1+ n)(ru+vsd)— nyr],

L=

1 _
L12_

given below:

4si[a(4ci—1)y—1],

—4(v+a)u+8au[va(4ci—1)y+2s3]. (2.149
Qfsj10= 32055 mB%u,

Qfajja) = 4SwB%,

Q[14][13]: —8as;nu,

Q[151[10]= —16as}, 7%,

Q[le][s]:‘lséﬂl,

Q[lﬁ][13]:8053v77uv

Qfigiz= — 3wanp?u?,

Q[lll][l3]: —16vanu?,

Qg =4nru?, (2.19
L2=—2B%5s2[2(1+ n)(vu+s3)— pyv],
L3=B2u[2(3—2n)(ru+vss) —(1+27)yr]
Lio=—4B%nul2(ru+vs}) —yr],

(2.16
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Qfyy =Swn?BA(3—28%+3p%), Qi =—4sun*B*(1+B?),

Q[l][3 = —8s,7°BX(1+B?), Q[21][8]:203\%/772,32(3_2,32+3ﬁ4)ui
Qfije) = —dvsan*B*(1+pHu, Qfijao = —8uvse7*BA(1+ B,
Qb2 = 4su*B°, Qloygs = 1685,7°8",
Qbojiey = —4vsen°B*(1+ ), Qfojr0y =805 7* 8%,
Q[z][lo]:]-GUSwU Bu, Q 3][3]:85\/\/7]2,3 (1+p89),
Qfaye = — 8usan°BA(1+ B2, Qfajpo; = 16vs,7°B%u,
Qa0 = 16085 7°B7(1+ ), Qfaya=—25078%
Q[24][11] = —4vs;nB2u, Q[25][5] =—2s5mp°%,
Q[25][12] = —4vs;nBy, Q[ze][e] =—2s,np?,
Q 61171 = 163W7],3 Q[261[13] = —4vS€V7]ﬁ2u,
Q[6][14] = 16vs, 7B,
Q (7171 =325, 728", Q[7] [13] = =16vs,7B%u,
Q[7][14] =640, 7B, Q[S][S] =n?p%r(3—2p%+3B%u?,
Qfajpo; = —47°B*r (1+pHU?, Qfgjpao = —87°B%r (1+ A2,
Q[91[9] =475"B%ru?, Q[291[10121677334VU21
Q[210][10] =87n?B%r(1+ B2 u?, Q[211][11] =—2pB%u?,
Q[212][12]: —2nB%ru?, Q[213][13]: —2nB%ru?,
Q[213][14]: 167B8°ru?, Q[214][14]:32772/34rU2- (2.17
= —suB. L3=sanB,
Li=sipl1-4a(4cy -1yl L§=—(v+a)pu,
L3=(v+a)»npu, L3,=Bu[(v+a)—8va(4ci—1)y—16asi]. (2.18

Qbaz=16as;,78%,  Qfyng=8as,nBu,
Q[35][10] =16as;, 78y, Q[ae][ll =8as;,B7u,
Qliouz=32anB%? Qg =16vanBu?,

(2.19
L3=4s,87", L3=—4asi(4c,—1)(z—Bly+2s,8 ",
Li=4(v+aup™t,  Li,=—8(z—pB)lva(4ci,—1)y+2as;Ju+2(v+ajus (2.20
Qlajz =8asaAu, QLunz=4as,8 ',
Q?S][lO]ZSaSa/IBu! Qf61[11]=4a§,/8‘1u,
Q[lO] [121= 16vapu?, Qf‘n][m]zSUﬁ,lTle (2.21

As explained i 12] the four quantitiesr; constitute a set of 1

observables; their experimental values may be obtained fﬁlpi(X,S)Pj(X,S)dXZ dij - (2.22
through an appropriate convolution of the experimentally

measured unpolarized differential cross-sectitrf®*P/dx Clearly the sef®, is not uniquely determined; ifil2] we

with a set of four polynomials?;(x), which are orthonormal have reported the set with the lowest possible powex, in
to the P;(x); i.e., they satisfy namely:
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ﬁl(X,S) :g(gﬁ_l_ 15x— 15BX2—35X3), M g()\l ,)\2)=v(k2,— U)[é}\l(pl)(pl’ 6)\2([32))
—£,,(P2) (P2 €, (P1)) P UKy, 0)

~ 35
Pz(x,s)=§(—3x+5x3), MG\ N2)=v(ky,— )y, (D2)

5 5 X (k1= p1) €y, (P1) P UKy, 0) (3.9
P3(x,s)= §(3+212x—9x2—352x3),
where the helicity projectors are given by

|~34(x,s)=g(—3—15zx+ 15x2+35z°). (2.23 pi:1i275_ (3.2
In particular, theo{®*P are given by We now establish contact with the notation of the previous
section and that of12]. In terms of the basic matrix ele-
(exp)_ 64ars da’ (exp) dg'(o) _ ments, defined above, the amplitudes corresponding to the
o P f dX(z=X)| —37— Pi(X,s), three graphs of th&V pair-production process in Fig. 1 are

(2.24) expressed as
2

where do(®/dx is the SM expression for the differential 5 o\, ) ):2_SW[(1+f7)M TN g N g) + FIME(N 1N p)
cross section in the absence of anomalous coupliags LR s Vet e
Given the experimental measurement of the differential cross
sectiondo(®*P/dx for on shell W the four numbers; can

be extracted together with their related errors. Subsequently
Eqg. (2.12 can be viewed as a system of four quadratic equa- , o
tions with fourteen unknowns which although cannot be
solved, it appears feasible that it could be fitted for all cou-
plings simultaneously in a model independent way. In fact, +FFEMI(N g Np) + (L+FHME(N 1\ )]
using U(1) electromagnetic gauge invariance the photonic

1+ HM3(A1N)]

(N1 hp)= M2[<1+fl>M1<x1, 2)

couplingsf} and f] are related byf7= »fJ, thus reducing ” 1
the total number of unknowns to thirteen. MU Ng)=— ZM 4(M1.R2) 0g— 3.3
Il. POLARIZED CROSS SECTIONS where an overall coupling constant factor ig? has been

pulled out, the left and right handed couplings of the electron
In this section we will augment the previous set of observyith the Z boson are given by

ables, which were projected out of the unpolarized differen-

tial cross section, with three additional observables obtained g.=v—a, g_=v+a, (3.9
from measurements of polarized total cross sections. As a

first step we will only compute in this section the polarizedand the Kroneckew (6__=6,,=1, 6_.=6,_=0) in
cross sections obtained using non standard couplings théte neutrino graph appears due to the fact thattheosons
separately respe@ andP, i.e., we only retain the first three couple only to left handed electrons.

Y Y f\3’. In order to calculate the polarized cross sections The full amplitude can then be cast in the form

we define the following basic matrix elements for the pro-

duction of two Ws with definite helicity from polarized M 7(A1,\5 )=M”()\11?\ )+ MZ(Ng,h) + MT(N,N2)
e e" beams. For massless electrons the helicity of the pos-
itron is opposite to the polarization of the electrom;

= —o0,=0. Three basic matrix elements are defined, one for

each of the first three terms of the trilinear gauge vertex in

Eq. (2.7, and a fourth one for the neutrino exchangewhere
t-channel grapliFig. 1(c)]:

U)IH

Z (\1\2) (3.5

=282(1+fY)+2g,u(1+f%), for i=1,3

MIN A =[v(Ko, = )PP u(ky,0) 1€y (P1)- €,(P2)) , Z
F(27'= zstef%/"' Zg(rUf ’

MZ(\ 1 h2)=[v(kz,— ) p1Pou(ky,0)] S
. Fi=—5; 0 3.6
X(p1- €, (P2))(P2- € (P1)—5 o _ '
2Myy are explicit functions of the anomalous couplings.
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We then calculate the total cross sections for the producNotice that, as is well knowfil4], the transverse cross sec-

tion of: (i) two transversely polarized/s denoted byrt, (ii)
of two longitudinally polarizedWs calledo and (iii) one
transverse and one longitudin®, denotedo),. We will

tion o receives anomalous contributions only frofi,
whilst o, only from f3 . Finally, the longitudinal cross sec-
tion 0,_ depends on all six anomalous form factors

present their epr|C|t expressmns in terms of arbitrary trilin-£Y = £¥ , 3.

ear gauge couplmgfs1 f . The relevant differential po-
larized cross sections are deflned by

dor 1 B ¢* 2

Ux 25167 4 g 2. MM

doy 1 B g* 2

ox " 2516 4 , 2. M0
+|M(o,00M)]2],

doy 1 B ¢* 2

Ux " 25 167 4 & M(.00% o7

Usmg the expressions given above, we first compute the
differential cross sections and, as a check, we verify that by
combining all three we obtain again the results of the previ-
ous section. After performing the angular integration in order
to obtain the total cross sections we also check, by setting
fiV—>0, that our SM result agrees with the polarized cross
sections presented iL7]. After these basic checks of our
calculation, we subtract the SM contribution to obtain three
new observables

These are calculated in a straightforward manner using the
expressions of the basic matrix elements for the different
polarization combinations. The non-vanishing amplitudes are

explicitly given below:

Tl
My(o,+,+)=—"J1—x°
B
M4(0-!—1—)_ X B)Vl X
M4(a,t,1)=—§(x10)\/l—xz, (3.8
TL
Bs
Ma(0,%,0)=M5(0,5)=\27 5 (xF0),
Mu(o,% 0= M§(0.7) =~ 27 5 [2(8—)
Folp]l(xF o), (3.9
LL
My(,0,0)=— w 12,
My(3,0,00=B7s(7—1)1-x2,
M3(0,0,00=287nsV1—x?,
M4((r,0,0)=—;[,8(21;+1)—27;x]\/1—x2.
(3.10

[128ms]
o5= (o$5P— U-?—T),
L 98 |
[ 1287s|
0= (O'eXp_ 0'|_-|-)
L o' |
[ 1287s]
o= (o0 P— O'LL) (3.11)
L o' |
Setting for convenience
1+8
=in| 1=/, (3.12
__" 87
7'1=—E+1+?+,3 (1+7),
1 8
_- % 2
TZ_EZ 3 ’
16
ra= s+ o +126% (3.13
. 1
La=71— (Sw+vu),8 (21]+1)+ 3 3£
27°B
_ 16 , ) (v+a)
LB=(v+a)Tl—§(sz+ru)ﬁ (2np+21)+ 27)3,83£
(3.19
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1652 128732

5_ 6—

Q - 3 ) Q - 3 [}
8 128

QA=36%(27—1)% Qi=—58°7"

128

64
Q=735 D—3ﬁ4(2n )77,

;256

3QEE§BZ(277—1)77, —~ B'n

(3.19

the polarized observables;,oq, ando; are given by
os=L3f]+L3 f§+QF1][1](f1')2+ QFl][B] f1f5
+Qfgyie) (2,
5+ QPayga (F)?+ QPypagy 315

6 z
+Qrio110] (f3)%,

07:Ek LECk"“Ek lzk Q[7k][|]CkC|,

oe=L3 T+ LS f

(3.19

and the various coefficients appearing in E816 are ex-
plicitly given below:

5_ 2 ? 2 1
Li=sy| T2t (SW+UU)_W£ ,
a
Lg=u wra) . ic,
2pB°n
Q1) =Sw Q%
QFl][S] =2s5ou Q°,
QF&][S]:VUZQS, (3.17
2
LS=s2 9| — 75+ (s2+vu)
2(1+3p2
. ( B )L ,
337’2
2
L§O=U77 —(v+a)ry+ (US\%,—HU)
2(1+ 382
* (”a)(s—zﬁ)ﬁ]'
B'n

Qpajra; = Sw Q%
QFs][lo]:zsngU Q5
Q[610][10]:rU2Q61 (3.18

PHYSICAL REVIEW D 62 053011
=s(2n— 1)L},
L= —4s;7°BLA,
Li=—4sZyL},
=u(2p—1)Lg,

L= —4un’BLg,

Li=—4unL{, (3.19
Q[71][1] =5,Qh.
Qfue; =255 UQA,
Q[s s =ru Q4.
Qlyi21 = SwQ6
Qfzjge) =250 UQE,
Qoo =ru”Qs.
Q[73][3] =s5Q¢,
Q31110 = 2500 UQC ,
Q[710][10] =ru?Q¢,
Q121 =~ SwQD -
Q1= Qlzyie1 = Sav UQp
Q[s ey =ru 2Qp,
Qluya = —SWQE
Q101 = Qayis) = SwvUQE
Qfejr10)=UQ¢,
Qlyr31 =~ SaQF »
Q[72][10] = Q[73][9] =sZvuQf,
Qfoj10=Tu?Qf . (3.20

IV. C AND P CONSERVING COUPLINGS

In what follows we will focus on the special case where
all anomalous couplings satisfy the individual discrete sym-

metriesC, P, and T, i.e. we assume thaty=f/="f/=fY
=0. Then, the polarizedr; for i=5,6,7 are given in Egs.
(3.16, while the corresponding unpolarized; for i
=1, ... ,4assume the following form:
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1= L33+ Liof 5+ Qfayay (1) *+ Qpagaey F3F5+ Qoo (F5)%

o= L+ L5f 3+ L5 Y+ LEF T+ LGf5+ Liof 5+ Qfiya (F)?+ Qftyray 13+ Qfaypay FIF 3+ Qfagpey FIFT+ Qfagyy 155
+ Q[211[10]fzf§+ Qf‘z][Z](fﬁy)2Jr Q[22][3] fIf+ Q[22][8] f3f5+ Q[zz][g] f3f5+ Q[221[101f§/f§+ Q[23][3] (f)?
+ Qfayie) 3T+ Qfagror F3F5+ Qaya0y F315+ Qe (1) 2+ Qfsgrop F1F5+ Qffgagy F115+ Qoo (17)°
+Qfo10f2 15+ Qfigyraoy ()2

o3=L3f I+ L3I+ L35+ L3E5,

o= Y+ L5f5. (4.9)

The following comments are in order: 2 .

(i) Notice that the expressions for; and o, receive no (Ui>=H f [dz]pjoi, 4.3
guadratic contributions and are therefore identical to those =1 J=e
presented if12]. ) ) )

(i) The expressions for, and o, constitute a system of the corresponding covariance matrix by
two equations with two unknowns} and f5, as was the
case in[12], but now the unknown quantities appear qua- Vij=(aiogj) (i)}, (4.4
dratically in o;. As we will see in a moment, one of the _
results of this is that the degeneracy between the two systend§ld the correlations;; by
is improved.

(iii) By measuring the polarized quantities, one would ar- V)
rive at a system of seven equations for the six unknown form Fij VNG
factors. In fact, the system separates into two sub-systems: ol
One sub-system of three equatidis ,04,0¢} with two un-
knowns{f%_,f%}, and one_sub-system of the remaining four o, g the SM values of the couplings, i.g;=0, and will
equations mvolvmg.all Six unknowns. One could then at \se the elementary results
tempt a global solution, or use the first sub-system to deter-
mine f] and f5, and use their values as input in the other. J+

(4.5

We will next assume that the Gaussian distribution is peaked

Notice also that the fact that we have three equationg for

andf% may reduce or eliminate completely the ambiguities

in determining them which originate from the quadratic na-

ture of these equatiorj48]. f
Given that{o,,04,0¢} constitute an independent sub-

system, it is interesting to carry out an elementary study of

their correlations, at least within the context of a Simp|ewherepi(°)zpi(zi,O,éiz).

model simulating the statistical behavior of the anomalous \ye next study the correlatioms in the absence and pres-

couplings. Such a study is useful since the three observableg,ce of quadratic corrections. We assume for simplicity that

involved appear to be intrinsically different in nature, at Ieast5l= 8,=¢: actually, the final results do not depend 6n

in as far as their inclusiveness is concernedando, origi-  \vhich cancels out when forming the ratios in E4.5). The

nate from convolutions of the unpolarized differential cross,ggits for some characteristic values of the center-of-mass

section with. t'he corresponding projective pplynomials,energy\/g are given in Table | and Table II, respectively.
whereasrg originates from selecting those specific events of We notice that for all values ofs the inclusion of the

fche full cross section that correspond to Iongltudlnally pOIar'quadratic terms leads to lower values for the correlations.
ized W bosons. We will assume that the two couplings

— —

o0 + o
[dz]zp(”=0, f _[dz]zp= 47,

+o0 3
[dz]Z'p{"=7 4!, (4.6

_ Z_ - .
=2z, and f3=2, obey independently a nor.m&Gags§|ah TABLE I. The correlation coefficients;; as a function of/s in
probablhty d|Str|but|0n, with meainu; and Varlanc@i , L.e., the absence of quadratic corrections.
5 1 (zi— pi)? Vs (Gev) 180 200 250 300 500
Pz i SR =————exg - ——5—|. (4.2
6i(2m) 26, M4 —-0.999 -0.998 -0.995 -0.992 —0.988
I 0.619 0.763 0.894 0.936 0.975
Then, the expectation valugr;) of the observabler;, i M6 ~0588 —0.719 -0.842 -0885 —0.931

=1,4,6 is given by
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TABLE II. The correlation coefficientg;; as a function of/s in TABLE Ill. Solutions for f} andf3 for some randomly selected
the presence of quadratic corrections. values of theo,, o4, and og observables, at/s=200 GeV. The
entries with ax indicate the absence of real solutions.
\Js (GeV) 180 200 250 300 500
g1 T4 Jg f3 f%
I —-0.992 -0.970 -0.850 -0.686 —0.267
M6 0333 0482 0724 0859  0.986 -0.07 0.07 —0.007 0.014 0.021
4 —-0.215 -0.254 -0.253 -0.218 -0.107 —0.06 0.05 —0.01 0.021 0.014
—0.04 0.04 0.01 —0.016 0.029
0.09 —0.08 0.01 —0.018 0.025
The elementary analysis presented above can be easily gen-—0.03 0.02 —-0.03 0.056 —-0.025
eralized to include all seven observables, thus constructing 0.05 0.04 0.03 X X
the full correlation matrix. 0.02 0.04 0.06 X X

(iv) We note thaf ; andf; are enhanced at the production
threshold 3—0) due to the factors B? which survive in
their coefficients ¢,, 73, 74) in the polarized observables Aot Anfl+A(f1)2=0,
(remember that there is an overall prefacto8 stemming
from phase spage This enhancement cancels in the total

Y Y)2=
cross sectiowr = o1+ oy + o ; this known fact furnishes an Aot Aeif 3+ Acd 13)7=0, 6.0
additional useful check of our calculation. Evidently, the
measurement of the polarized cross sections will be mor@/ith
sensitive to thef, and f; form factors at the low-energy
1 1
LEP2 runs. _ . 3 Lo Qio10) »
(v) Finally one of the unknown photonic deviatiofscan A=—01+ 0y —(L4 )2 4,
be completely eliminated by resorting to electromagnetic 10 10
U(1) gauge-invariance; the latter imposes on the deviation
form factorsf} andf3 the relation _ Lid3 Qo 2Qhoiols
U= T Tt o 4.2 Y4
I-lO I-10 (Ll(Q

f=nf3. (4.7

Thus, the number of unknown form factors appearing in Eq. 1 Qs [ L3 ? 1
(4.1) and Eq.(3.16 will be reduced down to five, a fact A12= Q[?»][31_|_—4+ L_4 [10][10] »
which should restrict even further any ambiguities stemming 10 10
from the quadratic nature of the equations.

L% QFlO][lO] 2
A60:_0'6+ _40'4+Tza'4,
V. NUMERICAL EXAMPLES Lo (Lo

In this section we will give some numerical examples of
how to solve the system of seven equations obtained in the L3l Qg 2QQouols
previous sections, i.e., E¢3.16 and Eq.(4.1); this corre- Ag1= — L4 + L4 04— 42 04,
sponds to the case where all couplings which not satisfy 10 10 (L1o)
individial the discreteC, P, andT symmetries have been set
to zero by hand. In these numerical examples the values for Q[131[10]|_‘3‘ |_‘3‘ 2
the observables; will be chosen arbitrarily, and will be of A= Qfays;— — 72— +| & | Qo101 - (5.2
the order of 10%2—10"2 (remember that the; are dimen- L1o Lo
sionless quantitigs

We will solve separately the two sub-systems: first, weThe closed form of the solution
will determine from the sub-systefwr,,0,4,06} the two un-
knowns{fJ,f5}; then we will substitute the solutions in the TABLE IV. Solutions for f} and 3 at s=300 GeV.
sub-system{ o,,03,05,0;} to determine the remaining un- >
knowns{f?,f%,f},f5}. o1 4 %6 f3 fs

We start with the subsystefar; ,04,0¢}. Since the equa-  _g.o2 0.02 —0.01 0.004 0.009
tion involving o4 on its left-hand sidéLHS) [the last of Eq. —0.04 0.03 ~0.03 0.023 0.005
(4.1)] is linear inf} andf5 we can directly solve for one of ¢ oo —0.005 0.009 —0.007 0.002
the two unknowns(sayf%), and substitute its expressions in .03 —0.02 0.01 —0.005 —0.012
the remaining two equations involving; and a¢ on their —0.001 —0.001 —0.007 0.008 —0.007
LHS. Thus, one arrives at a system of two quadratic equa- g gg1 0.004 0.008 x X
tions for one unknown, namely}. In particular, the two 0.005 0.006 0.007 x x

equations read
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A TABLE V. Solutions forf}, %, fJ, andf for some randomly
3 selected values of the,, o3, o5, and o; observables, at/s
=200 GeV. The values fof} and f are the same as those pre-
sented in Table III.

(o) g3 Og g7 f]y_ f% f%’ f%

—-0.01 0.005 0.01 0.03 0.005 0.02 0.003 0.002
-0.01 -0.01 0.04 -0.05 0.009 0.07 0.006 0.003
—0.007 —0.009 0.02 -0.008 0.0003 0.04 0.002 0.006
0.01 -0.001 0.001 —0.08 0.003 0.001 0.002 0.001
—0.002 -0.002 0.003 -0.003 0.006 0.003 0.004 0.009
0.01 0.02 0.03 0.04 X X X X
—-0.01 -0.02 -0.03 -0.04 X X X X

O

tains all linear and quadratic terms in the anomalous cou-
plings, demonstrates that the unpolarized differential cross
section can be expressed in terms of four polynomials in the
cosine of the center-of-mass scattering angle, of maximum
degree 3, linearly independent and identical to those obtained
At (A2 1 a2 "™ in the simpler case where only linear terms of &P, and
- ut (AL~ 4A1A1) "~ Aar® (Ag— 4AscAe?) T conserving couplings were kept. The corresponding coef-
3 2A1, 2As, ficients multiplying these polynomials can be projected out
(5.3 from the differential cross section; they constitute a set of
four observables, whose measurement imposes experimental
indicates that, at each energfs, certain non-linear condi- constraints on the anomalous couplings.
tions among the observables, o4, and og must be full- Furthermore, we have augmented the aforementioned set
filed, in order for(real) solutions to exist. of observables by three additional ones, which correspond to
In Table Il and Table IV below we present some numeri-the total cross-sections for obtaining in the final stdie
cal examples obtained from solving the above two quadratibosons with fixed polarizatiofboth transverse, both longi-
equations. tudinal, one transverse and one longitudinalthe presence
We now proceed to the solution of the sub-systemof C, P, andT conserving anomalous couplings. The experi-
{0,,03,05,07} to determine the remaining unknowns mental value of these observables can be extracted from
{f7,f5,11,15}. To simplify the analysis we will use the re- measurements of the polarization of the final statbosons.
lations given in Eq.(4.7) imposed by the electromagnetic ~ The proposed observables comprise a set of seven qua-
gauge-invariane; thus the number of unknowns is reduced t@ratic equations containing fourteen unknowns, which could
three,{fz,fg,fg}_ Next, sinceoy is linear in the unknown be simultaneously fitted in order to put global constraints on
couplings we can solve for one of these couplings, and sulRll anomalous couplings. Alternatively, one could focus ex-
stitute its value in the remaining three quadratic equationsglusively on the subset of anomalous couplings which sepa-
We have chosen to eliminafg, and are thus left with three rately respect th&, P, and T discrete symmetries, thus ar-
quadratic equations involvingf andfZ; their closed expres- Ving at an over-constrained system; the latter could be used

sions are rather lengthy and we do not report them here. i ordelr tol eliminate possible algebraic ambiguitieg in the
order to solve them we have found it convenient to resort td!&t€rmination of the above couplings, or reduce their corre-

a graphical analysis; in particular, the three equations repré@tions. Imposing in addition electromagnetic gauge invari-
sent three ellipses in the‘i( f%) plane, whose common in- ance one can further restrict the number of unknowns in the

. AR - . bove system.
tersection poin{if it exists) specifies the corresponding so- a . . .
lution, as shown in Fig. 2. In Table V we present some It would be interesting to see how this method responds

characteristic cases, which emerge when carrying out thgrSt to simulated a_nd _subsequently to real data. A first step
analysis described a’bove towards a full realization of the method has been recently

reported, focusing mainly on aspects related to its experi-
mental feasibility[19].

FIG. 2. A typical solution of the three quadratic equations. The
labelso,, o5, ando; denote the corresponding equations after the
substitutions described in the text have been implemented.
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