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Method for determining anomalous gauge boson couplings frome¿eÀ experiments
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We present a model-independent method for determining anomalous gauge boson couplings from ongoing
and futuree1e2→W1W2 experiments. First we generalize an already existing method, which relies on the
study of four observables constructed through appropriate projections of the unpolarized differential cross
section. In particular, we retain both linear and quadratic terms in the unknown couplings, and compute
contributions to these observables originating from anomalous couplings which do not separately conserve the
discreteC, P, andT symmetries. Second, we combine the above set of observables with three additional ones,
which can be experimentally obtained from the total cross sections for polarized final stateW bosons. The
resulting set of seven observables may provide useful information for constraining, and in some cases for fully
determining, various of the possible anomalous gauge boson couplings.

PACS number~s!: 14.60.Cd, 13.40.Gp, 14.70.Fm
d

ol
-

rg
r

os
b

s
se

a
th
u

bl
us
to
fu
ee

s
is

e
a

bl
th
n

ract
ut
v-
rre-

-
not

the
the

are
be

lar-
rre-

rse,
l
een

y
t
can

thus
cal
fore-
near

m
ings

e
les,
es-
cor-

a-
ons
I. INTRODUCTION

Anomalous gauge boson couplings@1,2# have attracted
significant attention in recent years, and their direct stu
through the processe1e2→W1W2 has been one of the
main objectives of the CERN Large Electron Positron c
lider LEP2 @3–8#. In addition, the trilinear gauge self
couplings have also been probed through directWg andWZ
production at the Fermilab Tevatron@9,10#. The study of
such couplings is expected to continue at the CERN La
Hadron Collider~LHC!, as well as the Next Linear Collide
~NLC! @11#.

Recently a model-independent method has been prop
for extracting values or bounds for the anomalous gauge
son couplings frome1e2→W1W2 experiments@12#. The
basic idea is to study projections of the differential cro
section which arise when the latter is convoluted with a
of appropriately constructed polynomials in cosu, whereu is
the center-of-mass scattering angle. This construction le
to a set of four novel observables, which are related to
anomalous couplings by means of simple algebraic eq
tions. The experimental determination of these observa
can in turn be used in order to impose bounds simultaneo
on all anomalous couplings, without having to resort
model-dependent relations among them, or invoke any
ther simplifying assumptions. This method has also b
generalized to the case of hadron colliders@13#, and its com-
patibility with the inclusion of structure function effects ha
been established. In what follows we will refer to th
method as the ‘‘projective method’’~PM!.

The PM as presented in@12# only includes terms linear in
the unknown anomalous couplings~form factors! which are
individually invariant under the discreteC, P, andT symme-
tries. However, the inclusion of the quadratic terms as w
as theC, P, andT non-invariant couplings is necessary for
complete experimental analysis. In addition, the observa
constructed by means of the PM are only four, whereas
unknown form factors, even with the simplifications me
0556-2821/2000/62~5!/053011~11!/$15.00 62 0530
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tioned above, are six; therefore, one is not able to ext
experimental information for all anomalous couplings, b
only for a few of them. In addition, the fact that the obser
ables constructed by this method are rather strongly co
lated further reduces the predictive power of the PM.

The purpose of this paper is twofold:
~i! The contribution ofall anomalous couplings is com

puted, and terms linear and quadratic are retained. This
only augments the PM, but as we will see later, results in
additional advantage of reducing the correlation among
four original PM observables.

~ii ! The aforementioned four observables of the PM
combined with three additional observables, which can
extracted, at least in principle, from measurements of po
ized total cross sections. Specifically, the observables co
spond to the total cross section for having two transve
two longitudinal, and one transverse and one longitudinaW
bosons in the final state. These quantities have already b
studied in the literature@14#, and are usually denoted b
sTT , sLL , andsTL , respectively. In fact, it is expected tha
experimental values for the aforementioned observables
be extracted from the available LEP2 experimental data@15#.

The inclusion ofsTT , sLL , andsTL to the original PM
observables gives rise to a set of seven observables,
increasing the predictive power of the method. For practi
purposes in this paper we present the case where the a
mentioned three cross-sections are calculated keeping li
and quadratic parts of theC, P, and T invariant couplings
only. To the best of our knowledge the explicit closed for
of these cross-sections in terms of the anomalous coupl
is presented here for the first time.

The outline of the paper is as follows: In Sec. II w
present the complete expressions for the PM observab
keeping all terms. In Sec. III we compute the closed expr
sions for the polarized cross sections, keeping quadratic
rection but, assuming the presence ofC, and P invariant
couplings only. In Sec. IV we focus on the system of equ
tions obtained when the results of the previous two secti
©2000 The American Physical Society11-1
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are combined; at this stage the linear and quadratic term
the C and P invariant couplings are retained, giving rise
seven equations for six unknown couplings. We discuss v
ous issues, and carry out an elementary analysis of the
relations among some of these observables. In Sec. V
present some numerical examples; in particular, we solve
resulting system of seven equations for some randomly c
sen values of the PM and polarized observables, and find
corresponding values for the anomalous gauge couplings
nally, in Sec. VI we present our conclusions.

II. THE COMPLETE EXPRESSIONS
FOR THE s i OBSERVABLES

In this section we extend the analysis presented in@12# by
including the linearand quadratic contributions ofall pos-
sible anomalous couplings. We consider the proc
e2(k1 ,s1)e1(k2 ,s2)→W2(p1 ,l1)W1(p2 ,l2), shown in
Fig. 1. The electrons are assumed to be massless,s i label the
spins of the initial electron and positron, i.e.s152s2
5s/2, s561, whereas thel i label the the polarizations o
the producedW bosons, withl i50,61.

The relevant kinematical variables in the center-of-m
frame are

s5~k11k2!25~p11p2!2,

t5~k12p1!25~p22k2!2

52
s

4
~11b222b cosu!

52
sb

2
~z2x!, ~2.1!

where

b5A12
4MW

2

s
, ~2.2!

is the velocity of theW bosons,x[cosu, where u is the
angle between the incoming electron and the outgoingW2 in
the center of mass frame, and

z5
11b2

2b
. ~2.3!

FIG. 1. The processe1e2→W1W2 at tree level, including
anomalous gauge boson couplings.
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We now proceed to compute the unpolarized differen
cross section (ds/dx) corresponding to this process, i.e. w
average over the initial spins and sum over the final po
izations. We have

ds

dx
5S 1

2sD S b

16p Dg4

4 (
s,l1 ,l2

uM s~l1 ,l2!u2. ~2.4!

The first fraction is the flux factor, the second is a pha
space factor, and the factor of 1/4 is due to the averag
over the initial helicities. All conventions are identical t
those of@12# except that we have now pulled out the over
coupling constant factor and have denoted the remain
sum of amplitudes byM.

The VW1W2 vertex Gmab
V (V5g, Z) we use has the

form

Gmab
V 5Gmab

0 1dGmab
V , ~2.5!

where

Gmab
0 ~q,2p1 ,2p2!5~p22p1!mgab12~qbgma2qagbm!

~2.6!

is the canonical standard model~SM! three-boson vertex a
tree level, assuming that the twoW-bosons are on-shell, an
thus dropping terms proportional top1a andp2b . The term
dGmab

V contains all possible deviations from the SM cano
cal form, compatible with Lorentz invariance, i.e.

dGmab
V ~q,2p1 ,2p2!

5 f 1
V~p22p1!mgab2

f 2
V

2MW
2

qaqb~p22p1!m

12 f 3
V~qbgma2qagbm!1 i f 4

V~qbgma1qagbm!

1 i f 5
Vemabr~p22p1!r1 f 6

Vemabrqr

1
f 7

V

MW
2 ~p22p1!meabrsqr~p22p1!s . ~2.7!

The deviation form factorsf i
V are all zero in SM. In what

follows they will also be referred to as trilinear couplings
anomalous couplings. We assume all anomalous coupling
be real.

The calculation is straightforward but lengthy; it is impo
tant to emphasize that the inclusion of the additional term
the vertex, namely those that are not separatelyC and P
invariant (f 4

V , f 5
V , f 6

V , f 7
V) doesnot change the functional de

pendence of the differential cross section on the center
mass angleu, which was established in@12#. Thus, the ex-
pression for (dsan /dx), the part of the differential cross
section which contains the anomalous couplings, assu
again the form

~z2x!
dsan

dx
5

g4

64p

b

s (
i 51

4

s i~s!Pi~s,x! ~2.8!
1-2
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with Pi(s,x) the same polynomials inx first obtained in@12#:
namely,

P1~x!5z2x,

P2~x!5~z2x!~12x2!,

P3~x!512x2,

P4~x!512bx. ~2.9!

In arriving at this result the following algebraic identities

x~z2x!52
1

b
P11P31

1

2hb2
P4

x2b522P11
1

b
P4 ~2.10!

may be found useful.
Notice that the explicit closed expressions of the coe

cientss i have changed with respect to those reported in@12#,
since both thelinear as well as thequadraticdependence on
all couplings has now been included. Using the followi
uniform short-hand notation
05301
-

c1, . . . ,7[ f 1, . . . ,7
g , c8, . . . ,14[ f 1, . . . ,7

Z , ~2.11!

we have that thes i , wherei 51, . . . ,4, can bewritten as

s i5(
k

Lk
i ck1(

k
(
l>k

Q[k][ l ]
i ckcl . ~2.12!

Defining the following abbreviations

h[
s

4MW
2

,

u[
s

s2MZ
2

,

y[
u

cw
2

,

r[v21a2, ~2.13!

the explicit forms of the coefficientsLk
i and Q[k][ l ]

i of the
linear and quadratic terms respectively in Eq.~2.12! are
given below:
L3
1528sw

2 @4sw
2 1v~4cw

2 21!y#, L5
154sw

2 @a~4cw
2 21!y21#,

L10
1 528u@4vsw

2 1r ~4cw
2 21!y#, L12

1 524~v1a!u18au@va~4cw
2 21!y12sw

2 #. ~2.14!

Q[3][3]
1 516sw

4 hb2, Q[3][10]
1 532vsw

2 hb2u,

Q[3][12]
1 5216asw

2 hb2u, Q[4][4]
1 54sw

4 hb2,

Q[4][11]
1 58vsw

2 hb2u, Q[4][13]
1 528asw

2 hu,

Q[5][5]
1 54sw

4 hb4, Q[5][10]
1 5216asw

2 hb2u,

Q[5][12]
1 58vsw

2 hb4u, Q[6][6]
1 54sw

4 h,

Q[6][11]
1 528asw

2 hu, Q[6][13]
1 58vsw

2 hu,

Q[10][10]
1 516hb2ru2, Q[10][12]

1 5232vahb2u2,

Q[11][11]
1 54hb2ru2, Q[11][13]

1 5216vahu2,

Q[12][12]
1 54hb4ru2, Q[13][13]

1 54hru2, ~2.15!

L1
25sw

2 b2@2~322h!~vu1sw
2 !2~112h!vy#, L2

2522b2hsw
2 @2~11h!~vu1sw

2 !2hyv#,

L3
2524b2hsw

2 @2~vu1sw
2 !2yv#, L8

25b2u@2~322h!~ru1vsw
2 !2~112h!yr#

L9
2522b2hu@2~11h!~ru1vsw

2 !2hyr#, L10
2 524b2hu@2~ru1vsw

2 !2yr#,

~2.16!
1-3



JOANNIS PAPAVASSILIOU AND KOSTAS PHILIPPIDES PHYSICAL REVIEW D62 053011
Q[1][1]
2 5sw

4 h2b2(322b213b4), Q[1][2]
2 524sw

4 h3b4(11b2),

Q[1][3]
2 528sw

4 h2b2(11b2), Q[1][8]
2 52vsw

2 h2b2(322b213b4)u,

Q[1][9]
2 524vsw

2 h3b4(11b2)u, Q[1][10]
2 528vsw

2 h2b2(11b2)u,

Q[2][2]
2 54sw

4 h4b6, Q[2][3]
2 516sw

4 h3b4,

Q[2][8]
2 524vsw

2 h3b4(11b2)u, Q[2][9]
2 58vsw

2 h4b6u,

Q[2][10]
2 516vsw

2 h3b4u, Q[3][3]
2 58sw

4 h2b2(11b2),

Q[3][8]
2 528vsw

2 h2b2(11b2)u, Q[3][9]
2 516vsw

2 h3b4u,

Q[3][10]
2 516vsw

2 h2b2(11b2)u, Q[4][4]
2 522sw

4 hb2,

Q[4][11]
2 524vsw

2 hb2u, Q[5][5]
2 522sw

4 hb4,

Q[5][12]
2 524vsw

2 hb4u, Q[6][6]
2 522sw

4 hb2,

Q[6][7]
2 516sw

4 hb2, Q[6][13]
2 524vsw

2 hb2u,

Q[6][14]
2 516vsw

2 hb2u,

Q[7][7]
2 532sw

4 h2b4, Q[7][13]
2 516vsw

2 hb2u,

Q[7][14]
2 564vsw

2 h2b4u, Q[8][8]
2 5h2b2r (322b213b4)u2,

Q[8][9]
2 524h3b4r (11b2)u2, Q[8][10]

2 528h2b2r (11b2)u2,

Q[9][9]
2 54h4b6ru2, Q[9][10]

2 516h3b4ru2,

Q[10][10]
2 58h2b2r (11b2)u2, Q[11][11]

2 522hb2ru2,

Q[12][12]
2 522hb4ru2, Q[13][13]

2 522hb2ru2,

Q[13][14]
2 516hb2ru2, Q[14][14]

2 532h2b4ru2, ~2.17!

L1
352sw

2 b, L2
35sw

2 hb,

L5
35sw

2 b@124a~4cw
2 21!y#, L8

352~v1a!bu,

L9
35~v1a!hbu, L12

3 5bu@~v1a!28va~4cw
2 21!y216asw

2 #. ~2.18!

Q[3][12]
3 516asw

2 hb3u, Q[4][13]
3 58asw

2 hbu,

Q[5][10]
3 516asw

2 hb3u, Q[6][11]
3 58asw

2 bhu,

Q[10][12]
3 532vahb3u2, Q[11][13]

3 516vahbu2,
~2.19!

L3
454sw

2 b21, L5
4524asw

2 ~4cw
2 21!~z2b!y12sw

2 b21,

L10
4 54~v1a!ub21, L12

4 528~z2b!@va~4cw
2 21!y12asw

2 #u12~v1a!ub21, ~2.20!

Q[3][12]
4 58asw

2 bu, Q[4][13]
4 54asw

2 b21u,

Q[5][10]
4 58asw

2 bu, Q[6][11]
4 54asw

2 b21u,

Q[10][12]
4 516vabu2, Q[11][13]

4 58vab21u2.
~2.21!
ne
ll

l

As explained in@12# the four quantitiess i constitute a set of
observables; their experimental values may be obtai
through an appropriate convolution of the experimenta
measured unpolarized differential cross-sectionds (exp)/dx

with a set of four polynomials,P̃i(x), which are orthonorma
to thePi(x); i.e., they satisfy
05301
d
y

E
21

1

P̃i~x,s!Pj~x,s!dx5d i j . ~2.22!

Clearly the setP̃i is not uniquely determined; in@12# we
have reported the set with the lowest possible power inx,
namely:
1-4
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P̃1~x,s!5
h

2
~3b115x215bx2235x3!,

P̃2~x,s!5
35

8
~23x15x3!,

P̃3~x,s!5
5

8
~3121zx29x2235zx3!,

P̃4~x,s!5
h

2
~23215zx115x2135zx3!. ~2.23!

In particular, thes i
(exp) are given by

s i
(exp)5F64ps

g4b
G E

21

1

dx~z2x!S ds (exp)

dx
2

ds (0)

dx D P̃i~x,s!,

~2.24!

where ds (0)/dx is the SM expression for the differentia
cross section in the absence of anomalous couplings@16#.
Given the experimental measurement of the differential cr
sectionds (exp)/dx for on shell Ws the four numberss i can
be extracted together with their related errors. Subseque
Eq. ~2.12! can be viewed as a system of four quadratic eq
tions with fourteen unknowns which although cannot
solved, it appears feasible that it could be fitted for all co
plings simultaneously in a model independent way. In fa
using U(1) electromagnetic gauge invariance the photo
couplings f 1

g and f 2
g are related byf 1

g5h f 2
g , thus reducing

the total number of unknowns to thirteen.

III. POLARIZED CROSS SECTIONS

In this section we will augment the previous set of obse
ables, which were projected out of the unpolarized differ
tial cross section, with three additional observables obtai
from measurements of polarized total cross sections. A
first step we will only compute in this section the polariz
cross sections obtained using non standard couplings
separately respectC andP, i.e., we only retain the first thre
f 1

V , f 2
V , f 3

V . In order to calculate the polarized cross sectio
we define the following basic matrix elements for the p
duction of two Ws with definite helicity from polarized
e2e1 beams. For massless electrons the helicity of the p
itron is opposite to the polarization of the electron:s1
52s25s. Three basic matrix elements are defined, one
each of the first three terms of the trilinear gauge vertex
Eq. ~2.7!, and a fourth one for the neutrino exchan
t-channel graph@Fig. 1~c!#:

M 1
s~l1 ,l2!5@ v̄~k2 ,2s!p” 2Psu~k1 ,s!#„el1

~p1!•el2
~p2!…

M 2
s~l1 ,l2!5@ v̄~k2 ,2s!p” 1Psu~k1 ,s!#

3„p1•el2
~p2!…„p2•el1

~p1!…
1

2MW
2
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M 3
s~l1 ,l2!5 v̄~k2 ,2s!@e” l1

~p1!„p1•el2
~p2!…

2e” l2
~p2!„p2•el1

~p1!…#Psu~k1 ,s!

M 4
s~l1 ,l2!5 v̄~k2 ,2s!e” l2

~p2!

3~k” 12p” 1!e” l1
~p1!Psu~k1 ,s! ~3.1!

where the helicity projectors are given by

P65
16g5

2
. ~3.2!

We now establish contact with the notation of the previo
section and that of@12#. In terms of the basic matrix ele
ments, defined above, the amplitudes corresponding to
three graphs of theW pair-production process in Fig. 1 ar
expressed as

M g
s~l1 ,l2!5

2sw
2

s
@~11 f 1

g!M 1
s~l1 ,l2!1 f 2

gM 2
s~l1 ,l2!

1~11 f 3
g!M 3

s~l1 ,l2!#

M Z
s~l1 ,l2!5

2gs

s2MZ
2 @~11 f 1

Z!M 1
s~l1 ,l2!

1 f 2
ZM 2

s~l1 ,l2!1~11 f 3
Z!M 3

s~l1 ,l2!#

M n
s~l1 ,l2!52

1

2t
M 4

s~l1 ,l2!ds2 ~3.3!

where an overall coupling constant factor ofig2 has been
pulled out, the left and right handed couplings of the elect
with the Z boson are given by

g15v2a, g25v1a, ~3.4!

and the Kroneckerd (d225d1151, d215d1250) in
the neutrino graph appears due to the fact that theW bosons
couple only to left handed electrons.

The full amplitude can then be cast in the form

M s~l1 ,l2!5M g
s~l1 ,l2!1M Z

s~l1 ,l2!1M n
s~l1 ,l2!

5
1

s (
i 51

4

Fi
sM i

s~l1 ,l2! ~3.5!

where

Fi
s52sw

2 ~11 f i
g!12gsu~11 f i

Z!, for i 51,3

F2
s52sw

2 Qef 2
g12gsu f2

Z ,

F4
s52

s

2t
ds2 , ~3.6!

are explicit functions of the anomalous couplings.
1-5
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We then calculate the total cross sections for the prod
tion of: ~i! two transversely polarizedWs denoted bysT , ~ii !
of two longitudinally polarizedWs calledsL and ~iii ! one
transverse and one longitudinalW, denotedsM . We will
present their explicit expressions in terms of arbitrary tril
ear gauge couplingsf 1

V , f 2
V , f 3

V . The relevant differential po-
larized cross sections are defined by

dsT

dx
5

1

2s

b

16p

g4

4 (
s,l1 ,l256

uM~s,l1 ,l2!u2,

dsM

dx
5

1

2s

b

16p

g4

4 (
s,l56

@ uM~s,l,0!u2

1uM~s,0,l!u2#,

dsL

dx
5

1

2s

b

16p

g4

4 (
s56

uM~s,0,0!u2. ~3.7!

These are calculated in a straightforward manner using
expressions of the basic matrix elements for the differ
polarization combinations. The non-vanishing amplitudes
explicitly given below:

TT

M1~s,6,6 !52
bs

2
A12x2,

M4~s,6,6 !52
bs

2
~x2b!A12x2,

M4~s,6,7 !52
s

2
~x7s!A12x2, ~3.8!

TL

M3~s,6,0!5M 3
s~0,7 !5A2h

bs

2
~x7s!,

M4~s,6,0!5M 4
s~0,7 !52A2h

s

4
@2~b2x!

7s/h#~x7s!, ~3.9!

LL

M1~s,0,0!52
bs~2h21!

2
A12x2,

M2~s,0,0!5bhs~h21!A12x2,

M3~s,0,0!52bhsA12x2,

M4~s,0,0!52
s

2
@b~2h11!22hx#A12x2.

~3.10!
05301
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Notice that, as is well known@14#, the transverse cross se
tion sT receives anomalous contributions only fromf 1

V ,
whilst sM only from f 3

V . Finally, the longitudinal cross sec
tion sL depends on all six anomalous form facto
f 1

V , f 2
V , f 3

V .
Using the expressions given above, we first compute

differential cross sections and, as a check, we verify that
combining all three we obtain again the results of the pre
ous section. After performing the angular integration in ord
to obtain the total cross sections we also check, by set
f i

V→0, that our SM result agrees with the polarized cro
sections presented in@17#. After these basic checks of ou
calculation, we subtract the SM contribution to obtain thr
new observables

s5[F128ps

g4b
G ~sTT

exp2sTT
0 !,

s6[F128ps

g4b
G ~sLT

exp2sLT
0 !,

s7[F128ps

g4b
G ~sLL

exp2sLL
0 !. ~3.11!

Setting for convenience

L[ lnS 11b

12b D , ~3.12!

t1[2
h

b2
111

8h

3
1b2~11h!,

t2[
1

b2
2

8

3
2b2,

t3[
4

b2
1

16

3
112b2, ~3.13!

LA
7[t12

16

3
~sw

2 1vu!b2~2h11!1
1

2h3b3
L,

LB
7[~v1a!t12

16

3
~sw

2 v1ru !b2~2h11!1
~v1a!

2h3b3
L

~3.14!
1-6
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Q5[
16b2

3
, Q6[

128hb2

3
,

QA
7[

8
3

b2(2h21)2, QB
7[

128
3

b6h4,

QC
7 [

128
3

b2h2, QD
7 [

64
3

b4(2h21)h2,

3QE
7[

64
3

b2(2h21)h, QF
7[

256
3

b4h3,
~3.15!

the polarized observabless5 ,s6, ands7 are given by

s55L1
5 f 1

g1L8
5 f 1

Z1Q[1][1]
5 ~ f 1

g!21Q[1][8]
5 f 1

g f 3
Z

1Q[8][8]
5 ~ f 1

Z!2,

s65L3
6 f 3

g1L10
6 f 3

Z1Q[3][3]
6 ~ f 3

g!21Q[3][10]
6 f 3

g f 3
Z

1Q[10][10]
6 ~ f 3

Z!2,

s75(
k

Lk
7 ck1(

k
(
l>k

Q[k][ l ]
7 ckcl , ~3.16!

and the various coefficients appearing in Eq.~3.16! are ex-
plicitly given below:

L1
55sw

2 F t21
32b2

3
~sw

2 1vu!2
1

2b3h3
LG ,

L8
55uF ~v1a!t21

32b2

3
~sw

2 v1ru !2
~v1a!

2b3h3
LG ,

Q[1][1]
5 5sw

4 Q5,

Q[1][8]
5 52sw

2 vu Q5,

Q[8][8]
5 5ru2 Q5, ~3.17!

L3
65sw

2 hF2t31
256b2

3
~sw

2 1vu!

1
2~113b2!

b3h2
LG ,

L10
6 5uhF2~v1a!t31

256b2

3
~vsw

2 1ru !

1~v1a!
2~113b2!

b3h2
LG ,

Q[3][3]
6 5sw

4 Q6,

Q[3][10]
6 52sw

2 vu Q6,

Q[10][10]
6 5ru2 Q6, ~3.18!
05301
L1
75sw

2 ~2h21!LA
7 ,

L2
7524sw

2 h2b2LA
7 ,

L3
7524sw

2 hLA
7 ,

L8
75u~2h21!LB

7 ,

L9
7524uh2b2LB

7 ,

L10
7 524uhLB

7 , ~3.19!

Q[1][1]
7 5sw

4 QA
7 ,

Q[1][8]
7 52sw

2 vuQA
7 ,

Q[8][8]
7 5ru2QA

7 ,

Q[2][2]
7 5sw

4 QB
7 ,

Q[2][9]
7 52sw

2 vuQB
7 ,

Q[9][9]
7 5ru2QB

7 ,

Q[3][3]
7 5sw

4 QC
7 ,

Q[3][10]
7 52sw

2 vuQC
7 ,

Q[10][10]
7 5ru2QC

7 ,

Q[1][2]
7 52sw

4 QD
7 ,

Q[1][9]
7 5Q[2][8]

7 5sw
2 vuQD

7 ,

Q[8][9]
7 5ru2QD

7 ,

Q[1][3]
7 52sw

4 QE
7 ,

Q[1][10]
7 5Q[3][8]

7 5sw
2 vuQE

7 ,

Q[8][10]
7 5ru2QE

7 ,

Q[2][3]
7 52sw

4 QF
7 ,

Q[2][10]
7 5Q[3][9]

7 5sw
2 vuQF

7 ,

Q[9][10]
7 5ru2QF

7 . ~3.20!

IV. C AND P CONSERVING COUPLINGS

In what follows we will focus on the special case whe
all anomalous couplings satisfy the individual discrete sy
metriesC, P, and T, i.e. we assume thatf 4

V5 f 5
V5 f 6

V5 f 7
V

50. Then, the polarizeds i for i 55,6,7 are given in Eqs
~3.16!, while the corresponding unpolarizeds i for i
51, . . . ,4assume the following form:
1-7
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s15L3
1f 3

g1L10
1 f 3

Z1Q[3][3]
1 ~ f 3

g!21Q[3][10]
1 f 3

g f 3
Z1Q[10][10]

1 ~ f 3
Z!2,

s25L1
2f 1

g1L2
2f 2

g1L3
2f 3

g1L8
2f 1

Z1L9
2f 2

Z1L10
2 f 3

Z1Q[1][1]
2 ~ f 1

g!21Q[1][2]
2 f 1

g f 2
g1Q[1][3]

2 f 1
g f 3

g1Q[1][8]
2 f 1

g f 1
Z1Q[1][9]

2 f 1
g f 2

Z

1Q[1][10]
2 f 1

g f 3
Z1Q[2][2]

2 ~ f 2
g!21Q[2][3]

2 f 2
g f 3

g1Q[2][8]
2 f 2

g f 1
Z1Q[2][9]

2 f 2
g f 2

Z1Q[2][10]
2 f 2

g f 3
Z1Q[3][3]

2 ~ f 3
g!2

1Q[3][8]
2 f 3

g f 1
Z1Q[3][9]

2 f 3
g f 2

Z1Q[3][10]
2 f 3

g f 3
Z1Q[8][8]

2 ~ f 1
Z!21Q[8][9]

2 f 1
Zf 2

Z1Q[8][10]
2 f 1

Zf 3
Z1Q[9][9]

2 ~ f 2
Z!2

1Q[9][10]
2 f 2

Zf 3
Z1Q[10][10]

2 ~ f 3
Z!2,

s35L1
3f 1

g1L2
3f 2

g1L8
3f 1

Z1L9
3f 2

Z ,

s45L3
4f 3

g1L10
4 f 3

Z . ~4.1!
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The following comments are in order:
~i! Notice that the expressions fors3 and s4 receive no

quadratic contributions and are therefore identical to th
presented in@12#.

~ii ! The expressions fors1 ands4 constitute a system o
two equations with two unknowns,f 3

g and f 3
Z , as was the

case in@12#, but now the unknown quantities appear qu
dratically in s1. As we will see in a moment, one of th
results of this is that the degeneracy between the two sys
is improved.

~iii ! By measuring the polarized quantities, one would
rive at a system of seven equations for the six unknown fo
factors. In fact, the system separates into two sub-syste
One sub-system of three equations$s1 ,s4 ,s6% with two un-
knowns$ f 3

g , f 3
Z%, and one sub-system of the remaining fo

equations involving all six unknowns. One could then
tempt a global solution, or use the first sub-system to de
mine f 3

g and f 3
Z , and use their values as input in the oth

Notice also that the fact that we have three equations fof 3
g

and f 3
Z may reduce or eliminate completely the ambiguit

in determining them which originate from the quadratic n
ture of these equations@18#.

Given that $s1 ,s4 ,s6% constitute an independent su
system, it is interesting to carry out an elementary study
their correlations, at least within the context of a simp
model simulating the statistical behavior of the anomalo
couplings. Such a study is useful since the three observa
involved appear to be intrinsically different in nature, at le
in as far as their inclusiveness is concerned:s1 ands4 origi-
nate from convolutions of the unpolarized differential cro
section with the corresponding projective polynomia
whereass6 originates from selecting those specific events
the full cross section that correspond to longitudinally pol
ized W bosons. We will assume that the two couplingsf 3

g

[z1 and f 3
Z[z2 obey independently a normal~Gaussian!

probability distribution, with meanm i and varianced i
2 , i.e.,

pi~zi ,m i ,d i
2!5

1

d i~2p!1/2
expF2

~zi2m i !
2

2d i
2 G . ~4.2!

Then, the expectation valuês i& of the observables i , i
51,4,6 is given by
05301
e

-

ms

-

s:

r
-
r-
.

-

f

s
les
t

s
,
f
-

^s i&5)
j 51

2 E
2`

1`

@dzj #pjs i , ~4.3!

the corresponding covariance matrix by

Vi j 5^s is j&2^s i&^s j&, ~4.4!

and the correlationsr i j by

r i j 5
Vi j

Vii
1/2Vj j

1/2
. ~4.5!

We will next assume that the Gaussian distribution is pea
around the SM values of the couplings, i.e.,m i50, and will
use the elementary results

E
2`

1`

@dzi #zipi
(0)50, E

2`

1`

@dzi #zi
2pi

(0)5d i
2 ,

E
2`

1`

@dzi #zi
4pi

(0)5
3

4
d i

4 , ~4.6!

wherepi
(0)[pi(zi ,0,d i

2).
We next study the correlationsr i j in the absence and pres

ence of quadratic corrections. We assume for simplicity t
d15d25d; actually, the final results do not depend ond,
which cancels out when forming the ratios in Eq.~4.5!. The
results for some characteristic values of the center-of-m
energyAs are given in Table I and Table II, respectively.

We notice that for all values ofAs the inclusion of the
quadratic terms leads to lower values for the correlatio

TABLE I. The correlation coefficientsr i j as a function ofAs in
the absence of quadratic corrections.

As ~GeV! 180 200 250 300 500

r 14 20.999 20.998 20.995 20.992 20.988
r 16 0.619 0.763 0.894 0.936 0.975
r 46 20.588 20.719 20.842 20.885 20.931
1-8
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The elementary analysis presented above can be easily
eralized to include all seven observables, thus construc
the full correlation matrix.

~iv! We note thatf 1 and f 3 are enhanced at the productio
threshold (b→0) due to the factors 1/b2 which survive in
their coefficients (t1 , t3 , t4) in the polarized observable
~remember that there is an overall prefactor}b stemming
from phase space!. This enhancement cancels in the to
cross sections5sT1sM1sL ; this known fact furnishes an
additional useful check of our calculation. Evidently, t
measurement of the polarized cross sections will be m
sensitive to thef 1 and f 3 form factors at the low-energy
LEP2 runs.

~v! Finally one of the unknown photonic deviationsf 2
g can

be completely eliminated by resorting to electromagne
U(1) gauge-invariance; the latter imposes on the devia
form factorsf 1

g and f 2
g the relation

f 1
g5h f 2

g . ~4.7!

Thus, the number of unknown form factors appearing in
~4.1! and Eq.~3.16! will be reduced down to five, a fac
which should restrict even further any ambiguities stemm
from the quadratic nature of the equations.

V. NUMERICAL EXAMPLES

In this section we will give some numerical examples
how to solve the system of seven equations obtained in
previous sections, i.e., Eq.~3.16! and Eq.~4.1!; this corre-
sponds to the case where all couplings which not sat
individial the discreteC, P, andT symmetries have been s
to zero by hand. In these numerical examples the values
the observabless i will be chosen arbitrarily, and will be o
the order of 102221023 ~remember that thes i are dimen-
sionless quantities!.

We will solve separately the two sub-systems: first,
will determine from the sub-system$s1 ,s4 ,s6% the two un-
knowns$ f 3

g , f 3
Z%; then we will substitute the solutions in th

sub-system$s2 ,s3 ,s5 ,s7% to determine the remaining un
knowns$ f 1

g , f 1
Z , f 2

g , f 2
Z%.

We start with the subsystem$s1 ,s4 ,s6%. Since the equa-
tion involving s4 on its left-hand side~LHS! @the last of Eq.
~4.1!# is linear in f 3

g and f 3
Z we can directly solve for one o

the two unknowns~say f 3
Z), and substitute its expressions

the remaining two equations involvings1 and s6 on their
LHS. Thus, one arrives at a system of two quadratic eq
tions for one unknown, namelyf 3

g . In particular, the two
equations read

TABLE II. The correlation coefficientsr i j as a function ofAs in
the presence of quadratic corrections.

As ~GeV! 180 200 250 300 500

r 14 20.992 20.970 20.850 20.686 20.267
r 16 0.333 0.482 0.724 0.859 0.986
r 46 20.215 20.254 20.253 20.218 20.107
05301
en-
g

l

re

c
n

.

g

f
e

fy

or

e

a-

A101A11f 3
g1A12~ f 3

g!250,

A601A61f 3
g1A62~ f 3

g!250, ~5.1!

with

A1052s11
L10

1

L10
4

s41
Q[10][10]

1

~L10
4 !2

s4
2 ,

A1152
L10

1 L3
4

L10
4

1
Q[3][10]

1

L10
4

s42
2Q[10][10]

1 L3
4

~L10
4 !2

s4 ,

A125Q[3][3]
1 2

Q[3][10]
1 L3

4

L10
4

1S L3
4

L10
4 D 2

Q[10][10]
1 ,

A6052s61
L10

6

L10
4

s41
Q[10][10]

6

~L10
4 !2

s4
2 ,

A6152
L10

6 L3
4

L10
4

1
Q[3][10]

6

L10
4

s42
2Q[10][10]

6 L3
4

~L10
4 !2

s4 ,

A625Q[3][3]
1 2

Q[3][10]
1 L3

4

L10
4

1S L3
4

L10
4 D 2

Q[10][10]
1 . ~5.2!

The closed form of the solution

TABLE III. Solutions for f 3
g and f 3

Z for some randomly selected
values of thes1 , s4, ands6 observables, atAs5200 GeV. The
entries with a3 indicate the absence of real solutions.

s1 s4 s6 f 3
g f 3

Z

20.07 0.07 20.007 0.014 0.021
20.06 0.05 20.01 0.021 0.014
20.04 0.04 0.01 20.016 0.029
0.09 20.08 0.01 20.018 0.025

20.03 0.02 20.03 0.056 20.025
0.05 0.04 0.03 3 3

0.02 0.04 0.06 3 3

TABLE IV. Solutions for f 3
g and f 3

Z at As5300 GeV.

s1 s4 s6 f 3
g f 3

Z

20.02 0.02 20.01 0.004 0.009
20.04 0.03 20.03 0.023 0.005
0.009 20.005 0.009 20.007 0.002
0.03 20.02 0.01 20.005 20.012

20.001 20.001 20.007 0.008 20.007
0.001 0.004 0.008 3 3

0.005 0.006 0.007 3 3
1-9
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f 3
g5

2A116~A11
2 24A10A12!

12

2A12
5

2A616~A61
2 24A60A62!

1/2

2A62
~5.3!

indicates that, at each energyAs, certain non-linear condi-
tions among the observabless1 , s4, ands6 must be full-
filed, in order for~real! solutions to exist.

In Table III and Table IV below we present some nume
cal examples obtained from solving the above two quadr
equations.

We now proceed to the solution of the sub-syst
$s2 ,s3 ,s5 ,s7% to determine the remaining unknown
$ f 1

g , f 1
Z , f 2

g , f 2
Z%. To simplify the analysis we will use the re

lations given in Eq.~4.7! imposed by the electromagnet
gauge-invariane; thus the number of unknowns is reduce
three,$ f 1

Z , f 2
g , f 2

Z%. Next, sinces3 is linear in the unknown
couplings we can solve for one of these couplings, and s
stitute its value in the remaining three quadratic equatio
We have chosen to eliminatef 2

g , and are thus left with three
quadratic equations involvingf 1

Z and f 2
Z ; their closed expres

sions are rather lengthy and we do not report them here
order to solve them we have found it convenient to resor
a graphical analysis; in particular, the three equations re
sent three ellipses in the (f 1

Z , f 2
Z) plane, whose common in

tersection point~if it exists! specifies the corresponding s
lution, as shown in Fig. 2. In Table V we present som
characteristic cases, which emerge when carrying out
analysis described above.

VI. CONCLUSIONS

We have obtained explicit expressions of the unpolari
differential cross section for the production of an on shellW
pair keeping the most general structure for the triple ga
boson vertices, namely all fourteen different form-facto
which parametrize the deviations from the tree level SM
linear gauge vertex. The above explicit result, which co

FIG. 2. A typical solution of the three quadratic equations. T
labelss2 , s5, ands7 denote the corresponding equations after
substitutions described in the text have been implemented.
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tains all linear and quadratic terms in the anomalous c
plings, demonstrates that the unpolarized differential cr
section can be expressed in terms of four polynomials in
cosine of the center-of-mass scattering angle, of maxim
degree 3, linearly independent and identical to those obta
in the simpler case where only linear terms of theC, P, and
T conserving couplings were kept. The corresponding co
ficients multiplying these polynomials can be projected o
from the differential cross section; they constitute a set
four observables, whose measurement imposes experim
constraints on the anomalous couplings.

Furthermore, we have augmented the aforementioned
of observables by three additional ones, which correspon
the total cross-sections for obtaining in the final stateW
bosons with fixed polarization~both transverse, both longi
tudinal, one transverse and one longitudinal! in the presence
of C, P, andT conserving anomalous couplings. The expe
mental value of these observables can be extracted f
measurements of the polarization of the final stateW bosons.

The proposed observables comprise a set of seven
dratic equations containing fourteen unknowns, which co
be simultaneously fitted in order to put global constraints
all anomalous couplings. Alternatively, one could focus e
clusively on the subset of anomalous couplings which se
rately respect theC, P, andT discrete symmetries, thus a
riving at an over-constrained system; the latter could be u
in order to eliminate possible algebraic ambiguities in t
determination of the above couplings, or reduce their co
lations. Imposing in addition electromagnetic gauge inva
ance one can further restrict the number of unknowns in
above system.

It would be interesting to see how this method respon
first to simulated and subsequently to real data. A first s
towards a full realization of the method has been recen
reported, focusing mainly on aspects related to its exp
mental feasibility@19#.
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TABLE V. Solutions forf 1
g , f 1

Z , f 2
g , and f 2

Z for some randomly
selected values of thes2 , s3 , s5, and s7 observables, atAs
5200 GeV. The values forf 3

g and f 3
Z are the same as those pr

sented in Table III.

s2 s3 s5 s7 f 1
g f 1

Z f 2
g f 2

Z

20.01 0.005 0.01 0.03 0.005 0.02 0.003 0.00
20.01 20.01 0.04 20.05 0.009 0.07 0.006 0.003

20.007 20.009 0.02 -0.008 0.0003 0.04 0.002 0.00
0.01 20.001 0.001 20.08 0.003 0.001 0.002 0.001

20.002 -0.002 0.003 20.003 0.006 0.003 0.004 0.00
0.01 0.02 0.03 0.04 3 3 3 3

20.01 20.02 20.03 20.04 3 3 3 3
1-10
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