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Infrared behavior of the gluon propagator on a large volume lattice
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The first calculation of the gluon propagator using(a(a?) improved action with the correspondix?(a?)
improved Landau gauge fixing condition is presented. The gluon propagator obtained from the improved action
and improved Landau gauge condition is compared with earlier unimproved results on similar physical lattice
volumes of 3.3x 6.4 fnf". We find agreement between the improved propagator calculated on a coarse lattice
with lattice spacinga=0.35 fm and the unimproved propagator calculated on a fine lattice with spacing
=0.10 fm. This motivates us to calculate the gluon propagator on a coarse large-volume lattice 5.6
X 11.2 fnf. The infrared behavior of previous studies is confirmed in this work. The gluon propagator is
enhanced at intermediate momenta and suppressed at infrared momenta. Therefore the observed infrared
suppression of the Landau gauge gluon propagator is not a finite volume effect.

PACS numbgs): 12.38.Gc, 11.15.Ha, 12.38.Aw, 14.70.Dj

I. INTRODUCTION where the operatord,(x) andU (x) are defined
There has been considerable interest in the infrared be- R R
havior of the gluon propagator, as a probe into the mecha- Up(X)=U ,(x)U ,(x+ M)UL(X-I— v)UI(x) (2.2

nism of confinement and as input for other calculations. Lat-
tice gauge theory is an excellent means to study suchnd
nonperturbative behavior. See, for example, R&f.for a

recent survey. Urec(X) = U ,(x)U (x+ w)U (x+ v+ m)U | (x+27)
The infrared part of any lattice calculation may be af- + At -
fected by the finite volume of the lattice. Larger volumes XU (X+1)U,(X) +U (XU (X + )

mean either more lattice poinisvith increased computa- N Aal -
tional cosj or coarser latticegwith corresponding discreti- XU (X+ 20U, (x+ p4v)U L (X+ 1)U (X).
zation errors The desire for larger physical volumes thus (2.3
provides strong motivation for using improved actions. Im-

proved actions have been shown to reduce discretization efhe link productU .(x) denotes the rectangular<2 and
fects[2], although some concerns have been expressed thaix 1 plaquettes. For the tadpolenean-field improvement

coarse lattices may miss important instanton physics. parametef4] we use the plaquette measure
In this study, no change is seen in the infrared gluon
propagator, even with a lattice spacing as coarse as 0.35 fm. Up=(3Re T(U ). (2.9

We find the gluon propagator to be less singular thag itf

the infrared. Our results suggest that the gluon propagator squation (2.1) reproduces the continuum action as-0,
infrared finite, although more data is needed in the far infrafrovided thatB takes the standard value ofgb/ Note that
red to be conclusive. This behavior is similar to that ob-our 3=6/g differs from that used ifi2,5,6. Multiplication

served in three-dimensional 2) studies[3]. of our B in EQ. (2.1) by a factor of 5/3 reproduces their
definition. O(g%a?) corrections to this action are estimated

5 to be of the order of two to three percdif.
IIl. ©(a%) IMPROVEMENT Gauge configurations are generated using the Cabibbo-
The ©(a?) tadpole-improved action is defined as Marinari[7] pseudo-heat-bath algorithm with three diagonal
SU(2) subgroups. The mean linky, is averaged every 10
sweeps and updated during thermalization. Representative
SG=—'8 S ReTi1- Uy (x)]— B gauge fields are selected after 5000 thermalization sweeps.
3 T Pl 12u2 Gauge fixing on the lattice is achieved by maximizing a
functional, the extremum of which implies the gauge fixing

condition. The usual Landau gauge fixing functioffl is
xS, ReTHL—Upee(X)], 2.1 gauge fixing functioft

rect

1
f%[{l»k%Z—%Tr{uﬁ<x)+uﬁ<x>*}, (2.5
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A maximum of Eq.(2.5 implies that>,d,A,=0 up to 30 F o gy 8
2 .. = %%
O(a“). To ensure that gauge dependent quantities are also @ 25 - 3 i, S .
O(a?) improved, we implement the analogod¥a?) im- 2.0 b Cosvag
proved gauge fixing functional 15 |- 5
1.0 .
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><UG(X+M)+H.C.} (2.9 _ _
" FIG. 1. Gluon propagator from 75 standard, Wilson configura-

tions, on a 32x 64 lattice with spacingi=0.10 fm.
as described if9]. We employ a conjugate gradient, Fourier

accelerated gauge fixing algorithfhO] optimally designed R
for parallel machines. D(q)=>, €9YD(y), (3.6
y

Ill. THE LANDAU GAUGE GLUON PROPAGATOR

) . where the available momentum values,are given b
The gauge linksJ ,(x) are expressed in terms of the con- w g y

tinuum gluon fields as
Y o e
(xh W=, el T2
U, (x)=Pex |gofX A,(z)dz/|, (3.1
andL, is the length of the box in the. direction. In the
whereP denotes path ordering. From this, the dimensionlesgontinuum, the scalar functio(qg?) is related to the Lan-

. 2mn L, L
(— ) 3.7

lattice gluon fieldA ,(x) may be obtained via dau gauge gluon propagator via
A (x+ ul2) ! [U,(x)—UT(x) !
X = X)=U,(X)]— =— .
WX IR =519, 0k U g D22<q>=( S| D@, 9
XTr[U,(x)-ULx], (3.2

The bare, dimensionless lattice gluon propagdi{qa), is

accurate toO(a?). O(a?) improved gluon field operators . . ]
have also been investigated. While the infrared behavior ig(_alated to the renormalized continuum propagali(q; )

unaffected by the improvement, the ultraviolet behavior suf-"

fers due to the extended nature of an improved operator.

These results will be discussed in detail elsewHédd. a’D(qa)=2Z3(u,a)Dr(q; 1), (3.9
We calculate the gluon propagator in coordinate space

55 T T
DI (xy)=(AL() AYY) ), (3.3 5.0 - 1
45 - %&1%% _
using Eq.(3.2). To improve statistics, we use translational 4.0 + gﬁ Wy .
invariance and calculate 35 F ] @% i
1 g 30 - S -
ab _ = a b 225 B
DI(Y)= ; A2(X)AY(X+Y) ). (3.4 ol ¢ j
1.5 .
In this paper we focus on the scalar part of the propagator, 10 - 4
05 F° .

1 1 aa 0.0 L ‘ .
DY) = =72 x7 1 Py, (3.5 Y : > 1

d w Ne—17a q (GeV)

whereNy=4 andN.=3 are the number of dimensions and  FIG. 2. Gluon propagator from 75 tree-level improved configu-
colors. This is then Fourier transformed into momentumrations on a 19 20 lattice with spacing=0.35 fm, and a physical
space volume of 3.5x 7 fm*,
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FIG. 3. Gluon propagator from 75 tree-level improved configu-

rations, on a 18x 32 lattice with spacing=0.35 fm, and a physi-
cal volume of 5.8x11.2 fnf.

FIG. 4. Comparison of the gluon propagator on the three differ-
ent lattices. The volumes are 3:26.4 fm*, 3.5 7.0 fnf*, and

5.6°x11.2 fnf.
where the renormalization constadi(u,a) is determined Figure 1 is reproduced from Réfl3], where the standard
by imposing a renormalization condition at some chosenyjison action is used. The propagator is calculated on a
renormalization scaley, e.g., 32X 64 lattice at3=6.0, which corresponds to a lattice
1 spacing of 0.1 fm. This propagator produces the correct
DR(q)qu:MZZ_Z- (3.10 asymptotic behavior and a detailed analysis shows that the

anisotropic finite volume errors are small. However, it was
impossible to rule out isotropic finite volume artifacts.
This means that there is an undetermined multiplicative \We use the improved action described above to calculate
renormalization factorZs(a), on each of our propagators. the gluon propagator on a small €X020), coarse &
Since our purpose is to compare our two improved, coarse-0.35 fm) lattice, which is shown in Fig. 2. Despite the
lattices with the unimproved, finer one, it is sufficient to coarse lattice spacing we see that it reproduces the infrared
consider only their relative renormalizations. We havebehavior of Fig. 1.
slightly rescaled the improved propagators so as to provide a Finally, we calculate the propagator on & &2 lattice,
reasonable match with the old one. The relevant quantity ist the same3 providing a=0.35 fm. This corresponds to a
very large physical volume of 5’6 11.2 fnf. Figure 3 il-

Z3(0.10)/Z3(0.35=1.02. (3.1)  |ustrates the results. These results largely agree with the pre-
vious two calculations of the propagators. The behavior of
IV. ANALYSIS OF LATTICE ARTIFACTS the gluon propagator is not changed by changing the volume.

In Fig. 4 we have superimposed the gluon propagators for
To emphasize the nonperturbative behavior of the gluorall three lattices. Here we pld@(q?) on they axis to allow
propagator, we divide the propagator by the tree-level resulin alternative examination of the most infrared momenta.
of lattice perturbation theory. Hence Figs. 1, 2, and 3 areThe points at=350 MeV are very robust with respect to
plotted with g?D(g?) on they axis, which is expected to volume. Only the very lowest momenta points show signs of
approach a constant up to logarithmic correctiong@as=. finite volume effects. With more volumes it should be pos-

Here A sible to extrapolate to the infinite volume limit. We see that
2 g, the propagator, at the very lowest momentum points, de-
Au=3zsin—>- (4. creases as the volume increases. This strongly suggests an

infrared finite propagator.

To reduce ultraviolet noise resulting from the lattice dis-
cretization, the available momenta are cut half way into the V. CONCLUSIONS

Brillouin zone, that is The gluon propagator has been calculated on a coarse

lattice with an©®(a?) improved action, in theD(a?) im-
(4.2) proved Landau gauge. The infrared behavior of this propa-

gator is consistent with that of a previous study on a finer

lattice with an unimproved action, but comparable volume.
All figures have a cylinder cut imposed upon them, i.e., allThe propagator was then calculated on another improved lat-
momenta must lie within a cylinder of radius two spatial tice with the same spacing, but larger volume. The increase
momentum units centered about the lattice diagonal. Thén volume left the propagator largely unchanged. In particu-
propagators are plotted in physical units, which we obtainar, it has been shown that the turnover observefilBj is
from the string tensiofi12] with y'o=440 MeV. not a finite volume effect.

T
qmang-
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With more lattices it may be possible to extrapolate toeffects of lattice Gribov copies remains a very interesting
infinite volume, but from this study we can only make ten-question and we plan to study this in the near future.
tative conclusions. We have ruled out tlge* behavior
popular in Dyson-Schwinger studies, and any infrared singu- ACKNOWLEDGMENTS
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