PHYSICAL REVIEW D, VOLUME 62, 046008

Modeling the fifth dimension with scalars and gravity

0. DeWolfel* D. Z. Freedmarf;' S. S. Gubset;" and A. Karch®
ICenter for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
2Department of Mathematics and Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139-4307
SLyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 7 February 2000; published 26 July 2000

A method for obtaining solutions to the classical equations for scalars plus gravity in five dimensions is
applied to some recent suggestions for brane-world phenomenology. The method involves only first order
differential equations. It is inspired by gauged supergravity but does not require supersymmetry. Our first
application is a full nonlinear treatment of a recently studied stabilization mechanism for interbrane spacing.
The spacing is uniquely determined after conventional fine-tuning to achieve a zero four-dimensional cosmo-
logical constant. If the fine-tuning is imperfect, there are solutions in which the four-dimensional branes are de
Sitter or anti—de Sitter spacetimes. Our second application is a construction of smooth domain wall solutions
which in a well-defined limit approach any desired array of sharply localized positive-tension branes. As an
offshoot of the analysis we suggest a construction of a supergrayitgction for nonsupersymmetric four-
dimensional renormalization group flows. The equations for fluctuations about an arbitrary scalar-gravity
background are also studied. It is shown that all models in which the fifth dimension is effectively compactified
contain a massless graviton. The graviton is the constant mode in the fifth dimension. The separated wave
equation can be recast into the form of supersymmetric quantum mechanics. The graviton wave function is
then the supersymmetric ground state, and there are no tachyons.

PACS numbgs): 11.25.Mj, 11.27+d

[. INTRODUCTION equivalent to setting the four-dimensional cosmological con-
stant to zero, and if the fine-tuning is imperfect, the induced
Phenomenologists have recently studied highermetric on the branes will be that of de Sitter space or anti—de

f the work of[3]; however, our treatment also includes the

3-branes embedded discontinuously in the ambient geomny : . ; .-
etry. Scenarios with two 3-branes provide an explanation op2ck reaction of the classical scalar profile. An explicit
model is presented in Sec. IV.

the large hierarchy betyv een the sc+aJIres of Weal_< and gravita- In Sec. V we obtain smooth solutions of gravity-scalar
tional forces and contain a massless'2mode which repro- ,qels which approach discontinuous brane geometries in a
duces Newtonian gravity at long range on the brdd¢#. I certain “stiff limit.” Any array containing only positive ten-
this paper we present the results of our study of models o§jon branes can be smoothed in this way. We also remark on
this type: specifically, results on the smoothing of disconti-the usefulness of our first-order formalism for the description
nuities and stabilization of interbrane spacings in five-of supergravity duals to renormalization group flows.
dimensional models with gravity and a scalar field. The issue Qur constructions have some parallels in earlier super-
of fine-tuning in such models is also addressed. We alsgravity domain wall literaturdsee[4] for a review. There
discuss the fluctuation equations in these models somewhate also similarities with more recent literature, for example
differently from treatments in the recent literature. [5,6].

The centerpiece of this work is a supergravity-inspired In Sec. VI we discuss the equations for linear fluctuations
approach to obtaining exact solutions of the nonlinear clasabout a gravity-scalar-brane configuration. We use the axial
sical field equations in gravity-scalar-brane models which iggauge and a parametrization in which the four-dimensional
valid even without supersymmetry. After a brief introduction graviton appears universally as a constant mode in the fifth
to the technical issues in Sec. Il, this approach is presented gimension. This mode is normalizable since that dimension
Sec. Ill and applied to a class of models containing ondS either manifestly or effectively compact. The graviton
positive and one negative tension bradé with compact ~€guation can be transformed into the form of a Sdimger
S,/Z, geometry in the fifth dimension. Stabilization of the quation in supersymmetric quantum mechanics. The gravi-
brane spacing is a generic feature of these models, but it N is the supersymmetric ground state, so there is no lower
not guaranteed that the branes will be flat. Indeed, obtainin§nergy state which would be a tachyon in the present con-
flat branes requires a fine-tuning of the model precisely€Xt.
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A A fixes or stabilizes the value of,. A first thought is that the
total action integral of the configuration might dependrgn
@ . .
T reflecting an imbalance of forces on the two 3-branes, and
(¢}) therefore could be minimized. However it will be shown in
. 3 the next section that the action vanishes forrgl] which
L ) 2, L T apparently reflects the fact that the “output” value of the
(1)—+—@2)— L, classical four-dimensional cosmological constant vanishes,
(@) (b) as is consistent with the “input” value assumed when we
considered solutions containing flat 3-branes. In later sec-
FIG. 1. () Aas a function of for the S'/Z, geometry, with one  tions we discuss models in which a real scalar figlavith
positive and one negative tension brane, each at a fixed path.of potential V(¢) is coupled to gravity with brane tensions
(b) A as a function of for two positive tension branes in an infinite \.(¢) depending ong. For a given choice o¥/(¢) and

fifth dimension. M. (@), it is generally the case that the brane spagipds

. . ! ) i uniquely determined.

in +———— signature. The most general five-dimensional  pjscontinuous solutions of field equations would be less
metric with four-dimensional Poincasymmetry is artificial if they could be obtained as a limit of smooth con-

figurations. In Sec. V we present coupled scalar-gravity
models with potentiaV/(£) (and no branes initially present
_ _ _ ) . In these models the scaléplays a different role, that of an
with 7;;=diag{l,—1,—1,—1,—1}. Anti-de Sitter space is auxiliary field, and hence is given a different symbol. The
the solution of the field equations of E¢l) with A(r)  models have smooth domain wall solutions which approach

=—r/L. This metric describes a Poincareordinate patch  any gesired discontinuous configuration of positive tension
in AdS; with boundary regiorr — —c and Killing horizon  pranes as a scale parameteMVift) is varied. Other param-

ds?=e?A") pdx'dx —dr?, 2

regionr—+o. _ _ - eters inV(&) determine the interbrane spacifeyg.,r,) and
~The basic positive tension brane consideredi?] is  ags scalege.g.,L;) of the limiting solution, and the solu-
given by A(r)=—|r|/L. This can be thought of as the dis- tjons have zero total action at all stages of the limiting pro-

continuous(in first derivative pasting of the horizon halves cequre. The scalaris effectively frozen in the “stiff” limit
of two Poincarepatches with the 3-brane at=0. One can 4 discontinuous branes.

obtain this as the solution of the field equations for an action oply positive tension brane configurations can be

consisting of Eq(1) plus a brane tension term: smoothed in this way. A negative tension brane effectively
has negative energy which cannot be modeled in a conven-
_ 4 data ] tional gravitational theory. Nevertheless, a negative tension
Sorane ; f d'xdry|detgy[\oor=ro). (3 brane gijs consistent withymicrophysical require?’nents if it is
located at the fixed point of a discrete group action. The
Here we have generalized to any number of braggss the  crucial point is that transverse fluctuations are then projected
metric induced on each brane by the ambient medijc. out; otherwise they would have negative kinetic terms.
For a single brane at;=0 with brane tensiom,, the AdS
scale must be related byll# \ /3 to achieve a solution in
which the induced metric is flat. This constraint represents a
fine-tuning which is precisely equivalent to setting the four- It was proposed if3] that the dynamics of a scalar field
dimensional cosmological constant equal to zero. could stabilize the size of an extra dimension in the brane-
One can obtain a system of one positive and one negatiwworld scenario of1]. The mechanism was to have a scapar
tension brang1] by considering two branes in E¢3) with with some mass in the bulk of a five-dimensional spacetime
No,=—\; and r,=rqy. This leads to the piecewise linear and some potentials\;(¢) and A,(¢) on two four-
scale functiorA(r) shown in Fig. 1a). The fifth dimension dimensional branes at the boundaries of this spacetime. Such
is then periodic with period 12y and there is a reflection a situation might be realized in the context of typesiring
symmetry under — —r. This is theS'/Z, situation origi- theory [10,7], the Horava-Witten version of the heterotic
nally considered if7,8]. string [8], or some more ornate string theory realization of
Another possibility is to considef®] a second positive the basic scenario dfL]: in all cases, spacetime has the to-
tension brane, which admits a solution fa¢r) shown in  pology R**xS'/Z,. The claim of[3] is that stabilization of
Fig. 1(b). In this case, the bulk actiofl) must be changed to the length of the intervaB'/Z, can be achieved without
admit different scalek, L,, L3 in the three spatial regions. fine-tuning the parameters of the moflehmely the mass of
The scales are related to the brane tensions hy#l1/L, the scalar and the potentials(¢) and,(¢)].
=2N,/3 and 1L;—1/L,=2\,/3>0. Again these relations The analysis presented [8] neglected the back reaction
must be regarded as fine-tunings absent a dynamical mechaf the scalar field on the metric as well as the effect of
nism by means of which they arise. different scalar vacuum expectation valu&EV’'s) on the
There are solutions of the equations of motion for anytensions of the branes. The aim of this section is to include
choice of the interbrane spacimg in both scenarios above, these effects exactly. To achieve a static solution with (3
so it is important to ask whether there is any principle which+ 1)-dimensional Poincarénvariance to the full gravity-

Ill. GOLDBERGER-WISE MECHANISM

046008-2



MODELING THE FIFTH DIMENSION WITH SCALARS . .. PHYSICAL REVIEW D 62 046008

plus-scalar-plus-branes equations, one fine-tuning is neces- We will initially assume a five-dimensional metric of the

sary. This fine-tuning amounts to setting the four-form (2). We also assume that the scalar depends only. on

dimensional cosmological constant to zero. These assumptions follow if one demands a solution with

The fine-tuning is somewhat different from the ones dis-(3+ 1)-dimensional Poincar@variance. We will later gen-

cussed in[11,12. In [11] it was argued for a theory with eralize slightly by replacingy; with a de Sitter or anti—de

only gravity in the bulk that a nonzero four-dimensional cos-Sitter metric. It is straightforward to obtain the Ricci tensor

mological constant must necessarily be accompanied by roll-

ing moduli(corresponding to changing brane separatiolms Rij=e(4A"*+A") 7, Rgs=—4A'>—4A", (5)

[12] it was conjectured that a state with nonzero cosmologi- . .

cal constant might relax to zero cosmological constant, agaignd to show that the equations of motion are

through evolution of some moduli specifying a brane con- N () ()

figuration: in short, it was suggested that an appropriate " +AA B = +2 a s(r—r,),

brane dynamics might fine-tune itself to zero cosmological o a ¢ “

constant. We will find a more conventional alternative: there

is generically a solution which is a warped product of a , 2 ., 2

maximally symmetric four-dimensional spacetime and an in- A'=—3¢""= 5%: No(P)S(r—r,),

terval. The four-dimensional spacetime can be flat

Minkowski spacetime, de Sitter spacetime, or anti—de Sitter 1 1

spacetime, and which is chosen depends on the details of the A'2=—_V(p)+ = ¢'2 (6)

scalar potentials in the bulk and on the branes. Roughly 3 6

oAy whose extremal value determines the cosmotogi1/e JENeraly use primes to dena. The last equation in

cal consetf;nt There is no obvious dynamical principle in theE.qS'(G) 1S thg uspal zero-energy con_dltlon that fo[low; from
: . . diffeomorphism invariance. If one differentiates it with re-

absence of supersymmetry which seems capable of forci

ng, S . .
N ; ; . . : ect tor, the result can be shown to vanish identically if the
V#=0. In particular, the presence of a fifth dimension SIM-girst two equations are satisfied.

ply d_oes_ hot constrain the extremal value \ijs. F_rom a By integrating the first two equations on a small interval
certain viewpoint this should not come as a surprise: brane(r “er.+e€) one can derive the jump conditions

world scenarios must reduce at low energies to a four- ¢ ' ¢
dimensional gravity-plus-matter theory, including some 2
brane moduli with some potential, and it would seem rather A’|:“:= - §xa(¢(ra)), @'|
accidental for this potential to enjoy a fantastic property such “

as zero extrema.

rote_ ﬁ)\a
,a,e—wﬂﬁ(fa))-
(7)

If these conditions are satisfied at each brane, and if the first
A. Solution generating technique and third equations of Eq$6) are satisfied away from the
branes, then we have a consistent solution of the equations of

We generalize the actiofl)+(3) to include a scalar field motion everywhere.

iy
P0X1): Unfortunately we are still left with a difficult nonlinear set
1 1 of equations. We have been able to take advantage of one
Szf d4xdr\/|detg/w| - ZR+ E(o”d))z—V(d)) integral of the motiorilnamely the zero-energy conditipto
M

eliminateA”, and if we wished, we could eliminat’ alge-
braically in the$ equation by using the zero-energy condi-
-> f dx/ detg;j|\ (@), (4)  tion, but we would still have a difficult second order equation
@ JBq for ¢ with no further obvious conserved quantities. The pur-
pose of this section is to exhibit a general method of reduc-
whereM is the full five-dimensional spacetime aBg is the  ing the system(6) to three decoupled first-order ordinary
codimension-1 hypersurface where each brane is located. dfifferential equations, two of which are separable. The
will always be assumed that the branes are at definite valuggethod is inspired by supersymmetry but can be carried out
of r, so that thex' are perpendicular to the brane hypersur-independent of it. We should remark at the outset that our
faces. method is only simple in the case of a single sca@laone of
The solution-generating method described in this sectiomur differential equations hag as the independent variable,
could be applied to a fairly general setup with many codi-and if there were several scalars, it would become a difficult
mension one branes on a finite or infinite interval. In thispartial differential equation.

section our focus will be the case of a finite inter@IZ, SupposeV(¢) has the special form

where the only branes are the ones at the ends of the interval.

We will work in the “upstairs” picture:Z,-symmetric con- 1[oW($)|\? 1 )

figurations on the circl&!. The bulk integration will extend (¢)= 8l o | §W(d’) ' ®

over the entireSt. Properly speaking, the action should be
cut in half after this integration. This can be achieved simplyfor someW(¢). Then it is straightforward to verify that a
by settingGs=1/8w rather than 1/4. solution to
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1 IW( ) , 1 it is just part of a background, not something which can be
=3 a6 A'=—zW(e) (9)  dynamically created anywhere in space. We fix the additive
ambiguity on the variable by taking the positive tension
is also a solution to Eq¢6), provided we have brane to be at=0. The negative tension brane then lives at

somer g (see Fig. 1 which is the modulus of the theory that
1 Fhe the mechanism df3] purports to stabilize. The physical pa-
EW(¢)|rZ_€= Na(B(r)), rameters that go into the theory are the scalar poteviia)
and the tensiona 1(¢) and A,(¢). These are assumed to

(10 . : . : .
1 aW()|Tate  oN emerge from the microscopic physi¢®r instance string
5 =——(¢(r,)). theory which leads to this five-dimensional picture in a low-
2 9¢ r,—€ I energy limit (that is, low-energy compared to string scale

and ten-dimensional Planck scale as well as any further com-

[It was previously noted if13] that the jump conditions pactification scales A moduli stabilization mechanism
could be satisfied in a specific model if the brane tension wasould be regarded as fine-tuned if one has to impose some
given identically by W(¢), which is a much stronger con- relationship among/(#), N1(¢#), and\,(¢) to achieve a
straint on the model than we assuirf@otentials of the form static solution.
(8) occur in five-dimensional gauged supergravity|, and Before explaining how the solutions to Eq$) can be
the conditiong9) arise as conditions for unbroken supersym-generated using Eqé8) and(9), let us do a quick count of
metry: the vanishing of the dilatino variation leads to the firstparameters and constraints to show that a fine-tuning is nec-
equation in Egs(9) and vanishing of the gravitino variation essary to obtain a static solution with flat branes. There are
leads to the second. three integration constants for tlhieequation plus the zero-

For us, the key observation is that, giveii¢), Eq.(8)  energy equation in Eq$6): they areg(0), ¢’ (0), andA(0).
can be solved foW(¢), and there is one integration con- There is one additional parameter, namely so there are
stant in the solution. Whether a gauged supergravity theorfour parameters in all. There are four constraints coming
can be constructed so that the supersymmetry conditions ledrtbm the two jump conditions at the two branes. Naively one
to any desiredV(¢) is an interesting question which we will would conclude that there is no fine-tuning: four constraints
not address in this pape€it would also be amusing to ask on four parameters can generically be solved. B(®) is
whether one could come up with interesting supersymmetryeompletely irrelevant becauggr) enters into the equations
breaking scenarios by starting with a five-dimensionalof motion and the jump conditions only through its deriva-
gauged supergravity and constructing a solution using Eqsives. That leaves three parameters subject to four con-
(9) with the “wrong” W(¢).] The relevant point for the straints: indeed fine-tuned. This fine-tuning is equivalent to
analysis at hand is that Eq&) and (9) together have solu- the fine-tuning required in a theory without scalars between
tions specified by three integration constants, one of which ishe brane tensions and the bulk cosmological constant.
the trivial additive constant oA. There are likewise three We will now argue in detail that any solution of Eq$)
integration constants for the solutions of E(®), and again can be written as a solution to Eg&8) and (9) with an
one is the trivial additive constant ok From this simple appropriately choseW(¢). It is necessary to choos# odd
parameter count we may expect that the space of solutionsnder theZ, symmetry, just becaus®&’ is equal and oppo-
includes all possible solutions to Eq$).! Issues of global site at the two points on any gives, orbit away from the
existence and discrete ambiguities seem to be the only olfixed points. With this in mind we can restrict our attention
stacles to realizing this expectation. These are best seen int@ regiona in Fig. 1. The jump conditions become
more definite framework, so we will now proceed to our
main example. ) 1 ) 10N,

The rest of this section is devoted to the case where the ~ A'(€)=— §7‘1(¢(0))' ¢'(e)= Eﬁ(‘l’(o))’
only branes are the ones at the ends of the inteBvAZ,.
Again, we work in the “upstairs” picture where these branes 1
are realized as kinks iA(r) at the fixed points oZ,. If the A'(rg—e)=5No(p(rg)),

. : L . . 3

Z, reflection includes an orientifolding, then string theory
allows one of these two branes to have negative tension. The

negative tension brane must be located at a fixed point of the &' (ro—€)=— 1 &(fﬁ(fo))- (11)

discrete group action: it does not introduce difficulties with 2 9¢

negative kinetic terms or unboundedness of energy because ) ) N
Plugging these relations into the zero energy condition, we

learn that

IMyers [15] has also noted that Eq&) and (9) can be used to 1/dng 2 5
generate kink solutions, independent of supersymmetry. In the §(W) —5sA=V at ¢=¢q,
study of renormalization groufRG) flows in ADS/conformal field
theory (CFT) correspondence, he has considered an example with 1 ar.)2
Cl.JbIC.W((b) YVhICh is similar to the single-brane solution which we _( 2) _ _)\gzv at ¢= ¢, (12)
will discuss in Sec. V. 8

[CSA
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whereg¢,; and ¢, are the values attained fay(r) atr=0 and
r=rq, respectively. Notice these constraints have the same
form as Eq.(8), with the A, playing the role ofW. For
genericV and \,, Egs.(12) admit only a discrete set of
solutions for¢, and ¢,. Given the physical input into the

model, namelyW(¢), \1(¢), and\,( ), the discrete values - = _-Vld’)

S AL ’ 4 a Y
¢1,¢, are the points in field space where flat branes can be ~ 2 ¢
consistently inserted. / ™

Let us now integrate Ed8) and fix the single integration o™ -
Y

constant by requiringV(¢4,) =\1(¢;). Because of8) we ~
have GW/d¢)(d1)=(E£IN1/dd)(¢p1), and the plus sign is
guaranteed if we assume thatV(¢)/d¢ has the same sign
as (@N1/dd)(¢q) in the vicinity of ¢=¢,. The solution

(A'(r), ¢(r)) of Egs.(9) subject to(0) = ¢, must coincide lines) as functions ofp. By adjusting the integration constant of E

with the solutlon(Al\’(r),¢(r)) of Egs. (6) subject to¢(0) (8) one can arrange fOrlyto é)e tar?gent t(W,gbut then for, also |

=¢1 and ¢'(0)=3(JN\1/d¢)(¢1), because both of them 4 e tangent amounts to a fine-tuning.

satisfy the same boundary data. This is enough to conclude

that locally every solution of Eqg6) can be generated by The advantage of introducing is that the fine-tuning con-

solving Eqs.(8) and (9). Global issues of the existence and dition can be expressed in terms of the solutions of the single

uniqueness of solutions to Ed8) and(9) are best addressed ordinary differential equatiori8) (see Fig. 2 It should be

with a specific model in hand. We will return to these pointskept in mind that we are working strictly at the classical

in Sec. IV. level. If we tune parameters so tHat(¢) and —\,(¢) are
Besides providing an efficient method for generating sotangent, then loop corrections 19,(¢) andV(¢) must be

lutions to Eqs(6), the use of Eqs8) and(9) also allows us expected to spoil the relation.

to characterize in a simple way how;(¢), \,(¢), and It is true that if this fine-tuning can be achieved, there is

V(¢) have to be fine-tuned. Having first fix&tl(¢) in the  no cosmological constant allowed in the four-dimensional

manner described in the previous paragraph, and then intection. A quick way to see this is to show that the Lagrang-

grated Eqs(9) to obtaing(r), we can determine the position ian is a total derivative with respect towhen Eqs(8), (9),

of the second brane by(r,) = ¢,. There are no parameters and(10) are satisfied: then the four-dimensional Lagrangian

left to fix (except for the trivial additive constant @9, but ~ must vanisif. Let us define

we must still demand W(¢,)=—A,(¢,) and @W/

9$)(b2)=(—IN,1d¢)(b,) in order that the jump condi- W)= W(¢)  for O<r<ry,

tions at the second brane be satisfied. Because of the defining ’ —W(¢) for ro<r<2ry

property (12) of ¢,, either one of these last two equations

implies the other up to a sign. Thus there is precisely onavhich is appropriatelyZ, odd. Then it is straightforward to

fine-tuning, as expected from the earlier parameter counshow that

\ -2z (9)
FIG. 2. Samplew (solid line), V (dotted ling, A, and\, (gray

(13

L=/|detg,,,|

1 1
- R+ E(ad))?—vw)}—E VIdetgi [N () 8(r—1,)

1.\2 1 10W\% 10w d
’ - _ - r_ - _ o AA
A+ W) (¢> )+2 - Ea:)\aé(r ra)} dr(e

Y
€ 3 2 2 3¢

3

2A' + %WD . (14)

In Eq. (14) we have used Ed8) (with W replaced byW) but not Eqs/(9). If the perfect squares in E¢L4) vanish, then we
have

AW

1
3 o = WP A=) =W($2) 8(r—r) = 2 N1 =ro), (15

where in the second equality we have used the jump conditions, (E@s. In comparing with Eq.(13), recall that by

conventionr;=0 andr,=rg.

2Since we assumed (31)-dimensional Poincarvariance in our ansatz from the start, a zero four-dimensional cosmological constant
was guaranteed. The following computation is therefore only a consistency check.
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The form of Eq.(14) makes it clear that Eq99) are Already from Eqs(18) we can see why there should be a
indeed a sort of Bogomol'nyi-Prasad-Sommerfi€BPS solution with no fine-tuning of parameters. Thieequation
condition for solutions of Eqs(6). However, because the and the zero-energy condition together have three integration
perfect squares in E¢14) come in with opposite signs, there constants, and there is also the brane separagioBecause
is no obvious analogue of a Bogomol'nyi bound. AnotherA itself rather than just its derivatives enters into E4S),
important implication of Eq(14) is that the total action of the additive constant o/ is no longer trivial. As before
any configuration of flat branes vanishes. This is even true athere are four boundary conditiorisvo jump conditions at
nonperiodic arrays providedl— —o asr— * o, each brang so generically one expects (bcally) unique

solution for any giverV(¢), A1(¢), and\,(¢).
The solution in the bulkKmore precisely, in regio of
B. Nonzero cosmological constant Fig. 1) can still be obtained as a solution of a slightly modi-

. . . . fied system of first order equatioﬁs,
The fine-tuning to achieve zero cosmological constant

was already commented on [iB]. The purpose of this sec- 1

tion is show that if the fine-tuning is imperfect, then there are Al=— §Wy(r),
solutions without rolling moduli but where the metric on the

branes is de Sitter space or anti—de Sitter space.

Most of the analysis is similar to Sec. Ill A, so we will be &' = 1 M
brief. The metric ansatz is 2y(r) d¢’
ds*=e?A"g; dx'dx —dr?, (16) 1 [ow\? 1
B -ywraviieys e §W2, (19
where g;; is the metric of four-dimensional de Sitter or Y=\ e

anti—de Sitter spacetimd?ijz—3xgj, where A is the
four-dimensional cosmological constapbsitive for de Sit-
ter spacetime and negative for anti—de Sitter spacetime

y(r)= \/1+

which differ from Egs.(9) just by inclusion of the factor

plicitly, we may write the four-dimensional metrics as e 2A(N) (20)

. W(r)?
dS,:  g;dxXdx =d?—e?M(dx+dxg+dxd),
Note that this completely changes the character of the prob-
AdS,: g;dxdx= efzm"a(dtz— dx@— dx2) — dx2. lem. In the case of zero cosmological constant, the first order
' 1o &7) equations(8), (9) allowed us to find solutions for giveW
directly by first integrating Eq(8) to solve forW(¢), then
The five-dimensional Ricci tensor and the equations of mousing Egs(9) to solve consecutively fop(r) andA(r). We
tion are now see that if we do not fine-tune the cosmological constant
to zero, we obtain a complicated nonlinear first order system
Rij=€A(4A'2+ A" — 3Ke_2A)Ej ., Rgs= —4A'2—4A", of differential equations for three functioi®(r), ¢(r), and
A(r), now viewed as functions of a single independent vari-
V() N (&) abler, which we cannot simply solve for in sequent# )
> L 8(r—r,), is still to be considered the information that is put in from the
I @ I¢b Lagrangian, but its relationship witiV can no longer be
isolated from the rest of the system. Derivatives with respect
to ¢ should now be thought of as

¢H+4A/¢/:

— 2 2
A'tAe == 2= 22 N (D) T,),
J _ 1 J (21)
_ 1 1 i @'(r) or’
A'?—Ae A=— §V(¢)+ €¢'2. (18 ¢ &)
To make this point more transparent, it is useful to rewrite
The jump conditions7) are unchanged. Neithek(r) nor  the systen{19) as an autonomous system, that is in the form

|A| can be determined unambiguously from the equations of
motion because they enter only in the combinatifr)
—3In|A|. We will see that this combination is what deter-
mines the four-dimensional cosmological constant in four\ynere
dimensional Planck units. We could adjust the additive con-

stant onA, if we so desired, to seh=1 for de Sitter
spacetime o\ =—1 for anti—de Sitter spacetime. The im-  3yg gre grateful to Martin Gremm and Lisa Randall for pointing

portant point is not to count the magnitude Afas an ad-  out to us an error in an earlier version concerning the first order
justable parameter separate from the additive constait on equations.

A'=1(AW,9), ¢'=g(AW,¢), W' =h(AW,g),
(22
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1 supports such a solution by the following procedure: pick
FAW, @)= = 5 y(n)W(r), A(r), calculateA’(r), solve A’=(—W/3)y algebraically
for W(r), and use¢’=W'/2y to obtain ¢(r). V(r) can
2 now simply be determined by plugging W and ¢, and after
9(AW,¢)= \/2V(<;/>(f))+ §W(f)2, inverting ¢(r) to r(¢) one obtains the desired(¢). This
procedure for example can be used to generate fat bfases
2 we will discuss in later sections for the Minkowski case
h(A,W, d>)=27(r)< 2V(p(r)+ §W(f)2 : (23)  with an AdS or dS worldvolume. Note that this simple tech-
nique for generating examples is not possible in the obvious
first order system one could write down simply by introduc-
While for a genericV(¢) this system will still be hard to ing one new variably with the one new defining equation
solve, it is very well suited for generating examples wherey=¢’, as it is a standard technique for converting a system
V(¢) is determined at the end. For any given shape of th@f higher order equations into a first order system.
warp factorA(r) one desires, one can find a potential that Assuming Eqs(19), the jump conditions reduce to

A1(¢(0))=W(r=0)(0), (¢(0))—

I\, 1 oW
N2(p(ro))=W(r=ro)¥(ro), W(d)( 0)= o) 30 (24)
B(rg)
|
If for a givenV(¢) we fix A(0) arbitrarily, then the five _ 1 _ 1 3_
other initial conditionsgA’(0),W(0),W’(0),4(0), ¢'(0) = 4nG, VIdetgijl{ —aR=3A) (26)

can be determined up to discrete choices, using the three
equations from Eqg19) evaluated at =0 and the two from
the first line of Egs.(24). Then Egs.(22) can be solved
unambiguously forp(r), W(r) andA(r). rq is fixed by the
last equality in Egs(19). One is left with one condition,
namely the third equality in Eq$24). It is a (very compli- 1
cated constraint onA(0), which generically will have only G—=477f dr e?A, (27)
discretely many solutions. The point is that we wind up with 4

exactly as many parameters as constraints, so it does not ta\'/(v%ere as usual theintegration is over the whole &, For
any fine-tuning to get a solution.

consistency with observation we must demand the bound
There does not seem to be a simple way to express the

evaluated on de Sitter or anti—-de Sitter spacetime, where
Rij=—3Agj;, with A positive or negative, respectively.
Comparison yields the relation

action as a sungor difference of squares plus total deriva- 1 | 2
tives, in analogy to Eq(14). However, it is straightforward = | _Hubble ) ~10120 (28)
to use the equations of motion to show that G4|/T| l4p Planc

In view of Eq. (27) this translates to

L=/|detg,,|| —

_ 2_ —
R+ (&¢) (d))} ﬂf dr @AM~ (W2InAD= 1120 (29

—2 Jldetgi; [\ () S(r—r,)

d/1
2A_ A4A N1
Ad(ze A).

The functionA(r)— 3 In|A| is fixed by Egs.(19) and (24)
once V(¢), N\1(¢), and A,(¢) are specified. A dramatic
(25) fine-tuning in these quantities is required to achieve(E§).
In general it is difficult to obtain solutions to Eq4.8) or
(19) in closed form. We can, however, give a complete treat-
ment of the case where there is no scalar #ds just a
When £ is integrated over th&' parametrized by, it must  constant(namely the square root of the bulk cosmological
for consistency reduce to the four-dimensional Lagrangian constank, see als§16,17]. In this case the only equations we

3
= Vldetg;;|| 5
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have to solve are the first equations in each line of Et8). and (24). The solutions can be expressed as follows:

ds,: A>0
= . ry-r 3 ry 3 r{—ro
A: = — | — = — —
e”= VAL sinh T Nq I_cothL, No I_coth 3
AdS,: A<O
A=+—AL h—rl_r N —3t h—r1 o= 3t hrl_r0 30
e'=v-AL cosh——, 1=ptanhs, Ap=—tanh——. (30)

In the dS case it is necessary to restrigi<r,. The main ingless additive constant &% and the brane separatiogis
point which Egs.(30) demonstrates is the following. Sup- not fixed.

pose one starts with any fixed negative bulk cosmological The bulk solutions in Eq930) have vanishing Weyl ten-
constant,— 4/L2, and arbitrary but specifiedl; and\,, sub-  sor: hence they are locally AgSAll we have found, then, is
ject only to the constraint that if one of the, exceeds 3/in an embedding of AdSand d$ as codimension-1 hypersur-
magnitude, then the other must also exceédiB/magnitude faces in AdS. To verify this one can find an explicit change
and be of the opposite sign. Then there is a unique solutioof variables which brings the bulk metric into the standard
to Egs.(30) up to the usual ambiguity between the additive form

constant orA and the magnitude ok . Bothr, andrq will ~

be fixed in this solution, and so will the combinatigh d?=e 2N (d?—dx¢—d¥e—d¥3) —dr2. (31
—3 In|A| which determines the four-dimensional cosmologi-

cal constant in Planck units. The only exception is whenlf we demand that the map from untilded to tilded coordi-
A1=—\,=3/L: in this case the branes are flaf,is a mean- nates be orientation preserving, then the natural choice is

~ — ry—r — ry—r
ds,: t:—\/Xcotthe*JX‘, Tz—\/XLt—LIogsinh 1L , X1=Xq1, Xo=X,, X3=Xgz,

= rq—r — ri—r -
AdS;: X3= —Atanthe‘/?XXB, T=\/—ALx3—LIogcosth, t=t, X=Xy, Xp=Xp. (32

Let us now focus on the d®ase with one positive and one along the flow of a Killing vector of AdScan also be ap-
negative tension brane at the ends of the bulk. A solution oplied to flat branes. For instance, one could shift the negative
the form (30) maps to a strip of thé-F plane between two tension brane forward along tigobal time of AdS; to ob-
curves of the formi= —c /L. Herec, andc, are positive tain a new solution where the proper distance between the

~ . branes is nonconstant. The positive and negative tension
constants. Becaus#dt is a Killing vector of the bulk ge- P 9

metry. w 1 trivially obtain a broader cl ¢ solution branes would then intersect at some time in the distant past,
ometry, we ca ally obtain a broader class of SOlUloNnS, 4 e positive tension brane would again retreat to the true

which have as their boundaries curves of the farmt,  poundary of Ad$ at a finite time as measured on the nega-
=—c,e"", where nowt, andt, are additional constants, tive tension brane. This is a catastrophe since it means that
only one of which can be set to 0 through diffeomorphismgravity would cease altogether in four dimensions: the four-
freedom. In these solutions the proper distance between thdimensional Planck length would vanish.
branes is not constant. In fact, generically the branes inter-
sect at some point, or they intersect the boundary offadS
different points—or both. In the latter case the graviton
bound state ceases to exist at some finite time as measured|t is useful now to turn to an explicit example with non-
on the negative tension brane. This reinforces the intuitioririvial dynamics for a single scalar. For simplicity, we
that brane-world cosmology can encounter some curious pahoose quadratitV(¢), A1(¢), andA,(¢) which are tan-
thologies. gent to one another in the manner illustrated in Fig. 2. Ex-
The strategy of displacing one boundary by some distancplicitly,

IV. EXPLICIT MODEL
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3 If b>0, thenqbf— ¢§>0, and only the first term can contrib-
W()= 1~ bg?, ute to the hierarchy. This is conceivablebif is fairly small:
for instance, if¢1/¢p,=e, then one needbL~1/37. If b
b2 2p b2 <0, then both terms in Eq35) could contribute to the hi-
— 4 _) 2_ , erarchy. One could, for instance, obtain an acceptable hier-
2 L 3 archy by takingoL=1, ¢;=1, and¢,=15.
The treatment of3] ignored the back reaction of the sca-
N () =W(b1) +W (1) (b~ b1)+ y1(b— b1)?, lar profile on the geometry. Crudely speaking this means one
should drop the second term in E85) since it came from a
No(D)=—W( o) =W’ (h2)(p— o) + Yol d— b2)?. term proportional to the square of the scalar field in Egs.
(33 (34). More precisely(14) of [3] can be reproduced exactly
by dropping the second term in E@5) and identifying their
We stress that the physical properties of the model are summ?L? with our bL in the limit of smallbL. Thus the analysis
marized byV(¢) and the\ ,(¢): in the absence of super- of [3] was essentially adequate for the cése0, where to
symmetry, there is no preferred choice Wf(¢). In Sec. obtain a large hierarchy one wants a bulk geometry which is
IV B we will analyze the different possibM/(¢) thatlead to  not so far from Ad$ that the second term of Eq35) is
the particular quartit/(¢) exhibited in Eqs(33). Until then  large. However, the inclusion of the back reaction becomes
we will just assume that the particul#¥(¢) that is tangent quite important in théd<<0 case, where a large hierarchy can
to \1(¢) happens to be the quadratic one shown in E3f3. be most easily obtained via a geometry which deviates
We make this assumption in order to obtain solutions instrongly from AdS.
closed form. The only physical fine-tuning is the requirement Any mechanism for generating large numbers must be
that —\,(¢) be also tangent t¥(¢). The quantitied, b, probed for robustness. We may ask, once the hiera(@6y
¢4, ¢o, 1, andy, are parameters of the various potentials,is obtained, how much can the parameters change and still
and no dimensionless ratio of them should be large if weagive the same weak scale to within errors? For definiteness,
want to preserve naturalness. let us ask what change of parameters stft8)— A(r) by
We will always assume that; andy, are positive so that no more than 0.02: this would amount to a shift of the weak
the energetics ok, and\, tend to stabilize the positions of scale by 2%, which is about the ratio of tFewidth to its
the branes in field space. We will usually assubte0 as mass. In thdo>0 scenario we described above, a change of
well. It should be noted that(¢) is unbounded below, as is ¢4 /¢, by about 1 part in 2000 changes the weak scale by

3
V($)=— {2+

common and without pathology in AdS supergravity. 2%: multiplicative shifts in this ratio are magnified by the
factor 1bL. In theb<0 scenario, changing, by about 1%
A. Analytical calculations changes the weak scale by 2%. THesperficially at leagt

o . . ) the b<<O scenario is more robust.
It is trivial to solve the first order equation®) in the

model (33) to obtain .
B. Numerics
B(r)=g.e ", We now change direction and refocus on E8). The

purpose is to illustrate the problem of selecting a superpo-
tential W(¢) which reproduces a given potential function
V(¢). However, we shall be content to explore this question
only in the model of this section, wheM(¢) is given in

The brane spacing is determined by the conditiog Egs.(33). It is convenient to rescale variables, partly to pre-
=In(¢,/¢,). The differenceA(0)—A(r,) gives the number pare for use of th&ATLAB linked progranDFIELDS [19]. We
of efoldings in discussiong1,9] of the gauge hierarchy therefore define

Ze—Zbr (34)

r
A(r):ao—E—g 1 .

problem? and one easily obtains \/§
= —t,
1 ¢1 1 2 2 ¢ 8
A(0) = A(rg)= - In——— = (71— ¢3). (35
bL ¢, 6
- 1 4\t2 t*
Phenomenologically one wants V($)=8b°U(), U=~ a2+ 1T {176 62
MPIanck 1 t2
A(0)—A(rg)~In ——~37. 36 _ -
( ) ( O) Melectroweak ( ) W( ¢)—3bX(t) XO(t)_ H 8" (37)

We denote the rescaled preferred superpotentiakfy)
“We assume that the four-dimensional and five-dimensionasince we will consider other superpotentials corresponding to
Planck scales are comparable. It is possible to relax this assumptidhe potentialU(t).
[18] since the additive constant &(r) is a free parameter. In this notation Eq(8) takes the form
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&' = /2% — 1+ (52/16) — (£4/64)

FIG. 3. Thet-x plane, showing
forbidden regions.

X\ 2 ) ferred superpotentiaky(t)=1—t%/8 only for t<0. This is
) ~XO7FU®). (38 related to the sign ambiguity of the square root in B39),

and it is not a difficulty for us because we are primarily
There is a sign ambiguity in taking the square root whichconcerned with the regio<0 which includes the full range
must be kept in mind, but we will discuss only the features ofof the geometry containing two branes which was discussed
the differential equation which result from the positive root, in the first part of this section.

namely Some other representative solutions are also plotted in
Fig. 3. It is not proven, but it appears to be the case that the
dx , 1 2 t* only solutions which give a superpotential defined on the full
Fr A A R~ A (39 field space—=<t<w are the curve throught(x)=(0,1)

and its mirror image throught (x)=(0,—1), which is also
The equation is rough|y like the energy equation in the meShOWﬂ in Flg 3. Other solution curves reach the boundary of
chanics problem of a particle in an inverted harmonic potenthe allowed region at a finite value bfn one direction, and
tial. As in mechanics there are forbidden regions of thke ~One can see that’(t) vanishes bui”(t) diverges as one
plane wherex2+U(t)<0. At a boundary of this region, approaches the boundary. By examining an approximate
which would be a turning point in a mechanics problem, theform of Egs.(39) and (9), one can show that these curves
slopedx/dt vanishes. According to the general theory of firstapproach the boundary at a finite value of the coordinaite
order differential equations there is a unique solution curvéhen appears that the solution curve reflects, and one must

through every point not in a forbidden region. The inequalityconsider solutions of Eq(39) with the other sign of the
square root. The scale factd(r) is smooth at the turning

dx point. This issue does not affect our application, since the
dt <|x[+V]U()] (40 full brane geometry is contained in a region without turning
points.
shows that no solution reachpg =< at a finite field value. Let us recall the logic of our construction. The potential

The DFIELD5 program quite rapidly provides a reasonableV(¢) and left-hand brane tension (¢) are matched at a
global and quantitative picture of the space of solutions. Th&hosen valuep=¢,. We then choose the unique superpo-
quantities of our problem depend only on the single dimentential W(¢) which satisfiesN(¢1) =\(¢,) and agrees in
sionless parametdl, and we sebL=1 in our numerical sign of slope with\{(¢;). Agreement in the magnitude of
work. the slope is guaranteed by Ed@8) and (12). We then inte-

A large-scale plot of thé-x plane is shown in Fig. 3, and grate the first order equatiort8) which give the unique so-
we see two large forbidden regions on the left and right andution of the second order proble(®) with the initial con-

a small one in the center. The inclined lines at a grid ofditions ¢(0)= ¢, ¢’ (0)=N\1(¢1), the latter from the jump
points are the slopes, obtained from E89), of the solution  condition (7). For consistency, it is useful to know that any
curves through each point. The solution throughx)  other choice ofW(¢) leads to a different solution of Eqgs.
=(0,1) is shown, and it is easy to see that it gives the pre¢6), one which does not satisfy the jump conditions. This is
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quite clear from Fig. 3, since the jump conditions, e.g., Egqsand study solutions to the first order equatig@s We will

(10), are no longer satisfied if we change solution chosen ashow that once we specify the potential appropriately, the

the relevant fixed valug, = \/8/3¢; . resulting solitonic solution describing an array of branes with
We have explored our suggested solution generating techiension , at positionsr , in the fifth dimension is specified

nique in only one model. Global issues associated with themniquely.

turning points do not spoil the applicability of our method, =~ We are interested in the case where the scalar profile is

and the method is certainly easy to use in the reverse modgven as a solitonic domain wall configuration interpolating

where we start with a conveniently chos#f(¢). We be- between various vacua for the scalar field, e.g., written as

lieve that this favorable situation is generic.

1
V. SMOOTH SOLUTIONS MODELING BRANES f(r)zé \/_—B"atank[ﬁ(r_r“)]’ (42)

So far we have been considering solutions to an actiorg)r a similar function that has the properties tlfiatin the
that contains explicité functions at the positions of the |, prop

branes. One might wonder to what extent this approach ha‘ tiff”_ limit (- f—cc) it reduc_e_s _to an array Of.SteP functions
already built in the answers one wants to obtain. The purpos@f he|ght~ k, /B, and thatii) its f'r_St denvat_lve IS always
egative and approaches a collectionsdiinctions at posi-

of this section is to present a one-parameter family of purel)r_'
5D Lagrangians for gravity coupled to a scalar, labeled bylioN I« Of strength~ "a/_\/E' Note that the latter property
the parameteg, whose solutions are generically smooth and'éauires allk, to be positive, ensuring that the functig(r)
asymptote to a specifi&-brane solution of the type consid- S invertible. This _solutlon in the stiff limit becomes an array
ered so far. For generig, the smoothed branes appear asCf Pranes of tension
domain walls interpolating between various scalar vacuua. In

the “stiff” limit ( B—) the second derivative of the scalar N :fK (43)

potential goes to infinity, so the scalar becomes very heavy “ 3

and can be integrated out. The parameters entering the scalar

potential become the brane tensions and positions associatdfid only positive tensions appear.

with &-function terms in an action of the type (+)3) after Can we find aw(¢) that allows a solution of the form

integrating out the scalar. specified in Eq(42)? In order to do so, we just rewrite the
Several comments are in order. First, as mentioned bdirst order equation for the scalar flow in Ed9) as

fore, we will not be able to treat negative tension branes in

this framework. Second, the solutions presented in this sec- 2gr— IW(E) _ IW(E(r)) or(§) W' (44)

tion do not have any fields living on the brane, since the
smooth solitons that in the stiff limit become the branes do
not have any zero modes. Both these obstacles can be r
avoided by introducing “by hand” the’ functions in the W(f)=21 [£(r") ]7dr’. (45
action, but this is precisely what we want to avoid with the
smooth formalism. In principle, the second limitation aboveysing invertibility of £(r) we can reexpresg/(r) asW(¢)
could be overcome by studying a more complicated Smootnd hence obtain a potentid(£) which leads to a solution
model which allows for nontrivial zero modes on the brane.of the desired form. The one integration constanWircor-

Last but not least we should emphasize that even thougkesponds to an “overall” bulk cosmological constant. It
we are considering once more 5D gravity coupled to a scalaghoyld be chosen in such a way that(r)=—1W(r) is
this time the scalar should not be thought of as the bulk,qsitive (negative to the left(right) of all branes. Sinca” is
scalarg we studied so far, which plays the role of a modulusajyays negative, it is always possible to choose the integra-
for the fifth dimension. Instead it is the scalar that the branegon constant this way. As we will see in the next section this
are made of. In order to avoid confusion we will call this property is enough to ensure that there exists a four-
auxiliary scalaré and reserve the symbdl for the modulus  gimensional graviton. Now we can turn the philosophy
scalar. In the stiff limit, where the soliton approaches theg.ound and say that once we have specifiednd hence
array of localized>-like branes, the fluctuations dfare fro-  gpecified the action, or more precisely the bulk cosmological
zen out. The bulk scalap has to be introduced as a second constant and the cosmological constants between the various
scalar. Interactions localized on the brane, such ast®  pranes given in terms of the value (&) at its minima, the
we introduced earlier, can be mimicked by coupling the bulkfirst order equations then provide us with a solution of the

3 ar irs &g’

scalar¢ only to derivatives of. form (42) for £(r) together with theA(r). In the stiff limit
We study a five-dimensional action of the form this solution approaches an array of sharply localized branes
at positionsr , and tensions. ,, .

_ £R+ 1 9E2—V 41 One should think o¥/ (&) as being obtained from integrat-
(96)°=V(§|. (4D . : : .
2 ing out the microscopic physics. One then can ask again
whether there is some dynamical principle that determines
We will work in the first order framework and hence take the parameters iV. Since we expressed/ as an integral
V(§) to be given in terms of a “superpotential” as in E&) over (¢')?, those parameters are tke and ther ,. Calcu-

Szf d*x dry|detg,,,
M
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lating the action integral of the solution as a functionxQf 1 W( ) 1
andr , one finds once more that it is always zero. We remain (¢ = EGlJ PR A'=—3W(¢) (50)
with a serious fine-tuning problem: the underlying theory has
to be arranged in such a way, that for givep andr, the s also a solution to the full second order equations provided
potential has precisely the form specified by &p). In the v js of the special form
stiff limit all that remains ofV are its values at the minima—
the interbrane cosmological constantsand the fine-tuning 1 . IW(p) IW(p) 1 )
problem reduces to the standard fine-tuning of the bulk cos- V(¢)=5G o ad W)~ (3D
mological constants against the brane tensions.
For example, in the case of a single brane we start with Choosing a two scalar model with'= ¢ and ¢°=¢ and
choosingG1,=G,;=0, G;;=1 and G, ¢) to be an arbi-
K trary function of ¢, we should once more be able with the
&(r)= \/—Etanhﬁr), (46)  use of Eq.(50) to engineer a smooth model, this time limit-
ing ourselves to multibrane arrays, in the presence of the
bulk scalar¢ with localized interactions.

leading to A count of parameters similar to the ones in Secs. Il A
JB and Il B allows us to conclude that—at least locally—any
E(N)=k—m—— (47) solution of the equations of motion following from E@9)
costt(Br) which preserves (3 1)-dimensional Poincarenvariance
and. hence can be written as a solution of Eq$0) for an appropriately

chosenW(¢) satisfying Eq(51). Suppose there arescalars
1 involved in the action49). Each of them satisfies a second
tank Br)— = tank¥( Br) order equation of motion. The scale facfosatisfies a first-
3 order zero-energy constraint analogous to the last line of

W:2Kzf (£)%dr=2«2

B Egs. (6). So there are 2+ 1 integration constants. One of
:ZK\/E( - F@)_ (48) them can be absorbed into an additive shiftrodNow, Egs.

K (50) lead to onlyn+1 integration constants since the scalar
equations are now first order. But there are aisotegration
constants in Eq(51) regarded as a partial differential equa-
flon for W(¢). Again one integration constant can be ab-

. AT . . sorbed into an additive shift an The point is that either way
show that in the stiff limit all possible smoothings lead to theWe have the same number of integration constants, so barring
same brane array. . . . . nongeneric phenomena and global obstructions, the solution
Before we end our discussion on smoothing of the S'ngu'spaces are the same.
lar §9Iutlons, let us commer)t on how the coupling to the This is quite an interesting result in view of the AdS-CFT
additional bulk scalar looks in this framework. In order to correspondenck20—22. One of the main puzzles in the cor-
mlmllc the Io%allfjed_ mtgractlofnsh for th_? bulk scalérwe  oqhondence is how one might translate the RG equations,
Collfp eh[t to the (;rlvanves o It e aL(JjX|||?ry icalarl?asr which are first order, into supergravity equations, which are
cally, this means that we couplesamodel for the scalars to - gecong order. 114] first order equations were extracted
gravity, where the kinetic terms of the auxiliary scalie- o the conditions for unbroken supersymmetry. These
p’?”d on the bulk scalazy_ﬁ. In th_e stiff I|m|_t this once more equations are suggestive of an RG flow based on the gradient
will reduce to the solutions discussed in the previous S€Caf 4 ¢ function. Thec function isW(¢), and its relation to
t|or1S§. ilar to Eas.(8) and (9 find a first order f the conformal anomaly arises because of the equaiibn
I'Iml ?r ct)h gs.(8) aln (t') we can hind a nrst order for- - _ —1W: in regions where the scalars are nearly constant and
malism for the general action the geometry is nearly AdSan application of the analysis
of [23] shows that the Weyl anomaly coefficients in the con-
s:f d4x dr~/|detgw,| formal field theory are proportional to the third power of the
M radius of AdS, or equivalently, tqW| 3. (Thus in a sense it
1 1 would be more appropriate to speak|w¥| 3 as thec func-
— R+ 5G30"¢73,¢' = V()| (49)  tion.) . . .
4 2 In a nonsupersymmetric “flow,” the function can still
) ) . be defined 24,14 as —3A’, and it is possible to demon-
whereG,; is a metric on the scalar target space. Any solutiongirateA” <0 using only the weakest of positive energy con-
to ditions [14]. But then the spirit of RG is lost: one wants to
have a notion of a first order flow through the space of pos-
sible theories labeled by different values of parameters, and
5The normalization in Eq(42) was chosen in such a way that Whateverc function one constructs should be defined in
those interbrane cosmological constants remain finite in the stifterms of those parameters. The constructioMbindicated
limit: 1/L jumps by 8?2/9 when crossing a brane. in Eqg. (51) seems to realize this idea explicitly.

A is simply obtained by integratingV. In the multibrane
arrays the solution becomes slightly more complicated due t
the cross-terms ing )2, but it is still analytical. One can

X
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However, there are some caveats. Fivdtdepends om  traceless modes in general obey the equation of a massless
integration constants, where as beforas the number of scalar in the curved background, and by recasting this as the
scalars. It seems reasonable that these integration consta@shralinger equation for a supersymmetric quantum me-
can be interpreted as specifying the state of the dual fieldhanics problem, we argue that there are no space-like modes
theory, which does not change under RG—only the Hamilthreatening stability.
tonian evolves. Second, the same phenomena of forbidden We impose the “axial gauge” constraint, so named for its
regions and turning points that we discussed in Sec. IV Besemblance té&\;=0 in electrodynamics:
occur also in the case of several scalars. A forbidden region
is a region of W, ¢) space wher&/(¢)+ :W? is negative. h,s=0, (52)
Barring singular behavior is,;, one finds that the gradient _ . .
of W vanishes at the border cJ)f these regions, so no flow ca herex=0,1,2,3,5. We can then write the total metric in the
cross over. Rather, flows reflect from the border and the sup>Mm
sequent flow is c_ontrolled by a different branch\&f Be- dSZZeZA(r)(nij +hij)dxidxj_dr2, (53)
cause of the multivalued nature \8f, we do not regard Egs.

(50) as a wholly satisfactory starting point for the transcrip-where we extracted a factef” from the fluctuation term to
tion of supergravity equations into RG equations. Howeversimplify future equations. The axial gauge is not a total

it is perhaps a step in the right direction. gauge fix, as diffeomorphisms generated by a vector field
e=e*Nw,(x)), es=0 preserve the conditiof52) while
VI. FLUCTUATIONS AROUND THE SOLUTION transforming the ﬂuctuatiorisij as
Finally, we examine the equations governing fluctuations hij(xk,r)—>hij(xk,r)+¢9iwj(xk)+&jwi(x"). (54)

of the metric and scalar around the classical background so-

lutions of the equations of motion of the actigd). Our  Note the resemblance to four-dimensional diffeomorphi$ms.
methods are somewhat different from those in the literature. The Ricci tensor can be computed from the me(&8).

We choose an axial-type gauge, and the resulting form of th&o zeroth order in the fluctuations we continue to have Egs.
four-dimensional graviton is particularly simple. Transverse(5), while to first order we calculat@using Maple

1 1 1 1
Rfjl)ZGZA E(?rz‘l‘ ZA,(yr+A,,+4A’2 hlj + E ﬂijQZAA,ar(ﬂkth)_ EDh” - E nkl((yiajhkl_aiakhjl —(9]'(9khi|),

1 1
Reg'=—5 (07 +2A"9) 7y, Rig'=5 7d:(achyi—djhia), (55

where 0= n”aiaj is the flat four-dimensional Laplacian. Einstein’s equations in Ricci form requireRpai:f“,ET

1 a q wy
—30,,T%, and we find

2 v Ny ~
Tip= -3 (2%+2 0;‘/’) 6<r—ra>)¢mi,-+ 2V(h)+ 2 xa<¢>)5<r—ra>)hu},
- 4lov N - -
ﬂ,ls>=4¢'¢'+§ (9(¢¢)+22 ” 5(r—ra))¢, TH=2¢"9. (56)

Additionally, the equation of motion for the scalar fluctuatiéris

IV (¢) > I*N(p)

—2A T _ T 1
e “"d¢p—o¢"—4A"¢p'+ 5(1)2 +a ﬁz(ﬁ

~ 1 -
5(r_ra))¢:§¢,77”hi,j' (57)
The equatiorRi(jl)=ﬂjl) further simplifies as a consequence of the zeroth-order equation of n{6jion

4 2
AT HAA 2= = 2V(9) = 5 2 Nal$)O(r—To), (58)

to

5There is a more general residual gauge invariance involving a nonvanisk(ixity. See[25].
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1 1 1 1
EZA(E’?EWLZA'ar) hij— 5 0hij+35 7 €A 3, (n'hy) — > 7(d195h— didkhy — d3a¢h)

2 V() N (D) ~
__Z2A _ .
3€ (2 o +§ 36 S(r=r,) | dm; . (59)
|
Let us now consider the transverse traceless components of A'——1/L.<0 asr—», (65)

hi; , defined by the nonlocal projectid26]:
which are asymptotically anti—de Sitter geometries. In all
— 1 Kl such models, which include the smooth configurations of
hij= Q(WikT’JI + i i) — 3 T Tkl h¥=hij+--, Sec. V, there is a naturally massless four-dimensional gravi-
(60)  ton as described above.
Having identified the four-dimensional graviton, we next
where 7j;=(7;;—d;d;/0J) and the ellipsis indicates nonlo- turn to the question of stability. If the equations of motion

cal terms. Tthij satisfy were to admit fluctuations with a space-like momentum, it
would be evident that the zeroth-order solution—our classi-
Jhi;=7'h;=0. (61)  cal background—is not stable. For the transverse traceless

components, we can cast the expres$@#) in the form of a

We emphasize that E461) applies only to the components Supersymmetric quantum mechanics problem, whpfe
defined in Eq.(60) and is not a gauge choice; it would be plays the role of the energy, and thus argue fifee 0.
incompatible with Eq(52) and the residual gauge freedom _ To accomplish this, we first need to eliminate the factor
(54). e multiplying the momentum. We can do this by changing
For theh;;, Eqg. (59) simplifies enormously. The trans- variables to coordinates in which the background is confor-

verse traceless projection removes the right-hand side, arfgally flat:
we are left with

ds?=e*A9[ (7, +h;)dx'dxI —dZ]. (66)
2 ’ - o —
(97 +4A' 5, —e ?A0)hy;=0. (62 Now expressior(62) takes the form
Notice that all &function jumps have canceled out; this is [—ﬁg—SA’(Z)r?ZJrD]F” —0. (67)

nothing but the equation of motion for a free massless scalar

in our curved background. In an Ad®lack hole back- |nterms oinj(z)=e‘ipxe3A’2hij, this becomes

ground, the spin-2 components of the graviton were also

found to obey a free scalar wave equatj@,2§|. ) o ,
We expect one solution of our equations to be the four- ot A (2T SA(2Z)

dimensional graviton. Since it is massless in the four-

dimensional sense, it must oba/lTij:O_ We can easily see This differential operator has the same form as a Hamil-

that such a solution to Eq62) is the r-independent plane tonian in quantum mechanics, with a potenti&l(z)

wave =2A'(2)?>+3A"(z) and p? as the energy eigenvalue. One

can easily check that it factorizes:

Hij(2)=p®Hij(2). (68)

hij :Cijeipx, (63)
Hij(2)=p°Hj(2).

3 3
N : + oA — a4+ = A
wherep?=0 andCj; are constants. Thus in this presentation %2 2 (Z))( 92 2 (Z)>
the phenomenological graviton has a very simple form. (69

As we will argue below, the norm of metric fluctuations is -
In flat space, these terms are one another’s adjoint, and ex-

_ . pression69) can be regarded as a factorization of the Hamil-
”hHZ:f dr GZA(r)hiih”' 64 tonian intoQQ. This is supersymmetric quantum mechanics,
and the transformed graviton wave function is the supersym-
where indices are raised with. We see that the graviton metric ground state. However, to complete the argument we
mode (63) is normalizable because thedirection is effec- must show that a flat-space norm is correctHigy(z) in our
tively compactified in these models. TI8*/Z? geometries curved background.
are manifestly compact. For arrays of positive-tension branes In Lorentzian signature field theory, the norm of fluctua-
only, the range of is —oo<r <o, but the norm converges if tions is determined by the requirement that formally con-

we restrict to cases where served quantities such as the contracfiériK , of the stress
tensor and a Killing vector of the background have conver-
A'—=1/L_>0 asr——oo, gent integral
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which are coupled to the scalar by E¢55), (56), and(57).
J dz OPX\/aTOka (70) These coupled equations are not easy to solve, and we have
not attempted to rule out tachyonic modes of these fluctua-
over a constant time four-surface and vanishing flux throughions here.
its boundary three-surface. Stress tensors for metric fluctua- However, it seems likely that the Boucher nonsupersym-
tions are complicated, but in this linearized situation themetric positive-energy theorefi29,30 can be extended to
stress tensor must be covariantly conserved for all solutiongclude actions such as ours with potentials localized on hy-
of the equation of motiori62) or (67)—(68). Thus, for the  persurfaces, in which case stability would be guaranteed for
Killing vector (K°=0, K'=const,K>=0) of spatial transla- our solutions, by virtue of their satisfying the first-order
tions parallel to the domain wall, one can take the form  equations.
0 oA T T Note added As this manuscript was nearing completion,
Ti=e “dohaih™, (71)  several papers appearé81—34 which overlap somewhat
with our results. For instance, E¢L4) was also derived in
0{34], and the d$ solution in(30) was also obtained if31].
A ) ) g - In [33], solutions similar to the single domain wall of Sec. V
va&lues 1,2,3 in expressiaofrl), while k,_ | are raised with _ were shown to emerge from a U(1) gauged supergravity
7n<.) The requwement of a converge_nt integral for the_Spat'akheory.
momentum carried by the fluctuation then constrains the Thg coupled equations relating scalar and non-transverse
radical eigenfunctionst;;(2) to satisfy metric fluctuations have recently been studied3i]. The
equations can again be reduced to the form of supersymmet-
J dz Hinij = finite, (72) ric quantum mechanics, and consequently there are no nor-
malizable spacelike modes. Thus our backgrounds have been

which is the usual Schdinger norm for Eq.(68) [and shown to be entirely free from tachyonic fluctuations.

equivalent to Eq(64) when rephrased in terms bf; and the

radial coordinater]. Supersymmetric quantum mechanics

thus ensures that there are no normalizable modes pfith ACKNOWLEDGMENTS
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obtained by specializing the obvious covariant expression f
TiO to our description of the backgroun@lhe indexi takes
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