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Modeling the fifth dimension with scalars and gravity
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A method for obtaining solutions to the classical equations for scalars plus gravity in five dimensions is
applied to some recent suggestions for brane-world phenomenology. The method involves only first order
differential equations. It is inspired by gauged supergravity but does not require supersymmetry. Our first
application is a full nonlinear treatment of a recently studied stabilization mechanism for interbrane spacing.
The spacing is uniquely determined after conventional fine-tuning to achieve a zero four-dimensional cosmo-
logical constant. If the fine-tuning is imperfect, there are solutions in which the four-dimensional branes are de
Sitter or anti–de Sitter spacetimes. Our second application is a construction of smooth domain wall solutions
which in a well-defined limit approach any desired array of sharply localized positive-tension branes. As an
offshoot of the analysis we suggest a construction of a supergravityc function for nonsupersymmetric four-
dimensional renormalization group flows. The equations for fluctuations about an arbitrary scalar-gravity
background are also studied. It is shown that all models in which the fifth dimension is effectively compactified
contain a massless graviton. The graviton is the constant mode in the fifth dimension. The separated wave
equation can be recast into the form of supersymmetric quantum mechanics. The graviton wave function is
then the supersymmetric ground state, and there are no tachyons.

PACS number~s!: 11.25.Mj, 11.27.1d
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I. INTRODUCTION

Phenomenologists have recently studied high
dimensional gravitational models containing one or more
3-branes embedded discontinuously in the ambient ge
etry. Scenarios with two 3-branes provide an explanation
the large hierarchy between the scales of weak and gra
tional forces and contain a massless 211 mode which repro-
duces Newtonian gravity at long range on the branes@1,2#. In
this paper we present the results of our study of models
this type: specifically, results on the smoothing of discon
nuities and stabilization of interbrane spacings in fiv
dimensional models with gravity and a scalar field. The is
of fine-tuning in such models is also addressed. We a
discuss the fluctuation equations in these models some
differently from treatments in the recent literature.

The centerpiece of this work is a supergravity-inspir
approach to obtaining exact solutions of the nonlinear c
sical field equations in gravity-scalar-brane models which
valid even without supersymmetry. After a brief introductio
to the technical issues in Sec. II, this approach is presente
Sec. III and applied to a class of models containing o
positive and one negative tension brane@1# with compact
S1 /Z2 geometry in the fifth dimension. Stabilization of th
brane spacing is a generic feature of these models, but
not guaranteed that the branes will be flat. Indeed, obtain
flat branes requires a fine-tuning of the model precis
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equivalent to setting the four-dimensional cosmological c
stant to zero, and if the fine-tuning is imperfect, the induc
metric on the branes will be that of de Sitter space or anti–
Sitter space. The stabilization mechanism is a generaliza
of the work of@3#; however, our treatment also includes th
back reaction of the classical scalar profile. An expli
model is presented in Sec. IV.

In Sec. V we obtain smooth solutions of gravity-sca
models which approach discontinuous brane geometries
certain ‘‘stiff limit.’’ Any array containing only positive ten-
sion branes can be smoothed in this way. We also remar
the usefulness of our first-order formalism for the descript
of supergravity duals to renormalization group flows.

Our constructions have some parallels in earlier sup
gravity domain wall literature~see@4# for a review!. There
are also similarities with more recent literature, for exam
@5,6#.

In Sec. VI we discuss the equations for linear fluctuatio
about a gravity-scalar-brane configuration. We use the a
gauge and a parametrization in which the four-dimensio
graviton appears universally as a constant mode in the
dimension. This mode is normalizable since that dimens
is either manifestly or effectively compact. The gravito
equation can be transformed into the form of a Schro¨dinger
equation in supersymmetric quantum mechanics. The gr
ton is the supersymmetric ground state, so there is no lo
energy state which would be a tachyon in the present c
text.

II. ISSUES

We start with the five-dimensional gravitational action

S5E d5xAgF2
1

4
R1

3

L2G , ~1!
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in 12222 signature. The most general five-dimension
metric with four-dimensional Poincare´ symmetry is

ds25e2A~r !h i j dxidxj2dr2, ~2!

with h i j 5diag$1,21,21,21,21%. Anti–de Sitter space is
the solution of the field equations of Eq.~1! with A(r )
52r /L. This metric describes a Poincare´ coordinate patch
in AdS5 with boundary regionr→2` and Killing horizon
region r→1`.

The basic positive tension brane considered in@1,2# is
given byA(r )52ur u/L. This can be thought of as the dis
continuous~in first derivative! pasting of the horizon halve
of two Poincare´ patches with the 3-brane atr 50. One can
obtain this as the solution of the field equations for an act
consisting of Eq.~1! plus a brane tension term:

Sbrane52(
a

E d4xdrAudetgi j ulad~r 2r a!. ~3!

Here we have generalized to any number of branes;gi j is the
metric induced on each brane by the ambient metricgmn .
For a single brane atr 150 with brane tensionl1 , the AdS
scale must be related by 1/L5l1/3 to achieve a solution in
which the induced metric is flat. This constraint represen
fine-tuning which is precisely equivalent to setting the fo
dimensional cosmological constant equal to zero.

One can obtain a system of one positive and one nega
tension brane@1# by considering two branes in Eq.~3! with
l252l1 and r 25r 0 . This leads to the piecewise linea
scale functionA(r ) shown in Fig. 1~a!. The fifth dimension
is then periodic with period 2r 0 and there is a reflection
symmetry underr→2r . This is theS1/Z2 situation origi-
nally considered in@7,8#.

Another possibility is to consider@9# a second positive
tension brane, which admits a solution forA(r ) shown in
Fig. 1~b!. In this case, the bulk action~1! must be changed to
admit different scalesL1 , L2 , L3 in the three spatial regions
The scales are related to the brane tensions by 1/L111/L2
52l1/3 and 1/L321/L252l2/3.0. Again these relations
must be regarded as fine-tunings absent a dynamical me
nism by means of which they arise.

There are solutions of the equations of motion for a
choice of the interbrane spacingr 0 in both scenarios above
so it is important to ask whether there is any principle wh

FIG. 1. ~a! A as a function ofr for theS1/Z2 geometry, with one
positive and one negative tension brane, each at a fixed point ofZ2 .
~b! A as a function ofr for two positive tension branes in an infinit
fifth dimension.
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fixes or stabilizes the value ofr 0 . A first thought is that the
total action integral of the configuration might depend onr 0 ,
reflecting an imbalance of forces on the two 3-branes,
therefore could be minimized. However it will be shown
the next section that the action vanishes for allr 0 , which
apparently reflects the fact that the ‘‘output’’ value of th
classical four-dimensional cosmological constant vanish
as is consistent with the ‘‘input’’ value assumed when w
considered solutions containing flat 3-branes. In later s
tions we discuss models in which a real scalar fieldf with
potential V(f) is coupled to gravity with brane tension
la(f) depending onf. For a given choice ofV(f) and
la(f), it is generally the case that the brane spacingr 0 is
uniquely determined.

Discontinuous solutions of field equations would be le
artificial if they could be obtained as a limit of smooth co
figurations. In Sec. V we present coupled scalar-grav
models with potentialV(j) ~and no branes initially present!.
In these models the scalarj plays a different role, that of an
auxiliary field, and hence is given a different symbol. T
models have smooth domain wall solutions which appro
any desired discontinuous configuration of positive tens
branes as a scale parameter inV(j) is varied. Other param-
eters inV(j) determine the interbrane spacing~e.g.,r 0) and
AdS scales~e.g.,Li) of the limiting solution, and the solu
tions have zero total action at all stages of the limiting p
cedure. The scalarj is effectively frozen in the ‘‘stiff’’ limit
of discontinuous branes.

Only positive tension brane configurations can
smoothed in this way. A negative tension brane effectiv
has negative energy which cannot be modeled in a conv
tional gravitational theory. Nevertheless, a negative tens
brane is consistent with microphysical requirements if it
located at the fixed point of a discrete group action. T
crucial point is that transverse fluctuations are then projec
out; otherwise they would have negative kinetic terms.

III. GOLDBERGER-WISE MECHANISM

It was proposed in@3# that the dynamics of a scalar fiel
could stabilize the size of an extra dimension in the bra
world scenario of@1#. The mechanism was to have a scalarf
with some mass in the bulk of a five-dimensional spaceti
and some potentialsl1(f) and l2(f) on two four-
dimensional branes at the boundaries of this spacetime. S
a situation might be realized in the context of type I8 string
theory @10,7#, the Horava-Witten version of the heterot
string @8#, or some more ornate string theory realization
the basic scenario of@1#: in all cases, spacetime has the t
pology R3,13S1/Z2 . The claim of@3# is that stabilization of
the length of the intervalS1/Z2 can be achieved withou
fine-tuning the parameters of the model@namely the mass o
the scalar and the potentialsl1(f) andl2(f)].

The analysis presented in@3# neglected the back reactio
of the scalar field on the metric as well as the effect
different scalar vacuum expectation values~VEV’s! on the
tensions of the branes. The aim of this section is to inclu
these effects exactly. To achieve a static solution with
11)-dimensional Poincare´ invariance to the full gravity-
8-2
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plus-scalar-plus-branes equations, one fine-tuning is ne
sary. This fine-tuning amounts to setting the fou
dimensional cosmological constant to zero.

The fine-tuning is somewhat different from the ones d
cussed in@11,12#. In @11# it was argued for a theory with
only gravity in the bulk that a nonzero four-dimensional co
mological constant must necessarily be accompanied by
ing moduli~corresponding to changing brane separations!. In
@12# it was conjectured that a state with nonzero cosmolo
cal constant might relax to zero cosmological constant, ag
through evolution of some moduli specifying a brane co
figuration: in short, it was suggested that an appropr
brane dynamics might fine-tune itself to zero cosmologi
constant. We will find a more conventional alternative: the
is generically a solution which is a warped product of
maximally symmetric four-dimensional spacetime and an
terval. The four-dimensional spacetime can be
Minkowski spacetime, de Sitter spacetime, or anti–de Si
spacetime, and which is chosen depends on the details o
scalar potentials in the bulk and on the branes. Roug
speaking, one can construct a four-dimensional effective
tential Veff whose extremal value determines the cosmolo
cal constant. There is no obvious dynamical principle in
absence of supersymmetry which seems capable of for
Veff50. In particular, the presence of a fifth dimension si
ply does not constrain the extremal value ofVeff . From a
certain viewpoint this should not come as a surprise: bra
world scenarios must reduce at low energies to a fo
dimensional gravity-plus-matter theory, including som
brane moduli with some potential, and it would seem rat
accidental for this potential to enjoy a fantastic property su
as zero extrema.

A. Solution generating technique

We generalize the action~1!1~3! to include a scalar field
f(xi ,r ):

S5E
M

d4xdrAudetgmnuF2
1

4
R1

1

2
~]f!22V~f!G

2(
a

E
Ba

d4xAudetgi j ula~f!, ~4!

whereM is the full five-dimensional spacetime andBa is the
codimension-1 hypersurface where each brane is locate
will always be assumed that the branes are at definite va
of r, so that thexi are perpendicular to the brane hypers
faces.

The solution-generating method described in this sec
could be applied to a fairly general setup with many co
mension one branes on a finite or infinite interval. In th
section our focus will be the case of a finite intervalS1/Z2
where the only branes are the ones at the ends of the inte
We will work in the ‘‘upstairs’’ picture:Z2-symmetric con-
figurations on the circleS1. The bulk integration will extend
over the entireS1. Properly speaking, the action should
cut in half after this integration. This can be achieved sim
by settingG551/8p rather than 1/4p.
04600
s-
-

-

-
ll-

i-
in
-
te
l

e

-
t
r

the
ly
o-
i-
e
ng
-

e-
r-

r
h

It
es
-

n
-

al.

y

We will initially assume a five-dimensional metric of th
form ~2!. We also assume that the scalar depends only or.
These assumptions follow if one demands a solution w
(311)-dimensional Poincare´ invariance. We will later gen-
eralize slightly by replacingh i j with a de Sitter or anti–de
Sitter metric. It is straightforward to obtain the Ricci tens

Ri j 5e2A~4A821A9!h i j , R55524A8224A9, ~5!

and to show that the equations of motion are

f914A8f85
]V~f!

]f
1(

a

]la~f!

]f
d~r 2r a!,

A952
2

3
f822

2

3 (
a

la~f!d~r 2r a!,

A8252
1

3
V~f!1

1

6
f82. ~6!

We generally use primes to denoted/dr. The last equation in
Eqs.~6! is the usual zero-energy condition that follows fro
diffeomorphism invariance. If one differentiates it with re
spect tor, the result can be shown to vanish identically if th
first two equations are satisfied.

By integrating the first two equations on a small interv
(r a2e,r a1e) one can derive the jump conditions

A8ur a2e
r a1e

52
2

3
la„f~r a!…, f8ur a2e

r a1e
5

]la

]f
„f~r a!….

~7!

If these conditions are satisfied at each brane, and if the
and third equations of Eqs.~6! are satisfied away from the
branes, then we have a consistent solution of the equation
motion everywhere.

Unfortunately we are still left with a difficult nonlinear se
of equations. We have been able to take advantage of
integral of the motion~namely the zero-energy condition! to
eliminateA9, and if we wished, we could eliminateA8 alge-
braically in thef equation by using the zero-energy cond
tion, but we would still have a difficult second order equati
for f with no further obvious conserved quantities. The p
pose of this section is to exhibit a general method of red
ing the system~6! to three decoupled first-order ordinar
differential equations, two of which are separable. T
method is inspired by supersymmetry but can be carried
independent of it. We should remark at the outset that
method is only simple in the case of a single scalarf: one of
our differential equations hasf as the independent variable
and if there were several scalars, it would become a diffic
partial differential equation.

SupposeV(f) has the special form

V~f!5
1

8 S ]W~f!

]f D 2

2
1

3
W~f!2, ~8!

for someW(f). Then it is straightforward to verify that a
solution to
8-3
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f85
1

2

]W~f!

]f
, A852

1

3
W~f! ~9!

is also a solution to Eqs.~6!, provided we have

1

2
W~f!ur a2e

r a1e
5la„f~r a!…,

~10!
1

2

]W~f!

]f U
r a2e

r a1e

5
]la

]f
„f~r a!….

@It was previously noted in@13# that the jump conditions
could be satisfied in a specific model if the brane tension
given identically by W(f), which is a much stronger con
straint on the model than we assume.# Potentials of the form
~8! occur in five-dimensional gauged supergravity@14#, and
the conditions~9! arise as conditions for unbroken supersy
metry: the vanishing of the dilatino variation leads to the fi
equation in Eqs.~9! and vanishing of the gravitino variatio
leads to the second.

For us, the key observation is that, givenV(f), Eq. ~8!
can be solved forW(f), and there is one integration con
stant in the solution. Whether a gauged supergravity the
can be constructed so that the supersymmetry conditions
to any desiredW(f) is an interesting question which we wi
not address in this paper.@It would also be amusing to as
whether one could come up with interesting supersymme
breaking scenarios by starting with a five-dimensio
gauged supergravity and constructing a solution using E
~9! with the ‘‘wrong’’ W(f).] The relevant point for the
analysis at hand is that Eqs.~8! and ~9! together have solu
tions specified by three integration constants, one of whic
the trivial additive constant onA. There are likewise three
integration constants for the solutions of Eqs.~6!, and again
one is the trivial additive constant onA. From this simple
parameter count we may expect that the space of solut
includes all possible solutions to Eqs.~6!.1 Issues of global
existence and discrete ambiguities seem to be the only
stacles to realizing this expectation. These are best seen
more definite framework, so we will now proceed to o
main example.

The rest of this section is devoted to the case where
only branes are the ones at the ends of the intervalS1/Z2 .
Again, we work in the ‘‘upstairs’’ picture where these bran
are realized as kinks inA(r ) at the fixed points ofZ2 . If the
Z2 reflection includes an orientifolding, then string theo
allows one of these two branes to have negative tension.
negative tension brane must be located at a fixed point of
discrete group action: it does not introduce difficulties w
negative kinetic terms or unboundedness of energy bec

1Myers @15# has also noted that Eqs.~8! and ~9! can be used to
generate kink solutions, independent of supersymmetry. In
study of renormalization group~RG! flows in ADS/conformal field
theory ~CFT! correspondence, he has considered an example
cubicW(f) which is similar to the single-brane solution which w
will discuss in Sec. V.
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it is just part of a background, not something which can
dynamically created anywhere in space. We fix the addit
ambiguity on the variabler by taking the positive tension
brane to be atr 50. The negative tension brane then lives
somer 0 ~see Fig. 1! which is the modulus of the theory tha
the mechanism of@3# purports to stabilize. The physical pa
rameters that go into the theory are the scalar potentialV(f)
and the tensionsl1(f) and l2(f). These are assumed t
emerge from the microscopic physics~for instance string
theory! which leads to this five-dimensional picture in a low
energy limit ~that is, low-energy compared to string sca
and ten-dimensional Planck scale as well as any further c
pactification scales!. A moduli stabilization mechanism
would be regarded as fine-tuned if one has to impose s
relationship amongV(f), l1(f), and l2(f) to achieve a
static solution.

Before explaining how the solutions to Eqs.~6! can be
generated using Eqs.~8! and ~9!, let us do a quick count of
parameters and constraints to show that a fine-tuning is
essary to obtain a static solution with flat branes. There
three integration constants for thef equation plus the zero
energy equation in Eqs.~6!: they aref~0!, f8(0), andA(0).
There is one additional parameter, namelyr 0 , so there are
four parameters in all. There are four constraints com
from the two jump conditions at the two branes. Naively o
would conclude that there is no fine-tuning: four constrai
on four parameters can generically be solved. ButA(0) is
completely irrelevant becauseA(r ) enters into the equation
of motion and the jump conditions only through its deriv
tives. That leaves three parameters subject to four c
straints: indeed fine-tuned. This fine-tuning is equivalent
the fine-tuning required in a theory without scalars betwe
the brane tensions and the bulk cosmological constant.

We will now argue in detail that any solution of Eqs.~6!
can be written as a solution to Eqs.~8! and ~9! with an
appropriately chosenW(f). It is necessary to chooseW odd
under theZ2 symmetry, just becauseA8 is equal and oppo-
site at the two points on any givenZ2 orbit away from the
fixed points. With this in mind we can restrict our attentio
to regiona in Fig. 1. The jump conditions become

A8~e!52
1

3
l1„f~0!…, f8~e!5

1

2

]l1

]f
„f~0!…,

A8~r 02e!5
1

3
l2„f~r 0!…,

f8~r 02e!52
1

2

]l2

]f
„f~r 0!…. ~11!

Plugging these relations into the zero energy condition,
learn that

1

8 S ]l1

]f D 2

2
1

3
l1

25V at f5f1 ,

1

8 S ]l2

]f D 2

2
1

3
l2

25V at f5f2 , ~12!

e

th
8-4
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wheref1 andf2 are the values attained byf(r ) at r 50 and
r 5r 0 , respectively. Notice these constraints have the sa
form as Eq.~8!, with the la playing the role ofW. For
genericV and la , Eqs. ~12! admit only a discrete set o
solutions forf1 and f2 . Given the physical input into the
model, namelyV(f), l1(f), andl2(f), the discrete values
f1 ,f2 are the points in field space where flat branes can
consistently inserted.

Let us now integrate Eq.~8! and fix the single integration
constant by requiringW(f1)5l1(f1). Because of~8! we
have (]W/]f)(f1)5(6]l1 /]f)(f1), and the plus sign is
guaranteed if we assume that]W(f)/]f has the same sign
as (]l1 /]f)(f1) in the vicinity of f5f1 . The solution
„A8(r ),f(r )… of Eqs.~9! subject tof(0)5f1 must coincide
with the solution„A8(r ),f(r )… of Eqs. ~6! subject tof(0)
5f1 and f8(0)5 1

2 (]l1 /]f)(f1), because both of them
satisfy the same boundary data. This is enough to conc
that locally every solution of Eqs.~6! can be generated b
solving Eqs.~8! and ~9!. Global issues of the existence an
uniqueness of solutions to Eqs.~8! and~9! are best addresse
with a specific model in hand. We will return to these poin
in Sec. IV.

Besides providing an efficient method for generating
lutions to Eqs.~6!, the use of Eqs.~8! and~9! also allows us
to characterize in a simple way howl1(f), l2(f), and
V(f) have to be fine-tuned. Having first fixedW(f) in the
manner described in the previous paragraph, and then
grated Eqs.~9! to obtainf(r ), we can determine the positio
of the second brane byf(r 0)5f2 . There are no parameter
left to fix ~except for the trivial additive constant onA!, but
we must still demand W(f2)52l2(f2) and (]W/
]f)(f2)5(2]l2 /]f)(f2) in order that the jump condi
tions at the second brane be satisfied. Because of the defi
property~12! of f2 , either one of these last two equatio
implies the other up to a sign. Thus there is precisely o
fine-tuning, as expected from the earlier parameter co
04600
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The advantage of introducingW is that the fine-tuning con-
dition can be expressed in terms of the solutions of the sin
ordinary differential equation~8! ~see Fig. 2!. It should be
kept in mind that we are working strictly at the classic
level. If we tune parameters so thatW(f) and2l2(f) are
tangent, then loop corrections tola(f) and V(f) must be
expected to spoil the relation.

It is true that if this fine-tuning can be achieved, there
no cosmological constant allowed in the four-dimensio
action. A quick way to see this is to show that the Lagran
ian is a total derivative with respect tor when Eqs.~8!, ~9!,
and ~10! are satisfied: then the four-dimensional Lagrang
must vanish.2 Let us define

Ŵ~f,r !5H W~f! for 0,r ,r 0 ,

2W~f! for r 0,r ,2r 0
, ~13!

which is appropriatelyZ2 odd. Then it is straightforward to
show that

FIG. 2. SampleW ~solid line!, V ~dotted line!, l1 andl2 ~gray
lines! as functions off. By adjusting the integration constant of E
~8! one can arrange forl1 to be tangent toW, but then forl2 also
to be tangent amounts to a fine-tuning.
stant
L5AudetgmnuF2
1

4
R1

1

2
~]f!22V~f!G2(

a
Audetgi j ula~f!d~r 2r a!

5e4AF3S A81
1

3
ŴD 2

2
1

2
S f82

1

2

]Ŵ

]f
D 2

1
1

2

]Ŵ

]r
2(

a
lad~r 2r a!G2

d

dr S e4AF2A81
1

2
ŴG D . ~14!

In Eq. ~14! we have used Eq.~8! ~with W replaced byŴ) but not Eqs.~9!. If the perfect squares in Eq.~14! vanish, then we
have

1

2

]Ŵ

]r
5W~f1!d~r 2r 1!2W~f2!d~r 2r 2!5(

a
lad~r 2r a!, ~15!

where in the second equality we have used the jump conditions, Eqs.~10!. In comparing with Eq.~13!, recall that by
conventionr 150 andr 25r 0 .

2Since we assumed (311)-dimensional Poincare´ invariance in our ansatz from the start, a zero four-dimensional cosmological con
was guaranteed. The following computation is therefore only a consistency check.
8-5
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The form of Eq. ~14! makes it clear that Eqs.~9! are
indeed a sort of Bogomol’nyi-Prasad-Sommerfield~BPS!
condition for solutions of Eqs.~6!. However, because th
perfect squares in Eq.~14! come in with opposite signs, ther
is no obvious analogue of a Bogomol’nyi bound. Anoth
important implication of Eq.~14! is that the total action of
any configuration of flat branes vanishes. This is even tru
nonperiodic arrays providedA→2` as r→6`.

B. Nonzero cosmological constant

The fine-tuning to achieve zero cosmological const
was already commented on in@3#. The purpose of this sec
tion is show that if the fine-tuning is imperfect, then there a
solutions without rolling moduli but where the metric on th
branes is de Sitter space or anti–de Sitter space.

Most of the analysis is similar to Sec. III A, so we will b
brief. The metric ansatz is

ds25e2A~r !ḡi j dxidxj2dr2, ~16!

where ḡi j is the metric of four-dimensional de Sitter o
anti–de Sitter spacetime:R̄i j 523L̄ḡi j , where L̄ is the
four-dimensional cosmological constant~positive for de Sit-
ter spacetime and negative for anti–de Sitter spacetime!. Ex-
plicitly, we may write the four-dimensional metrics as

dS4 : ḡi j dxidxj5dt22e2ALt~dx1
21dx2

21dx3
2!,

AdS4 : ḡi j dxidxj5e22A2L̄x3~dt22dx1
22dx2

2!2dx3
2.

~17!

The five-dimensional Ricci tensor and the equations of m
tion are

Ri j 5e2A~4A821A923L̄e22A!ḡi j , R55524A8224A9,

f914A8f85
]V~f!

]f
1(

a

]la~f!

]f
d~r 2r a!,

A91L̄e22A52
2

3
f822

2

3 (
a

la~f!d~r 2r a!,

A822L̄e22A52
1

3
V~f!1

1

6
f82. ~18!

The jump conditions~7! are unchanged. NeitherA(r ) nor
uL̄u can be determined unambiguously from the equation
motion because they enter only in the combinationA(r )
2 1

2 ln uL̄u. We will see that this combination is what dete
mines the four-dimensional cosmological constant in fo
dimensional Planck units. We could adjust the additive c
stant on A, if we so desired, to setL̄51 for de Sitter
spacetime orL̄521 for anti–de Sitter spacetime. The im
portant point is not to count the magnitude ofL̄ as an ad-
justable parameter separate from the additive constant oA.
04600
r

of

t

e

-
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-
-

Already from Eqs.~18! we can see why there should be
solution with no fine-tuning of parameters. Thef equation
and the zero-energy condition together have three integra
constants, and there is also the brane separationr 0 . Because
A itself rather than just its derivatives enters into Eqs.~18!,
the additive constant onA is no longer trivial. As before
there are four boundary conditions~two jump conditions at
each brane!, so generically one expects a~locally! unique
solution for any givenV(f), l1(f), andl2(f).

The solution in the bulk~more precisely, in regionA of
Fig. 1! can still be obtained as a solution of a slightly mod
fied system of first order equations,3

A852
1

3
Wg~r !,

f85
1

2g~r !

]W

]f
,

V5
1

8g~r !2 S ]W

]f D 2

2
1

3
W2, ~19!

which differ from Eqs.~9! just by inclusion of the factor

g~r ![A11
9L̄

W~r !2 e22A~r !. ~20!

Note that this completely changes the character of the p
lem. In the case of zero cosmological constant, the first or
equations~8!, ~9! allowed us to find solutions for givenV
directly by first integrating Eq.~8! to solve forW(f), then
using Eqs.~9! to solve consecutively forf(r ) andA(r ). We
now see that if we do not fine-tune the cosmological cons
to zero, we obtain a complicated nonlinear first order syst
of differential equations for three functionsW(r ), f(r ), and
A(r ), now viewed as functions of a single independent va
abler, which we cannot simply solve for in sequence.V(f)
is still to be considered the information that is put in from t
Lagrangian, but its relationship withW can no longer be
isolated from the rest of the system. Derivatives with resp
to f should now be thought of as

]

]f
5

1

f8~r !

]

]r
. ~21!

To make this point more transparent, it is useful to rewr
the system~19! as an autonomous system, that is in the fo

A85 f ~A,W,f!, f85g~A,W,f!, W85h~A,W,f!,
~22!

where

3We are grateful to Martin Gremm and Lisa Randall for pointi
out to us an error in an earlier version concerning the first or
equations.
8-6
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f ~A,W,f!52
1

3
g~r !W~r !,

g~A,W,f!5A2V„f~r !…1
2

3
W~r !2,

h~A,W,f!52g~r !S 2V„f~r !…1
2

3
W~r !2D . ~23!

While for a genericV(f) this system will still be hard to
solve, it is very well suited for generating examples whe
V(f) is determined at the end. For any given shape of
warp factorA(r ) one desires, one can find a potential th
hr

,

ith
ta

t
-

n

04600
e
e
t

supports such a solution by the following procedure: p
A(r ), calculateA8(r ), solve A85(2W/3)g algebraically
for W(r ), and usef85AW8/2g to obtainf(r ). V(r ) can
now simply be determined by plugging inW andf, and after
inverting f(r ) to r (f) one obtains the desiredV(f). This
procedure for example can be used to generate fat brane~as
we will discuss in later sections for the Minkowski cas!
with an AdS or dS worldvolume. Note that this simple tec
nique for generating examples is not possible in the obvi
first order system one could write down simply by introdu
ing one new variabley with the one new defining equatio
y5f8, as it is a standard technique for converting a syst
of higher order equations into a first order system.

Assuming Eqs.~19!, the jump conditions reduce to
l1„f~0!…5W~r 50!g~0!,
]l1

]f
„f~0!…5

1

g~0!

]W

]f U
f~0!

,

l2„f~r 0!…5W~r 5r 0!g~r 0!,
]l2

]f
„f~r 0!…5

1

g~r 0!

]W

]f U
f~r 0!

. ~24!
ere
.

d

at-

al
e

If for a given V(f) we fix A(0) arbitrarily, then the five
other initial conditionsfA8(0),W(0),W8(0),f(0), f8(0)
can be determined up to discrete choices, using the t
equations from Eqs.~19! evaluated atr 50 and the two from
the first line of Eqs.~24!. Then Eqs.~22! can be solved
unambiguously forf(r ), W(r ) andA(r ). r 0 is fixed by the
last equality in Eqs.~19!. One is left with one condition
namely the third equality in Eqs.~24!. It is a ~very compli-
cated! constraint onA(0), which generically will have only
discretely many solutions. The point is that we wind up w
exactly as many parameters as constraints, so it does not
any fine-tuning to get a solution.

There does not seem to be a simple way to express
action as a sum~or difference! of squares plus total deriva
tives, in analogy to Eq.~14!. However, it is straightforward
to use the equations of motion to show that

L5AudetgmnuF2
1

4
R1

1

2
~]f!22V~f!G

2(
a

Audetgi j ula~f!d~r 2r a!

5Audetḡi j uF3

2
e2AL̄2

d

dr S 1

2
e4AA8D G . ~25!

WhenL is integrated over theS1 parametrized byr, it must
for consistency reduce to the four-dimensional Lagrangia
ee

ke

he

L̄5
1

4pG4
Audetḡi j uF2

1

4
R̄2

3

2
L̄ G , ~26!

evaluated on de Sitter or anti–de Sitter spacetime, wh
R̄i j 523L̄ḡi j , with L̄ positive or negative, respectively
Comparison yields the relation

1

G4
54pE dr e2A, ~27!

where as usual ther integration is over the whole ofS1. For
consistency with observation we must demand the boun

1

G4uL̄u
*S l Hubble

l 4D Planck
D 2

'10120. ~28!

In view of Eq. ~27! this translates to

4pE dr e2„A~r !2~1/2!lnuL̄u…*10120. ~29!

The functionA(r )2 1
2 lnuL̄u is fixed by Eqs.~19! and ~24!

once V(f), l1(f), and l2(f) are specified. A dramatic
fine-tuning in these quantities is required to achieve Eq.~29!.

In general it is difficult to obtain solutions to Eqs.~18! or
~19! in closed form. We can, however, give a complete tre
ment of the case where there is no scalar andW is just a
constant~namely the square root of the bulk cosmologic
constant!; see also@16,17#. In this case the only equations w
8-7
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have to solve are the first equations in each line of Eqs.~19! and ~24!. The solutions can be expressed as follows:

dS4 : L̄.0

eA5AL̄L sinh
r 12r

L
, l15

3

L
coth

r 1

L
, l252

3

L
coth

r 12r 0

L

AdS4: L̄,0

eA5A2L̄L cosh
r 12r

L
, l15

3

L
tanh

r 1

L
, l252

3

L
tanh

r 12r 0

L
. ~30!
-
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In the dS4 case it is necessary to restrictr 0,r 1 . The main
point which Eqs.~30! demonstrates is the following. Sup
pose one starts with any fixed negative bulk cosmolog
constant,24/L2, and arbitrary but specifiedl1 andl2 , sub-
ject only to the constraint that if one of thela exceeds 3/L in
magnitude, then the other must also exceed 3/L in magnitude
and be of the opposite sign. Then there is a unique solu
to Eqs.~30! up to the usual ambiguity between the additi
constant onA and the magnitude ofL̄. Both r 1 and r 0 will
be fixed in this solution, and so will the combinationA
2 1

2 ln uL̄u which determines the four-dimensional cosmolo
cal constant in Planck units. The only exception is wh
l152l253/L: in this case the branes are flat,r 1 is a mean-
e
o

n

,
m
t

te

on
u
io
p

nc

04600
l
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-
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ingless additive constant onA, and the brane separationr 0 is
not fixed.

The bulk solutions in Eqs.~30! have vanishing Weyl ten-
sor: hence they are locally AdS5. All we have found, then, is
an embedding of AdS4 and dS4 as codimension-1 hypersur
faces in AdS5. To verify this one can find an explicit chang
of variables which brings the bulk metric into the standa
form

ds25e22r̃ /L~d t̃22dx̃1
22dx̃2

22dx̃3
2!2dr̃2. ~31!

If we demand that the map from untilded to tilded coord
nates be orientation preserving, then the natural choice i
dS4: t̃ 52AL̄ coth
r 12r

L
e2AL̄t, r̃ 52AL̄Lt2L log sinh

r 12r

L
, x̃15x1 , x̃25x2 , x̃35x3 ,

AdS4: x̃35A2L̄ tanh
r 12r

L
e
A2L̄x3, r̃ 5A2L̄Lx32L log cosh

r 12r

L
, t̃ 5t, x̃15x1 , x̃25x2 . ~32!
tive

the
sion
ast,
true
a-
that
ur-

-
e

x-
Let us now focus on the dS4 case with one positive and on
negative tension brane at the ends of the bulk. A solution

the form ~30! maps to a strip of thet̃ - r̃ plane between two
curves of the formt̃ 52caer̃ /L. Herec1 andc2 are positive
constants. Because]/] t̃ is a Killing vector of the bulk ge-
ometry, we can trivially obtain a broader class of solutio
which have as their boundaries curves of the formt̃ 2 t̃ a

52caer̃ /L, where now t̃ 1 and t̃ 2 are additional constants
only one of which can be set to 0 through diffeomorphis
freedom. In these solutions the proper distance between
branes is not constant. In fact, generically the branes in
sect at some point, or they intersect the boundary of AdS5 at
different points—or both. In the latter case the gravit
bound state ceases to exist at some finite time as meas
on the negative tension brane. This reinforces the intuit
that brane-world cosmology can encounter some curious
thologies.

The strategy of displacing one boundary by some dista
f

s

he
r-

red
n
a-

e

along the flow of a Killing vector of AdS5 can also be ap-
plied to flat branes. For instance, one could shift the nega
tension brane forward along theglobal time of AdS5 to ob-
tain a new solution where the proper distance between
branes is nonconstant. The positive and negative ten
branes would then intersect at some time in the distant p
and the positive tension brane would again retreat to the
boundary of AdS5 at a finite time as measured on the neg
tive tension brane. This is a catastrophe since it means
gravity would cease altogether in four dimensions: the fo
dimensional Planck length would vanish.

IV. EXPLICIT MODEL

It is useful now to turn to an explicit example with non
trivial dynamics for a single scalar. For simplicity, w
choose quadraticW(f), l1(f), andl2(f) which are tan-
gent to one another in the manner illustrated in Fig. 2. E
plicitly,
8-8
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W~f!5
3

L
2bf2,

V~f!52
3

L2 1S b2

2
1

2b

L Df22
b2f4

3
,

l1~f!5W~f1!1W8~f1!~f2f1!1g1~f2f1!2,

l2~f!52W~f2!2W8~f2!~f2f2!1g2~f2f2!2.
~33!

We stress that the physical properties of the model are s
marized byV(f) and thela(f): in the absence of super
symmetry, there is no preferred choice ofW(f). In Sec.
IV B we will analyze the different possibleW(f) that lead to
the particular quarticV(f) exhibited in Eqs.~33!. Until then
we will just assume that the particularW(f) that is tangent
to l1(f) happens to be the quadratic one shown in Eqs.~33!.
We make this assumption in order to obtain solutions
closed form. The only physical fine-tuning is the requirem
that 2l2(f) be also tangent toW(f). The quantitiesL, b,
f1 , f2 , g1 , andg2 are parameters of the various potentia
and no dimensionless ratio of them should be large if
want to preserve naturalness.

We will always assume thatg1 andg2 are positive so tha
the energetics ofl1 andl2 tend to stabilize the positions o
the branes in field space. We will usually assumeb.0 as
well. It should be noted thatV(f) is unbounded below, as i
common and without pathology in AdS supergravity.

A. Analytical calculations

It is trivial to solve the first order equations~9! in the
model ~33! to obtain

f~r !5f1e2br,

A~r !5a02
r

L
2

1

6
f1

2e22br. ~34!

The brane spacing is determined by the conditionbr0
5 ln(f1 /f2). The differenceA(0)2A(r 0) gives the number
of e-foldings in discussions@1,9# of the gauge hierarchy
problem,4 and one easily obtains

A~0!2A~r 0!5
1

bL
ln

f1

f2
2

1

6
~f1

22f2
2!. ~35!

Phenomenologically one wants

A~0!2A~r 0!' ln
MPlanck

Melectroweak
'37. ~36!

4We assume that the four-dimensional and five-dimensio
Planck scales are comparable. It is possible to relax this assum
@18# since the additive constant onA(r ) is a free parameter.
04600
-

n
t

,
e

If b.0, thenf1
22f2

2.0, and only the first term can contrib
ute to the hierarchy. This is conceivable ifbL is fairly small:
for instance, iff1 /f25e, then one needsbL'1/37. If b
,0, then both terms in Eq.~35! could contribute to the hi-
erarchy. One could, for instance, obtain an acceptable h
archy by takingbL51, f151, andf2515.

The treatment of@3# ignored the back reaction of the sc
lar profile on the geometry. Crudely speaking this means
should drop the second term in Eq.~35! since it came from a
term proportional to the square of the scalar field in E
~34!. More precisely,~14! of @3# can be reproduced exactl
by dropping the second term in Eq.~35! and identifying their
m2L2 with our bL in the limit of smallbL. Thus the analysis
of @3# was essentially adequate for the caseb.0, where to
obtain a large hierarchy one wants a bulk geometry which
not so far from AdS5 that the second term of Eq.~35! is
large. However, the inclusion of the back reaction becom
quite important in theb,0 case, where a large hierarchy ca
be most easily obtained via a geometry which devia
strongly from AdS5.

Any mechanism for generating large numbers must
probed for robustness. We may ask, once the hierarchy~36!
is obtained, how much can the parameters change and
give the same weak scale to within errors? For definiten
let us ask what change of parameters shiftsA(0)2A(r 0) by
no more than 0.02: this would amount to a shift of the we
scale by 2%, which is about the ratio of theZ width to its
mass. In theb.0 scenario we described above, a change
f1 /f2 by about 1 part in 2000 changes the weak scale
2%: multiplicative shifts in this ratio are magnified by th
factor 1/bL. In theb,0 scenario, changingf2 by about 1%
changes the weak scale by 2%. Thus~superficially at least!
the b,0 scenario is more robust.

B. Numerics

We now change direction and refocus on Eq.~8!. The
purpose is to illustrate the problem of selecting a super
tential W(f) which reproduces a given potential functio
V(f). However, we shall be content to explore this quest
only in the model of this section, whereV(f) is given in
Eqs.~33!. It is convenient to rescale variables, partly to pr
pare for use of theMATLAB linked programDFIELD5 @19#. We
therefore define

f5A3

8
t,

V~f!53b2U~ t !, U~ t !52
1

b2L2 1S 11
4

bLD t2

16
2

t4

64
,

W~f!53bx~ t ! x0~ t !5
1

bL
2

t2

8
. ~37!

We denote the rescaled preferred superpotential byx0(t)
since we will consider other superpotentials correspondin
the potentialU(t).

In this notation Eq.~8! takes the form

al
ion
8-9
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FIG. 3. Thet-x plane, showing
forbidden regions.
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2

5x~ t !21U~ t !. ~38!

There is a sign ambiguity in taking the square root wh
must be kept in mind, but we will discuss only the features
the differential equation which result from the positive ro
namely

dx

dt
5Ax22

1

b2L2 1S 11
4

bLD t2

16
2

t4

64
. ~39!

The equation is roughly like the energy equation in the m
chanics problem of a particle in an inverted harmonic pot
tial. As in mechanics there are forbidden regions of thet-x
plane wherex21U(t),0. At a boundary of this region
which would be a turning point in a mechanics problem,
slopedx/dt vanishes. According to the general theory of fi
order differential equations there is a unique solution cu
through every point not in a forbidden region. The inequa

Udx

dtU<uxu1AuU~ t !u ~40!

shows that no solution reachesuxu5` at a finite field value.
The DFIELD5 program quite rapidly provides a reasonab

global and quantitative picture of the space of solutions. T
quantities of our problem depend only on the single dim
sionless parameterbL, and we setbL51 in our numerical
work.

A large-scale plot of thet-x plane is shown in Fig. 3, and
we see two large forbidden regions on the left and right a
a small one in the center. The inclined lines at a grid
points are the slopes, obtained from Eq.~39!, of the solution
curves through each point. The solution through (t,x)
5(0,1) is shown, and it is easy to see that it gives the p
04600
f
,

-
-

e
t
e

e
-

d
f

-

ferred superpotentialx0(t)512t2/8 only for t,0. This is
related to the sign ambiguity of the square root in Eq.~39!,
and it is not a difficulty for us because we are primar
concerned with the regiont,0 which includes the full range
of the geometry containing two branes which was discus
in the first part of this section.

Some other representative solutions are also plotted
Fig. 3. It is not proven, but it appears to be the case that
only solutions which give a superpotential defined on the
field space2`,t,` are the curve through (t,x)5(0,1)
and its mirror image through (t,x)5(0,21), which is also
shown in Fig. 3. Other solution curves reach the boundary
the allowed region at a finite value oft in one direction, and
one can see thatx8(t) vanishes butx9(t) diverges as one
approaches the boundary. By examining an approxim
form of Eqs.~39! and ~9!, one can show that these curve
approach the boundary at a finite value of the coordinater. It
then appears that the solution curve reflects, and one m
consider solutions of Eq.~39! with the other sign of the
square root. The scale factorA(r ) is smooth at the turning
point. This issue does not affect our application, since
full brane geometry is contained in a region without turni
points.

Let us recall the logic of our construction. The potent
V(f) and left-hand brane tensionl1(f) are matched at a
chosen valuef5f1 . We then choose the unique superp
tential W(f) which satisfiesW(f1)5l1(f1) and agrees in
sign of slope withl18(f1). Agreement in the magnitude o
the slope is guaranteed by Eqs.~8! and ~12!. We then inte-
grate the first order equations~9! which give the unique so-
lution of the second order problem~6! with the initial con-
ditionsf(0)5f1 , f8(0)5l18(f1), the latter from the jump
condition ~7!. For consistency, it is useful to know that an
other choice ofW(f) leads to a different solution of Eqs
~6!, one which does not satisfy the jump conditions. This
8-10
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quite clear from Fig. 3, since the jump conditions, e.g., E
~10!, are no longer satisfied if we change solution chosen
the relevant fixed valuet15A8/3f1 .

We have explored our suggested solution generating t
nique in only one model. Global issues associated with
turning points do not spoil the applicability of our metho
and the method is certainly easy to use in the reverse m
where we start with a conveniently chosenW(f). We be-
lieve that this favorable situation is generic.

V. SMOOTH SOLUTIONS MODELING BRANES

So far we have been considering solutions to an ac
that contains explicitd functions at the positions of th
branes. One might wonder to what extent this approach
already built in the answers one wants to obtain. The purp
of this section is to present a one-parameter family of pur
5D Lagrangians for gravity coupled to a scalar, labeled
the parameterb, whose solutions are generically smooth a
asymptote to a specificd-brane solution of the type consid
ered so far. For genericb, the smoothed branes appear
domain walls interpolating between various scalar vacuua
the ‘‘stiff’’ limit ( b→`) the second derivative of the scal
potential goes to infinity, so the scalar becomes very he
and can be integrated out. The parameters entering the s
potential become the brane tensions and positions assoc
with d-function terms in an action of the type (1)1(3) after
integrating out the scalar.

Several comments are in order. First, as mentioned
fore, we will not be able to treat negative tension branes
this framework. Second, the solutions presented in this
tion do not have any fields living on the brane, since
smooth solitons that in the stiff limit become the branes
not have any zero modes. Both these obstacles can
avoided by introducing ‘‘by hand’’ thed functions in the
action, but this is precisely what we want to avoid with t
smooth formalism. In principle, the second limitation abo
could be overcome by studying a more complicated smo
model which allows for nontrivial zero modes on the bran

Last but not least we should emphasize that even tho
we are considering once more 5D gravity coupled to a sca
this time the scalar should not be thought of as the b
scalarf we studied so far, which plays the role of a modul
for the fifth dimension. Instead it is the scalar that the bra
are made of. In order to avoid confusion we will call th
auxiliary scalarj and reserve the symbolf for the modulus
scalar. In the stiff limit, where the soliton approaches
array of localizedd-like branes, the fluctuations ofj are fro-
zen out. The bulk scalarf has to be introduced as a seco
scalar. Interactions localized on the brane, such as thel~f!
we introduced earlier, can be mimicked by coupling the b
scalarf only to derivatives ofj.

We study a five-dimensional action of the form

S5E
M

d4x drAudetgmnF2
1

4
R1

1

2
~]j!22V~j!G . ~41!

We will work in the first order framework and hence ta
V(j) to be given in terms of a ‘‘superpotential’’ as in Eq.~8!
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and study solutions to the first order equations~9!. We will
show that once we specify the potential appropriately,
resulting solitonic solution describing an array of branes w
tensionla at positionsr a in the fifth dimension is specified
uniquely.

We are interested in the case where the scalar profil
given as a solitonic domain wall configuration interpolati
between various vacua for the scalar field, e.g., written a

j~r !5(
a

1

Ab
ka tanh@b~r 2r a!#, ~42!

or a similar function that has the properties that~i! in the
‘‘stiff’’ limit ( b→`) it reduces to an array of step function
of height;ka /Ab, and that~ii ! its first derivative is always
negative and approaches a collection ofd functions at posi-
tion r a of strength;ka /Ab. Note that the latter property
requires allka to be positive, ensuring that the functionj(r )
is invertible. This solution in the stiff limit becomes an arra
of branes of tension

la5
4

3
ka

2 , ~43!

and only positive tensions appear.
Can we find aW(j) that allows a solution of the form

specified in Eq.~42!? In order to do so, we just rewrite th
first order equation for the scalar flow in Eqs.~9! as

2j85
]W~j!

]j
5

]W„j~r !…

]r

]r ~j!

]j
5

W8

j8
, ~44!

W~r !52E r

@j~r 8!8#2dr8. ~45!

Using invertibility of j(r ) we can reexpressW(r ) asW(j)
and hence obtain a potentialV(j) which leads to a solution
of the desired form. The one integration constant inW cor-
responds to an ‘‘overall’’ bulk cosmological constant.
should be chosen in such a way thatA8(r )52 1

3 W(r ) is
positive~negative! to the left~right! of all branes. SinceA9 is
always negative, it is always possible to choose the integ
tion constant this way. As we will see in the next section t
property is enough to ensure that there exists a fo
dimensional graviton. Now we can turn the philosop
around and say that once we have specifiedV and hence
specified the action, or more precisely the bulk cosmolog
constant and the cosmological constants between the va
branes given in terms of the value ofV(j) at its minima, the
first order equations then provide us with a solution of t
form ~42! for j(r ) together with theA(r ). In the stiff limit
this solution approaches an array of sharply localized bra
at positionsr a and tensionsla .

One should think ofV(j) as being obtained from integra
ing out the microscopic physics. One then can ask ag
whether there is some dynamical principle that determi
the parameters inV. Since we expressedW as an integral
over (j8)2, those parameters are theka and ther a . Calcu-
8-11
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lating the action integral of the solution as a function ofka
andr a one finds once more that it is always zero. We rem
with a serious fine-tuning problem: the underlying theory h
to be arranged in such a way, that for givenla and r a the
potential has precisely the form specified by Eq.~45!. In the
stiff limit all that remains ofV are its values at the minima—
the interbrane cosmological constants5—and the fine-tuning
problem reduces to the standard fine-tuning of the bulk c
mological constants against the brane tensions.

For example, in the case of a single brane we start w

j~r !5
k

Ab
tanh~br !, ~46!

leading to

j8~r !5k
Ab

cosh2~br !
~47!

and, hence,

W52k2E ~j8!2dr52k2S tanh~br !2
1

3
tanh3~br ! D

52kAbS j2
b

3k2 j3D . ~48!

A is simply obtained by integratingW. In the multibrane
arrays the solution becomes slightly more complicated du
the cross-terms in (j8)2, but it is still analytical. One can
show that in the stiff limit all possible smoothings lead to t
same brane array.

Before we end our discussion on smoothing of the sin
lar solutions, let us comment on how the coupling to t
additional bulk scalar looks in this framework. In order
mimic the localized interactions for the bulk scalarf we
couple it to the derivatives of the auxiliary scalarj. Basi-
cally, this means that we couple as model for the scalars to
gravity, where the kinetic terms of the auxiliary scalarj de-
pend on the bulk scalarf. In the stiff limit this once more
will reduce to the solutions discussed in the previous s
tions.

Similar to Eqs.~8! and ~9! we can find a first order for-
malism for the general action

S5E
M

d4x drAudetgmnu

3F2
1

4
R1

1

2
GIJ]mfJ]mf I2V~f!G , ~49!

whereGIJ is a metric on the scalar target space. Any solut
to

5The normalization in Eq.~42! was chosen in such a way tha
those interbrane cosmological constants remain finite in the
limit: 1/L jumps by 8k2/9 when crossing a brane.
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~f I !85
1

2
GIJ

]W~f!

]fJ , A852
1

3
W~f! ~50!

is also a solution to the full second order equations provid
V is of the special form

V~f!5
1

8
GIJ

]W~f!

]f I

]W~f!

]fJ 2
1

3
W~f!2. ~51!

Choosing a two scalar model withf15f and f25j and
choosingG125G2150, G1151 andG22(f) to be an arbi-
trary function off, we should once more be able with th
use of Eq.~50! to engineer a smooth model, this time limi
ing ourselves to multibrane arrays, in the presence of
bulk scalarf with localized interactions.

A count of parameters similar to the ones in Secs. II
and III B allows us to conclude that—at least locally—a
solution of the equations of motion following from Eq.~49!
which preserves (311)-dimensional Poincare´ invariance
can be written as a solution of Eqs.~50! for an appropriately
chosenW(f) satisfying Eq.~51!. Suppose there aren scalars
involved in the action~49!. Each of them satisfies a secon
order equation of motion. The scale factorA satisfies a first-
order zero-energy constraint analogous to the last line
Eqs. ~6!. So there are 2n11 integration constants. One o
them can be absorbed into an additive shift onr. Now, Eqs.
~50! lead to onlyn11 integration constants since the sca
equations are now first order. But there are alson integration
constants in Eq.~51! regarded as a partial differential equ
tion for W(f). Again one integration constant can be a
sorbed into an additive shift onr. The point is that either way
we have the same number of integration constants, so ba
nongeneric phenomena and global obstructions, the solu
spaces are the same.

This is quite an interesting result in view of the AdS-CF
correspondence@20–22#. One of the main puzzles in the co
respondence is how one might translate the RG equati
which are first order, into supergravity equations, which
second order. In@14# first order equations were extracte
from the conditions for unbroken supersymmetry. The
equations are suggestive of an RG flow based on the grad
of a c function. Thec function isW(f), and its relation to
the conformal anomaly arises because of the equationA8
52 1

3 W: in regions where the scalars are nearly constant
the geometry is nearly AdS5, an application of the analysi
of @23# shows that the Weyl anomaly coefficients in the co
formal field theory are proportional to the third power of th
radius of AdS5, or equivalently, touWu23. ~Thus in a sense it
would be more appropriate to speak ofuWu23 as thec func-
tion.!

In a nonsupersymmetric ‘‘flow,’’ thec function can still
be defined@24,14# as 23A8, and it is possible to demon
strateA9<0 using only the weakest of positive energy co
ditions @14#. But then the spirit of RG is lost: one wants t
have a notion of a first order flow through the space of p
sible theories labeled by different values of parameters,
whatever c function one constructs should be defined
terms of those parameters. The construction ofW indicated
in Eq. ~51! seems to realize this idea explicitly.

iff
8-12
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However, there are some caveats. First,W depends onn
integration constants, where as beforen is the number of
scalars. It seems reasonable that these integration cons
can be interpreted as specifying the state of the dual fi
theory, which does not change under RG—only the Ham
tonian evolves. Second, the same phenomena of forbid
regions and turning points that we discussed in Sec. I
occur also in the case of several scalars. A forbidden reg
is a region of (W,f) space whereV(f)1 1

3 W2 is negative.
Barring singular behavior inGIJ , one finds that the gradien
of W vanishes at the border of these regions, so no flow
cross over. Rather, flows reflect from the border and the s
sequent flow is controlled by a different branch ofW. Be-
cause of the multivalued nature ofW, we do not regard Eqs
~50! as a wholly satisfactory starting point for the transcr
tion of supergravity equations into RG equations. Howev
it is perhaps a step in the right direction.

VI. FLUCTUATIONS AROUND THE SOLUTION

Finally, we examine the equations governing fluctuatio
of the metric and scalar around the classical background
lutions of the equations of motion of the action~4!. Our
methods are somewhat different from those in the literatu
We choose an axial-type gauge, and the resulting form of
four-dimensional graviton is particularly simple. Transver
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traceless modes in general obey the equation of a mas
scalar in the curved background, and by recasting this as
Schrödinger equation for a supersymmetric quantum m
chanics problem, we argue that there are no space-like m
threatening stability.

We impose the ‘‘axial gauge’’ constraint, so named for
resemblance toA350 in electrodynamics:

hm550, ~52!

wherem50,1,2,3,5. We can then write the total metric in th
form

ds25e2A~r !~h i j 1hi j !dxidxj2dr2, ~53!

where we extracted a factore2A from the fluctuation term to
simplify future equations. The axial gauge is not a to
gauge fix, as diffeomorphisms generated by a vector fi
e i5e2A(r )v i(x

j ), e550 preserve the condition~52! while
transforming the fluctuationshi j as

hi j ~xk,r !→hi j ~xk,r !1] iv j~xk!1] jv i~xk!. ~54!

Note the resemblance to four-dimensional diffeomorphism6

The Ricci tensor can be computed from the metric~53!.
To zeroth order in the fluctuations we continue to have E
~5!, while to first order we calculate~using Maple!
Ri j
~1!5e2AS 1

2
] r

212A8] r1A914A82Dhi j 1
1

2
h i j e

2AA8] r~hklhkl!2
1

2
hhi j 2

1

2
hkl~] i] jhkl2] i]khjl 2] j]khil !,

R55
~1!52

1

2
~] r

212A8] r !h
klhkl , Rj 5

~1!5
1

2
hkl] r~]khjl 2] jhkl!, ~55!

where h5h i j ] i] j is the flat four-dimensional Laplacian. Einstein’s equations in Ricci form require thatRmn5T̄mn[Tmn

2 1
3 gmnTa

a , and we find

T̄i j
~1!52

2

3
e2AF S 2

]V~f!

]f
1(

a

]la~f!

]f
d~r 2r a! D f̃h i j 1S 2V~f!1(

a
la~f!d~r 2r a! Dhi j G ,

T̄55
~1!54f8f̃81

4

3 S ]V~f!

]f
12 (

a

]la

]f
d~r 2r a! D f̃, T̄j 5

~1!52f8] j f̃. ~56!

Additionally, the equation of motion for the scalar fluctuationf̃ is

e22Ahf̃2f̃924A8f̃81S ]2V~f!

]f2 1(
a

]2l~f!

]2f
d~r 2r a! D f̃5

1

2
f8h i j hi j8 . ~57!

The equationRi j
(1)5T̄i j

(1) further simplifies as a consequence of the zeroth-order equation of motion~6!,

A914A8252
4

3
V~f!2

2

3 (
a

la~f!d~r 2r a!, ~58!

to

6There is a more general residual gauge invariance involving a nonvanishinge5(xk). See@25#.
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e2AS 1

2
] r

212A8] r Dhi j 2
1

2
hhi j 1

1

2
h i j e

2AA8] r~hklhkl!2
1

2
hkl~] i] jhkl2] i]khjl 2] j]khil !

52
2

3
e2AS 2

]V~f!

]f
1(

a

]la~f!

]f
d~r 2r a! D f̃h i j . ~59!
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Let us now consider the transverse traceless componen
hi j , defined by the nonlocal projection@26#:

h̄i j 5S 1

2
~p ikp j l 1p i l p jk!2

1

3
p i j pklDhkl5hi j 1¯ ,

~60!

wherep i j [(h i j 2] i] j /h) and the ellipsis indicates nonlo
cal terms. Theh̄i j satisfy

] j h̄i j 5h i j h̄i j 50. ~61!

We emphasize that Eq.~61! applies only to the component
defined in Eq.~60! and is not a gauge choice; it would b
incompatible with Eq.~52! and the residual gauge freedo
~54!.

For the h̄i j , Eq. ~59! simplifies enormously. The trans
verse traceless projection removes the right-hand side,
we are left with

~] r
214A8] r2e22Ah !h̄i j 50. ~62!

Notice that alld-function jumps have canceled out; this
nothing but the equation of motion for a free massless sc
in our curved background. In an AdS5 black hole back-
ground, the spin-2 components of the graviton were a
found to obey a free scalar wave equation@27,28#.

We expect one solution of our equations to be the fo
dimensional graviton. Since it is massless in the fo
dimensional sense, it must obeyhh̄i j 50. We can easily see
that such a solution to Eq.~62! is the r-independent plane
wave

h̄i j 5Ci j e
ipx, ~63!

wherep250 andCi j are constants. Thus in this presentati
the phenomenological graviton has a very simple form.

As we will argue below, the norm of metric fluctuations

i h̄i25E dr e2A~r !h̄i j h̄
i j , ~64!

where indices are raised withh i j . We see that the graviton
mode ~63! is normalizable because ther direction is effec-
tively compactified in these models. TheS1/Z2 geometries
are manifestly compact. For arrays of positive-tension bra
only, the range ofr is 2`,r ,`, but the norm converges i
we restrict to cases where

A8→1/L2.0 as r→2`,
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A8→21/L1,0 as r→`, ~65!

which are asymptotically anti–de Sitter geometries. In
such models, which include the smooth configurations
Sec. V, there is a naturally massless four-dimensional gr
ton as described above.

Having identified the four-dimensional graviton, we ne
turn to the question of stability. If the equations of motio
were to admit fluctuations with a space-like momentum
would be evident that the zeroth-order solution—our clas
cal background—is not stable. For the transverse trace
components, we can cast the expression~62! in the form of a
supersymmetric quantum mechanics problem, wherep2

plays the role of the energy, and thus argue thatp2>0.
To accomplish this, we first need to eliminate the fac

e2A multiplying the momentum. We can do this by changi
variables to coordinates in which the background is conf
mally flat:

ds25e2A~z!@~h i j 1hi j !dxidxj2dz2#. ~66!

Now expression~62! takes the form

@2]z
223A8~z!]z1h#h̄i j 50. ~67!

In terms ofHi j (z)5e2 ipx e3A/2hi j , this becomes

F2]z
21

9

4
A8~z!21

3

2
A9~z!GHi j ~z!5p2 Hi j ~z!. ~68!

This differential operator has the same form as a Ham
tonian in quantum mechanics, with a potentialV(z)
5 9

4 A8(z)21 3
2 A9(z) and p2 as the energy eigenvalue. On

can easily check that it factorizes:

F S ]z1
3

2
A8~z! D S 2]z1

3

2
A8~z! D GHi j ~z!5p2Hi j ~z!.

~69!

In flat space, these terms are one another’s adjoint, and
pression~69! can be regarded as a factorization of the Ham
tonian intoQ̄Q. This is supersymmetric quantum mechani
and the transformed graviton wave function is the supers
metric ground state. However, to complete the argument
must show that a flat-space norm is correct forHi j (z) in our
curved background.

In Lorentzian signature field theory, the norm of fluctu
tions is determined by the requirement that formally co
served quantities such as the contractionTmnKn of the stress
tensor and a Killing vector of the background have conv
gent integral
8-14
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E dz d3xAgT0nkn, ~70!

over a constant time four-surface and vanishing flux throu
its boundary three-surface. Stress tensors for metric fluc
tions are complicated, but in this linearized situation t
stress tensor must be covariantly conserved for all solut
of the equation of motion~62! or ~67!–~68!. Thus, for the
Killing vector (K050, Ki5const,K550) of spatial transla-
tions parallel to the domain wall, one can take the form

Ti
05e22A]0h̄kl] i h̄

kl , ~71!

obtained by specializing the obvious covariant expression
Ti

0 to our description of the background.~The indexi takes
values 1,2,3 in expression~71!, while k, l are raised with
hkl.) The requirement of a convergent integral for the spa
momentum carried by the fluctuation then constrains
radical eigenfunctionsHi j (z) to satisfy7

E dz Hi j H
i j 5 finite, ~72!

which is the usual Schro¨dinger norm for Eq.~68! @and
equivalent to Eq.~64! when rephrased in terms ofh̄i j and the
radial coordinater#. Supersymmetric quantum mechani
thus ensures that there are no normalizable modes withp2

,0. Thus we can state that there are no transverse trac
modes with space-like momentum that might destabilize
background solution.

Before concluding this section, we briefly remark on t
nontransverse traceless components of the metric fluctua

7We thank the authors of@35# for pointing out that our initial
discussion of the norm was incorrect. The correct norm appea
@36# and elsewhere; see, for example@13,36#.
s.

’’
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which are coupled to the scalar by Eqs.~55!, ~56!, and~57!.
These coupled equations are not easy to solve, and we
not attempted to rule out tachyonic modes of these fluct
tions here.

However, it seems likely that the Boucher nonsupersy
metric positive-energy theorem@29,30# can be extended to
include actions such as ours with potentials localized on
persurfaces, in which case stability would be guaranteed
our solutions, by virtue of their satisfying the first-ord
equations.

Note added. As this manuscript was nearing completio
several papers appeared@31–34# which overlap somewha
with our results. For instance, Eq.~14! was also derived in
@34#, and the dS4 solution in ~30! was also obtained in@31#.
In @33#, solutions similar to the single domain wall of Sec.
were shown to emerge from a U(1) gauged supergra
theory.

The coupled equations relating scalar and non-transv
metric fluctuations have recently been studied in@37#. The
equations can again be reduced to the form of supersym
ric quantum mechanics, and consequently there are no
malizable spacelike modes. Thus our backgrounds have b
shown to be entirely free from tachyonic fluctuations.
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