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A field theory formulation of two-time physics id+2 dimensions is obtained from the covariant quanti-
zation of the constraint system associated with the @2)(worldline gauge symmetries of two-time physics.
Interactions among fields can then be included consistently with the underlying gauge symmetries. Through
this process a relation between Dirac's work in 1936 on conformal symmetry in field theory and the more
recent worldline formulation of two-time physics is established while providing a worldline gauge symmetry
basis for the field equations oh+ 2 dimensions. It is shown that the field theory formalism goes well beyond
Dirac’s goal of linearizing conformal symmetry. In accord with recent results in the worldline approach of
two-time physics, thel+ 2 field theory can be brought down to diveidseimensional field theories by solving
the subset of field equations that correspond to the “kinematic” constraints. This process embeds the one
“time” in d dimensions in different ways inside thel2)-dimensional spacetime. Thus, the two-tiche
+ 2 field theory appears as a more fundamental theory from which many oneHiiingensional field theories
are derived. It is suggested that the hidden symmetries and relations among computed quantities in certain
d-dimensional interacting field theories can be taken as evidence for the presence of a higher unifying structure
in a (d+ 2)-dimensional spacetime. These phenomena have similarities with ideas such as dualities, AdS-CFT
correspondence, and holography.

PACS numbses): 11.25.Hf, 04.62+v, 11.15.Tk, 11.30~]j

[. INTRODUCTION is responsible for recasting thd { 2)-dimensional theory as
many possibled-dimensional theories. The purpose of the
In 1936 Dirac invented a field theory approach for rewrit- present paper is twofold. First, to establish the relationship
ing conformal field theory in four dimensions in a manifestly Petween the gauge principles in two time physics on the
SO(4,2) covariant form in six dimensiofig]. Dirac’s fields ~ Worldline and Dirac’s approach in field theory; second, to

®(X) depend on 6 coordinate€” which have two timelike demonstrate directly in field theory that diverse one-time
: ) : ) . . field theories emerge id dimensions from the same field
dimensions, just like the dynamical coordinad¥(r,- - )

. . X X . _equations ird+ 2 dimensions. It will be seen that the path of
used in the formalism of two-time physics on the worldline ya i\ ation ofd dimensional field theories is in precise corre-
oeror_Idvqumel[Z—llo]. In the notation of 2-10 to label  gyondence with making gauge choices in the worldline
X", with M=+",-",0,1,2,3, Dirac’s choice of coordinates theory, the important step being the embedding of the time
are as follows: Minkowski space coordinatesare the ho-  ¢oordinate ind dimensions in various ways inside tde- 2
mogeneous coordinatag=X*/X"*", with =0,1,2,3, while  dimensions. In this way one can see that the
the extra coordinatX ™" is eliminated through the SO(4,2) (d+2)-dimensional two-time theory plays a unifying role in

i ; SR VIENIP SRR Ay P _~anew sense, including interactions.
Invariant constraini - X 2XT X7+ X, X1=0. The ex Two-time physics id+2 dimensions was developed in-

tra coordinates<® , X" given by X*'=(X® = X")/\2 de-  dependently in the worldlinéand worldvolum formulation
scribe one extra timelike and one extra spacelike dimensiong2—10], unaware of the field theory formalism invented by
Dirac showed that the free field equations for scalar, fermiorbirac which had been long forgottént was perhaps lucky
and vector fields in 4 dimensiong(x*) can be rewritten that ignorance of Dirac’s approach permitted the free explo-
S0O(4,2) covariantly in terms of fieldb(X™) that depend on ration and development of new insights in the worldline for-
the 6 coordinates, provided these fields also satisfy addimulation that were not necessarily connected with conformal
tional SO(4,2) covariant subsidiary conditions. Several ausymmetry. Historically, the motivation for two-time physics
thors pursued Dirac’s idea and extended it to interacting concame from duality, and signals for two-timelike dimensions
formal field theories, including conformally invariant Yang- i M theory and its extended superalgebra including
Mills theories[11,17], but then Dirac’s idea was forgotten D-branes[14—24. In particular certain dynamical attempts
for a long time. Recently this approach has been applied t620,22 to try to understand these phenomena directly paved
conformal gravity and its interactions with conformal matterthe way to the formalism if2]. Two-time physics intro-
[13]. duced a new gauge principle — SpR2,in phase space, and
Dirac’s goal was to realize conformal symmetry linearly its generalizations —_that insures unitarity, causality and_ ab-
in (4+2)-dimensional field theory, and this remained the pri-sence of ghosts. This takes care of problems that naively
mary motivation for the work in the literature that followed
his paper. The goals and results of two-time physics lie in
more general directions, although conformal symmetry is in- 1 thank Vasilev for bringing to my attention his recent work, and
cluded as a special outcome in a particular gauge. In twonforming me of Dirac’s work and the line of research that followed
time physics there is an underlying new gauge principle thathe same trend of thought in relation to conformal symmetry.
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would have arisen in a spacetime with two-timelike dimen-theory (and analyze issues such as anomalies) etrtain
sions. Morally speaking, this gauge symmetry is related t@pen problems in the field theoretic formulation of two-time
duality in a generalized sense. The new phenomenon in twagehysics need to be understood. These may involve non-
time physics is that this gauge symmetry can be used téommutative geometry, and they are briefly discussed in the
obtain various one-time dynamical systemsdidimensions last section. Analogies and connections with other concepts
from the same two-time action s+ 2 dimensions, through in the literature, such as duality, AdS-CFT and holography
gauge fixing, thus uncovering a new layer of unificationare also pointed out in the last section.

through higher dimensions. In this paper we will show that

the same insights can be expressed in the language of field Il. LOCAL AND GLOBAL SYMMETRY
theory.

0OSp(|2) for spinning particlek provides a fundamental in the absence of background fieldse. “free” casé), IS
gauge symmetry basis for Dirac’s field equationsdin2  9iven by theSp(2,R) gauge theory described by the action
dimensions. In effect, the field equations amount to imposin 2

the non-Abelian OSp(|2) constraints in an S@(2) cova-

riant quantization of the worldline-two-time physics theory, Zlf drD XMXNgil

while the fields represent the gauge invariant states. After So 2 TEAAETIIMN

reaching a two-time field theory formalism for scalars,

spinors, vectors and higher spin fields, field interactions con- Ef dr
sistent with the underlying worldline gauge invariance is in-

cluded. In particular, interactions that are local din+2

spacetime, such as Yang-Mills or general reparametrizations,

must satisfy certain “kinematic” field equations beyond the =f dr
dynamical field equations, that are in complete agreement

with recent results obtained through background field meth- 1 o MaN A L2uM N
ods in two-time physics on the worldlif&0]. The interact- - §A PYPT—AYXTP
ing field theory constructed in this way is in agreement with

the latest developments in the Dirac approach included i'?—|erexi""(q-) is an Sp(2,R) doublet, consisting of the ordi-

[13]. . 2R) d b
- . . _nary coordinate and its conjugate momentlmﬁ"(zx and
Second, it is shown that, depending on the path of commg(gﬂE PM =4S, /dX,y). The indices, | = 1,2 denote the dou-

down from d+2 dimensions to some chosen subsetdof ) :
dimensions, by solving the “kinematic” subset of the field blet _Sp(Z,R), .th.ey are raised and lowered by .the antisym-
equationsthe physical meaning of the one-time field theory,M€tC L('\EAVI-CIVIIa symbols;; . The gauge covariant deriva-
as interpreted by an observer in the remaining d dimensiongiVé D-Xi" that appears in Eq1) is defined as

can be quite differentn particular the natural S@(2) Lor- M v oM

entz symmetry of the original field equatiofia the case of D Xi"=3d.X" —eiA"X[". ()

flat (d+2)-dimensional spacetim&an be interpreted in dif- -
ferent ways depending on the choice of the remaimrap-  The local Sp(2R) acts as 6XM =g, 0"'X" and SA"
ordinates. The resulting one-time field theory has conformak o'* e, Al + w¥e Al + 9, 0", wherew' (7) is a symmetric
symmetry if one follows Dirac’s path fromd+2 to d, but ~ matrix containing the three Sp@), gauge parameters and
with various embeddings of dimensions ind+2 dimen- A" is the gauge field on the worldline. The second form of
sions one arrives at various one-time field theories. In the flathe action(2) is obtained after an integration by parts so that
case, all resultingl dimensional field theories have new hid- only XQ" appears with derivatives. This allows the identifica-
den SO(,2) symmetries which are not necessarily confor-tion of X,P by the canonical procedure, as indicated in the
mal symmetries. Thus the two-time field theory approactthird form of the action.

unifies classes of one-time physical systemd gimensions

that previously would have been thought of as being de=——

z(t:r?ebfd by d-dimensional field theories unrelated to each 2Although interactions are not explicitly present in the “free”

. . . . . action ind+ 2 dimensions, the solution of the constraints generates
Solving the *“kinematic” subset of field equations g

hoice in th dline f i fa class of dynamics for the remaining degrees of freedornd in
amounts to a gauge choice in the worldline formalism o dimensions after a gauge is fixed. When background fields are

two-time physics, and therefore the physical interpretation O} esent all possible particle dynamicsdrdimensions(rather than
the remaining field theory agrees with similar recent resultg,,y 4 class can be described from the point of view of two-time
in the worldline approach. The main essential new pointyhysics ind+2 dimensions, as shown 0]. We also mention that
achieved through field theory is the inclusion of interaCtiOﬂSanother generalization is space-time supersymmetry, including a
in this new type of unification. generalized local kappa supersymmdty6,9. This enriches both
These results hold at the level of classical field theorythe local symmetries as well as the global symmetries. The formal-
which could be thought of as the first quantization of theism has also been generalized to strings and branes with limited
worldline theory. To extend them to second quantized fieldsuccess so fdi7] (although full success is expecjed

1 .
9 XYX5 = EA"xiij”) TN (1)

aTxM PN_ %AllxMxN

TIMN - (2
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The gauge fieldA'!, A¥=A?l andA?? act as Lagrange [XM PN=igMN - (gM yN= pMNs )
multipliers for the following three first class constraints that
form the Sp(R) algebra: while all other commutators among the basic degrees of free-
dom are zero. Th&p(2,R) or OSp(|2) gauge constraints
Xi-X,-=O—>X2= P2=X-P=0, (4)  applied on the Hilbert space are just enough to remove all
negative-norm statgsghosts”) introduced by the two time-

as implied by the locaB(2,R) invariance. It is precisely the like dimensiong2,4] , resulting in a unitary quantum theory.

solution of these constraints that require that the global metwe will treat spinless particles as a special case of QE)(
ric 77w has a signature with two-time like dimensions, Thus’with n=0, so we will state the covariant quantization proce-

nun Stands for the flat metric on @ (2)-dimensional space- dure directly for OSpg|2)
time, which is the only signature consistent with the equa- Since the constraints.form a non-Abelian algebra one

tlonst Qf'rrlmélon fOT thetShp(tZ,R) g:;uge f'ek.j'a{ ,tlleadlng ttQ dmust choose a commuting subset of operators to label the
aon- nvt'ﬁ ?/n;lrrltcs " as cag 5 € qonsl!s(jelz) ythqulan 'Zle Hilbert space. In particular the local OSp2) labels and the
ence the global two-im&0(d,2) is implied by the loca global SO(,2) labels correspond to simultaneously diago-

Sp(2,R) symmetry. : X S
The explicit globalSO(d.2) invariance has the Lorentz S?glésgle operators that include the Casimir operators of both

generators
. 0OSpn|2) labels;SO(d,2) labels. 9
LMN:XMPN_XNPMISUXiMXJN (5) | q | ) q ) $ ()

The OSp(|2) quadratic Casimir operator that commutes

above, different gauge choices lead to different particle dYZerd

namics ind dimensions(relativistic massless and massive

particles, non-relativistic massive particle, H-atom, harmonic 1 oo moua L )
oscillator, particle in Ad$_,x S¢ background, etg.all of CZ(OS[:(n|2))=§(X P+ PX )_E(X'PJFP'X)
which haveS(O(d,2) invariant actions that are directly ob- (10

tained from Eq(1) by gauge fixing. Since the actidtt) and

the generators N (5) are gauge invariant, the global sym- 1

metry SO(,2) is not lost by gauge fixing. This explains why + E(X' YaP-ha=P-thaX- o) (1D)

one should expect a hiddejpreviously unnoticed global

symmetry SO{,2) for each of the systems that result by 1

gauge fixing[3]. +35(1a o) (Yra- Py)- (12)
To describe spinning particles, worldline fermio,ng(r),

with a=1,2, ... p are introduced. Together witk",PM . on the other hand, the global S@2) quadratic Casimir

they form the fundamental representatiopl(,X™,P™) of  operator is given byorders of operators respecied

OSp(n|2). Gauging this supergroupt] instead of Sp(XR)

produces a Lagrangian that hadocal supercharges plus

local conformal supercharges on the worldline, in addition to

local Sp(2R) and local SOG). The full set of first class

constraints that correspond to the generators of these gauge —ELMNL n ESMNS L LMNg

symmetries are, at the classical level, 2 MN T 5 MN MN »

1
C,(SQ(d,2)= EJMN‘JMN

X-X=P-P=X-P=X:/3=P- )=ty ¥y =0. (6) (13

To have non-trivial classical solutions of these constraints 1 N L aud
(with angular momentupnat least two timelike dimensions EL Lun= E(X P=+P"X%)
are required. The OSp(2) gauge symmetry can remove the

ghosts of no more than two timelike dimensions. Therefore,

as in the spinless case, the signature is fixed and the global
symmetry of the theory is S@(2). It is applied to the label

Min (g, XM PM). The global SOg,2) generatorgMN that 1 _un 1

commute with all the OSm(2) gauge generatoK$) are ES Sun= §('p[a' Vo) (g i)

2

1XPPX21d 14
Z(~+-)+ R (14)

JUN= L MN- SUN, sMN=%<w2”¢a“—wan2”>. ) + %n<d+2>(d+n>. (15

In this paper we will be interested in the covariant quan- LMNS = =i (X hgP - tha— P h X i)
tization of the theory in a manifestly S@@) covariant for-
malism. This will be used in the next section to construct the _ En(d+2) (16)
(d+2)-dimensional field theory. The commutation rules are 2 '
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The extra constants arise from the re-ordering of quantunbok different, must all have S@(2) global symmetry and
operators. In the last two lines we have usggd ¢,=n(d  they must all be related. A well known case of the symmetry
+2)/2 that follows from the quantum relation. We see thatis the conformal SQ{,2) symmetry of the massless Klein-
the Casimir operator of S@(2) is related to the Casimir Gordon theory. The symmetry must be present for all the

operator of OSp{|2): others, and indeed it is the case, provided one takes care of
anomalies produced by quantum ordering of operators. For
C»(S0(d,2))=4C,(0Spn|2)) example, the particle on A¢S, x S¢ background is SQ{,2)

1 symmetric(for everyk) at the field theory level provided a
uantized mass term produced by quantum ordering is in-
+g(d+2)(n=2)(d+n-2). (A7) gluded in the actior|i3].IO & ?
Similar comments apply for spin 1/2 wave equations,
Similarly, higher Casimir operators &0O(d,2) are also re- such as the Dirac equation, etc. produced by the various
lated to Casimir operators of OSg@) except for ordering gauge fixings of the OSp(2) gauge theory, or for spin 1
constants. wave equations, such as Maxwell equation etc. produced by
One must demand that the physical states be singlets uihe various gauge fixings of the OSppg3 theory.
der the gauge symmetry OSpR). This requires vanishing An interesting question is: Is there a master field theory in
Casimir operators of the gauge group, in particu|ard+2 .dimensi0n§ from which all of thesi?dimensional fle'd )
C,(0Sp(n|2))=0. This leads to definite and unique eigen- theories are derived by a procedure akin to the gauge fixing
values for the SQ{,2) Casimir operators for physical states. in the underlying OSp{(|2) theory? Furthermore, if field in-

Thus, on physical states the quadratic Casimir operator mu{gractions are added to each of telimensional theories,
have the eigenvalue which of these interactions would still represent the unified

master field theory id+2 dimensions, thereby making the

1 differentd dimensional theories all equivalent to each other
C,(50(d,2)==(n—2)(d+2)(d+n—-2). (19 under some kind of duality transformation?
8 These questions are answered by quantizing the worldline

o . o theory in a manifestly SQ{,2) covariant formalism. The
Similarly, the higher Casimir eigenvalues for () are \yaye equation is then id+2 dimensions, and it is supple-

also fixed. Therefore, for gived,n one must take a specific mented by additional field equations that we call “kine-
SO(d,2) representation to guarantee an Q§PJ gauge sin-  matic” as opposed to “dynamic” field equations. The “ki-
glet. For example, for spinless particles<0) the quadratic nematic” equations impose a subset of the underlying
Casimir operator is fixed t€,=1—d?/4 (in the absence of 0Spn|2) constraints. The “dynamic” field equations corre-
background fields spond to another subset of constraints, but are derived from a
When the quantization is performed in a fixed gauge thefield theory action ird+ 2 dimensions. Field interactions are
same eigenvalue of the Casimir operators must emerge fancluded in this dynamic action. When the kinematic equa-
the dynamics of the remaining dynamical systerd timen-  tions are solved, the field theory is reduced fram 2 di-
sions for a fixech. Indeed after careful ordering of non-linear mensions tad dimensions, but there is a choice of whidh
products of operators this is verified explicitigee[2,4,3 ~ dimensions among+2 survive in the remaining field equa-
for examples of non-covariant quantization in several fixedions. This choice is equivalent to the gauge fixing that could
gauge}; The covariant quantization exp|ains Why Seeming]ybe done In the \_Norldli_ne for_mulation of the theory. Indeed
unrelated dynamics id dimensions(such as massless rela- the remainingl dimensional field theory that comes from the
tivistic particle, H-atom, harmonic oscillator in one less di- d+ 2 field theory correctly produces the wave equations de-

mension, particle in AdS ,x S for all k, etc) all must re-  1véd from the gauge fixed worldline theory, including any
alize the same unitary representatiasf SO(d,2), as they anomalies. But now the consistent interactions are also fixed

indeed do. for theq dimensional v_ersic_)n of th_e thgory, s_ince t_hey all
come directly from the field interactions @+ 2 dimensions.
The formulation of thed+2 field equations, both kine-
. FIELDS, “KINEMATICS” AND “DYNAMICS” matic and dynamic, proceeds as follows. A physical state
|@) of the worldline theory is labeled by both O$p2) and
If the system is quantized in a fixed gauge, one time and0(d,2) (if no background fields as in Eq. (9). The
one space dimensions are eliminated, making the absence ©Sp(n|2) labels must correspond to a singlet for a gauge
ghosts and the one-time nature of the system quite evidemvariant physical state. The OSy@) labels include a set of
[2,3]. The quantum theory is then expressed in terms of &ommuting generators in addition to the OBJX) Casimir
wave equation ind dimensions for each one of the fixed eigenvalues that are zero. On a physical state that
gaugedie.g. forn=0 spinless particles: Klein-Gordon, non- is OSpf|2) singlet the SQf) generators given by
relativistic Schrdinger, H-atom wave equation, Klein- (1/2),- ¥ must all vanist{since the physical state must
Gordon in AdS_ X ¢ background, etg. Each one of these be an SOf) singlef. There is an exception fan=2: the
wave equations is derivable from an effective field theorySO(2) generator (1124, - #,1=q need not vanish since ev-
action ind dimensions. These field theory actions look dif- ery representation of SO(2) is a singletthough not neutral
ferent but yet they all represent the quantum theory of théf g+ 0). In addition, among the set of commuting operators
samed+ 2 system. Since the original theory had an 8QJ  in OSp(n|2) that would vanish on a singlet, one is tempted
global symmetry, the derived field theories, although theyto choose the generato®’ and P- ¢, since these would
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produce Klein-Gordon and Dirac equations. If these operaexamine the non-trivial fields we must také=0. On posi-

tors vanish we would be forced into a free field theory. How-tion space the momentum operators act as derivatives

Eer, before e Impose hi last condion et s re ExaMIneX, sir P = — iy (X.spi. The quaniization procedure we

can make a weaker choice. As we will see, this is indeed th ave just adoptedi.e. 'mp".s'”gx on bra state§|mpl|es

case, and the weaker choice will allow us to include interacthat when there are derivatives applied on the fields, such as

tions in field theory. ImPspin(X), the derivative must be performed first before
The OSp(|2) Casimir(10) may be rewritten by pulling imposing the constraint

P2 andP- ¢, to the right side
Va g X2=0. 29

C,(0Spnl|2))= %(ix- P+ (HTZ +1q] 5n'2) This describes one of the “kinematic” equations that will be
needed. Another kinematic constraint is the second equation
1 in Eq. (20). On the fields it takes the form
+ —X2P?

, d—2
iX-P+-——+n—|q|5,. 2

x 2

d-2
X-d+ T+n_|q|5n,2 (Dspin(x)zov (24

i 1
_Ex’wap'lﬂa'l' 3_2(¢[a'¢b])(¢[a'¢b])- . L
where |g| will be related to the spin in the case nf=2.
(19 Basically this requires fields of specific scales depending on
their spin. The required scale isdht+ 2 dimensions, not il
To define a physical state, with a vanishiBg(OSp(n|2))  dimensions. A third kinematic equation is the second equa-
=0, it is sufficient to simultaneously diagonalize the com-tion in Eq. (21), but we will solve that one completely and
muting operatorsX - P, X2P?, X 4,P- ¢, all of which com-  the fields®pin(X) will be defined after the explicit solution
mute also with the SQ\) generators (142 ¢,- ¢, - Thus, a  of that equation.
physical state is defined by There remains the “dynamic” equations, the first equa-
tions in EQs.(20),(21), which yield Klein-Gordon or Dirac
type equations for the field®,;,(X). In the next few sec-
tions we study the dynamic equations for each spinning field
(20 ®pin(X), include field interactions, and build an action from
which they can be derived. The combination of the interact-

2p2 @y =0, |iX.Pt o2 ne _
X?P?®)y=0, [iX-P+ 3 +n—1q|5,2||P)=0,

_ 1 _ ing field theory action and the kinematic equatig@8),(24)
X- P tha| @) =0, 57 Yiar Yo~ On28ap |®)=0. define the @+ 2)-dimensional field theory at the classical
(2D level.
Demanding an OSp(2) singlet also imposes the SMR) IV. SCALAR FIELD (n=0)

Casimir eigenvalue given in E¢18). Some additional op-
erators, even if they do not commute with the above, may For n=0 (drop #}) the worldiine theory based on
have definite eigenvalues on physical std®3, since we OSp(d2)=Sp(2R) describes a spinless particle. The dy-
are interested in the states that give only the zero eigenvalu@amic (20) and kinematic equation@3),(24) take the form
of the operators above rather than all of their eigenvalues. It
may then be quantum mechanically compatible if certain ad-  x2;My @ (x)=0, XMgy, B(X)= — —— d(X),
ditional operators take on specific values as well on the 2
physical stateffor example, even though the S@(genera- )
tors do not commute with each other they can all vanish X2 ®(X)=0. (25
simultaneously on a S@j singlet.

In addition to the physical ket staté®) we also consider
the spin and position space bra stat&sspir|. The probabil- May d=\DETIE-2) 4 (26)
ity amplitude (X,spif®)=®d,;,(X) defines the physical _ _ . _
fields or wave functions that will enter in the Where--. stands for interactions with other fields that we
(d+ 2)-dimensional field theory. The spin labels will be ex- Will discuss below. All interactions are constrained by de-
plained below. On the staieX,spi the position operators Manding consistency with the Spkj, kinematic constraints
XM are diagonal. An important property of this state is de-in Ed. (25), which are imposed by applying- 4 or X* on
fined by demanding the(z Operator to Vanisl"(xispirixz both sides, and USing E(QS) Without the interactions this

=0 as a constraint imposed on the position Hilbert spaceéquation is consistent with choosing to diagonakZe-0 on
From the physical state, which was possible in the first place, but

by going through the steps above we see @4y, ®(X)
0=<X,spir1X2|CI>)EX2<I>Spm(X) (22 need not vanish while remaining consistent with the physical
state conditions. In general, if written in radial coordinates,
we learn thatd,(X) vanishes everywhere, except on thethe Laplacian operatai™ay, in d+2 dimensions has terms
(d+2)-dimensional lightcone wher&*=0. Therefore, to  proportional to X2, which will tend to blow up asx?>—0

Consistent interactions have the form
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1 1 X*'(r)=1, X7 '(1)=x2, Xt=x*(7), (29
aMaMzﬁ (X-&)2+dX-a—§LMNLMN (27 (7) (7) () 9
Pt (1)=0, P (=x-p, Pt=p“(7), (30)
but the numerator is zero after using the second equation in

. 2_ . . .
Eq. (25) and the physical value of the S Casimir op-  constrained only by“=0. The dynamics of the remaining
erqatg)r()ls) for nzpo.)/Therefore the operg)th&M ~0/0 ir.i, coordinates describe the massless relativistic paftdlerhe

finite on a physical state as given in E86). In this way we qguantization of the remaining system produced the Klein-

; Gordon equation which in turn can be derived from the
have seen that the underlyi®p(2,R) gauge symmetry per- ) i
mits only certain interactions. 18+2=6 (i.e. d=4) the Kl€in-Gordon action that has the S@F) conformal sym-

H - H MN_ yvMpN
right hand side of Eq(26) containsgd®. The field equation MeLry identified with the Lorentz symmetd/™"=X"P
can be derived from the variation of the Lagrangian —X"P" ind+2 dimensions2]. Field interactions may then
be added, but there is no specific instruction for which inter-

® 1. (d—2) 24/(d-2) actions are permitted, unless one tries to maintain the
Laro=— 5P - A—4—@ , (28 50(d,2) Lorentz symmetry.
Now, let us do the analog of this gauge fixing directly in
and it must be supplemented by the subsidiary kinemati¢he (d+2)-dimensional field theory of the previous section.

conditions in Eq.(25). Following Dirac, we use the change of variables
Evidently one can write a richet+ 2 field theory involv- o .,
ing several scalar fields that have interactions with each other X" =k, X =k\, Xt=xxt (31

so long as those interactions are consistent with the subsid-h th i . bedded in Minkowski
iary kinematic conditions. This means that the powerW ere the one-imé 1S embedded in MINkowski - space
# while the dependence on the other time will be deter-

2d/(d—2) should be saturated, but this can be done by thé

roduct of several scalar fields.d=4 the interaction isb?, mined b_y solving the kinematic field equations. Using
Eut other powers are not permitted. the chain rule, 9y = (9! IXM) (9l k) + (INIXM) (9l IN)

M .
The equations in Eq(25) are a slight generalization of +(oxk/9X™) (ol 9x*) we find
Dirac’'s equationg1] that he obtained by a different set of

argumentginstead of the first equation in EqR5) he had _— = = (32)
Moy ®(X)=0]. In our case these equations follow directly aX*t Ik K IN K ogx#

from the Sp(R) gauge symmetry conditions of the world-

line theory, and thus provide a gauge theory basis for Dirac’s J 1 9 J 1 o

approach. ——=— = == . (33

We will next solve the subsidiary kinematic field equa-

tions and show that the remaining dynamics is described bKl 4 . Lo
a field theory ind dimensions. However, we will see that 'Vote thatP™ " (which was set to zero as a gauge choice in

there are many ways of choosing coordinates in coming fronth® worldline approachis represented by the derivative op-

d+2 dimensions down ta dimensions while solving the €rator

subsidiary conditions. The choice of coordinates is parallel to

f@xing a Sp(2R).gau_ge ip the v_vorldline theory. Variqus one- pt'=—p_,=i— = E 2 (34)

time field theories ird dimensions emerge when “time” is IX~ K OA

identified in different ways within thed+ 2)-dimensional

space. One of those cases corresponds to conformal fieRt this stage no gauge choices have been made; only a
theory, with SO@,2) interpreted as the conformal group, aschange to more convenient coordinates has been performed,
Dirac suggested. However, all other choices of coordinateBut note the parallel with the gauge in EG29),(30). Next,

lead to othed dimensional field theories with S@(2) sym-  We can write the differential operators in the new coordinates

metry, but with SO{,2) taking on different meanings as less p

familiar hidden symmetries. Thus, the content of these field Mg, = (35)
equations goes well beyond the linearization of conformal M Ik’

symmetry envisaged by Dirac and the literature that followed )

his path[1,11-13. In fact, the equations above unify a class " 1/ 4 d 1 d d
of different looking d-dimensional one-time field theories d ‘9M:E P Xuon T2 2k—-+d=2| =

into the same d+ 2)-dimensional two-time field theory, in-
cluding interactions, as shown below.

J 2
ﬁ) . (36)

1
+— (2 =x?)
A. Massless scalar field ind dimensions K
In the worldline formulation the gauge fixing"(7)=1  These differential operators are to be applied on a physical
andP*(7)=0, and solution of constrain?=0 andX-P  field which is parametrized a®(«,\,x*) beforeimposing
=0 left behind the Minkowski coordinates and momentathe kinematic constraint¥?=0. To impose this constraint
x*(7), p*(7) as the independent degrees of freedom one must sek = x?/2 after differentiation?/o\. Then we see
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that the third term in?"'9,, drops out on sufficiently non- SO(d,2) invariant equation25),(26) as shown in different
singular wave fungtlons. Using the kinematic constraint inways in[1] and[2]. This allows us to interpret conformal
Eq. (25) together with Eq(35) the kappa dependence is fully symmetry ind dimensions as thé&orentz symmetryn d
determined as an overall facter (4-2)/2 +2 dimensions acting on the spax¥.
—(d— Thus conformal symmetry in Eq39) can be taken as
— —(d-2)12
P(X)=« F(XM). (37) evidence for an underlying higher space with one more time-

This solution allows us to drop also the second term inliké and one more spacelike dimensions. In this higher
aMay, . Next, note that derivatives with respectxtt appear spacetime altl+ 2 dimensions are at an equal footing — it is

only in the combinatiorg/9x*+x,(d/d\). Then, settingx only Eecaus_e of the a_ms_ymmetri(?‘ _Ch‘{fcg‘ of coordinates
=x?/2 after differentiation using the derivative operator «,\,x* that (i) the remaining one “time”x" was defined
alax*+x,(dlI\) gives the same result as setting- x2[2 and(ii) the manl_fest Sy”l”?e”y W‘.a‘f‘, broker_1 artificially in the
before differentiation and differentiating only with x*: process of sol\_/mg the k|n_emat|c e_quatlor(gagge con-
straintg to rewrite thed+2 field equations as a field theory
P P 9 X2 in d dimensions.
(—+xﬂ—)f(x,)\) :—f(x,—>_ (39 The more unifying aspect of the higher space, and the
axH A ney2p X 2 interpretation of the hidden symmetry as being simply the
higher Lorentz symmetry, will make a stronger impression
Therefore we can seft(x,\),-2,= ¢(x) before differen-  on the reader after noting that a similar observation is re-
tiation provided we also drop the teréo\ in the derivative  peated in several seemingly unrelated field theoretic models
operatord/ 9x*+x,(dlIN). We see that alb/ I\ terms have that are actually derivable from the same set of field theoretic
dropped out from the Laplace operat@dy, in Eq. (36).  equations in the higher dimensions. Each of the derived field
The disappearance @f J\ everywhere is parallel to setting theories ind dimensions has the S@@) symmetry realized
P*'=0asa Sp(R) gauge choice as in EqE0),(34). Us-  in the same irreducible unitary representatiobut its inter-
ing these remarks we see that the physical state condition¥etation is not conformal symmetry. Nevertheless, it is the
(25),(26) are by now fully solved in this gauge by the fol- same Lorentz symmetry of the highe#-2 spacetime.
lowing general form:

B. Scalar field in AdS;X S background

2¢p(x
D(X)=r"1"22g(x), f( ) =\ gldr2)/(@=2), To show that the meaning of S@&Q) goes beyond the
IXEIX 39 conformal symmetry interpretation, let us now demonstrate
(39 that the same S@(2) invariant equation$25),(26) have a
where ¢(x) is an interacting massless Klein-Gordon field in d_ifferent physical interpretatio_n When_ the coordinates, in par-
d-dimensional Minkowski spacetimén this interaction we ticular “time,” are chosen in a different way. Let Mthe
assumed a single real field, but it could be more geperald+2=D+k+2 coordinates be labeled asX
The effective action that generates this equation of motion is=(X* , X~ ,X# X') with X* representing) — 1) spacetime
dimensions with one time, and' representinck+1 space-
Ad—2) $29/(d-2) (40) like dimensions, s® + k=d. Consider the following change
8d ' of variabledthis is related to the Sp(R) gauge choice for a
particle moving in the Ad$x S* background in the world-
This is in full agreement with the effective field theory that line formalism as given i3] ]:
was obtained by quantizing the worldline formalism in the
fixed gaugeX*'(7)=1, P*'(7)=0, as given in2].
Note that thed+ 2 Lagrangian28) reduces directly to the

s 1
L=~ 5 ¢d"3,-

’ ’ . 1
X" =pu, X =po, X'=pUa, X“:apux",

d Lagrangian(40) when the solution of the subsidiary con- (42
ditions (39) and the form of the Laplacia(86) are used:
L 00—k ILg(0). (41) D¢ ax axtx axe
=, o= , ul = s X/"“:
2 2 +/!
« disappears after integration overin the action. a Xi Xi X

Thus, solving just the kinematic equatiod¥=0 and (43

X-9®=—3(d—2)d with a particular choice of the remain- _

ing d coordinates, and replacing the solution into theTheu' are Euclidean vectors ik+1 dimensionsy is the

SO(d,2) invariant action is sufficient to obtain the dynamics magnitude of the Euclidean vector=|u|, a is a constant

and the interpretation of the theory ihdimensions. with dimension of length, ang* are Minkowski vectors in
It is well known that the interacting massless Klein- (D—1) dimensions. Th&?=0 condition gives

Gordon theory(40), including the interaction, is invariant

under conformal transformations, although the symmetry is 42,2

somewhat “hidden.” In the two time formalism given above o= u_ (44)

the conformal symmetry is inherited from the manifestly 2ua?
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The SO@,2) covariant line element id+2 dimensions
dX-dX gives the Adg x S¥ line element irD + k=d dimen-
sions up to a conformal factdafter using Eq(44)],

dX-dX=p? (45)

2

du)? u?
( ’ +¥(dxﬂ)2>

2l @02+ 8 L e )2
PPl (0P -+ (dx)?), (49)

where @€,)? is the metric onS*. This shows the relation-
ship of the parametrization to the AgS S background,
with D+k=d. We will consider all possible values d&f
=0,1,...,0—2), so that we will exhibit a relation among
the field theories for fixedd, written on the backgrounds
AdS,, AdS;_; XS, ..., AdSXSi2,

Let us rewrite EQs.(25),(26) in these coordinates.
The  chain  rule dy=(dyp)(dldp)+ (o) (dldo)
+(du") (9l du') + (Iux*) (9l Ix*) gives

J 1/ 9 J J
= — U — =X, ——=——,
Xt pul o IxXH IX~  pdo
J a 9 @
X pu gxm'
g ulao oo W g u 9
—= |2 — |+ —— (48
gxX' auldp pdo p gy apyu

Using these, the relevant differential operatétss,, , 9y o™
[before using Eq(44)] may be written in the form

XMy = p— (49)
M= P l?p’
" a_2 ) i u ui ul 2
=— 4| — —+ —| D —2— —D;
ZINY pzuz(D”) auap | ap D; 2u UDJ”
+.., (50
where the derivative operatoBs, ,D; are given by
J ux, 4 g uf x> a%)\ o
D,=—+——, =t — -] =,
B ooxr a2 do au ul\2a? 2u?) do
(51

and the terms.-. are all proportional to (@a’o—a*
—x2u?) which vanishes according to E(4).

The general solution of the second equation in &%)
now takes the form

(I)(X) = pi(diz)le(Ul U,X) | o=(a%+x2u?)/2a2u - (52)

We note again that it is possible to replace the differential

operatorsD ,, ,D; that are applied before the substitution
=(a*+x%u®)/2ua® with the simple differentiation

PHYSICAL REVIEW D 62 046007

g [ a*+xu?
[D,uF(U=U1X)]a-=(a4+x2u2)/2ua2:aX_’uF W,U,X :
(53
9 _[a*+x%u?
[DiF(O'-Urx)]o:(a4+x2u2)/2ua2:EF W,U-X

(54)

Therefore, we may define the fiefe{ x,u) that depends only
on the AdS_,x S¢ variablesx™= (x*,u')
d(X,u)= F(O'uuax)|a:(a4+x2u2)/2a2u . (55
Combined with the vanishing of the - terms in Eq(50) the
net effect is to drop the derivativeddo wherever they ap-
pear. This is equivalent to the choice of the SR)2gauge
P =aligXx~ =(1fip)(d/dc)=0 which was performed in
the worldline formalism[3]. With these remarks, we then
find that the full set of equation§25),(26),(49),(50) are
solved providedg(x,u) satisfies the scalar equation in the
AdS,_ X S¢ background with a quantized mass term

D (X)=p~ g (x,u), (56)

1
_&m( —GGmné'n(f))‘f' M2¢+)\¢(d+2)/(d_2),

-6
(57

0=

Mzzi(d—Z)(d—zk) (58)
4a? ’

where the metricG,,, is given by the Adg_ X S* line ele-
ment, with labelsx™= (x#,u')

(du)? u? 5 e
= 2 +;(dxﬂ) =G, dx"dx".

ds? (59

Note that the mass term vanisheslif 2 or if d=2k. Thus
for AdS,xS%"2 and AdS,,xSY? there is no mass term.
These equations follow from the Lagrangiandrtotal di-
mensions

1
L§=— 5 bdm(V=GGC™dng) (60)
(d-=2)(d-2k) , Nd-2) .,
— = (d-2)
V=G 802 P+ >d ¢ )
(61)
This Lagrangian also follows directly from the

(d+2)-dimensional Lagrangian by inserting the solution of
the kinematic constraints given in E(h6)
LY, ,=p 9LS. (62)

The p dependence disappears in the action after an integra-

alax*,al ul if the substitution is done before differentiation tion of the Lagrangian iml+2 dimensions.
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The same result was derived[i8] by choosing a Sp(R) etrization of the previous section, and recalling E(G9)—
gauge in the worldline formalism and then doing non-(41), we learn that the full field theory given Hy},, now
covariant quantization. There, it was essential to figure oushrinks to a conformal field theory id—k—1 dimensions
the correct ordering of the quantum operators, which in turrthat defines the boundary of the AdS space
gave rise to the quantized mass given above. Thus, the quan-
tized mass term is guantum anomalylf the anomaly is Lo o—La =@l D2Le . (65
missed, the Ad$ ,x S* theory would no longer be equiva- o . .
lent to the @+ 2)-dimensional theory or any of the otheér | 1S iS precisely the AdS-CFT correspondence applied to
dimensional versions. this theory. Having the two-time theory in the forof, , as

The evident symmetry of this action is only SD¢k  the common link for various parametrizations, permitted the
—1,2)x SO(k+ 1) which corresponds to the Killing symme- analysis to proceed in a straightforward manner in proving
tries of the AdS_ X S¥ metricG,,,. However, there is more the AdS-CFT correspondence in the present case.
hidden symmetry in this action that was not noticed before i
the advent of two-time physid¢8§]. In the present field theory C. Non-relativistic Schrodinger field
setting this follows simply from the property that the original  The two cases, massless Klein-Gordon and particle in
set of equations(25),(26) are invariant under the larger aqsx s discussed in the two previous sections are relatively
SO(,2). This contains the Killing symmetries as a sub-gasy from the point of view of operator ordering in the first
group, but the total symmetry is larger. Therefore we shouldyantized theory. In this section we would like to discuss a

expect that there are hidden symmetries in the effective agyarder case in which it is nat priori evident how to order
tion that correspond to the additional generators in the cosgfyantum operators.

sSQ(d,2) In the worldline theory the gauge fixir@+/(r)=m, and
—— : . (63 PY(7)=0 at the classical level produces the non-relativistic
SQAd—k=12xSAk+1) massive particle with masa[3]. In this gauge the remaining

That is, the effective action given above should have the fulfégrees of freedom are designated by the canonical pairs

S0(d,2)=SO(D +k,2) symmetry for everk. Indeed it was (t(TZ)’H(T)) and (r'(7),p'(7)) which are constrained bk’;

shown in[3], that this action has the full symmetry S©2).  =P’/2m. These are related to th¢",P™ which satisfyX

The quantized mass term is essential for this symmetry to bg 0 andX-P=0 as follows:

valid. Hence, the larger symmetry requires a quantized mass. b o 0 P

The generators of the full symmetry, and the transformation P* =m, P~ =H(7), P"=0, P'=p'(n), (66

of ¢(x,u) under them are explic?tly giv_en fo_r evekyin [3]. wherem is a 7 independent constant, and

The presence of the symmetry is again evidence for the un-

derlying larger space that contains one more spacelike and , C1 o

more timelike dimensions. X7 =t(r), X7 =—(rp=tH), X'=r'(r), (67)
Through this example, with various we have demon-

strated that the content of the fully covariant equations ot

(25),(26) is much more than the conformal massless particle X0= + \/r2_ —(r-p—tH). (68)

that was originally aimed for by Dirdd]. The field theoretic m

results reported here fully agree with the worldline formal-

ism at the quantum level performed also at fixed galggs

Furthermore, in the field theory formalism field interactions

consistent with the S@{2) symmetry are also introduced

diregtly in d+2 theory. . . Ig(t,r)
It is interesting to consider the AdS conformal field theory i

(CFT) correspondencE25—27 in this setting. Going to the

boundary of AdS corresponds 10—ce. In this limit the

original form of the theory ird+2 dimensions can be ana-

The H=p?/2m condition follows from the remaining dy-
namical constrainP?=0. Evidently the field theory version
of this dynamical constraint is the Schlinger equation

— 1 2
= o V(L) (69)

that follows from the free Lagrangian shdimensions

lyzed easily by examining the parametrization given in Eq. a1

(42). We may also definp= «/u to more easily extract the Ly=ig* o ﬁV¢*V¢+ e (70
information when we take the limit with finite. In this limit

the coordinates and momenta have the form The dots- - - represent interactions that could be added.

5 The non-relativistic particle actiors= [dt(m/2)(é,r)?
X+ Sk, X_Ieﬁ, X0, Xﬂﬂfxﬂ_ (64) has a surprising S@(2) symmetry(non-conformal given
232 a by the gauge fixed form of the global S@R) Lorentz gen-
eratorsLMN=xXMpN_ xXNpM as explained if3]. Evidently
We see that thel+2 space shrinks in thk+ 1 dimensions the field theory that is derived from th#+2 field theory
X', and remains finite in thd—k—1 dimensionsX*. Then  must also inherit this symmetry. Operator ordering of the
the two-time Lagrangiari28) gets reduced.§, ,—L§ ..,  quantityX° (68) is non-trivial, and therefore constructing the
in the number of dimensions. By comparison to the paramsS0O(d,2) symmetry generatois™N at the quantum level in
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this fixed gauge is not easy. Theis¥N would be the Noet-
her charges for the symmetry S@QP) of the Schrdinger

PHYSICAL REVIEW D 62 046007

D|yo=D (= VXX —2XT X" X X7 XD,

(76)

theory. The corresponding problem in the previous two caseg, this way do completely disappears ant is expressed in

were solved satisfactorily by fixing the correct anoma]i&s

terms of the other coordinates. This is the field theory ver-

but the non-linear form of Eq(68) has discouraged the sjon of the gauge conditioR%(7)=0 used in the worldline
analysis so far. How does this problem show up in the fieldgpproach.

theory version, and how is it resolved, in particular when
there are field interactions? Without a guiding symmetryp'_

such as SQ4,2) there would not be restrictions on the inter-
actions.

Let us now try to imitate directly in the
(d+2)-dimensional field theory the gauge fixirﬁf’(r)
=m, andP°(7) =0 of the worldline theory. Before applying
any of the kinematic constraints, the relevant 8QJ differ-
ential operators can be rewritten in the fdrm

XMay=X*'D, +X'D_,+XD;— XX ia (72)
M +7 - [ M0 70

and
2 d-2
Moy=-2D,,.D_,+(D;)?— ﬁao XMay, + T)
2
—XMX %ao (72
where
! X+r
D+r=(9+r 0[70, D_rza_r_?t?o,
DiIO"i‘F X_cl)ao (73)
ImposingXMX,,=0 is equivalent to setting
Xo= = VXX, —2X* X, (74)

but, before doing so, we must apply all the derivativg®n

the Wavefunctiorrb(XO,X+',X‘/,Xi). However, from Eqgs.
(71),(72) we see that when the kinematic constraints are a
plied all terms containing the explicit, drop out, except
those appearing in the definition &, ,D_,,D,. Further-
more, for these special combinations, applying first the de
rivative and then imposing Eq74) gives the same result as
first imposing Eq(74) and replacind® ., ,D _,,D; with or-
dinary derivativesy, , ,d_ ,d;

[Di,:'(I)(XO,XJr,,XJ,Xi)]xO::\/xixi—2x+’x“:<9i,:'q)|x0
(75

where we have defined the notation

The next step is to work in a basis that corresponds to

—P_,=m while at the same time solve the remaining
kinematic constraint that now takes the form

2 (I)lxon.

, , . d
(x+ O+ X" 0+ X9+ (77)

This is done by first going to Fourier space in ke  coor-
dinate and then imposing the kinematic constraint. The result
is

CD|Xo=fdm e Mm@ D2gmxt mx),  (79)

where the functionp(t,r') is arbitrary. Finally we apply the
dynamical operator on this form and find the Salinger
operator

(Ma®)||= (=20, 19+ 30)(P|xo) (79
:f dme—imx’,m(d—4)/2
J
X 2im—+Vr2)¢(t,r) (80)
at t=mX*' ri=mxi

On the left side the notationdt'd,,®)|| implies that both
kinematic constraints have been implemented.

Now we see that the free field equationds-2 dimen-
sions @Mau®)||=0 corresponds to the free non-relativistic

Schradinger equation with masB* =m

¥ 1.
Iﬁ(ﬁ(tir)__ﬁ r¢(tvr)! (81)

in agreement with the first quantization of the worldline
theory given in Eq.(69. By rewriting it in the form
(May®@)||=0 the hidden SQf,2) symmetry of the Schro
dinger equation is exposed. The interactions consistent with
the SO@,2) symmetry follow from the original equations in
d+ 2 dimensions, but unfortunately they do not seem to have
a simple or recognizable form in this case, so we will not
discuss it any longer in this paper.

D. Generalizations

As argued above, a class of one-time physics dynamics is
unified by the field theoretic two-time formalism. The class
is much larger than the cases discussed above since, as we
know from the worldline approach, it includes other one-

time dynamics such as the H-atom, harmonic oscillator, par-

3Bo Zhang first constructed the following formulas. | thank him ticle in various potentials, et¢3]. It would be interesting to

for showing me his work.

explore the interacting field theory for some of these cases.
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The interaction term then provides a field theoretic approaclwhere ¢, is any other fermion that does not blow up when
to the interaction of these systems in a setting which haX?—0, and whose dimension i€X-d+ (d—2)/2)¢,=0.
never been explored before. In some generalized sense thisTi®e interacting field equation follows from varying the fol-

analogous to duality in M theory. lowing Lagrangian:
The effective one-time field theories thus obtained, the
ones in the previous sections, as well as any others derived LY, =Wy X y-(d—iA)¥
similarly in other embeddings af dimensions inside thd . o
+2 spacetime, are all representatives of the same two-time —h®?@=2W . X U+ ¥ y. X £ (85)

field theory which provides for some remarkable relations

among them. Such relations were not apparent before thiehe inclusion of the Yang-Mills gauge fiek(X) assumes
insight provided by two-time physi¢2—-10]. In principle, in  that ¥ is charged under the Yang-Mills local internal sym-
relatedd dimensional field theories one should be able tometry. The scalarP must also have the correct charges to
compute Sp(R) gauge invariant quantities and obtain the couple to the fermion with a non-zero coupling constgreo
same result. The S@(2) symmetry properties are SpE3,  the notation is schematic. We also assumed that the dield
gauge invariant, in particular the S@P) is realized in the included on the right hand side may be of the type described
same unitary representation in all the derivedimensional in the previous section; if so this coupling would modify the
theories. Likewise, it must be possible to compute variousield equations fokb given in the previous section.

Sp(2R) gauge invariant quantities and obtain the same or The form, and consistency of the interactions with the
related results by using the different one-time field theoriesunderlying OSp(12) gauge symmetry, are determined by
including the interactions. Further computations along thes@pplyingX- g or X- y on both sides of Eq(84) and using the

lines, using the full power of interacting field theory, would kinematic equations in Eq&32) and(25). This also produces
help to strenghthen the case for two time physics, and pekhe conditions

haps help discover some of its utility by demonstrating that
one could perform certain computations more easily by X2Ay=0, (X-9+1)Ay=0, X-A=0 (86)
choosing a particular version of the field theory.

on the gauge field. The same “kinematic” equations for the
V. SPIN ¥/2 FIELD gauge field also follow from other independent consider-
ations, including consistency of background fields with the
Sp(2R) gauge symmetry in the two-time worldline formal-
ism[10], and the analysis in the following section for higher
spinning fields.

Finally, it is important to note that Eq84) or Eq. (85

have a kappa type local fermionic symmetry given by

If we taken=1 in Egs.(20),(21) then the physical state
describes a spin 1/2 field. The fermigiY' is represented by
a Dirac gamma matrix/™ = y™//2, and position space now
has an additional S@(2) spinor index X, «|. The fermionic
field is given by the probability amplitude/X,a|®)
=¥ ,(X). To satisfy the singlet OSp(2) conditions given
in Egs. (20),(21) we see that it is sufficient to impose the

_ M
kinematic constraints OV = Xu(¥" K)o (87

wherex ,(X) is any spinor ind+ 2 dimensions. To prove the
kappa symmetry usey:-(d—iA)y-X=—y-Xy-(d—iA)
¥,=0, X*¥,=0 @2  4x. (0—iA)+(d+2)/2 and apply the kinematic conditions
(82). This means that only half of the fermions are physical,
in accord with what is expected when the two-time theory is
and the free field equationy(X y-d¥),=0. The second reduced fromd+2 dimensions tal dimensions.
kinematic constraint follows from the property of the bra | the case of free fields Dirac showed, with the param-
(X,a|X?=0. From etrization given in Eq( 31), that the solution space of these
equations is precisely the massless Dirac equation for a fer-
mionic field in d dimensions. This is also the conclusion
, (83)  reached if4] by quantizing the OSp(2) worldline theory
in the gaugeX™'(7)=1, P (#)=0, ¢+ (7)=0. To show
how thed dimensional theory is embeddeddnr+ 2 we give
we seeX?7*¥ ,=0 need not be imposed as a separate fredere the field theory version of the gauge choice used in the
field equation. To include interactions consistently with theworldline approach. We first fix the kappa symmetry so that
“kinematic” constraints we assume that the worldline ver-jt corresponds to the worldline fermionic gaugé '(7)=0
sion of the OSp([2) gauge theory is properly generalized
by including background fields as [A0]. This permits the
addition of source terms to the free field equation

X d
0+ 5

d
(«y.x«y.ﬁ)zz—x2(92+2(y-X)(«y.¢~7)(x-(9+E

(y"'¥),=0. (88)
Then use the parametrizatio81) and the chain rule
[y-Xy-(a—iA)¥],=h®dZE2(y. X W) +(y-X&),, (32),(33) to show that the operators applied on the gauge
(84) fixed ¥ can be rewritten in the form
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1 1 . pect that the two-time field equatiori82) would yield the
WMoy = EV’LD#‘IHL = =Xty )V (89  same richness ofl dimensional spin 1/2 one-time physics,
but now in the language of field theory.

YWXWY =—k(y —xty,)¥ (90) VI. VECTOR AND HIGHER SPIN FIELDS

and Whenn=23, ... thefermions ng" lead to higher spin
) particles. To display the spin components of the wave func-
Y Xy-(0—iA)¥=—(y  —xty,)y"(D,—iA)¥ (91) tion we adapt the methods 28] to the case of SQ@2).
Then anticommutingzﬂ are represented in terms of SD(
+(y"—x“yﬂ)(2)\—x2)(ax—iAx)\If +2) Dirac gamma matrices’c\f'ﬁ acting in spinor space la-
(920 beled bya=1, ...,2972)2 They are given in direct product

) . ~ form acting on the physical state with spin components
whereD ,=d,,+x,d, asin Eq.(36). Inserting these forms in |

the interacting equation of motion we see that we remain
with the overall factor &_,—X“*yﬂ) on both sides of the VI . y
equation, but since this is an invertible matrix that satisfies ha =7 @ -y ®E7 ®le---1 (93
(v~ —x*y,)?=x, it can be removed from both sides. Fur-

thermore by usingk?=0 we set\ =x?/2 which eliminates where the (1{/5))/’\" is inserted in th&'th entry of the direct

e A )

the last term in the last equation. product, andy* (analog of y5 in four dimensionsis the
The result is the interacting massless Dirac fieldlidi-  product of alld+2 gamma matriceg* =i(42)/20"y1",0
mensions, with SOd,2) conformal symmetry, in full agree- ---y%"* such that{y*,yM}=0 and (y*)?=1 (for simplic-

ment with the worldline theory approach. Therefore, the conity, we assume eved+2=2r. If d+2 is odd the spinor
tent of Egs.(82), (84) or Eq. (85) using thed dimensional spacew is doubled to avoidy* proportional to identity.
coordinates(31) and kappa gaug€88) is the interacting In this formalism the constraink;, - ¢,; =0 (for n#0) on
massless fermionic field with S@(2) conformal symmetry. the physical state is solved by the following spin wave func-

However, as discussed if4] there are other gauge tion. For even n (n#2) the spin wave function
choices in two-time physics which would lead to other physi<{(X|®a,a, - -a,. ..,) iS @ bosonic field written in terms of a
cal interpretations for the S@(2) symmetry and of the dy- SO(d,2) tensorF;,q4ice{X) Whose indices correspond to a
namics from the point of view of a one-time observer. UsingYoung tableau shaped like a rectangle, with+2)/2 col-
the corresponding parametrization M, y™ we fully ex-  umns andh/2 rows, as follows:

1 1 2 2 n/2 n/2
= 1 d+2)/2 1 d+2)/2 ce. 1 d+2)/2
ayay - ay = (Y (0+2)02) 5 0, (Y (@+2)02) 4 g, - (Y ©@+22) o

2

?c/i+2)/2] ’ (94)

XF[M%"'M(lmz)/z];[Mi'"M(2d+2)/2]3"'[M2/2"'M
The indices orFj,4ices have permutation properties associated with1§Qype Young tableauxi) the antisymmetric indices
[M3---Mq2)] correspond to the columi, (i) the n/2 columns of indices for differerits are symmetrized with each
other, (ii ) under anti-symmetrization with one more index of a neighboring column the wave function vanishes,
F[Mi"'M(1d+2)/25M§]'"M(2d+2)/2]3"'[M2/2'"M?éiz)/z]zo’ (99)
(iv) to insure irreducibility under S@2) a vanishing trace for any pair of indices usin§™ is required, symbolically
Findices 7=0.
For oddn the spin wave function is a fermionic fielff}, 4i..d X), whose indices correspond to the Young tableau described
above with 6—1)/2 columns, and there is one leftover spinor indexvhich satisfies the irreducibility condition
(M) gyt s 2. 2 =0 (96)
@B M7 Mg oy iIMT Mg oyl '
For n=2, there is an exception sineg# 0 is possible for an SO(2) singlet. Then it is possible to get a sir{gkaige
invariany of OSp(22) even though it is not necessarily neutral under the subgrou@)SQhis allows a more general
solution for®,, ,, than the above. Imposing, - ¢ ®) = 2ig|P) we find

D0, (X)=[1+17*sg(q) (= DPYAM Me2) o Fray o ,(X), (97)

1
p=5(d—2)~[q|=integer. 9
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Therefore, by adjusting the value gfit is possible to obtain In the case of a vector potential we may identify it with
solutions that correspond to antisymmetric tensorghe Yang-Mills gauge potential that appeared in the previous
FMl"'Mp+2(X) with any of the values ofp in the set section and which coupled to the charged scalars or fermi-
{~1,0,1;--,5(d—2)}. If q=0 only the last value op is " Then the currenty,, need not be included as an addi-

possible. This in contrast with the case &3 for which tlon%l source at it follows from the gauge coupllngsi_lgLZ

only one solution is possible as given above. Or L.z . - _

For the rest of the discussion, for simplicity, we will spe- The p brane pOIent'aw‘Ml--'Mpﬂ_ §at|sf|es similar con-
cialize to then=2 case, and furthermore concentrate on freestraints to those oy ...\, after fixing some gauge sym-
fields so we will relax tzhe condition9<2P2~X~z,_/fan/fa metries. Consider fixing the gaug’é"lAMl_..MpH:O. Then
~0 of Egs.(20),(21) to P*~P-y,~0 . The physical state he first equation in Eq.(101) reduces to X-d+p

condition ¢,-P~0 requires that thex=2 wave function +1)Aw,...u,,,=0, which requiresAy ...y, to have a

FMl""V'p+2(X) given in Eq.(97) is an on-shell field strength definite dimension. Despite the gauge choice there still

for a p-brane gauge potentidly, ...y, remains  gauge  symmetry  under SAw .wm_,
Fu w00 P 1, :a_[MlAMZ"'Mp+1]’ for aIIAMz,,,MWl that hav.e.d|men3|on
1 Mpt2 pr2 M1 Mpg p, i.e., (X~<9+p)AM2‘,_Mp+1=O. This is sufficient gauge
aMp+2a[Mp+2AMl~ My -0. (99) symmetry to further fix the gauge m‘Ml, Mg since it now

has a definite dimension. Thus, through these gauge choices
The additional physical state condition in Eg0) requires a ~ We may take &y ...u_,, that satisfies constraints similar to
specific dimension those of the current

XMAy, . m,, =00 MAw =0,

d—2
X'&FMI"'M;H-Z: _(T+2_|q|)FMl”'Mp+2
(X 0+ p+ DA, ., =0, (104

1

==(Pt2)Fuym,, (100
while the dynamics simplifies to the gauge fixed form

(105

This equation holds provided the gauge field satisfi¢sd(

+p+ 1)AM1---Mp+1:a[M1UM2---Mp+1] for anyUMz,__Mp+1. aMaMAMl---M .

Through a gauge transformation 5AM1-“Mp+1 P

:&[MIAMZ'”Merl] one can eliminatdJ, henceU is arbi- If we specialize tm=2 andp=0 [or |g|=(d—2)/2] the

trary. With the choicaJy, ...y . =XM1A, . . thecon- Physical state is a vector gauge fiehq, that satisfies the
27" Mpia 1" Mpt1 i i i = —

dition on Ay ..y takes the gauge invariant form 9249€ invariant equations 6= JuAn =~ InAw

1_‘]M1"'Mp+1'

p+1

XMp+2FM1"'Mp+2:0' XMEyN=0, MFyn=Jn, (106)
The last equation in Eq99) may be modified to include
interactions through a conservpdbrane current, so the com- xMiy=0, MJ,=0, (107
bined equation$99),(100) may be generalized to
(X-0+2)Fyn=0, (X-9+1)Jy=0. (108
M — M —
X p+2FM1---Mp+2_O’ Jd p+2FM1-"Mp+2_‘]M1"'Mp+1' . - .
(101)  For the fixed gauge described above these equations become
The last equation contracted with eithé¥1 or o1 shows (X-9+1)Ay=0, XMA,=0, oMA,=0,
that the brane current must be conserved, satisfy an addi-
tional constraint, and be of definite dimension Moy A=y, (109
M — M —
P mymp =00 Xwyeom =0, (X-9+1)Iy=0, XMJy=0, MJIy=0. (110
(X-9+p+ 1)JM1...MP+1=O. (102  These coincide with equations that appear in Dirac’s paper

[1] for the vector gauge potential. They also are in agreement
The first equation in Eq(101) is “kinematics” and the last  Wwith the results of the background field approach introduced
is dynamics. The dynamical equation follows from a varyingin [10].
the Lagrangian Following Dirac, if we taked+2=6 dimensions, the so-
lution of these field equations in the parametrization of Eq.
VY VY (31) is precisely equivalent to Maxwell's equations for a
FV1 p+24+ AM1 p+1JM M . . _ . . . .
17" Mpia gauge potentiah ,(x) in d=4 dimensions identified as part
(103 of the six dimensional\y(X). The conformal symmetry of
Maxwell’s theory in four dimensions is none other than the
which has the gauge invariance fopa 1 gauge potential. SO(4,2) Lorentz symmetry in six dimensions.

A _
Lg+2=— ZFMl»--M

p+2
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As we have emphasized in the previous sections the paFhe torsion tensor is given by
rametrization of Eq(31) is connected to one of the possible

gauge choices in two-time physics. Parametrizations that are un=DmEN—DNE - (116
related to other gauge choices would reveal other physical ) )
content in thed dimensional field theory. So, we also take the torsion tensor to satisfy the transversal-

ity condition, as a kinematic condition

VIl. GRAVITY
vMTE \=0. (117)

All of the interacting Lagrangians above can be coupled
to gravity. To do so we follow the prescription obtained in We define the Lie derivative of the vielbein by including the
[10]. In the usual way we need a metf&,y(X) or vielbein ~ covariant derivative using the spin connection; it may be
2 (X) and a spin connection for SOR)w(X) in d+2  rewritten in terms of the torsion as follows:
dimensions, but we also need an additional veatti(X)

constr_ucteq from a poten_tizW(X). These fields satisfy the EVEW=V"DE} + onVVER (118
following kinematic equations: =VND[NEﬁ‘A]+VNDME§+aMVNE§ (119
£,GMMN=—2GMY, VM:%GMNﬁNW: —VNTR,,+ Dy V2 (120
GMNgy,W ayW=4W (112 =Dy V? (121

where £GMN is the Lie derivative §GMN=V.4sGMN  we have used the transversality condition on the torsion and
— 9 VMGKN— 4, VNGKM | Furthermore the kinematic condi- definedv@=E2 VM andDy, V3= 9y V2 + oV, . If £/ES is
tions we had earlier for the various fields now take the formcontracted with another vielbein we obtaigG,y in the

form
o d-2 _d " 3
Bvb=m® BVemm3Ve VIFu=0, EVGun=2EVE}Ena=2DuV Ena. (122
(112
Due to the conditior{111) this quantity is Z5y,y . Multiply-
W(X)®=0, W(X)®=0, W(X)A,=0, (113 ing both sides byEN? we find
where the ordinary derivatives in the Lie derivativg, £ EVER=EY, (123

should be replaced by covariant derivatives consistent with a

local Lorentz symmetry SQ@(2) in tangent space. Thus, with

wherever there was an explick™ in flat space, it is now

replaced byVM(X) and wherever there was a Yang-Mills EQ=DnV2=duVe+ wiyVy. (129
derivativedy, + Ay it is now promoted to a S@,2) covari-

ant derivativedy + oy +Ay . Using these modifications the This form has been previously suggestedl1i], we derived
Lagrangiansl_g)+2, L:jl’“, |_Q+2 constructed earlier in this it herg from the.homothety conditiori411) obtained in the
paper are generalized to couple to gravity consistently wittworldline formalism[10]. o o

the underlying OSp{|2) gauge symmetries of two-time Thus, the vielbein constructed in this way satisfies the
physics. They should also be multiplied by a volume factorkinematic condition automatically while it is fully deter-

JG=deE that satisfies §/G=(d+2)\{G as it follows mined by the arbitrary function¥3(X) and wg(X). The
from Eq. (1117). only condition on the function¥?, w2 is that the curvature

Next we would like to write down a Lagrangiarf, , for ~ and torsion be transverse 1" Modulo this condition the
the gravitational sector. But first we will deal with the kine- Vielbein, and metridGyy are determined. This form solves
matic constraints in Ec(111) by rewriting them in tangent automatically the first equation in E¢L11). Similarly, the
space using the vielbein and spin connection and giving thert@st equation in Eq(111) can be rewritten in terms of*

a more geometrical meaning. In particular since the spin con-

nection is a gauge field its field strendthe curvaturg must W=VaV,. (125
satis . L
fy There remains the second equation in Enll) that now
VMR =0, RED =9, 02— gy 0+ [wy 0N ]2, takes the form
(114
- , - . e Y —EEMD (VpyV)=EM(Dy,VP)V,=EMEP V
like other gauge fields in Eq112). Similarly, the vielbein a” oa UMYV /T EM b—™Fa=mMVb
can also be viewed as a gauge field. We define the covariant (126)

derivative of the vielbein with respect to the spin connection
A A a b which is an identity sinc€YEP, = 2. Thus, all kinematic
DumEN=ImENT @oypEN- (119  conditions for the gravitational field are fully solved by the
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arbitrary functionsv?(X) and wﬁ‘,lb(x), and the definition of 1 (d—=2)

- c di(d-2) [
metric throughEf, =Dy V2. Note also that we can rewrite Laso="— 5‘1)(91\/!( GG"NanP) —A 2d P22 G.
the torsion as follows: (137

Ton=DmDnVA=Ri\Vp, or T3=R33V,. (127

o ) The dynamical equations thus obtained must be supple-
Th.erefore, the torsion is obtalned from the curvatttee  mented with the kinematic conditions in Eq&l12) and
spin connection included torsian _ (131). In the gravitational sectoW? w2’ are the primary

From this construction we may dedudesing £Ej, fields, NotE2, or Gy

_ b _ b : T ’ . .
=Ey and &RyN=—2Ryy as any other gauge field  Ag discussed above Dirac’s program for coming down
strength from d+ 2 dimensions tal dimensions can be implemented
through many possible paths, ending up with a choice of

a_\/M a_\/Mga _yja
EWI=VIDVI=VIEN =V, (128 somed dimensions embedded i+ 2 dimensions. In this
ab_ Me=Npab \ _ _ 1ab way one arrives at different looking but non-trivially related
EvReq=Ev(EcEqRun) = ~4Rca, (129 interacting field theories il dimensions. This is the new
£ T8 = —3T2,. (130 lesson learned from two-time physics.

As mentioned earlier one may consider several scalars,
spinors, vectors, etc., and build é&+2 Lagrangian that
would reproduce the standard model in one ofdive4 ver-
sions of ad+2=6 dimensional theory in two-time physics.

VR 2P=0, (131  The natural choice of 4 dimensions among the 6 is the one

given in Eq.(31) since that is the one that corresponds to the

while VT 3=0 is automatically satisfied thanks to Eq. massless relativistic particle. It would be interesting to find
(127). This is the only remaining kinematic condition on the out what one can learn from the other choices of 4 dimen-
gravitational background as long as the primary buildingsions that would produce dual versions of the standard
blocks areV? and w’. model. In particular, can one discover non-perturbative phe-

We now turn our attention to the Lagrangian in the gravi-N0mena, relations among parameters, or new measurable ef-
tational sector that generates the dynamics for graiigy ~ fects of the standard theory in particle physics? These ques-
impose the analog of the Einstein equatjoirs two-time  tions remain to be investigated in general as well as for the
physics. Naively the Lagrangian would be given by the Rie-Standard model itself.
mann curvature scal&®= R2P but we must seek a modifica- The two-time formulation presented here and#-10)
tion in light of the constraints generated by, &s in Egs. has properties that_touches upon _other popular but little un-
(111),(131),(112). Consistent coupling with these constraints derstood concepts in the current literature. Among them du-

The transversality conditiong™R2,=0 on the curvature
and torsion may be rewritten in tangent space

requires the form ality, holography, AdS-CFT, background independence are
ideas that can be seen to be present in two-time physics in
Lg’+2~(detE) Rgg¢2(d—4)/d—2 (132 some generalized sense. Holography can be compared to the

fact thatd dimensions, which can be thought of as a surface
where ® is one(or a combinatioh of the scalar fields de- around the bulk ofi+2 dimensions, is sufficient to describe
scribed earlier. Typically the scalar that appears in the overall of the physics contained in the bulk. In our version of
all factors in the Lagrangians we constructed up to nowholography we go down two dimensions rather than one and

would be identified as the dilaton. therefore there is not just oredimensional “surface” but
many, and this connects to our version of “duality.” Duality
VIIl. DISCUSSION can be compared to the many versionsdoflimensional

o ) _ theories that are related and actually represent the sdme (
Combining the Lagrangians for scalars, spinors, vectors. 2)-dimensional theoryan analogy to M theojy We have
and gravitons we have a total Lagrangian that generates th@ready given a concrete example of the usual AdS-CFT cor-
d_ynamical equations of mlotion through a variational pri”'respondence at the end of Sec. IV B, as seen from the point
ciple, and couples all the fields to one another: of view of two-time physics, and this could be generalized to
more interesting cases. Finally concepts of background inde-
Ld+2:LdG+2+L§+2+Lg+2+Lg+2 (133 pendence are present since one could start witth+e&2
theory without backgrounds and end up with a theondin
dimensions with many possible curved backgrounds.
We need to end on a down note, but hopefully a stimu-
Lg«+2:_E(detE)(Dz(d—A)/d—ZFMNFKLGMKGNL (135 lating one. The formu_la;ion of two-time physics in fieldl
4 theory presented here is incomplete. The fact that the subsid-
iary “kinematic” conditions are not derived directly as an

LS, ,~ (detE) d2@-4/d-2gab (134

L;I'+2=(detE)[\I_fy-V v-(d—iA)¥ equation of motion from the field theory Lagrangian is a sign
. . that the formulation is incomplete. Surely one could intro-
—h®?@=2W . VU + T y.V¢] (136  duce Lagrange multipliers to impose these conditions, but
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this seems artificial. Introducing a delta functidiX?) or  establish the validity of the duality relations among the
8(V?) in the action built from the Lagrangian above is alsod-dimensional theories at the second quantized level. Some
just as artificial, and it still misses the other kinematic con-such duality is expected, but the correct ordering of operators
straints due to &. Rather, a gauge principle that implements (or corresponding anomaliegsnay need further understand-
the underlying Sp(RB) or OSpf|2) gauge symmetry di- ing.
rectly in field theory is the needed ingredient. This would To implement the Sp(R) gauge symmetry in field
generate all the kinematic or dynamic constraints simultatheory suggested above it may be more natural to consider
neously, as it does in the worldline formalism. In this sensdields that are functions over phase spddeX,P). This ap-
the worldline formalism seems more fundamental at the curpears to go in the direction of non-commutative geometry,
rent stage. but with specific goals that are not currently part of the think-
Once the field theory formulation is completed it would ing in non-commutative geometry. Perhaps it would be help-
then be possible to investigate with more confidence seconfilll to investigate in this direction to complete the field theo-
quantization in the formalism of two-time physics, and try toretic formulation of two-time physics.
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