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Two-time physics in field theory
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A field theory formulation of two-time physics ind12 dimensions is obtained from the covariant quanti-
zation of the constraint system associated with the OSp(nu2) worldline gauge symmetries of two-time physics.
Interactions among fields can then be included consistently with the underlying gauge symmetries. Through
this process a relation between Dirac’s work in 1936 on conformal symmetry in field theory and the more
recent worldline formulation of two-time physics is established while providing a worldline gauge symmetry
basis for the field equations ind12 dimensions. It is shown that the field theory formalism goes well beyond
Dirac’s goal of linearizing conformal symmetry. In accord with recent results in the worldline approach of
two-time physics, thed12 field theory can be brought down to diversed-dimensional field theories by solving
the subset of field equations that correspond to the ‘‘kinematic’’ constraints. This process embeds the one
‘‘time’’ in d dimensions in different ways inside the (d12)-dimensional spacetime. Thus, the two-timed
12 field theory appears as a more fundamental theory from which many one-timed-dimensional field theories
are derived. It is suggested that the hidden symmetries and relations among computed quantities in certain
d-dimensional interacting field theories can be taken as evidence for the presence of a higher unifying structure
in a (d12)-dimensional spacetime. These phenomena have similarities with ideas such as dualities, AdS-CFT
correspondence, and holography.

PACS number~s!: 11.25.Hf, 04.62.1v, 11.15.Tk, 11.30.2j
it-
tly

ne

s

)

on
io

dd
au
o
-

n
d
te

rly
ri
d
i

in
w
ha

e
hip
the
to
e

d
of
e-
ine
me

he
in

-

y

lo-
r-
al

s
ns
ng
ts
ved

d
ab-
ely

d
ed
I. INTRODUCTION

In 1936 Dirac invented a field theory approach for rewr
ing conformal field theory in four dimensions in a manifes
SO(4,2) covariant form in six dimensions@1#. Dirac’s fields
F(X) depend on 6 coordinatesXM which have two timelike
dimensions, just like the dynamical coordinatesXM(t,•••)
used in the formalism of two-time physics on the worldli
or worldvolume@2–10#. In the notation of@2–10# to label
XM, with M518,28,0,1,2,3, Dirac’s choice of coordinate
are as follows: Minkowski space coordinatesxm are the ho-
mogeneous coordinatesxm5Xm/X18, with m50,1,2,3, while
the extra coordinateX28 is eliminated through the SO(4,2
invariant constraintX•X522X18X281XmXm50. The ex-
tra coordinatesX08,X18 given by X685(X086X18)/A2 de-
scribe one extra timelike and one extra spacelike dimensi
Dirac showed that the free field equations for scalar, ferm
and vector fields in 4 dimensionsf(xm) can be rewritten
SO(4,2) covariantly in terms of fieldsF(XM) that depend on
the 6 coordinates, provided these fields also satisfy a
tional SO(4,2) covariant subsidiary conditions. Several
thors pursued Dirac’s idea and extended it to interacting c
formal field theories, including conformally invariant Yang
Mills theories @11,12#, but then Dirac’s idea was forgotte
for a long time. Recently this approach has been applie
conformal gravity and its interactions with conformal mat
@13#.

Dirac’s goal was to realize conformal symmetry linea
in ~412!-dimensional field theory, and this remained the p
mary motivation for the work in the literature that followe
his paper. The goals and results of two-time physics lie
more general directions, although conformal symmetry is
cluded as a special outcome in a particular gauge. In t
time physics there is an underlying new gauge principle t
0556-2821/2000/62~4!/046007~16!/$15.00 62 0460
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is responsible for recasting the (d12)-dimensional theory as
many possibled-dimensional theories. The purpose of th
present paper is twofold. First, to establish the relations
between the gauge principles in two time physics on
worldline and Dirac’s approach in field theory; second,
demonstrate directly in field theory that diverse one-tim
field theories emerge ind dimensions from the same fiel
equations ind12 dimensions. It will be seen that the path
derivation ofd dimensional field theories is in precise corr
spondence with making gauge choices in the worldl
theory, the important step being the embedding of the ti
coordinate ind dimensions in various ways inside thed12
dimensions. In this way one can see that t
(d12)-dimensional two-time theory plays a unifying role
a new sense, including interactions.

Two-time physics ind12 dimensions was developed in
dependently in the worldline~and worldvolume! formulation
@2–10#, unaware of the field theory formalism invented b
Dirac which had been long forgotten.1 It was perhaps lucky
that ignorance of Dirac’s approach permitted the free exp
ration and development of new insights in the worldline fo
mulation that were not necessarily connected with conform
symmetry. Historically, the motivation for two-time physic
came from duality, and signals for two-timelike dimensio
in M theory and its extended superalgebra includi
D-branes@14–24#. In particular certain dynamical attemp
@20,22# to try to understand these phenomena directly pa
the way to the formalism in@2#. Two-time physics intro-
duced a new gauge principle — Sp(2,R) in phase space, an
its generalizations — that insures unitarity, causality and
sence of ghosts. This takes care of problems that naiv

1I thank Vasilev for bringing to my attention his recent work, an
informing me of Dirac’s work and the line of research that follow
the same trend of thought in relation to conformal symmetry.
©2000 The American Physical Society07-1
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ITZHAK BARS PHYSICAL REVIEW D 62 046007
would have arisen in a spacetime with two-timelike dime
sions. Morally speaking, this gauge symmetry is related
duality in a generalized sense. The new phenomenon in t
time physics is that this gauge symmetry can be used
obtain various one-time dynamical systems ind dimensions
from the same two-time action ind12 dimensions, through
gauge fixing, thus uncovering a new layer of unificati
through higher dimensions. In this paper we will show th
the same insights can be expressed in the language of
theory.

First we will show that the Sp(2,R) gauge symmetry@or
OSp(nu2) for spinning particles# provides a fundamenta
gauge symmetry basis for Dirac’s field equations ind12
dimensions. In effect, the field equations amount to impos
the non-Abelian OSp(nu2) constraints in an SO(d,2) cova-
riant quantization of the worldline-two-time physics theor
while the fields represent the gauge invariant states. A
reaching a two-time field theory formalism for scala
spinors, vectors and higher spin fields, field interactions c
sistent with the underlying worldline gauge invariance is
cluded. In particular, interactions that are local ind12
spacetime, such as Yang-Mills or general reparametrizati
must satisfy certain ‘‘kinematic’’ field equations beyond t
dynamical field equations, that are in complete agreem
with recent results obtained through background field me
ods in two-time physics on the worldline@10#. The interact-
ing field theory constructed in this way is in agreement w
the latest developments in the Dirac approach included
@13#.

Second, it is shown that, depending on the path of com
down from d12 dimensions to some chosen subset od
dimensions, by solving the ‘‘kinematic’’ subset of the fie
equations,the physical meaning of the one-time field theo
as interpreted by an observer in the remaining d dimensio
can be quite different. In particular the natural SO(d,2) Lor-
entz symmetry of the original field equations@in the case of
flat ~d12!-dimensional spacetime# can be interpreted in dif-
ferent ways depending on the choice of the remainingd co-
ordinates. The resulting one-time field theory has conform
symmetry if one follows Dirac’s path fromd12 to d, but
with various embeddings ofd dimensions ind12 dimen-
sions one arrives at various one-time field theories. In the
case, all resultingd dimensional field theories have new hi
den SO(d,2) symmetries which are not necessarily conf
mal symmetries. Thus the two-time field theory approa
unifies classes of one-time physical systems ind dimensions
that previously would have been thought of as being
scribed by d-dimensional field theories unrelated to ea
other.

Solving the ‘‘kinematic’’ subset of field equation
amounts to a gauge choice in the worldline formalism
two-time physics, and therefore the physical interpretation
the remaining field theory agrees with similar recent res
in the worldline approach. The main essential new po
achieved through field theory is the inclusion of interactio
in this new type of unification.

These results hold at the level of classical field theo
which could be thought of as the first quantization of t
worldline theory. To extend them to second quantized fi
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theory ~and analyze issues such as anomalies, etc.! certain
open problems in the field theoretic formulation of two-tim
physics need to be understood. These may involve n
commutative geometry, and they are briefly discussed in
last section. Analogies and connections with other conce
in the literature, such as duality, AdS-CFT and holograp
are also pointed out in the last section.

II. LOCAL AND GLOBAL SYMMETRY

The two-time worldline description of particle dynamic
in the absence of background fields~i.e. ‘‘free’’ case2!, is
given by theSp(2,R) gauge theory described by the actio
@2#

S05
1

2E dt DtXi
MXj

N« i j hMN

[E dtS ]tX1
MX2

N2
1

2
Ai j Xi

MXj
NDhMN ~1!

5E dtS ]tX
MPN2

1

2
A11XMXN

2
1

2
A22PMPN2A12XMPNDhMN . ~2!

Here Xi
M(t) is an Sp(2,R) doublet, consisting of the ordi

nary coordinate and its conjugate momentum (X1
M[XM and

X2
M[PM5]S0 /]X1M). The indicesi , j 51,2 denote the dou-

blet Sp(2,R), they are raised and lowered by the antisy
metric Levi-Civita symbol« i j . The gauge covariant deriva
tive DtXi

M that appears in Eq.~1! is defined as

DtXi
M5]tXi

M2« ikAklXl
M . ~3!

The local Sp(2,R) acts as dXi
M5« ikvklXl

M and dAi j

5v ik«klA
l j 1v jk«klA

il 1]tv
i j , wherev i j (t) is a symmetric

matrix containing the three Sp(2,R) gauge parameters an
Ai j is the gauge field on the worldline. The second form
the action~2! is obtained after an integration by parts so th
only X1

M appears with derivatives. This allows the identific
tion of X,P by the canonical procedure, as indicated in t
third form of the action.

2Although interactions are not explicitly present in the ‘‘free
action ind12 dimensions, the solution of the constraints genera
a class of dynamics for the remaining degrees of freedom id
dimensions after a gauge is fixed. When background fields
present all possible particle dynamics ind dimensions~rather than
only a class! can be described from the point of view of two-tim
physics ind12 dimensions, as shown in@10#. We also mention that
another generalization is space-time supersymmetry, includin
generalized local kappa supersymmetry@5,6,9#. This enriches both
the local symmetries as well as the global symmetries. The form
ism has also been generalized to strings and branes with lim
success so far@7# ~although full success is expected!.
7-2
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The gauge fieldsA11, A125A21, andA22 act as Lagrange
multipliers for the following three first class constraints th
form the Sp(2,R) algebra:

Xi•Xj50→X25P25X•P50, ~4!

as implied by the localSp(2,R) invariance. It is precisely the
solution of these constraints that require that the global m
ric hMN has a signature with two-time like dimensions. Thu
hMN stands for the flat metric on a (d,2)-dimensional space
time, which is the only signature consistent with the eq
tions of motion for theSp(2,R) gauge fieldAkl, leading to
non-trivial dynamics that can be consistently quantiz
Hence the global two-timeSO(d,2) is implied by the local
Sp(2,R) symmetry.

The explicit globalSO(d,2) invariance has the Lorent
generators

LMN5XMPN2XNPM5« i j Xi
MXj

N ~5!

that are manifestly Sp(2,R) gauge invariant. As mentione
above, different gauge choices lead to different particle
namics ind dimensions~relativistic massless and massiv
particles, non-relativistic massive particle, H-atom, harmo
oscillator, particle in AdSd2k3Sk background, etc.! all of
which haveSO(d,2) invariant actions that are directly ob
tained from Eq.~1! by gauge fixing. Since the action~1! and
the generatorsLMN ~5! are gauge invariant, the global sym
metry SO(d,2) is not lost by gauge fixing. This explains wh
one should expect a hidden~previously unnoticed! global
symmetry SO(d,2) for each of the systems that result b
gauge fixing@3#.

To describe spinning particles, worldline fermionsca
M(t),

with a51,2, . . . ,n are introduced. Together withXM,PM ,
they form the fundamental representation (ca

M ,XM,PM) of
OSp(nu2). Gauging this supergroup@4# instead of Sp(2,R)
produces a Lagrangian that hasn local supercharges plusn
local conformal supercharges on the worldline, in addition
local Sp(2,R) and local SO(n). The full set of first class
constraints that correspond to the generators of these g
symmetries are, at the classical level,

X•X5P•P5X•P5X•ca5P•ca5c [a•cb]50. ~6!

To have non-trivial classical solutions of these constra
~with angular momentum! at least two timelike dimension
are required. The OSp(nu2) gauge symmetry can remove th
ghosts of no more than two timelike dimensions. Therefo
as in the spinless case, the signature is fixed and the gl
symmetry of the theory is SO(d,2). It is applied to the labe
M in (ca

M ,XM,PM). The global SO(d,2) generatorsJMN that
commute with all the OSp(nu2) gauge generators~6! are

JMN5LMN1SMN, SMN5
1

2i
~ca

Mca
N2ca

Nca
M !. ~7!

In this paper we will be interested in the covariant qua
tization of the theory in a manifestly SO(d,2) covariant for-
malism. This will be used in the next section to construct
(d12)-dimensional field theory. The commutation rules a
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M ,cb

N%5hMNdab , ~8!

while all other commutators among the basic degrees of f
dom are zero. TheSp(2,R) or OSp(nu2) gauge constraints
applied on the Hilbert space are just enough to remove
negative-norm states~‘‘ghosts’’! introduced by the two time-
like dimensions@2,4# , resulting in a unitary quantum theory
We will treat spinless particles as a special case of OSp(nu2)
with n50, so we will state the covariant quantization proc
dure directly for OSp(nu2).

Since the constraints form a non-Abelian algebra o
must choose a commuting subset of operators to label
Hilbert space. In particular the local OSp(nu2) labels and the
global SO(d,2) labels correspond to simultaneously diag
nalizable operators that include the Casimir operators of b
groups

uOSp~nu2! labels;SO~d,2! labels&. ~9!

The OSp(nu2) quadratic Casimir operator that commut
with all the generators in Eq.~6! is ~before they are set to
zero!

C2„OSp~nu2!…5
1

8
~X2P21P2X2!2

1

16
~X•P1P•X!2

~10!

1
1

4i
~X•caP•ca2P•caX•ca! ~11!

1
1

32
~c [a•cb] !~c [a•cb] !. ~12!

On the other hand, the global SO(d,2) quadratic Casimir
operator is given by~orders of operators respected!

C2„SO~d,2!…5
1

2
JMNJMN

5
1

2
LMNLMN1

1

2
SMNSMN1LMNSMN ,

~13!

1

2
LMNLMN5

1

2
~X2P21P2X2!

2
1

4
~X•P1P•X!2112

d2

4
, ~14!

1

2
SMNSMN5

1

8
~c [a•cb] !~c [a•cb] !

1
1

8
n~d12!~d1n!, ~15!

LMNSMN52 i ~X•caP•ca2P•caX•ca!

2
1

2
n~d12!. ~16!
7-3
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ITZHAK BARS PHYSICAL REVIEW D 62 046007
The extra constants arise from the re-ordering of quan
operators. In the last two lines we have usedca•ca5n(d
12)/2 that follows from the quantum relation. We see th
the Casimir operator of SO(d,2) is related to the Casimi
operator of OSp(nu2):

C2„SO~d,2!…54C2„OSp~nu2!…

1
1

8
~d12!~n22!~d1n22!. ~17!

Similarly, higher Casimir operators ofSO(d,2) are also re-
lated to Casimir operators of OSp(nu2) except for ordering
constants.

One must demand that the physical states be singlets
der the gauge symmetry OSp(nu2). This requires vanishing
Casimir operators of the gauge group, in particu
C2„OSp(nu2)…50. This leads to definite and unique eige
values for the SO(d,2) Casimir operators for physical state
Thus, on physical states the quadratic Casimir operator m
have the eigenvalue

C2„SO~d,2!…5
1

8
~n22!~d12!~d1n22!. ~18!

Similarly, the higher Casimir eigenvalues for SO(d,2) are
also fixed. Therefore, for givend,n one must take a specifi
SO(d,2) representation to guarantee an OSp(nu2) gauge sin-
glet. For example, for spinless particles (n50) the quadratic
Casimir operator is fixed toC2512d2/4 ~in the absence o
background fields!.

When the quantization is performed in a fixed gauge
same eigenvalue of the Casimir operators must emerge
the dynamics of the remaining dynamical system ind dimen-
sions for a fixedn. Indeed after careful ordering of non-linea
products of operators this is verified explicitly~see@2,4,3#
for examples of non-covariant quantization in several fix
gauges!. The covariant quantization explains why seeming
unrelated dynamics ind dimensions~such as massless rela
tivistic particle, H-atom, harmonic oscillator in one less d
mension, particle in AdSd2k3Sk for all k, etc.! all must re-
alize the same unitary representationof SO(d,2), as they
indeed do.

III. FIELDS, ‘‘KINEMATICS’’ AND ‘‘DYNAMICS’’

If the system is quantized in a fixed gauge, one time a
one space dimensions are eliminated, making the absen
ghosts and the one-time nature of the system quite evi
@2,3#. The quantum theory is then expressed in terms o
wave equation ind dimensions for each one of the fixe
gauges~e.g. forn50 spinless particles: Klein-Gordon, non
relativistic Schro¨dinger, H-atom wave equation, Klein
Gordon in AdSd2k3Sk background, etc.!. Each one of these
wave equations is derivable from an effective field theo
action in d dimensions. These field theory actions look d
ferent but yet they all represent the quantum theory of
samed12 system. Since the original theory had an SO(d,2)
global symmetry, the derived field theories, although th
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look different, must all have SO(d,2) global symmetry and
they must all be related. A well known case of the symme
is the conformal SO(d,2) symmetry of the massless Klein
Gordon theory. The symmetry must be present for all
others, and indeed it is the case, provided one takes ca
anomalies produced by quantum ordering of operators.
example, the particle on AdSd2k3Sk background is SO(d,2)
symmetric~for everyk) at the field theory level provided a
quantized mass term produced by quantum ordering is
cluded in the action@3#.

Similar comments apply for spin 1/2 wave equation
such as the Dirac equation, etc. produced by the vari
gauge fixings of the OSp(1u2) gauge theory, or for spin 1
wave equations, such as Maxwell equation etc. produced
the various gauge fixings of the OSp(2u2) theory.

An interesting question is: Is there a master field theory
d12 dimensions from which all of thesed dimensional field
theories are derived by a procedure akin to the gauge fix
in the underlying OSp(nu2) theory? Furthermore, if field in-
teractions are added to each of thed dimensional theories
which of these interactions would still represent the unifi
master field theory ind12 dimensions, thereby making th
different d dimensional theories all equivalent to each oth
under some kind of duality transformation?

These questions are answered by quantizing the world
theory in a manifestly SO(d,2) covariant formalism. The
wave equation is then ind12 dimensions, and it is supple
mented by additional field equations that we call ‘‘kin
matic’’ as opposed to ‘‘dynamic’’ field equations. The ‘‘ki
nematic’’ equations impose a subset of the underly
OSp(nu2) constraints. The ‘‘dynamic’’ field equations corre
spond to another subset of constraints, but are derived fro
field theory action ind12 dimensions. Field interactions ar
included in this dynamic action. When the kinematic equ
tions are solved, the field theory is reduced fromd12 di-
mensions tod dimensions, but there is a choice of whichd
dimensions amongd12 survive in the remaining field equa
tions. This choice is equivalent to the gauge fixing that co
be done in the worldline formulation of the theory. Inde
the remainingd dimensional field theory that comes from th
d12 field theory correctly produces the wave equations
rived from the gauge fixed worldline theory, including an
anomalies. But now the consistent interactions are also fi
for the d dimensional version of the theory, since they
come directly from the field interactions ind12 dimensions.

The formulation of thed12 field equations, both kine
matic and dynamic, proceeds as follows. A physical st
uF& of the worldline theory is labeled by both OSp(nu2) and
SO(d,2) ~if no background fields! as in Eq. ~9!. The
OSp(nu2) labels must correspond to a singlet for a gau
invariant physical state. The OSp(nu2) labels include a set o
commuting generators in addition to the OSp(nu2) Casimir
eigenvalues that are zero. On a physical state
is OSp(nu2) singlet the SO(n) generators given by
(1/2i )c [a•cb] must all vanish@since the physical state mus
be an SO(n) singlet#. There is an exception forn52: the
SO(2) generator (1/2i )c [1•c2]5q need not vanish since ev
ery representation of SO(2) is a singlet~although not neutral
if qÞ0). In addition, among the set of commuting operato
in OSp(nu2) that would vanish on a singlet, one is tempt
to choose the generatorsP2 and P•ca since these would
7-4
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TWO-TIME PHYSICS IN FIELD THEORY PHYSICAL REVIEW D62 046007
produce Klein-Gordon and Dirac equations. If these ope
tors vanish we would be forced into a free field theory. Ho
ever, before we impose this last condition, let us re-exam
the expression of the Casimir operator~10! to find out if we
can make a weaker choice. As we will see, this is indeed
case, and the weaker choice will allow us to include inter
tions in field theory.

The OSp(nu2) Casimir~10! may be rewritten by pulling
P2 andP•ca to the right side

C2„OSp~nu2!…5
1

4 S iX•P1
d12

2
1uqudn,2D

3S iX•P1
d22

2
1n2uqudn,2D1

1

4
X2P2

2
i

2
X•caP•ca1

1

32
~c [a•cb] !~c [a•cb] !.

~19!

To define a physical state, with a vanishingC2„OSp(nu2)…
50, it is sufficient to simultaneously diagonalize the co
muting operatorsiX•P, X2P2, X•caP•ca all of which com-
mute also with the SO(n) generators (1/2i )c [a•cb] . Thus, a
physical state is defined by

X2P2uF&50, S iX•P1
d22

2
1n2uqudn,2D uF&50,

~20!

X•caP•cauF&50, S 1

2i
c [a•cb]2q dn,2 «abD uF&50.

~21!

Demanding an OSp(nu2) singlet also imposes the SO(d,2)
Casimir eigenvalue given in Eq.~18!. Some additional op-
erators, even if they do not commute with the above, m
have definite eigenvalues on physical statesuF&, since we
are interested in the states that give only the zero eigenva
of the operators above rather than all of their eigenvalue
may then be quantum mechanically compatible if certain
ditional operators take on specific values as well on
physical states@for example, even though the SO(n) genera-
tors do not commute with each other they can all van
simultaneously on a SO(n) singlet#.

In addition to the physical ket statesuF& we also consider
the spin and position space bra states^X,spinu. The probabil-
ity amplitude ^X,spinuF&[Fspin(X) defines the physica
fields or wave functions that will enter in th
(d12)-dimensional field theory. The spin labels will be e
plained below. On the statêX,spinu the position operators
XM are diagonal. An important property of this state is d
fined by demanding theX2 operator to vanisĥX,spinuX2

50 as a constraint imposed on the position Hilbert spa
From

05^X,spinuX2uF&[X2Fspin~X! ~22!

we learn thatFspin(X) vanishes everywhere, except on t
(d12)-dimensional lightcone whereX250. Therefore, to
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examine the non-trivial fields we must takeX250. On posi-
tion space the momentum operators act as derivat
^X,spinuPM52 i ]M^X,spinu. The quantization procedure w
have just adopted~i.e. imposingX2 on bra states! implies
that when there are derivatives applied on the fields, suc
]MFspin(X), the derivative must be performed first befo
imposing the constraint

X250. ~23!

This describes one of the ‘‘kinematic’’ equations that will b
needed. Another kinematic constraint is the second equa
in Eq. ~20!. On the fields it takes the form

S X•]1
d22

2
1n2uqudn,2DFspin~X!50, ~24!

where uqu will be related to the spin in the case ofn52.
Basically this requires fields of specific scales depending
their spin. The required scale is ind12 dimensions, not ind
dimensions. A third kinematic equation is the second eq
tion in Eq. ~21!, but we will solve that one completely an
the fieldsFspin(X) will be defined after the explicit solution
of that equation.

There remains the ‘‘dynamic’’ equations, the first equ
tions in Eqs.~20!,~21!, which yield Klein-Gordon or Dirac
type equations for the fieldsFspin(X). In the next few sec-
tions we study the dynamic equations for each spinning fi
Fspin(X), include field interactions, and build an action fro
which they can be derived. The combination of the intera
ing field theory action and the kinematic equations~23!,~24!
define the (d12)-dimensional field theory at the classic
level.

IV. SCALAR FIELD „nÄ0…

For n50 ~drop ca
M) the worldline theory based on

OSp(0u2)5Sp(2,R) describes a spinless particle. The d
namic ~20! and kinematic equations~23!,~24! take the form

X2]M]M F~X!50, XM]M F~X!52
d22

2
F~X!,

X2 F~X!50. ~25!

Consistent interactions have the form

]M]M F5lF (d12)/(d22)1•••, ~26!

where ••• stands for interactions with other fields that w
will discuss below. All interactions are constrained by d
manding consistency with the Sp(2,R) kinematic constraints
in Eq. ~25!, which are imposed by applyingX•] or X2 on
both sides, and using Eq.~25!. Without the interactions this
equation is consistent with choosing to diagonalizeP2;0 on
the physical state, which was possible in the first place,
by going through the steps above we see that]M]M F(X)
need not vanish while remaining consistent with the phys
state conditions. In general, if written in radial coordinate
the Laplacian operator]M]M in d12 dimensions has term
proportional to 1/X2, which will tend to blow up asX2→0
7-5
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]M]M5
1

X2 S ~X•]!21dX•]2
1

2
LMNLMND ~27!

but the numerator is zero after using the second equatio
Eq. ~25! and the physical value of the SO(d,2) Casimir op-
erator ~13! for n50. Therefore the operator]M]M ;0/0 is
finite on a physical state as given in Eq.~26!. In this way we
have seen that the underlyingSp(2,R) gauge symmetry per
mits only certain interactions. Ifd1256 ~i.e. d54) the
right hand side of Eq.~26! containsgF3. The field equation
can be derived from the variation of the Lagrangian

Ld12
F 52

1

2
F]M]MF2l

~d22!

2d
F2d/(d22), ~28!

and it must be supplemented by the subsidiary kinem
conditions in Eq.~25!.

Evidently one can write a richerd12 field theory involv-
ing several scalar fields that have interactions with each o
so long as those interactions are consistent with the sub
iary kinematic conditions. This means that the pow
2d/(d22) should be saturated, but this can be done by
product of several scalar fields. Ifd54 the interaction isF4,
but other powers are not permitted.

The equations in Eq.~25! are a slight generalization o
Dirac’s equations@1# that he obtained by a different set o
arguments@instead of the first equation in Eq.~25! he had
]M]M F(X)50]. In our case these equations follow direct
from the Sp(2,R) gauge symmetry conditions of the world
line theory, and thus provide a gauge theory basis for Dira
approach.

We will next solve the subsidiary kinematic field equ
tions and show that the remaining dynamics is described
a field theory ind dimensions. However, we will see tha
there are many ways of choosing coordinates in coming fr
d12 dimensions down tod dimensions while solving the
subsidiary conditions. The choice of coordinates is paralle
fixing a Sp(2,R) gauge in the worldline theory. Various one
time field theories ind dimensions emerge when ‘‘time’’ is
identified in different ways within the (d12)-dimensional
space. One of those cases corresponds to conformal
theory, with SO(d,2) interpreted as the conformal group,
Dirac suggested. However, all other choices of coordina
lead to otherd dimensional field theories with SO(d,2) sym-
metry, but with SO(d,2) taking on different meanings as le
familiar hidden symmetries. Thus, the content of these fi
equations goes well beyond the linearization of conform
symmetry envisaged by Dirac and the literature that follow
his path@1,11–13#. In fact, the equations above unify a cla
of different looking d-dimensional one-time field theorie
into the same (d12)-dimensional two-time field theory, in
cluding interactions, as shown below.

A. Massless scalar field ind dimensions

In the worldline formulation the gauge fixingX1(t)51
and P1(t)50, and solution of constraintsX250 andX•P
50 left behind the Minkowski coordinates and momen
xm(t), pm(t) as the independent degrees of freedom
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X18~t!51, X28~t!5x2/2, Xm5xm~t!, ~29!

P18~t!50, P28~t!5x•p, Pm5pm~t!, ~30!

constrained only byp250. The dynamics of the remainin
coordinates describe the massless relativistic particle@2#. The
quantization of the remaining system produced the Kle
Gordon equation which in turn can be derived from t
Klein-Gordon action that has the SO(d,2) conformal sym-
metry identified with the Lorentz symmetryLMN5XMPN

2XNPM in d12 dimensions@2#. Field interactions may then
be added, but there is no specific instruction for which int
actions are permitted, unless one tries to maintain
SO(d,2) Lorentz symmetry.

Now, let us do the analog of this gauge fixing directly
the (d12)-dimensional field theory of the previous sectio
Following Dirac, we use the change of variables

X185k, X285kl, Xm5kxm, ~31!

where the one-time is embedded in Minkowski spa
xm while the dependence on the other time will be det
mined by solving the kinematic field equations. Usin
the chain rule, ]M5(]k/]XM)(]/]k)1(]l/]XM)(]/]l)
1(]xm/]XM)(]/]xm) we find

]

]X18
5

]

]k
2

l

k

]

]l
2

xm

k

]

]xm
, ~32!

]

]X28
5

1

k

]

]l
,

]

]Xm
5

1

k

]

]xm
. ~33!

Note thatP18 ~which was set to zero as a gauge choice
the worldline approach! is represented by the derivative op
erator

P1852P285 i
]

]X28
5

1

k

]

]l
. ~34!

At this stage no gauge choices have been made; on
change to more convenient coordinates has been perform
but note the parallel with the gauge in Eqs.~29!,~30!. Next,
we can write the differential operators in the new coordina

XM]M5k
]

]k
, ~35!

]M]M5
1

k2 S ]

]xm
1xm

]

]l D 2

2
1

k2 S 2k
]

]k
1d22D ]

]l

1
1

k2
~2l2x2!S ]

]l D 2

. ~36!

These differential operators are to be applied on a phys
field which is parametrized asF(k,l,xm) before imposing
the kinematic constraintsX250. To impose this constrain
one must setl5x2/2 after differentiation]/]l. Then we see
7-6



-
in

ly

i

or

g

io
l-

in

ra
n

at
he

-

-
he
cs

n-
t

e
tly

l

e-
er

is
tes

e

y

the
the
on
re-
dels
etic
eld

the

ate

ar-
e

TWO-TIME PHYSICS IN FIELD THEORY PHYSICAL REVIEW D62 046007
that the third term in]M]M drops out on sufficiently non
singular wave functions. Using the kinematic constraint
Eq. ~25! together with Eq.~35! the kappa dependence is ful
determined as an overall factork2(d22)/2

F~X!5k2(d22)/2f ~x,l!. ~37!

This solution allows us to drop also the second term
]M]M . Next, note that derivatives with respect toxm appear
only in the combination]/]xm1xm(]/]l). Then, settingl
5x2/2 after differentiation using the derivative operat
]/]xm1xm(]/]l) gives the same result as settingl5x2/2
before differentiation and differentiating only with]/]xm:

F S ]

]xm
1xm

]

]l D f ~x,l!G
l5x2/2

5
]

]xm
f S x,

x2

2 D . ~38!

Therefore we can setf (x,l)ul5x2/25f(x) before differen-
tiation provided we also drop the term]/]l in the derivative
operator]/]xm1xm(]/]l). We see that all]/]l terms have
dropped out from the Laplace operator]M]M in Eq. ~36!.
The disappearance of]/]l everywhere is parallel to settin
P1850 as a Sp(2,R) gauge choice as in Eqs.~30!,~34!. Us-
ing these remarks we see that the physical state condit
~25!,~26! are by now fully solved in this gauge by the fo
lowing general form:

F~X!5k2(d22)/2f~x!,
]2f~x!

]xm]xm

5lf (d12)/(d22),

~39!

wheref(x) is an interacting massless Klein-Gordon field
d-dimensional Minkowski spacetime~in this interaction we
assumed a single real field, but it could be more gene!.
The effective action that generates this equation of motio

Ld
f52

1

2
f]m]mf2

l~d22!

8d
f2d/(d22). ~40!

This is in full agreement with the effective field theory th
was obtained by quantizing the worldline formalism in t
fixed gaugeX18(t)51, P18(t)50, as given in@2#.

Note that thed12 Lagrangian~28! reduces directly to the
d Lagrangian~40! when the solution of the subsidiary con
ditions ~39! and the form of the Laplacian~36! are used:

Ld12
F ~X!→k2dLd

f~x!. ~41!

k disappears after integration overk in the action.
Thus, solving just the kinematic equationsX250 and

X•]F52 1
2 (d22)F with a particular choice of the remain

ing d coordinates, and replacing the solution into t
SO(d,2) invariant action is sufficient to obtain the dynami
and the interpretation of the theory ind dimensions.

It is well known that the interacting massless Klei
Gordon theory~40!, including the interaction, is invarian
under conformal transformations, although the symmetry
somewhat ‘‘hidden.’’ In the two time formalism given abov
the conformal symmetry is inherited from the manifes
04600
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SO(d,2) invariant equations~25!,~26! as shown in different
ways in @1# and @2#. This allows us to interpret conforma
symmetry in d dimensions as theLorentz symmetryin d
12 dimensions acting on the spaceXM.

Thus conformal symmetry in Eq.~39! can be taken as
evidence for an underlying higher space with one more tim
like and one more spacelike dimensions. In this high
spacetime alld12 dimensions are at an equal footing — it
only because of the asymmetric choice of coordina
k,l,xm that ~i! the remaining one ‘‘time’’x0 was defined
and~ii ! the manifest symmetry was broken artificially in th
process of solving the ‘‘kinematic’’ equations~gauge con-
straints! to rewrite thed12 field equations as a field theor
in d dimensions.

The more unifying aspect of the higher space, and
interpretation of the hidden symmetry as being simply
higher Lorentz symmetry, will make a stronger impressi
on the reader after noting that a similar observation is
peated in several seemingly unrelated field theoretic mo
that are actually derivable from the same set of field theor
equations in the higher dimensions. Each of the derived fi
theories ind dimensions has the SO(d,2) symmetry realized
in the same irreducible unitary representation, but its inter-
pretation is not conformal symmetry. Nevertheless, it is
same Lorentz symmetry of the higherd12 spacetime.

B. Scalar field in AdSDÃSk background

To show that the meaning of SO(d,2) goes beyond the
conformal symmetry interpretation, let us now demonstr
that the same SO(d,2) invariant equations~25!,~26! have a
different physical interpretation when the coordinates, in p
ticular ‘‘time,’’ are chosen in a different way. Let th
d125D1k12 coordinates be labeled asXM

5(X18,X28,Xm,Xi) with Xm representing (D21) spacetime
dimensions with one time, andXi representingk11 space-
like dimensions, soD1k5d. Consider the following change
of variables@this is related to the Sp(2,R) gauge choice for a
particle moving in the AdSD3Sk background in the world-
line formalism as given in@3# #:

X185ru, X285rs, Xi5r
ui

u
a, Xm5

1

a
ruxm,

~42!

r5
AXi

2

a
, s5

aX28

AXi
2

, ui5
aX18Xi

Xi
2

, xm5
aXm

X18
.

~43!

The ui are Euclidean vectors ink11 dimensions,u is the
magnitude of the Euclidean vectoru5uuu, a is a constant
with dimension of length, andxm are Minkowski vectors in
(D21) dimensions. TheX250 condition gives

s5
a41x2u2

2ua2
. ~44!
7-7
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The SO(d,2) covariant line element ind12 dimensions
dX•dX gives the AdSD3Sk line element inD1k5d dimen-
sions up to a conformal factor@after using Eq.~44!#,

dX•dX5r2S ~du!2

u2
1

u2

a2
~dxm!2D ~45!

5r2S ~dVk!
21

du2

u2
1

u2

a2
~dxm!2D , ~46!

where (dVk)
2 is the metric onSk. This shows the relation

ship of the parametrization to the AdSD3Sk background,
with D1k5d. We will consider all possible values ofk
50,1, . . . ,(d22), so that we will exhibit a relation amon
the field theories for fixedd, written on the background
AdSd , AdSd213S1, . . . , AdS23Sd22.

Let us rewrite Eqs. ~25!,~26! in these coordinates
The chain rule ]M5(]Mr)(]/]r)1(]Ms)(]/]s)
1(]Mui)(]/]ui)1(]Mxm)(]/]xm) gives

]

]X18
5

1

ru S ui
]

]ui
2xm

]

]xmD ,
]

]X28
5

1

r

]

]s
,

]

]Xm
5

a

ru

]

]xm
, ~47!

]

]Xi
5

ui

au S ]

]r
2

s

r

]

]s
22

uj

r

]

]uj D 1
u

ar

]

]ui
~48!

Using these, the relevant differential operatorsXM]M , ]M]M

@before using Eq.~44!# may be written in the form

XM]M5r
]

]r
, ~49!

]M]M5
a2

r2u2
~Dm!21F ui

au

]

]r
1

u

ar S Di22
ui

u

uj

u
Dj D G2

1•••, ~50!

where the derivative operatorsDm ,Di are given by

Dm5
]

]xm
1

uxm

a2

]

]s
, Di5

]

]ui
1

ui

u S x2

2a2
2

a2

2u2D ]

]s
,

~51!

and the terms••• are all proportional to (2ua2s2a4

2x2u2) which vanishes according to Eq.~44!.
The general solution of the second equation in Eq.~25!

now takes the form

F~X!5r2(d22)/2F~s,u,x!us5(a41x2u2)/2a2u . ~52!

We note again that it is possible to replace the differen
operatorsDm ,Di that are applied before the substitutions
5(a41x2u2)/2ua2 with the simple differentiation
]/]xm,]/]ui if the substitution is done before differentiatio
04600
l

@DmF~s,u,x!#s5(a41x2u2)/2ua25
]

]xm
FS a41x2u2

2ua2
,u,xD ,

~53!

@DiF~s,u,x!#s5(a41x2u2)/2ua25
]

]ui
FS a41x2u2

2ua2
,u,xD .

~54!

Therefore, we may define the fieldf(x,u) that depends only
on the AdSd2k3Sk variablesxm5(xm,ui)

f~x,u![F~s,u,x!us5(a41x2u2)/2a2u . ~55!

Combined with the vanishing of the••• terms in Eq.~50! the
net effect is to drop the derivatives]/]s wherever they ap-
pear. This is equivalent to the choice of the Sp(2,R) gauge
P185]/ i ]X285(1/ir)(]/]s)50 which was performed in
the worldline formalism@3#. With these remarks, we the
find that the full set of equations~25!,~26!,~49!,~50! are
solved providedf(x,u) satisfies the scalar equation in th
AdSd2k3Sk background with a quantized mass term

F~X!5r2(d22)/2f~x,u!, ~56!

05
1

A2G
]m~A2GGmn]nf!1M2f1lf (d12)/(d22),

~57!

M2[
1

4a2
~d22!~d22k!, ~58!

where the metricGmn is given by the AdSd2k3Sk line ele-
ment, with labelsxm5(xm,ui)

ds25
~du!2

u2
1

u2

a2
~dxm!2[Gmndxmdxn. ~59!

Note that the mass term vanishes ifd52 or if d52k. Thus
for AdS23Sd22 and AdSd/23Sd/2 there is no mass term
These equations follow from the Lagrangian ind total di-
mensions

Ld
f52

1

2
f]m~A2GGmn ]nf! ~60!

2A2GF ~d22!~d22k!

8a2
f21

l~d22!

2d
f2d/(d22)G .

~61!

This Lagrangian also follows directly from th
(d12)-dimensional Lagrangian by inserting the solution
the kinematic constraints given in Eq.~56!

Ld12
F 5r2dLd

f . ~62!

The r dependence disappears in the action after an inte
tion of the Lagrangian ind12 dimensions.
7-8
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The same result was derived in@3# by choosing a Sp(2,R)
gauge in the worldline formalism and then doing no
covariant quantization. There, it was essential to figure
the correct ordering of the quantum operators, which in t
gave rise to the quantized mass given above. Thus, the q
tized mass term is aquantum anomaly. If the anomaly is
missed, the AdSd2k3Sk theory would no longer be equiva
lent to the (d12)-dimensional theory or any of the otherd
dimensional versions.

The evident symmetry of this action is only SO(d2k
21,2)3SO(k11) which corresponds to the Killing symme
tries of the AdSd2k3Sk metricGmn . However, there is more
hidden symmetry in this action that was not noticed bef
the advent of two-time physics@3#. In the present field theory
setting this follows simply from the property that the origin
set of equations~25!,~26! are invariant under the large
SO(d,2). This contains the Killing symmetries as a su
group, but the total symmetry is larger. Therefore we sho
expect that there are hidden symmetries in the effective
tion that correspond to the additional generators in the c

SO~d,2!

SO~d2k21,2!3SO~k11!
. ~63!

That is, the effective action given above should have the
SO(d,2)5SO(D1k,2) symmetry for everyk. Indeed it was
shown in@3#, that this action has the full symmetry SO(d,2).
The quantized mass term is essential for this symmetry to
valid. Hence, the larger symmetry requires a quantized m
The generators of the full symmetry, and the transformat
of f(x,u) under them are explicitly given for everyk in @3#.
The presence of the symmetry is again evidence for the
derlying larger space that contains one more spacelike
more timelike dimensions.

Through this example, with variousk, we have demon-
strated that the content of the fully covariant equatio
~25!,~26! is much more than the conformal massless part
that was originally aimed for by Dirac@1#. The field theoretic
results reported here fully agree with the worldline form
ism at the quantum level performed also at fixed gauges@3#.
Furthermore, in the field theory formalism field interactio
consistent with the SO(d,2) symmetry are also introduce
directly in d12 theory.

It is interesting to consider the AdS conformal field theo
~CFT! correspondence@25–27# in this setting. Going to the
boundary of AdS corresponds tou→`. In this limit the
original form of the theory ind12 dimensions can be ana
lyzed easily by examining the parametrization given in E
~42!. We may also definer5k/u to more easily extract the
information when we take the limit with finitek. In this limit
the coordinates and momenta have the form

X18→k, X28→kx2

2a2
, Xi→0, Xm→k

a
xm. ~64!

We see that thed12 space shrinks in thek11 dimensions
Xi , and remains finite in thed2k21 dimensionsXm. Then
the two-time Lagrangian~28! gets reducedLd12

F →Ld2k11
F

in the number of dimensions. By comparison to the para
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etrization of the previous section, and recalling Eqs.~39!–
~41!, we learn that the full field theory given byLd12

F now
shrinks to a conformal field theory ind2k21 dimensions
that defines the boundary of the AdS space

Ld12
F →Ld2k11

F 5k (d2k21)/2Ld2k21
f . ~65!

This is precisely the AdS-CFT correspondence applied
this theory. Having the two-time theory in the formLd12

F as
the common link for various parametrizations, permitted
analysis to proceed in a straightforward manner in prov
the AdS-CFT correspondence in the present case.

C. Non-relativistic Schrödinger field

The two cases, massless Klein-Gordon and particle
AdS3S discussed in the two previous sections are relativ
easy from the point of view of operator ordering in the fir
quantized theory. In this section we would like to discus
harder case in which it is nota priori evident how to order
quantum operators.

In the worldline theory the gauge fixingP18(t)5m, and
P0(t)50 at the classical level produces the non-relativis
massive particle with massm @3#. In this gauge the remaining
degrees of freedom are designated by the canonical p
„t(t),H(t)… and „r i(t),pi(t)… which are constrained byH
5p2/2m. These are related to theXM,PM which satisfyX2

50 andX•P50 as follows:

P185m, P285H~t!, P050, Pi5pi~t!, ~66!

wherem is a t independent constant, and

X185t~t!, X285
1

m
~r "pÀtH !, Xi5r i~t!, ~67!

X056Ar22
2t

m
~r "pÀtH !. ~68!

The H5p2/2m condition follows from the remaining dy
namical constraintP250. Evidently the field theory version
of this dynamical constraint is the Schro¨dinger equation

i
]f~ t,r !

]t
52

1

2m
¹2f~ t,r !1••• ~69!

that follows from the free Lagrangian ind dimensions

Ld
f5 if*

]f

]t
2

1

2m
¹f* ¹f1•••. ~70!

The dots••• represent interactions that could be added.
The non-relativistic particle actionS5*dt(m/2)(] tr )2

has a surprising SO(d,2) symmetry~non-conformal! given
by the gauge fixed form of the global SO(d,2) Lorentz gen-
eratorsLMN5XMPN2XNPM as explained in@3#. Evidently
the field theory that is derived from thed12 field theory
must also inherit this symmetry. Operator ordering of t
quantityX0 ~68! is non-trivial, and therefore constructing th
SO(d,2) symmetry generatorsLMN at the quantum level in
7-9
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this fixed gauge is not easy. TheseLMN would be the Noet-
her charges for the symmetry SO(d,2) of the Schro¨dinger
theory. The corresponding problem in the previous two ca
were solved satisfactorily by fixing the correct anomalies@3#,
but the non-linear form of Eq.~68! has discouraged th
analysis so far. How does this problem show up in the fi
theory version, and how is it resolved, in particular wh
there are field interactions? Without a guiding symme
such as SO(d,2) there would not be restrictions on the inte
actions.

Let us now try to imitate directly in the
(d12)-dimensional field theory the gauge fixingP18(t)
5m, andP0(t)50 of the worldline theory. Before applying
any of the kinematic constraints, the relevant SO(d,2) differ-
ential operators can be rewritten in the form3

XM]M5X18D181X28D281XiDi2XMXM

1

X0
]0 ~71!

and

]M]M522D18D281~Di !
22

2

X0
]0S XM]M1

d22

2 D
2XMXMS 1

X0
]0D 2

~72!

where

D185]182
X28

X0
]0 , D285]282

X18

X0
]0 ,

Di5] i1
Xi

X0
]0 . ~73!

ImposingXMXM50 is equivalent to setting

X056AXiXi22X18X28, ~74!

but, before doing so, we must apply all the derivatives]0 on
the wavefunctionF(X0,X18,X28,Xi). However, from Eqs.
~71!,~72! we see that when the kinematic constraints are
plied all terms containing the explicit]0 drop out, except
those appearing in the definition ofD18 ,D28 ,Di . Further-
more, for these special combinations, applying first the
rivative and then imposing Eq.~74! gives the same result a
first imposing Eq.~74! and replacingD18 ,D28 ,Di with or-
dinary derivatives]18 ,]28 ,] i

@Di ,68F~X0,X18,X28,Xi !#X056AXiXi22X18X285] i ,68FuX0

~75!

where we have defined the notation

3Bo Zhang first constructed the following formulas. I thank h
for showing me his work.
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FuX0[F~6AXiXi22X18X28,X18,X28,Xi !. ~76!

In this way]0 completely disappears andX0 is expressed in
terms of the other coordinates. This is the field theory v
sion of the gauge conditionP0(t)50 used in the worldline
approach.

The next step is to work in a basis that corresponds
P1852P285m while at the same time solve the remainin
kinematic constraint that now takes the form

S X18]181X28]281Xi] i1
d22

2 DFuX050. ~77!

This is done by first going to Fourier space in theX28 coor-
dinate and then imposing the kinematic constraint. The re
is

FuX05E dm e2 imX28
m(d24)/2f~mX18,mXi !, ~78!

where the functionf(t,r i) is arbitrary. Finally we apply the
dynamical operator on this form and find the Schro¨dinger
operator

~]M]MF!uu5~22]18]281] i]
i !~FuX0! ~79!

5E dm e2 imX28
m(d24)/2

3F S 2im
]

]t
1¹ r

2Df~ t,r !G
t5mX18,r iÄmXi

. ~80!

On the left side the notation (]M]MF)uu implies that both
kinematic constraints have been implemented.

Now we see that the free field equation ind12 dimen-
sions (]M]MF)uu50 corresponds to the free non-relativist
Schrödinger equation with massP185m

i
]

]t
f~ t,r !52

1

2m
¹ r

2f~ t,r !, ~81!

in agreement with the first quantization of the worldlin
theory given in Eq. ~69!. By rewriting it in the form
(]M]MF)uu50 the hidden SO(d,2) symmetry of the Schro¨-
dinger equation is exposed. The interactions consistent w
the SO(d,2) symmetry follow from the original equations i
d12 dimensions, but unfortunately they do not seem to h
a simple or recognizable form in this case, so we will n
discuss it any longer in this paper.

D. Generalizations

As argued above, a class of one-time physics dynamic
unified by the field theoretic two-time formalism. The cla
is much larger than the cases discussed above since, a
know from the worldline approach, it includes other on
time dynamics such as the H-atom, harmonic oscillator, p
ticle in various potentials, etc.@3#. It would be interesting to
explore the interacting field theory for some of these cas
7-10
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The interaction term then provides a field theoretic appro
to the interaction of these systems in a setting which
never been explored before. In some generalized sense t
analogous to duality in M theory.

The effective one-time field theories thus obtained,
ones in the previous sections, as well as any others der
similarly in other embeddings ofd dimensions inside thed
12 spacetime, are all representatives of the same two-
field theory which provides for some remarkable relatio
among them. Such relations were not apparent before
insight provided by two-time physics@2–10#. In principle, in
relatedd dimensional field theories one should be able
compute Sp(2,R) gauge invariant quantities and obtain t
same result. The SO(d,2) symmetry properties are Sp(2,R)
gauge invariant, in particular the SO(d,2) is realized in the
same unitary representation in all the derivedd-dimensional
theories. Likewise, it must be possible to compute vario
Sp(2,R) gauge invariant quantities and obtain the same
related results by using the different one-time field theor
including the interactions. Further computations along th
lines, using the full power of interacting field theory, wou
help to strenghthen the case for two time physics, and
haps help discover some of its utility by demonstrating t
one could perform certain computations more easily
choosing a particular version of the field theory.

V. SPIN 1Õ2 FIELD

If we taken51 in Eqs.~20!,~21! then the physical state
describes a spin 1/2 field. The fermioncM is represented by
a Dirac gamma matrixcM5gM/A2, and position space now
has an additional SO(d,2) spinor index̂ X,au. The fermionic
field is given by the probability amplitudê X,auF&
5Ca(X). To satisfy the singlet OSp(1u2) conditions given
in Eqs. ~20!,~21! we see that it is sufficient to impose th
kinematic constraints

S X•]1
d

2DCa50, X2Ca50 ~82!

and the free field equation (g•X g•]C)a50. The second
kinematic constraint follows from the property of the b
^X,auX250. From

~g•X g•]!252X2]212~g•X!~g•]!S X•]1
d

2D , ~83!

we seeX2]2Ca50 need not be imposed as a separate f
field equation. To include interactions consistently with t
‘‘kinematic’’ constraints we assume that the worldline ve
sion of the OSp(1u2) gauge theory is properly generalize
by including background fields as in@10#. This permits the
addition of source terms to the free field equation

@g•X g•~]2 iA !C#a5hF2/(d22)~g•X C!a1~g•X j!a ,
~84!
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whereja is any other fermion that does not blow up whe
X2→0, and whose dimension is„X•]1(d22)/2…ja50.
The interacting field equation follows from varying the fo
lowing Lagrangian:

Ld12
C 5C̄g•X g•~]2 iA !C

2hF2/(d22)C̄g•X C1C̄g•X j. ~85!

The inclusion of the Yang-Mills gauge fieldAM(X) assumes
that C is charged under the Yang-Mills local internal sym
metry. The scalarF must also have the correct charges
couple to the fermion with a non-zero coupling constanth, so
the notation is schematic. We also assumed that the fielF
included on the right hand side may be of the type descri
in the previous section; if so this coupling would modify th
field equations forF given in the previous section.

The form, and consistency of the interactions with t
underlying OSp(1u2) gauge symmetry, are determined b
applyingX•] or X•g on both sides of Eq.~84! and using the
kinematic equations in Eqs.~82! and~25!. This also produces
the conditions

X2AM50, ~X•]11!AM50, X•A50 ~86!

on the gauge field. The same ‘‘kinematic’’ equations for t
gauge field also follow from other independent consid
ations, including consistency of background fields with t
Sp(2,R) gauge symmetry in the two-time worldline forma
ism @10#, and the analysis in the following section for high
spinning fields.

Finally, it is important to note that Eq.~84! or Eq. ~85!
have a kappa type local fermionic symmetry given by

dCa5XM~gMk!a ~87!

whereka(X) is any spinor ind12 dimensions. To prove the
kappa symmetry useg•(]2 iA)g•X52g•X g•(]2 iA)
1X•(]2 iA)1(d12)/2 and apply the kinematic condition
~82!. This means that only half of the fermions are physic
in accord with what is expected when the two-time theory
reduced fromd12 dimensions tod dimensions.

In the case of free fields Dirac showed, with the para
etrization given in Eq.~ 31!, that the solution space of thes
equations is precisely the massless Dirac equation for a
mionic field in d dimensions. This is also the conclusio
reached in@4# by quantizing the OSp(1u2) worldline theory
in the gaugeX18(t)51, P18(t)50, c18(t)50. To show
how thed dimensional theory is embedded ind12 we give
here the field theory version of the gauge choice used in
worldline approach. We first fix the kappa symmetry so th
it corresponds to the worldline fermionic gaugec18(t)50

~g18C!a50. ~88!

Then use the parametrization~31! and the chain rule
~32!,~33! to show that the operators applied on the gau
fixed C can be rewritten in the form
7-11
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gM]MC5
1

k
gmDmC1

1

k
~g282xmgm!C ~89!

gMXMC52k~g282xmgm!C ~90!

and

g•X g•~]2 iA !C52~g282xmgm!gm~Dm2 iAm!C ~91!

1~g282xmgm!~2l2x2!~]l2 iAl!C
~92!

whereDm5]m1xm]l as in Eq.~36!. Inserting these forms in
the interacting equation of motion we see that we rem
with the overall factor (g282xmgm) on both sides of the
equation, but since this is an invertible matrix that satisfi
(g282xmgm)25x2, it can be removed from both sides. Fu
thermore by usingX250 we setl5x2/2 which eliminates
the last term in the last equation.

The result is the interacting massless Dirac field ind di-
mensions, with SO (d,2) conformal symmetry, in full agree
ment with the worldline theory approach. Therefore, the c
tent of Eqs.~82!, ~84! or Eq. ~85! using thed dimensional
coordinates~31! and kappa gauge~88! is the interacting
massless fermionic field with SO(d,2) conformal symmetry.

However, as discussed in@4# there are other gaug
choices in two-time physics which would lead to other phy
cal interpretations for the SO(d,2) symmetry and of the dy
namics from the point of view of a one-time observer. Usi
the corresponding parametrization forXM,cM we fully ex-
04600
n

s

-

-

pect that the two-time field equations~82! would yield the
same richness ofd dimensional spin 1/2 one-time physic
but now in the language of field theory.

VI. VECTOR AND HIGHER SPIN FIELDS

When n52,3, . . . thefermions ca
M lead to higher spin

particles. To display the spin components of the wave fu
tion we adapt the methods of@28# to the case of SO(d,2).
The n anticommutingca

M are represented in terms of SO(d
12) Dirac gamma matricesgab

M acting in spinor space la
beled bya51, . . . ,2(d12)/2. They are given in direct produc
form acting on the physical state with spin compone
uFa1a2•••aa•••an

&

ca
M5g* ^ •••g* ^

1

A2
gM

^ 1^ •••1 ~93!

where the (1/A2)gM is inserted in thea’th entry of the direct
product, andg* ~analog ofg5 in four dimensions! is the
product of alld12 gamma matricesg* 5 i (d12)/2g08g18g0

•••gd21 such that$g* ,gM%50 and (g* )251 ~for simplic-
ity, we assume evend12[2r . If d12 is odd the spinor
spacea is doubled to avoidg* proportional to identity!.

In this formalism the constraintc [a•cb]50 ~for nÞ0) on
the physical state is solved by the following spin wave fun
tion. For even n (nÞ2) the spin wave function
^XuFa1a2•••aa•••an

& is a bosonic field written in terms of a

SO(d,2) tensorFindices(X) whose indices correspond to
Young tableau shaped like a rectangle, with (d12)/2 col-
umns andn/2 rows, as follows:
ibed

l

Fa1a2••••••an
5~gM1

1
•••M (d12)/2

1
!a1a2

~gM1
2
•••M (d12)/2

2
!a3a4

•••~gM1
n/2

•••M (d12)/2
n/2

!an21an

3F [ M
1
1
•••M

(d12)/2
1 ];[ M

1
2
•••M

(d12)/2
2 ]; •••[ M

1
n/2

•••M
(d12)/2
n/2 ] . ~94!

The indices onFindices have permutation properties associated with SO(n) type Young tableaux:~i! the antisymmetric indices
@M1

i
•••M (d12)/2

i # correspond to the columni , ~ii ! the n/2 columns of indices for differenti ’s are symmetrized with each
other,~iii ! under anti-symmetrization with one more index of a neighboring column the wave function vanishes,

F [ M
1
1
•••M

(d12)/2
1 ;M

1
2] •••M

(d12)/2
2 ]; •••[ M

1
n/2

•••M
(d12)/2
n/2 ]50, ~95!

~iv! to insure irreducibility under SO(d,2) a vanishing trace for any pair of indices usinghMN is required, symbolically
Findices•h50.

For oddn the spin wave function is a fermionic fieldc indices
a (X), whose indices correspond to the Young tableau descr

above with (n21)/2 columns, and there is one leftover spinor indexa, which satisfies the irreducibility condition

~gM1
1
!abc [ M

1
1
•••M

(d12)/2
1 ];[ M

1
2
•••M

(d12)/2
2 ]; •••

b
50. ~96!

For n52, there is an exception sinceqÞ0 is possible for an SO(2) singlet. Then it is possible to get a singlet~gauge
invariant! of OSp(2u2) even though it is not necessarily neutral under the subgroup SO(2). This allows a more genera
solution forFa1a2

than the above. Imposingc [1•c2]uF&52iquF& we find

Fa1a2
~X!5@11 ig* sgn~q! ~21!p#~gM1•••M p12!a1a2

FM1•••M p12
~X!, ~97!

p5
1

2
~d22!2uqu5 integer. ~98!
7-12
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Therefore, by adjusting the value ofq it is possible to obtain
solutions that correspond to antisymmetric tens
FM1 . . . M p12

(X) with any of the values ofp in the set

$21,0,1,•••, 1
2 (d22)%. If q50 only the last value ofp is

possible. This in contrast with the case ofn>3 for which
only one solution is possible as given above.

For the rest of the discussion, for simplicity, we will sp
cialize to then52 case, and furthermore concentrate on f
fields so we will relax the conditionsX2P2;X•caP•ca
;0 of Eqs.~20!,~21! to P2;P•ca;0 . The physical state
condition ca•P;0 requires that then52 wave function
FM1•••M p12

(X) given in Eq.~97! is an on-shell field strength

for a p-brane gauge potentialAM1•••M p11

FM1•••M p12
~X!5] [ M p12

AM1•••M p11] ,

]M p12] [ M p12
AM1•••M p11]50. ~99!

The additional physical state condition in Eq.~20! requires a
specific dimension

X•]FM1•••M p12
52S d22

2
122uqu DFM1•••M p12

52~p12! FM1•••M p12
. ~100!

This equation holds provided the gauge field satisfies (X•]
1p11)AM1•••M p11

5] [ M1
UM2•••M p11] for any UM2•••M p11

.

Through a gauge transformation dAM1•••M p11

5] [ M1
LM2•••M p11] one can eliminateU, henceU is arbi-

trary. With the choiceUM2•••M p11
5XM1AM1•••M p11

the con-

dition on AM1•••M p11
takes the gauge invariant form

XM p12FM1•••M p12
50.

The last equation in Eq.~99! may be modified to include
interactions through a conservedp brane current, so the com
bined equations~99!,~100! may be generalized to

XM p12FM1•••M p12
50, ]M p12FM1•••M p12

5JM1•••M p11
.

~101!

The last equation contracted with eitherXM1 or ]M1 shows
that the brane current must be conserved, satisfy an a
tional constraint, and be of definite dimension

]M1JM1•••M p11
50, XM1JM1•••M p11

50,

~X•]1p11!JM1•••M p11
50. ~102!

The first equation in Eq.~101! is ‘‘kinematics’’ and the last
is dynamics. The dynamical equation follows from a varyi
the Lagrangian

Ld12
A 52

1

4
FM1•••M p12

FM1•••M p121AM1•••M p11JM1•••M p11

~103!

which has the gauge invariance for ap11 gauge potential.
04600
s

e
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In the case of a vector potential we may identify it wi
the Yang-Mills gauge potential that appeared in the previ
section and which coupled to the charged scalars or fer
ons. Then the currentJM need not be included as an add
tional source at it follows from the gauge couplings inLd12

F

or Ld12
C .

The p brane potentialAM1•••M p11
satisfies similar con-

straints to those ofJM1•••M p11
after fixing some gauge sym

metries. Consider fixing the gaugeXM1AM1•••M p11
50. Then

the first equation in Eq.~101! reduces to (X•]1p
11)AM1•••M p11

50, which requiresAM1•••M p11
to have a

definite dimension. Despite the gauge choice there
remains gauge symmetry under dAM1•••M p11

5] [ M1
LM2•••M p11] , for all LM2•••M p11

that have dimension

p, i.e., (X•]1p)LM2•••M p11
50. This is sufficient gauge

symmetry to further fix the gauge ofAM1•••M p11
since it now

has a definite dimension. Thus, through these gauge cho
we may take aAM1•••M p11

that satisfies constraints similar t
those of the current

XM1AM1•••M p11
50, ]M1AM1•••M p11

50,

~X•]1p11!AM1•••M p11
50, ~104!

while the dynamics simplifies to the gauge fixed form

]M]MAM1•••M p11
5JM1•••M p11

. ~105!

If we specialize ton52 andp50 @or uqu5(d22)/2] the
physical state is a vector gauge fieldAM that satisfies the
gauge invariant equations forFMN5]MAN2]NAM

XMFMN50, ]MFMN5JN , ~106!

XMJM50, ]MJM50, ~107!

~X•]12!FMN50, ~X•]11!JM50. ~108!

For the fixed gauge described above these equations bec

~X•]11!AM50, XMAM50, ]MAM50,

]M]MAN5JN , ~109!

~X•]11!JM50, XMJM50, ]MJM50. ~110!

These coincide with equations that appear in Dirac’s pa
@1# for the vector gauge potential. They also are in agreem
with the results of the background field approach introduc
in @10#.

Following Dirac, if we taked1256 dimensions, the so
lution of these field equations in the parametrization of E
~31! is precisely equivalent to Maxwell’s equations for
gauge potentialAm(x) in d54 dimensions identified as pa
of the six dimensionalAM(X). The conformal symmetry of
Maxwell’s theory in four dimensions is none other than t
SO(4,2) Lorentz symmetry in six dimensions.
7-13
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As we have emphasized in the previous sections the
rametrization of Eq.~31! is connected to one of the possib
gauge choices in two-time physics. Parametrizations that
related to other gauge choices would reveal other phys
content in thed dimensional field theory.

VII. GRAVITY

All of the interacting Lagrangians above can be coup
to gravity. To do so we follow the prescription obtained
@10#. In the usual way we need a metricGMN(X) or vielbein
EM

a (X) and a spin connection for SO(d,2)vM
ab(X) in d12

dimensions, but we also need an additional vectorVM(X)
constructed from a potentialW(X). These fields satisfy the
following kinematic equations:

£VGMN522GMN, VM5
1

2
GMN]NW,

GMN]MW]NW54W ~111!

where £VGMN is the Lie derivative £VGMN5V•]GMN

2]KVMGKN2]KVNGKM. Furthermore the kinematic cond
tions we had earlier for the various fields now take the fo

£VF52
d22

2
F, £VCa52

d

2
Ca , VMFMN50,

~112!

W~X!F50, W~X!F50, W~X!AM50, ~113!

where the ordinary derivatives in the Lie derivative £V
should be replaced by covariant derivatives consistent wi
local Lorentz symmetry SO(d,2) in tangent space. Thus
wherever there was an explicitXM in flat space, it is now
replaced byVM(X) and wherever there was a Yang-Mil
derivative]M1AM it is now promoted to a SO(d,2) covari-
ant derivative]M1vM1AM . Using these modifications th
LagrangiansLd12

F , Ld12
C , Ld12

A constructed earlier in this
paper are generalized to couple to gravity consistently w
the underlying OSp(nu2) gauge symmetries of two-tim
physics. They should also be multiplied by a volume fac
AG5detE that satisfies £VAG5(d12)AG as it follows
from Eq. ~111!.

Next we would like to write down a LagrangianLd12
G for

the gravitational sector. But first we will deal with the kin
matic constraints in Eq.~111! by rewriting them in tangen
space using the vielbein and spin connection and giving th
a more geometrical meaning. In particular since the spin c
nection is a gauge field its field strength~the curvature! must
satisfy

VMRMN
ab 50, RMN

ab 5]MvN
ab2]NvM

ab1@vM ,vN#ab,
~114!

like other gauge fields in Eq.~112!. Similarly, the vielbein
can also be viewed as a gauge field. We define the cova
derivative of the vielbein with respect to the spin connect

DMEN
a 5]MEN

a 1vMb
a EN

b . ~115!
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The torsion tensor is given by

TMN
a 5DMEN

a 2DNEM
a . ~116!

So, we also take the torsion tensor to satisfy the transver
ity condition, as a kinematic condition

VMTMN
a 50. ~117!

We define the Lie derivative of the vielbein by including th
covariant derivative using the spin connection; it may
rewritten in terms of the torsion as follows:

£VEM
a 5VNDNEM

a 1]MVNEN
a ~118!

5VND [NEM ]
a 1VNDMEN

a 1]MVNEN
a ~119!

5VNTNM
a 1DMVa ~120!

5DMVa ~121!

we have used the transversality condition on the torsion
definedVa5EM

a VM, andDMVa5]MVa1vM
abVb . If £VEM

a is
contracted with another vielbein we obtain £VGMN in the
form

£VGMN52£VEM
a ENa52DMVaENa . ~122!

Due to the condition~111! this quantity is 2GMN . Multiply-
ing both sides byENa we find

£VEM
a 5EM

a , ~123!

with

EN
a 5DMVa5]MVa1vM

abVb . ~124!

This form has been previously suggested in@13#, we derived
it here from the homothety conditions~111! obtained in the
worldline formalism@10#.

Thus, the vielbein constructed in this way satisfies
kinematic condition automatically while it is fully deter
mined by the arbitrary functionsVa(X) and vM

ab(X). The
only condition on the functionsVa,vM

ab is that the curvature
and torsion be transverse toVM. Modulo this condition the
vielbein, and metricGMN are determined. This form solve
automatically the first equation in Eq.~111!. Similarly, the
last equation in Eq.~111! can be rewritten in terms ofVa

W5VaVa . ~125!

There remains the second equation in Eq.~111! that now
takes the form

Va5
1

2
Ea

MDM~VbVb!5Ea
M~DMVb!Vb5Ea

MEM
b Vb

~126!

which is an identity sinceEa
MEM

b 5da
b . Thus, all kinematic

conditions for the gravitational field are fully solved by th
7-14
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arbitrary functionsVa(X) andvM
ab(X), and the definition of

metric throughEM
a 5DMVa. Note also that we can rewrit

the torsion as follows:

TMN
a 5D [ MDN]V

a5RMN
ab Vb , or Tcd

a 5Rcd
abVb . ~127!

Therefore, the torsion is obtained from the curvature~the
spin connection included torsion!.

From this construction we may deduce~using £VEM
a

5EM
a and £VRMN

ab 522RMN
ab as any other gauge fiel

strength!

£VVa5VMDMVa5VMEM
a 5Va, ~128!

£VRcd
ab5£V~Ec

MEd
NRMN

ab !524Rcd
ab , ~129!

£VTcd
a 523Tcd

a . ~130!

The transversality conditionsVMRMN
ab 50 on the curvature

and torsion may be rewritten in tangent space

VcRcd
ab50, ~131!

while VcTcd
a50 is automatically satisfied thanks to E

~127!. This is the only remaining kinematic condition on th
gravitational background as long as the primary build
blocks areVa andvM

ab .
We now turn our attention to the Lagrangian in the gra

tational sector that generates the dynamics for gravity~i.e.
impose the analog of the Einstein equations! in two-time
physics. Naively the Lagrangian would be given by the R
mann curvature scalarR5Rab

ab but we must seek a modifica
tion in light of the constraints generated by £V as in Eqs.
~111!,~131!,~112!. Consistent coupling with these constrain
requires the form

Ld12
G ;~detE! Rab

ab F2(d24)/d22 ~132!

whereF is one ~or a combination! of the scalar fields de
scribed earlier. Typically the scalar that appears in the ov
all factors in the Lagrangians we constructed up to n
would be identified as the dilaton.

VIII. DISCUSSION

Combining the Lagrangians for scalars, spinors, vec
and gravitons we have a total Lagrangian that generates
dynamical equations of motion through a variational pr
ciple, and couples all the fields to one another:

Ld125Ld12
G 1Ld12

A 1Ld12
c 1Ld12

f ~133!

Ld12
G ;~detE! F2(d24)/d22Rab

ab ~134!

Ld12
A 52

1

4
~detE! F2(d24)/d22FMNFKLGMKGNL ~135!

Ld12
C 5~detE!@C̄g•V g•~]2 iA !C

2hF2/(d22)C̄g•V C1C̄g•V j# ~136!
04600
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Ld12
F 52

1

2
F]M~AGGMN]NF!2l

~d22!

2d
F2d/(d22)AG.

~137!

The dynamical equations thus obtained must be sup
mented with the kinematic conditions in Eqs.~112! and
~131!. In the gravitational sectorVa,vM

ab are the primary
fields, notEM

a or GMN .
As discussed above Dirac’s program for coming do

from d12 dimensions tod dimensions can be implemente
through many possible paths, ending up with a choice
somed dimensions embedded ind12 dimensions. In this
way one arrives at different looking but non-trivially relate
interacting field theories ind dimensions. This is the new
lesson learned from two-time physics.

As mentioned earlier one may consider several scal
spinors, vectors, etc., and build ad12 Lagrangian that
would reproduce the standard model in one of thed54 ver-
sions of ad1256 dimensional theory in two-time physics
The natural choice of 4 dimensions among the 6 is the
given in Eq.~31! since that is the one that corresponds to
massless relativistic particle. It would be interesting to fi
out what one can learn from the other choices of 4 dim
sions that would produce dual versions of the stand
model. In particular, can one discover non-perturbative p
nomena, relations among parameters, or new measurabl
fects of the standard theory in particle physics? These q
tions remain to be investigated in general as well as for
standard model itself.

The two-time formulation presented here and in@2–10#
has properties that touches upon other popular but little
derstood concepts in the current literature. Among them
ality, holography, AdS-CFT, background independence
ideas that can be seen to be present in two-time physic
some generalized sense. Holography can be compared t
fact thatd dimensions, which can be thought of as a surfa
around the bulk ofd12 dimensions, is sufficient to describ
all of the physics contained in the bulk. In our version
holography we go down two dimensions rather than one
therefore there is not just oned dimensional ‘‘surface’’ but
many, and this connects to our version of ‘‘duality.’’ Dualit
can be compared to the many versions ofd dimensional
theories that are related and actually represent the samd
12)-dimensional theory~an analogy to M theory!. We have
already given a concrete example of the usual AdS-CFT c
respondence at the end of Sec. IV B, as seen from the p
of view of two-time physics, and this could be generalized
more interesting cases. Finally concepts of background in
pendence are present since one could start with ad12
theory without backgrounds and end up with a theory ind
dimensions with many possible curved backgrounds.

We need to end on a down note, but hopefully a stim
lating one. The formulation of two-time physics in fiel
theory presented here is incomplete. The fact that the sub
iary ‘‘kinematic’’ conditions are not derived directly as a
equation of motion from the field theory Lagrangian is a si
that the formulation is incomplete. Surely one could intr
duce Lagrange multipliers to impose these conditions,
7-15
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this seems artificial. Introducing a delta functiond(X2) or
d(V2) in the action built from the Lagrangian above is al
just as artificial, and it still misses the other kinematic co
straints due to £V . Rather, a gauge principle that implemen
the underlying Sp(2,R) or OSp(nu2) gauge symmetry di-
rectly in field theory is the needed ingredient. This wou
generate all the kinematic or dynamic constraints simu
neously, as it does in the worldline formalism. In this sen
the worldline formalism seems more fundamental at the c
rent stage.

Once the field theory formulation is completed it wou
then be possible to investigate with more confidence sec
quantization in the formalism of two-time physics, and try
’
.

.
.

ld

04600
-

-
e
r-

nd

establish the validity of the duality relations among t
d-dimensional theories at the second quantized level. S
such duality is expected, but the correct ordering of opera
~or corresponding anomalies! may need further understand
ing.

To implement the Sp(2,R) gauge symmetry in field
theory suggested above it may be more natural to cons
fields that are functions over phase spaceF(X,P). This ap-
pears to go in the direction of non-commutative geome
but with specific goals that are not currently part of the thin
ing in non-commutative geometry. Perhaps it would be he
ful to investigate in this direction to complete the field the
retic formulation of two-time physics.
ma
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