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Twisted bundles on noncommutative T4 and D-brane bound states
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We construct twisted quantum bundles and adjoint sections on noncommutativeT4, and investigate relevant
D-brane bound states with non-Abelian backgrounds. We also show that the noncommutativeT4 with non-
Abelian backgrounds exhibits SO(4,4uZ) duality and via this duality we get a Morita equivalentT4 on which
only D0-branes exist. For a reducible non-Abelian background, the moduli space of D-brane bound states in
type II string theory takes the form)a(T4)qa/Sqa

.
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I. INTRODUCTION

Recent developments in nonperturbative string theo
have provided new powerful tools to understand supers
metric gauge theories@1#. The Bogomol’nyi-Prasad-
Sommerfeld~BPS! brane configurations led to many exa
results on the vacuum structure of supersymmetric ga
theories. One may be interested in counting the degene
of D-brane bound states of type II string theory compactifi
on R1,92d3X in which a gauge field strengthF and a Neveu-
SchwarzB field on the brane are nonzero. Thenp-branes
wrapped on a compactp-cycleWp,X and their bound state
look like particles in the effectiveR1,92d spacetime. More-
over, the degeneracy of the bound states is the same a
number of ground states in the corresponding quantum fi
theory on the D-brane world volume@2#.

The D-brane moduli space@3,4# can be defined as a spac
of Chan-Paton vector bundleE overX or a space of solutions
to the equation given by

dl5FMNGMNj1h50

for some pair of covariantly constant spinorsj and h on
R1,92d3X. The various Ramond-Ramond~RR! charges are

given by the Mukai vector Q5v(E)5Ch(E)AÂ(X)
PH2* (X,Z) where Ch(E)5Tr exp@(1/2p)(F2B)# is the
Chern character andÂ(X)512p1(X)/24 is the A-roof ge-
nus for four-dimensional manifoldX. Then the supersym
metric, BPS bound states, for example~D0,D2,D4! bound
states onT4 or K3, are allowed by the Chern-Simons co
plings @5#
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It was shown in@6,7# that noncommutative geometry ca
be successfully applied to the compactification of M~atrix!
theory @8# in a certain background. In those papers, it w
argued that M~atrix! theory in a three-form potential back
ground with one index along the lightlike circle and tw
indices alongTd is a gauge theory on a noncommutati
torus, specifically (d11)-dimensional noncommutative su
per Yang-Mills~NCSYM! theory. Many more discussions o
M- and string-theory compactifications on these geomet
followed, for example@9–15#.

One obvious advantage of NCSYM theory defined onTd

is that theT duality, SO(d,duZ), of type II string theory
compactified on torus becomes manifest@6,7,13–15#. The
Morita equivalence between two noncommutative to
@10,11# encompasses the Nahm transformation part ofT du-
ality, not clearly observed in conventional Yang-Mil
theory. Using this symmetry, it may be possible to syste
atically count D-brane bound states onT4 or K3 as ground
state configurations for the supersymmetric gauge theory

For compactifications onT2 andT3 generic U(N) bundles
on it admit vanishing SU(N) curvature@6,12,13#. However,
for compactifications on tori of dimension 4 or larger, not
bundles allow vanishing SU(N) curvature, so we have to
consider more generic bundles with nonvanishingSU(N)
curvature. It turns out@16,17# that one can construct
twisted SU(N) gauge bundle onT4 with fractional instanton
number. However, in discussing the U(N) gauge theory as
D-brane dynamics, it is understood that the total instan
number is integral since the instanton number is related
D0-brane charges inside D4-branes, which should sat
Dirac quantization due to the existence of a D6-brane in t
IIA string theory @18#. In @19,20#, ’t Hooft solutions on
twisted bundles on commutative tori were realized
D-brane configurations~D-brane bound states! wrapped on
tori in type II string theory, and it was shown thatU duality
relates their bound states.
©2000 The American Physical Society01-1
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In general one can consider gauge bundle onT4 with
non-Abelian constant curvature@17#. In that case, non-
Abelian backgrounds can be obviously supersymmetric
self-dual or anti-self-dual fields since the supersymmetry
D-brane world volume theory may be given by

dl5FMNGMNj.

Thus, in order to study the BPS spectrums of NCSYM the
on the non-Abelian backgrounds, it will be useful to co
struct the corresponding gauge bundles. In the presenc
non-Abelian backgrounds as well as Abelian backgroun
the gauge bundle may be twisted by the background m
netic fluxes. While Abelian backgrounds universally tw
the U(N) gauge bundle, in the case of non-Abelian bac
grounds where the magnetic fluxes in U(N) are decomposed
into a U(k) part and a U(l ) part@17#, the magnetic flux in the
U(k) part twists the U(k),U(N) gauge bundle and that i
the U(l ) part does the U(l ),U(N) gauge bundle. This
causes two different deformation parameters to appear.

The Chern character maps K theory to cohomology, i
Ch :K0(X)→Heven(X,Z) and K1 to odd cohomology and
Ch(E)5Ch0(E)1Ch1(E)1Ch2(E) when X is four dimen-
sional andE is a vector bundle overX. Here Ch0(E) is the
rank of E, Ch1(E) is the first Chern class, and Ch2(E) cor-
responds to the instanton number. Ch1(E) is the integral
winding number when the torus is commutative and it is
integer anymore when the torus is noncommutative
Ch2(E) still remains integral even if the torus becomes no
commutative @10,11,14#. However, D-brane charges tak
values inK(X), the K theory ofX @21#, which constitutes a
group of integerZ. The ~411!-dimensional U(N) SYM
theory can be interpreted as the dynamics ofN D4-branes.
Six magnetic fluxes are D2-branes wound around six tw
cycles ofT4. Instantons are D0-branes bound to D4-bran
Thus, even when the Neveu-Schwarz–Neveu-Schwarz~NS-
NS! two-form potential background is turned on, the phy
cal D-brane numbers should be integers. In addition,
rank, six fluxes, and instanton~altogether, eight components!
make a fundamental multiplet of the Weyl spinor repres
tation of SO(4,4uZ) @14#.

Since explicit constructions of twisted bundles and adjo
sections in the literature have been performed only for A
lian backgrounds, we will construct them for constant no
Abelian backgrounds in this paper. In Sec. II, we constr
twisted bundles on noncommutativeT4. In Sec. III, adjoint
sections on the twisted bundle will be constructed. In S
IV, we show that the modules of D-brane bound states
hibit an SO(4,4uZ) duality and the action of this group give
a Morita equivalentT4 on which only D0-branes exist. Sec
tion V is devoted to the conclusion and comments on
results. In the Appendix, we present some details of the
resentation of SO(4,4uZ) Clifford algebra.

II. TWISTED QUANTUM BUNDLES ON T 4

To define the noncommutative geometry, we underst
the space is noncommutative, viz.,
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@xm,xn#522p iQmn . ~1!

Then the noncommutativeT4, which will be denoted byTQ
4 ,

is generated by translation operatorsUm defined by Um
5eixm and satisfies the commutation relation

UmUn5e2p iQmnUnUm . ~2!

Also, we introduce partial derivatives satisfying

@]m ,xn#5dm
n , @]m ,]n#50.

We construct quantum U(N) bundles onTQ
4 following the

construction of@12,13# and@17#. Start with a constant curva
ture connection

¹m5]m1 iF mnxn, ~3!

where Greek indices run over spatial components only
this paper we allow U(N) gauge fields with nonvanishing
SU(N) curvature in order to consider non-Abelian bac
grounds. Following the ansatz taken by ’t Hooft@17#, we
take the curvatureFmn as the Cartan subalgebra element:

Fmn5Fmn
(1)1Fmn

(2) , ~4!

where Fmn
(1)5Tr Fmn and Fmn

(2)Pu(1),su(N). The constant
curvature is given by

Fmn5 i @¹m ,¹n#. ~5!

And one can calculate to get

F5~2F12pFQF !. ~6!

Note that bothF andQ are antisymmetric 434 matrices.
The gauge transformations of fields in the adjoint rep

sentation of the gauge group are insensitive to the cente
the group, e.g.,ZN for SU(N). Thus, for the adjoint fields in
SU(N) gauge theory, it is sufficient to consider the gau
group as being SU(N)/ZN . However, there can be an ob
struction to go from an SU(N)/ZN principal fiber bundle to
an SU(N) bundle if the second homology group of the ba
manifold X, H2(X,ZN), does not vanish@22#. In order to
describe such a nontrivial U(N) bundle, it is helpful to de-
compose the gauge group into its Abelian and non-Abe
components

U~N!5„U~1!3SU~N!…/ZN . ~7!

It means that we identify an element (g1 ,gN)
PU(1)3SU(N) with (g1c21,cgN), wherecPZN . There-
fore one can arrange the twists in U(N) to be trivial by
cancelling them between SU(N) and U(1) @19#. This re-
quires consistently combining solutions of SU(N)/ZN with
U(1) solutions as to cancel the total twist.

To characterize the generic U(N) gauge bundle onTQ
4 ,

we allow the gauge bundle be periodic up to gauge trans
mationVm , i.e.,

¹m~xa12pdn
a!5Vn~xa!¹m~xa!Vn

21~xa!. ~8!
1-2
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Consistency of the transition functions of the U(N) bundle
requires the so-called cocycle condition

Vm~xa12pdn
a!Vn~xa!5Vn~xa12pdm

a !Vm~xa!. ~9!

However, the SU(N) transition functionṼm(xa) may be
twisted as@16#

Ṽm~xa12pdn
a!Ṽn~xa!5Zmn Ṽn~xa12pdm

a !Ṽm~xa!,
~10!

whereZmn5e22p inmn /N is the center of SU(N).
Write Vm(x) as a product of anx-dependent part and

constant part,

Vm~x!5ei (Pmn
(1)

1Pmn
(2))xn

Wm , ~11!

wherePmn
(1) is antisymmetric and proportional to the identi

in the Lie algebra of U(N) while Pmn
(2) is an element of

u(1),su(N). And constantN3N unitary matricesWm are
taken as SU(N) solutions generated by ’t Hooft clock an
shift matrices. For comparision, ourPmn

(2) in Eq. ~11! corre-
sponds to the constant SU(N) field strengthamn in the ’t
Hooft ansatz in@17# if we consider commutativeT4.

In the case of vanishing su(N) cuvature,Fmn
(2)5Pmn

(2)50,
an explicit construction of gauge bundles with magnetic a
electric fluxes was given in@14#. For the nonvanishing
su(N) curvature case, following the ’t Hooft solution@17#
we consider diagonal connections which break U(N) to
U(k)3U( l ) where each block has vanishing SU(k)
and SU(l ) curvature. We also consider the groups U(k)
and U(l ) as U(k)5@U(1)3SU(k)#/Zk and U(l )5„U(1)
3SU(l )…/Z l , respectively. Thus the twists of the SU(k) or
SU(l ) part can be trivialized by each U(1) part. Since t
U(1) in U(N) is the direct sum of U(1) in U(k) and U(1) in
U( l ), the SU(N) twist tensor should be a sum of SU(k) and
SU(l ) twist tensors.

Here we take the generators in u(1),su(N) as

s5S l 1k 0

0 2k 1l
D , ~12!

where thek3k matrix 1k is the identity in U(k) and the
l 3 l matrix 1l is that in U(l ). Then we take the SU(N) con-
nection to be proportional tos. Since the U(N) gauge field
in Eq. ~3! contains only the matrixs and the identity matrix
1N in U(N) and so commutes withWm , in checking Eq.~8!,
Wm are irrelevant in our situation and we have

P52pF~1N12pQF !2152p~1N12pFQ!21F,
~13!

wherePmn5Pmn
(1)1Pmn

(2) . From the ansatz ofVm , Eq. ~11!,
and the cocycle condition~9!, we obtain the following com-
mutation relation forWm :

WmWn5e22p iM mn /NWnWm , ~14!

whereM is given by
04600
d

M5M (1)1M (2)5N~2P2PQP!. ~15!

Here, the integral matrixMmn
(1) is coming from the trace par

of U(N), andMmn
(2) which is also integral is proportional to

s.
We now construct the solutions in the manner of ’t Hoo

for bundles with a constant curvature background~4! on TQ
4 .

The greatest common divisor of (Mmn ,N) is invariant under
SL(4,Z) and we take it asq. Also, we assume the twis
matrix M and the fluxP have the form ofq copies of U(n)
matricesm and P̃ defined by

m5n~2P̃2 P̃Q P̃!, P51q^ P̃, ~16!

where1q is a q-dimensional identity matrix. In other words

N5q n, M5q 1q^ m, ~17!

wheren is the reduced rank. In this case, it is convenient
consider transition functionsVm and Wm as the following
block diagonal form@13#:

Vm51q^ vm , Wm51q^ W̃m , ~18!

wherevm andW̃m belong to U(n) and SU(n), respectively.
Thus we will consider only one copy described by U(n)
transition functionsvm .

Let us define the SU(n) matricesU andV as follows:

Ukl5e2p i (k21)/n dk,l , Vkl5dk11,l , k, l 51, . . . ,n,
~19!

so that they satisfyUV5e22p i /nVU. For TQ
4 with vanishing

SU(n) curvature where we can putFmn
(2)5Pmn

(2)50, there are
solutions of the form

W̃m5UamVbm, ~20!

wheream andbm are integers. In order for the U(n) twists to
be trivial as in Eq.~9!, the SU(n) twists nmn should be bal-
anced with the U(1) fluxesmmn5mmn1n . Thus, Eq.~14!
gives

nmn5mmn5ambn2anbm mod n. ~21!

In the case of commutativeT4, ’t Hooft solutions with
nonvanishing SU(n) curvature are described by breakin
U(n) to U(k)3U( l ) so that background gauge fields resi
along the diagonals of the U(k) and U(l ) @17#. Here we have
takenn asn5k1 l . For TQ

4 , we now adopt a ’t Hooft type
solution given by

W̃m5U1
amV1

bmU2
cmV2

dm , ~22!

where am , bm , cm , and dm are integers to be determined
The matricesU1,2 andV1,2 acting in the two subgroup SU(k)
and SU(l ) satisfy the following commutation rules:
1-3
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U1V15e22p i /kIkV1U1 ,

U2V25e22p i / l I lV2U2 ,

@U1 ,U2#5@U1 ,V2#5@V1 ,U2#5@V1 ,V2#50,
~23!

wheren3n matricesI k and I l have the forms, respectively

I k5S 1k 0

0 0D , I l5S 0 0

0 1l
D . ~24!

As discussed above, the triviality of the U(n) twists requires
a balance between the SU(n) twistsnmn and the U(1) fluxes
mmn

(1) , which leads to the identificationnmn1n5mmn
(1) . Simi-

larly, since each block has vanishing SU(k) or SU(l ) curva-
ture, the fluxesmmn

(k) in U(k) andmmn
( l ) in U( l ) have to cancel

the twists nmn
(k) in SU(k) and nmn

( l ) in SU(l ), respectively,
which leads us an identification as in Eq.~21!:

nmn
(k)5mmn

(k) , nmn
( l ) 5mmn

( l ) . ~25!

Following the identification~25!, one can solve the tota
SU(n) twistsnmn in terms of two sets of twistsnmn

(k) andnmn
( l ) ,

and the SU(n) fluxes mmn
(2) as in @17#. Using Eqs.~23!, Eq.

~14! gives

nmn

n
1n5

nmn
(k)

k
I k1

nmn
( l )

l
I l2

mmn
(2)

n
. ~26!

Taking the trace on the above equation, we get

nmn5nmn
(k)1nmn

( l ) , ~27!

where

nmn
(k)5ambn2anbm mod k,

nmn
( l ) 5cmdn2cndm mod l . ~28!

Recall that the Pfaffians given by twistsnmn
(k) andnmn

( l ) satisfy

1

8
emnabnmn

(k)nab
(k)50 modk,

1

8
emnabnmn

( l ) nab
( l ) 50 mod l

~29!

due to the triviality of the SU(k) and SU(l ) parts. However,
the total SU(n) twists may satisfy

1

8
emnabnmnnabÞ0 modn, ~30!

since it is not trivial in this construction. And the zero-bra
charge is given by

C5k•P f~n(k)/k!1 l •P f~n( l )/ l !5C(k)1C( l ), ~31!

which is an integer, due to the triviality of each sector@19#.
Therefore, our construction corresponds to D-brane bo
states involved with a~4,2,2! or ~4,2,2,0! system depending
on the value ofC in the language of@19#. The~4,2,2! system
04600
d

is a bound state of four-branes and two-branes with nonz
intersection number but no zero-branes. The~4,2,2,0! system
is a bound state of four-, two-, and zero-branes with nonz
two-brane intersection number.

For an explicit construction of these systems, we m
choose

n34
(k)5n12

( l )50, n12
(k)Þ0, n34

( l )Þ0

for ~4,2,2! and

n12
(k)5p(k), n34

(k)5k, n12
( l )5 l , n34

( l )5p( l )

for ~4,2,2,0!. Here, the zero-brane charge in the~4220! case
is given by p(k)1p( l ). Notice that in this construction, th
~4,2,2! system can be contained in the~4,2,2,0! system as a
special case.

Since some work in this direction in the vanishing SU~N!
curvature case@14# was already done via van Baal constru
tion @23#, below we also show how we can construct
~4,2,2,0! system in the manner of van Baal in our case.

Equation ~14! is covariant under SL(4,Z). Using this
symmetry we can always make the matrixm5m(k)1m( l ) to
a standard symplectic form by performing a SL(4,Z) trans-
formationR:

m5Rm0RT, ~32!

where we choosem0 as

m05S 0 m11m3 0 0

2m12m3 0 0 0

0 0 0 m2

0 0 2m2 0

D . ~33!

Sincem05m0
(k)1m0

( l ) , we take the matricesm0
(k) andm0

( l ) as

m0
(k)5S 0 m1 0 0

2m1 0 0 0

0 0 0 m2

0 0 2m2 0

D ,

m0
( l )5S 0 m3 0 0

2m3 0 0 0

0 0 0 0

0 0 0 0

D . ~34!

Here we have taken a simple U(l ) solution for convenience
Since we consider a special diagonal connection wh

breaks U(n) to U(k)3U( l ) and each block has vanishin
SU(k) or SU(l ) curvature, the twisted bundle can be deco
posed into a U(k) part and a U(l ) part and the construction
in @23# can be applied to each part separately. Introduceqi
5gcd(mi , k), l 05gcd(m3 , l ) ( i 51,2) and ki5k/qi , l 1
5 l / l 0. In @23#, it was shown that twist-eating solutions of th
type
1-4
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W̃mW̃n5e22p im0
mn/nW̃nW̃m , ~35!

where m0
mn/n5(m0 mn

(k) /k)I k1(m0 mn
( l ) / l )I l , can only exist if

k1k2uk. We thus writek5k1k2k0. When this restriction is
satisfied, it is straightforward to check that the followin
solution satisfies Eq.~35!:

W̃15Uk1

m1 /q1^ 1k2
^ 1k0

% Ul 1

m3 / l 0^ 1l 0
,

W̃25Vk1
^ 1k2

^ 1k0
% Vl 1

^ 1l 0
,

W̃351k1
^ Uk2

m2 /q2^ 1k0
% 1l ,

W̃451k1
^ Vk2

^ 1k0
% 1l , ~36!

where the SU(ki) matricesUki
andVki

are defined as

~Uki
!ab5e2p i (a21)/ki da,b , ~Vki

!ab5da11,b ,

a, b51, . . . ,ki ,

~Ul 1
!cd5e2p i (c21)/l 1 dc,d , ~Vl 1

!cd5dc11,d ,

c, d51, . . . ,l 1 , ~37!

so that they satisfyUki
Vki

5e22p i /kiVki
Uki

and Ul 1
Vl 1

5e22p i / l 1Vl 1
Ul 1

.

III. ADJOINT SECTIONS ON TWISTED BUNDLES

According to the correspondence between a comp
spaceX and theC* algebraC(X) of continuous functions on
X, the entire topological structure ofX is encoded in the
algebraic structure ofC(X). Continuous sections of a vecto
bundle overX can be identified with projective modules ov
the algebraC(X). Thus, in order to find the topologica
structure of the twisted bundle constructed in the previ
section, it is necessary to construct the sections of the bu
on TQ

4 . Furthermore as noted in@6#, if Dm andDm8 are two
connections, then the differenceDm2Dm8 belongs to the al-
gebra of endomorphisms of theTQ

4 module. Thus an arbi-
trary connectionDm can be written as the sum of a consta
curvature connection¹m and an element of the endomo
phism algebra:

Dm5¹m1Am .

From the relation~8!, we see thatA is also an adjoint section
Thus the algebra of adjoint sections can be regarded as
moduli space of constant curvature connections.

In this section we will analyze the structure of the adjo
sections on the twisted bundles onT4, closely following the
method taken by Braceet al. @13# and Hofman and Verlinde
@14#. According to the decomposition~17!, we take the ad-
joint sections of U(N) as the form

F~xm!51q^ F̃~xm!. ~38!
04600
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The sectionsF̃ on the twisted bundle of the adjoint repre
sentation of U(n) aren-dimensional matrices of functions o
TQ

4 which is generated by Eq.~2!, endomorphisms of the
module, and satisfy the twisted boundary conditions

F̃~xm12pdn
m!5vnF̃~xm!vn

21 . ~39!

Suppose that the general solution for then-dimensional
matricesF̃(xm) has the following expansion:

F̃~xm!5 (
n1•••n4PZ

F̃n1•••n4
Z1

n1Z2
n2Z3

n3Z4
n4 . ~40!

We also try to find the solutions of the following form:

Zm5eixnXn
m /n )

a51

6

G
a

sa
m

, ~41!

wheresa
m (a51, . . . ,6) areintegers andX is a matrix to be

determined. Here, according to the basis taken in Eq.~36!,
we define the SU(n) matricesGa as follows:

G15Uk1
^ 1k2

^ 1k0
% 1l ,

G25Vk1
^ 1k2

^ 1k0
% 1l ,

G351k1
^ Uk2

^ 1k0
% 1l ,

G451k1
^ Vk2

^ 1k0
% 1l ,

G551k% Ul 1
^ 1l 0

,

G651k% Vl 1
^ 1l 0

. ~42!

One can directly check that the solution~40! is compat-
ible with the boundary condition~39! if the matrixX is taken
as

X5QN,

whereQ and the integer matrixN are defined as

Q2151n2 P̃Q, ~43!

Nm
n

n
5

N(k)m
n

k
I k1

N( l )m
n

l
I l , ~44!

and

N~k!m
n5~2m1s2

m , q1s1
m , 2m2s4

m , q2s3
m! mod k,

N~ l )m
n5~2m3s6

m , l 0s5
m , ld3

m , ld4
m! mod l .

Let F51q^ F̃. Using Eqs.~6!, ~13!, and~16!, the follow-
ing identity can be derived:

Q251n12pF̃Q5~1n2mQ/n!21

5Q(k)2I k1Q( l )2I l , ~45!
1-5
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where

Q(k)2
5~12m(k)Q/k!21,

Q( l )2
5~12m( l )Q/ l !21.

Using the identity, the constant curvature~6! can be rewrit-
ten as

F̃5
1

2p
~n1n2mQ!21m5

1

2p
m~n1n2Qm!21. ~46!

Then, using the relation@13#

E
T4

d4x TrF~x!5~2p!4~kudetQ(k)u21 TrqF0000
(k)

1 l udetQ( l )u21TrqF0000
( l ) !,

whereF0000
(k) andF0000

( l ) are the zero modes of the expansi
~40!, one can check that, as it should be, the zero-br
chargeC in Eq. ~31! is equal to

C5
1

8p2ET4
d4x Tr F`F. ~47!

Now let us calculate the commutation relations satisfi
by Zm’s, which are generators of the algebra of functions
a new torus, denoted byTQ8

4 . From the explicit form~41!,
the commutation relation of the generatorsZm’s can be found
as

ZmZn5e2p iQmn8 ZnZm , ~48!

where

Q85n22NTQTQQN2n21L , ~49!

and the integer matrixL is defined by

Lmn

n
5

Lmn
(k)

k
I k1

Lmn
( l )

l
I l , ~50!

Lmn
(k)5q1~s1

ms2
n2s1

ns2
m!1q2~s3

ms4
n2s3

ns4
m! mod k,

Lmn
( l ) 5 l 0~s5

ms6
n2s5

ns6
m! mod l .

The deformation parametersQmn8 on TQ8
4 given by Eq.~49!

can be decomposed into a U(k) part and a U(l ) part:

Qmn8 5Qmn8(k)I k1Qmn8( l )I l . ~51!

Here,Q8(i) (i5k or l ) can be rewritten as a fractional tran
formation @13#

Q8(i)5L0
(i)~Q![~AiQ1Bi!~CiQ1D i!

21, ~52!

where
04600
e

d
n

L0
(i)5S Ai Bi

Ci D i
D ~53!

and the four-dimensional matrices are defined by

Ai5ni
21~Ni

T1L iNi
21m0 i!, Bi52L iNi

21 ,

Ci52Ni
21m0 i , D i5niNi

21 , ~54!

with the notationnk5k, nl5 l . One can check that eachL0
(i)

is an element of SO(4,4uZ), which is aT-duality group of the
type II string theory compactified onT4:

L0
(i) TJL0

(i)5J,

J5S 0 14

14 0 D . ~55!

For ~4,2,2! or ~4,2,2,0! backgrounds where the magnet
fluxes take the form of diagonal matrices breaking the ga
group to U(k)3U( l ), Eq. ~51! implies that the moduli space
for the D-brane bound states is described by two noncom
tative parametersQ8(k)andQ8( l ). Thus we expect that it take
the form (TQ8(k)

4 )p/Sp3(TQ8( l )
4 )q/Sq with p andq determined

by ranks and fluxes@3,4#.

IV. SO„4,4zZ… DUALITY AND MORITA EQUIVALENCE

In this section we analyze the bound states with nonz
D0-brane charge,CÞ0, corresponding to the~4,2,2,0! sys-
tem. For the given fluxesm0 in Eqs.~34!, we take the inte-
gral matricesL (k) and L ( l ) to be as close to the inverses
m0

(k) andm0
( l ) as possible, respectively:

L (k)5S 0 2q1b1 0 0

q1b1 0 0 0

0 0 0 2q2b2

0 0 q2b2 0

D ,

L ( l )5S 0 2 l 0b3 0 0

l 0b3 0 0 0

0 0 0 0

0 0 0 0

D , ~56!

where b1 , b2, and b3 are integers such thata1k2b1m1
5q1 , a2k2b2m25q2, and a3l 2b3m35 l 0, respectively.
Here, we definem̃i5mi /qi and m̃35m3 / l 0, so that aiki

2bim̃i51 anda3l 12b3m̃351. Then the set of integerssa
m

in Eq. ~50! can be chosen to satisfy Eqs.~56!:

s1
m5~0,1,0,0!, s2

m5~b1,0,0,0!,

s3
m5~0,0,0,1!, s4

m5~0,0,b2, 0!,

s5
m5~0,1,0,0!, s6

m5~b3 ,0,0,0!. ~57!
1-6
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Also, for the above given set, the matricesN(k) andN( l ) are
given by

N(k)5S q1 0 0 0

0 q1 0 0

0 0 q2 0

0 0 0 q2

D , N( l )5 l 0S 1 0 0 0

0 1 0 0

0 0 l 1 0

0 0 0 l 1

D .

~58!

From Eqs.~54!, the SO(4,4uZ) transformationsL0
(i) in

Eq. ~53! can be found as

L0
(k)5S a112 0 b1« 0

0 a212 0 b2«

2m̃1« 0 k112 0

0 2m̃2« 0 k212

D , ~59!

L0
( l )5S a312 0 b3« 0

0 12 0 0

2m̃3« 0 l 112 0

0 0 0 12

D , ~60!

where12 and« are 232 identity and antisymmetric («125
2«2151) matrices, respectively. Since the general solut
for an aritrary matrixm in Eq. ~32! is obtained by the
SL(4,Z) transformationR, the corresponding SO(4,4uZ)
transformationsLi can be given by the set (Rm0RT, RN, L)
@13#. With Eq. ~53!, the SO(4,4uZ) transformationLi can be
found as

Li5L0
(i)S RT 0

0 R21D . ~61!

Under the SO(4,4uZ) transformation~59! or ~60!, the
rank, six fluxes, and instanton~eight components altogethe!
make a fundamental multiplet of the Weyl spinor repres
tation of SO(4,4uZ) and this multiplet is mapped onto Morit
equivalent tori by the action of SO(4,4uZ) @10,11,13,14#. For
convenience, the explicit construction will be perform
only for the SO(4,4uZ) matrix ~59! since, for the matrix~60!,
it is essentially similar, and so we will drop the index (i)
from here.

Since the vector and spinor representations of SO(4,4uZ)
are related by

S21g iS5L i
jg j , i , j 51, . . . ,8, ~62!

where the gamma matrices satisfy

$g i ,g j%52Ji j , ~63!

the spinor representationS(L) corresponding to the transfor
mationL5L0L(R) in Eq. ~61! is a product ofS(L0) cor-
responding toL0 andS(R) corresponding toL(R):

S~L!5S~L0!S~R!. ~64!
04600
n

-

On T4, the rankk, six fluxesmmn , and U(k) instanton num-
ber, C5P f(mmn)/k, make a fundamental multiplet of th
Weyl spinor representation of SO(4,4uZ). We write such an
eight-dimensional spinorc as

c5ku0&1
1

2
mmnam

† an
†u0&1

C

4!
emnrsam

† an
†ar

†as
† u0&,

~65!

with the fermionic Fock basis defined in the Appendix. E
plicitly we take the spinor basisca (a51, . . . ,8) asfol-
lows:

ca5~k,m34,m42,m23,m12,m13,m14,C!. ~66!

Using the result in the Appendix,S(R) acts on this spinor as

c05S~R!c5~k,m2 ,0,0,m1 ,0,0,C̃!, ~67!

where C̃5m1m2 /k. Note that the instanton numberC̃
5m̃1m̃2k/k1k2 is integral sincek1k2uk @23#. Now one can
check that, using the result in the Appendix,S(L) acts on
this spinor as

c85S~L0!S~R!c

5S~L0!c0

5~k0,0,0,0,0,0,0,0!. ~68!

Since the transformationS(L) is an isomorphism be-
tween Fock spaces described by quantum numberc, Eq.~68!
implies that the quantum torus with quantum numberc is
~Morita! equivalent to that ofc8. Similarly, the quantum tori
described by the matrix~60! will be mapped to Morita-
equivalent tori with quantum number (l 0 ,0,0,0,0,0,0,0).
Thus it implies that the moduli space of the~4,2,2,0! system
as well as the~4,2,2! system in U(N) super Yang-Mills
theory can be mapped to D0-brane moduli space and s
takes the form (TQ8(k)

4 )qk0/Sqk0
3(TQ8( l )

4 )ql0/Sql0
. This pre-

diction is also consistent with the fact that the moduli spa
for the reducible connections takes the form of a produc
smaller moduli spaces@4#. For a direct generalization, on
can consider a generic constant background which bre
U(N) to )aU(ka). Then, we expect that the moduli space
D-brane bound states in type II string theory takes the fo
)a(TQ8(a)

4 )qa/Sqa
.

V. CONCLUSION AND COMMENTS

We studied the modules of D-brane bound states on n
commutativeT4 with non-Abelian constant backgrounds an
examined the Morita equivalence between them. We fou
that the quantum tori with various D-brane charges
~Morita! equivalent to those of D0-branes. For a generic c
stant background which breaks U(N) to )aU(ka), it was
shown that the moduli space of D-brane bound states in t
II string theory takes the form)a(TQ8(a)

4 )qa/Sqa
.

The construction in this paper has only involved const
D-brane backgrounds. The noncommutative instantons onT4

may share some properties with noncommutative instan
1-7
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on R4 @24# such as the resolution of the small instanton s
gularity. Unfortunately explicit construction of full instanto
modules seems very hard, not due to the noncommuta
ness of the geometry, but rather due to the non-Abelian p
erties of instanton connections. It would be very nice to g
a construction also for these non-Abelian instantons sinc
was claimed in@25# that the moduli space of the twisted littl
string theories ofk NS5-branes at theAq21 singularity@26#,
compactified onT3, is equal to the moduli space ofk U(q)
instantons on a noncommuativeT4.

Some interesting problems remain. The present const
tion may be generalized to the noncommutativeK3 and in-
stanton solutions on it. The instanton configurations on n
commutativeT4 or K3 should be relevant to the microscop
structures of D1–D5 black holes with aBNSNS field back-
ground, since the counting of microscopic BPS bound sta
can be related to the number of massless fields parametr
the moduli space of the bound states@27#. It is also interest-
ing since the type IIB string theory on AdS33S33X with
nonzero NS-NS B field alongX, whereX is K3 or T4, cor-
responds to the conformal sigma model whose target spa
the moduli space of instantons on the noncommutativeX
@28#.

Another interesting problem is the deformation quanti
tion of M~atrix! theory on noncommutativeT4 @15#. Al-
though the algebra of the functions onT4 is deformd by the
so-called * product, the fuctions can be Fourier expande
the usual way. In that case, the * product between Four
expanded functions will be relatively simple. We hope
address these problems soon.
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APPENDIX

To construct the spinor representationS(L), we introduce
fermionic operatorsam

† 5gm /A2 andam5g41m /A2 satisfy-
ing anticommutation relations

$am , an
†%5dmn , $am

† , an
†%5$am , an%50, m, n51, . . . ,4.

~A1!

Since the SL(4,Z) transformation does not affect the ran
and the instanton number and the SL(4,Z) is isomorphic to
04600
-

e-
p-
e
it
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-

es
ng

is
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in
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o

SO(3,3uZ), we expect, in the spinor basis~65!, that the
spinor representationS(R) corresponding toL(R) in Eq.
~61! has the following form:

S~R!5S 1 0 0

0 SO~3,3uZ! 0

0 0 1
D . ~A2!

Indeed, according to@11#, the operatorL(R) corresponding
to L(R) is given by

L~R!5exp~2amlmnan
†!, ~R!mn5exp~lmn!, ~A3!

and then the spinor representationSab(R) is defined as

L~R!ub&5 (
a51

8

ua&Sab~R!. ~A4!

Obviously, acting on the rank (b51) and the instanton (b
58) basis, Sa1(R)5S1a(R)5da1 and Sa8(R)5S8a(R)
5da8. After a little algebra, we can find the 636 matrix in
Eq. ~A2! denoted asH(R)5H3H2H1PSO(3,3uZ):

H15S C12
T 0

0 C12
21D , H25S 13 0

A 13
D , H35S 13 B

0 13
D ,

A5S 0 2R14 R13

R14 0 2R11

2R13 R11 0
D , B5S 0 d14 d13

2d14 0 0

2d13 0 0
D ,

~A5!

where Cmn is a 333 matrix formed by removing themth
row and nth column from the 434 matrix R, dmn

5det(Cmn), and we normalized the matrixC12 to be
SL(3,Z) by absorbing determinant factor in the above de
nition.

Next we will construct the spinor representationS(L0
(k))

corresponding toL0
(k) in Eq. ~59!. Let us make a blockwise

Gauss decomposition ofL0
(k) :

L0
(k)5S 14 0

C 14
D •S G 0

0 G21D •S 14 D
0 14

D
5LC•LG•LD , ~A6!

where the antisymmetric matricesC, D and a symmetric ma-
trix G are given by

C52S m1

a1
« 0

0
m2

a2
«
D , D5S b1

a1
« 0

0
b2

a2
«
D ,

G5S a112 0

0 a212
D , ~A7!
1-8
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and« is an antisymmetric 232 matrix. Then the corresponding spinor operatorL0
(k) will be given by

L0
(k)5expS 1

2
C mnam

† an
†Dexp~2hmnam

† an!expS 1

2
D mnamanD , ~A8!

where (G)mn5exp(hmn). Thus the representationS(L0
(k)) can be obtained by a product of each spinor representation:

S~L0
(k)!5S~LC!•S~LG!•S~LD!, ~A9!

where

S~L0
(k)!51

a1a2 2a1b2 0 0 2a2b1 0 0 b1b2

2a1m̃2 a1k2 0 0 b1m̃2 0 0 2b1k2

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

2a2m̃1 b2m̃1 0 0 a2k1 0 0 2b2k1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

m̃1m̃2 2m̃1k2 0 0 2m̃2k1 0 0 k1k2

2 . ~A10!

Similarly,

S~L0
( l )!51

a3 0 0 0 2b3 0 0 0

0 a3 0 0 0 0 0 2b3

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

2m̃3 0 0 0 l 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 2m̃3 0 0 0 0 0 l 1

2 . ~A11!

Here we used the definition~62! in order to drop the global factors such as 1/a1a2 and 1/a3.
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