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We construct twisted quantum bundles and adjoint sections on noncommthtiaed investigate relevant
D-brane bound states with non-Abelian backgrounds. We also show that the noncomnilfatita non-
Abelian backgrounds exhibits SO(43 duality and via this duality we get a Morita equivalérft on which
only DO-branes exist. For a reducible non-Abelian background, the moduli space of D-brane bound states in
type Il string theory takes the fori,(T#)%/ Sqa'

PACS numbegps): 11.25.Mj, 11.25.Sq

I. INTRODUCTION
f CRRAQ.
Recent developments in nonperturbative string theories R
have provided new powerful tools to understand supersym-
metric gauge theories[1]. The Bogomol'nyi-Prasad- It was shown in6,7] that noncommutative geometry can
Sommerfeld(BPS brane configurations led to many exact be successfully applied to the compactification ofaliix)
results on the vacuum structure of supersymmetric gaugtheory[8] in a certain background. In those papers, it was
theories. One may be interested in counting the degenerag@ygued that NMatrix) theory in a three-form potential back-
of D-brane bound states of type Il string theory compactifiedground with one index along the lightlike circle and two
on R 9% X in which a gauge field strengthand a Neveu- indices alongT? is a gauge theory on a noncommutative
SchwarzB field on the brane are nonzero. Therbranes torus, specifically -+ 1)-dimensional noncommutative su-
wrapped on a compagptcycle W,C X and their bound states per Yang-Mills(NCSYM) theory. Many more discussions of
look like particles in the effectivi®R>® 9 spacetime. More- M- and string-theory compactifications on these geometries
over, the degeneracy of the bound states is the same as tfalowed, for examplg9—-15.
number of ground states in the corresponding quantum field One obvious advantage of NCSYM theory definedTséh
theory on the D-brane world voluné&]. is that theT duality, SO@,d|Z), of type Il string theory
The D-brane moduli spad&,4] can be defined as a space compactified on torus becomes manif¢6t7,13—-15. The
of Chan-Paton vector bundieover X or a space of solutions Morita equivalence between two noncommutative torus

to the equation given by [10,11 encompasses the Nahm transformation paif di-
ality, not clearly observed in conventional Yang-Mills
SN=FynMNe+ =0 theory. Using this symmetry, it may be possible to system-

atically count D-brane bound states ®fi or K3 as ground

for some pair of covariantly constant spingfsand 7 on state configurations for the supersymmetric gauge theory.
P y P K For compactifications ofi? and T2 generic UN) bundles

1,9-d : _
R XX. The various Ramond-Ramon®&R) charges are on it admit vanishing SUY) curvature[6,12,13. However,

given by the Mukai vector Q=v(E)=Ch(E)VA(X)  for compactifications on tori of dimension 4 or larger, not all
eH?(X,Z) where ChE)=Tr exd(1/2m)(F-B)] is the  pundles allow vanishing SB() curvature, so we have to
Chern character and(X)=1—p.(X)/24 is the A-roof ge- consider more generic bundles with nonvanishBg(N)
nus for four-dimensional manifol. Then the supersym- curvature. It turns ouf16,17] that one can construct a
metric, BPS bound states, for exame0,D2,D4 bound twisted SUN) gauge bundle oii* with fractional instanton
states onT# or K3, are allowed by the Chern-Simons cou- number. However, in discussing the N) gauge theory as
plings[5] D-brane dynamics, it is understood that the total instanton
number is integral since the instanton number is related to
DO-brane charges inside D4-branes, which should satisfy

*Email address: eskim@wavelet.hanyang.ac.kr Dirac quantization due to the existence of a D6-brane in type
"Email address: hikim@gauss.kyungpook.ac.kr IIA string theory [18]. In [19,20, 't Hooft solutions on
*Email address: N.Kim@qgmw.ac.uk twisted bundles on commutative tori were realized by
SEmail address: bhl@ccs.sogang.ac.kr D-brane configuration$D-brane bound statgsvrapped on
'Email address: leecy@zippy.ph.utexas.edu tori in type Il string theory, and it was shown thatduality
TEmail address: hsyang@physics4.sogang.ac.kr relates their bound states.
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In general one can consider gauge bundle Tdnwith [x#x"]==2mi0,,. (1)
non-Abelian constant curvaturgl7]. In that case, non-
Abelian backgrounds can be obviously supersymmetric forhen the noncommutative*, which will be denoted byrg, ,
self-dual or anti-self-dual fields since the supersymmetry ofs generated by translation operatdds, defined byU,
D-brane world volume theory may be given by =e*» and satisfies the commutation relation

SN=FynIMNe, UMUV:eZTH@MUVU“' 2

Also, we introduce partial derivatives satisfying
Thus, in order to study the BPS spectrums of NCSYM theory
on the non-Abelian backgrounds, it will be useful to con- [0 X"]1=06), [0,,0,]=0.
struct the corresponding gauge bundles. In the presence of 4 )
non-Abelian backgrounds as well as Abelian backgrounds, W& construct quantum W) bundles oriT'g following the
the gauge bundle may be twisted by the background ma -onstruction _0[12,1?§| and[17]. Start with a constant curva-
netic fluxes. While Abelian backgrounds universally twist tUre connection
the U(N) gauge bundle, in the case of non-Abelian back-
grounds where the magnetic fluxes inNJ(are decomposed

into a U(k) part and a UK) part[17], the magnetic flux inthe  \yhere Greek indices run over spatial components only. In
U(k) part twists the UK) CU(N) gauge bundle and that in thjs paper we allow U{) gauge fields with nonvanishing
the U() part does the UJCU(N) gauge bundle. This sy(N) curvature in order to consider non-Abelian back-
causes two different deformation parameters to appear.  grounds. Following the ansatz taken by 't Hoptt7], we

The Chern character maps K theory to cohomology, i.e.take the curvatur€ ,, as the Cartan subalgebra element:
Ch :KO(X)—H®"®1X,Z) and K! to odd cohomology and

Ch(E) = Chy(E) + Chy(E) + Chy(E) when X is four dimen- F.=FO+F2, (4)
sional andE is a vector bundle oveX. Here CR(E) is the

rank of E, Chy(E) is the first Chern class, and Q) cor-  where F()=TrF,, and F{?)eu(1)Csu(N). The constant
responds to the instanton number. () is the integral curvature is given by

winding number when the torus is commutative and it is not )

integer anymore when the torus is noncommutative but Fur=iLV,.V,]. 5
Chy(E) still remains integral even if the torus becomes non-
commutative[10,11,14. However, D-brane charges take
values inK(X), the K theory ofX [21], which constitutes a _

group of integerZ. The (4+1)-dimensional UN) SYM F=(2F+27FOF). ©

theory can be interpreted as the dynamicsNob4-branes.  Note that bothF and© are antisymmetric % 4 matrices.

Six magnetic fluxes are D2-branes wound around six two- The gauge transformations of fields in the adjoint repre-
cycles of T*. Instantons are DO-branes bound to D4-branessentation of the gauge group are insensitive to the center of
Thus, even when the Neveu-Schwarz—Neveu-SchWd&  the group, e.g.Zy for SU(N). Thus, for the adjoint fields in
NS) two-form potential background is turned on, the phy5|-SU(N) gauge theory, it is sufficient to consider the gauge
cal D-brane numbers should be integers. In addition, th<=group as being SW()/Z,. However, there can be an ob-
rank, six fluxes, and instantdaltogether, eight components gty ction to go from an SW()/Z, principal fiber bundle to
make a fundamental multiplet of the Weyl spinor represenyp sU(N) bundle if the second homology group of the base

tation of SO(4.42) [14]. _ . manifold X, H,(X,Zy), does not vanish22]. In order to
Since explicit constructions of twisted bundles and adjointyescripe such a nontrivial ™) bundle, it is helpful to de-

gections in the Iiterature_have been performed only for Abe—Compose the gauge group into its Abelian and non-Abelian
lian backgrounds, we will construct them for constant non-

" v e components
Abelian backgrounds in this paper. In Sec. Il, we construct
twisted bundles on noncommutatiié. In Sec. I, adjoint U(N)=(U(1)XSU(N))/Zy. 7
sections on the twisted bundle will be constructed. In Sec.
IV, we show that the modules of D-brane bound states ext means that we identify an element g;(,gn)
hibit an SO(4,42) duality and the action of this group gives e U(1)x SU(N) with (g,c1,cgy), wherece Z. There-
a Morita equivalenT* on which only DO-branes exist. Sec- fore one can arrange the twists in N) to be trivial by
tion V is devoted to the conclusion and comments on oucancelling them between SNj and U(1) [19]. This re-
results. In the Appendix, we present some details of the repguires consistently combining solutions of 3U(Z with
resentation of SO(4}Z) Clifford algebra. U(1) solutions as to cancel the total twist.

To characterize the generic Nf gauge bundle off§,,
we allow the gauge bundle be periodic up to gauge transfor-

mationQM , i.e.,

V,=3d,+iF X", 3)

And one can calculate to get

Il. TWISTED QUANTUM BUNDLES ON T 4

To define the noncommutative geometry, we understand N N . U
the space is honcommutative, viz., V, (X +2m87) =Q,(X)V (X)), ~(x). (8)
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Consistency of the transition functions of theNJ(bundle
requires the so-called cocycle condition

O (XT+ 27 82) Q (X9 = Q ,(XT+ 28 Q. (x).  (9)

However, the SUY{) transition functionf)u(x“) may be
twisted ag16]

Q,(x* 42780 ,(x)=2,,0,(x"+ stz)ﬁ“(xa)(’m)

wherez,,,=e 2™"/N is the center of SUY).

Write Q) ,(x) as a product of ax-dependent part and a

constant part,

0, (x)=e PP W, | (11)

wherePE}V) is antisymmetric and proportional to the identity

in the Lie algebra of UY) while P{?) is an element of
u(1)Csu(N). And constantNX N unitary matricesw,, are

PHYSICAL REVIEW D 62 046001

M=MD+MP)=N(2P-POP). (15)

Here, the integral matrii E}V) is coming from the trace part
of U(N), andM ) which is also integral is proportional to
ag.

We now construct the solutions in the manner of 't Hooft
for bundles with a constant curvature backgro@fdon Tﬁ) .
The greatest common divisor ofik,, ,N) is invariant under
SL(4Z) and we take it agj. Also, we assume the twist
matrix M and the fluxP have the form ofg copies of Ug)

matricesm andP defined by
m=n(2P-POP), P=1,0P, (16)
wherel, is ag-dimensional identity matrix. In other words,
N=qgn, M=ql,®m, (17)

wheren is the reduced rank. In this case, it is convenient to

taken as SUY) solutions generated by 't Hooft clock and consider transition function§),, and W, as the following

shift matrices. For comparision, omfg in Eqg. (11) corre-
sponds to the constant SNJ field strengthe,,, in the 't
Hooft ansatz if17] if we consider commutativ@*.

In the case of vanishing s cuvature,F{?)=P?)=0,

block diagonal fornm{13]:

Q,=1®w,, W,=1,0W,, (18)

an explicit construction of gauge bundles with magnetic andvherew, and\7\/ﬂ belong to UQ) and SUQ), respectively.
electric fluxes was given if14]. For the nonvanishing Thus we will consider only one copy described byn)(

su(N) curvature case, following the 't Hooft solutidi7]
we consider diagonal connections which breakNY(to
U(k)xU(l) where each block has vanishing H)(
and SU() curvature. We also consider the groupsk)J(
and U() as Uk)=[U(1)xSUK)]/Z, and U()=(U(1)
X SU(1))/Z,, respectively. Thus the twists of the Stj(or

transition functionsw, .
Let us define the SW) matricesU andV as follows:

Uk|2827Ti(k_1)/n 5k,| s Vk|: 5k+l,| s k, |:1, A
(19

SU(l) part can be trivialized by each U(1) part. Since theso that they satisfJV=e~2"/"VU. For T with vanishing

U(1) in U(N) is the direct sum of U(1) in W) and U(1) in
U(l), the SUN) twist tensor should be a sum of Sij(and
SU(l) twist tensors.

Here we take the generatorin u(1)Csu(N) as

1, O
o -ky)
where thekxXk matrix 1, is the identity in UkK) and the
[ X1 matrix 1, is that in U(). Then we take the SU) con-
nection to be proportional to. Since the UN) gauge field
in Eq. (3) contains only the matrix- and the identity matrix

1y in U(N) and so commutes wittV/, , in checking Eq(8),
W, are irrelevant in our situation and we have

12

P=27F(1y+2mOF) '=2xm(1y+27F0O) F,
(13
whereP,,,=P{)+ P From the ansatz of2,,, Eq. (1),
and the cocycle conditiof®), we obtain the following com-
mutation relation folW,, :
W,W,=e 2"Mu/Nw W | (14

whereM is given by

SU(n) curvature where we can p&’)=P{?)=0, there are
solutions of the form
\7V#= Uau\/Pu, (20
wherea, andb,, are integers. In order for the WY twists to
be trivial as in Eq(9), the SUQ) twistsn,,,, should be bal-
anced with the U(1) fluxesn,,=m,,1,. Thus, Eq.(14)
gives
n,=m,=a,b,—ab, modn. (21

In the case of commutativ&?, 't Hooft solutions with
nonvanishing SU{) curvature are described by breaking
U(n) to U(k) X U(l) so that background gauge fields reside
along the diagonals of the WY and U() [17]. Here we have
takenn asn=k+1. For T4, we now adopt a 't Hooft type
solution given by

Tt b d
W, = UV U SV -, (22)

wherea,, b,, c,, andd, are integers to be determined.
The matriced) ; , andV, ; acting in the two subgroup SKY
and SU() satisfy the following commutation rules:
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U,V=e 27 v Uy, is a bound state of four-branes and two-branes with nonzero
intersection number but no zero-branes. e,2,0 system
SRVARPE L IRVRY is a bound state of four-, two-, and zero-branes with nonzero
2%z 2= two-brane intersection number.
[U;,U,]=[Uyq,Vo]=[V1,Uy]=[Vy,V,]=0, For an explicit construction of these systems, we may
(23) choose
wherenx n matricesl, andl, have the forms, respectively, n§?=n{3=0, n{§+0, n{)+0
1, O 0 0 for (4,2,2 and
= , = : (29
0 0 0 1

o=, =k, =1, nf)=p0
As discussed above, the triviality of the R)(twists requires _

a balance between the St)(twistsn,,, and the U(1) fluxes ~ for (4.2,2,0. Here, the zero-brane charge in ##220 case
mELlV), which leads to the identiﬁcationuvln:mgllg_ simi-  is given by p®+p®. Notice that in this construction, the
larly, since each block has vanishing $Jr SU() curva- (42,2 system can be contained in th2,2,0 system as a
ture, the fluxesn() in U(k) andm(), in U(1) have to cancel special case.

h ; K K o | ivel Since some work in this direction in_ the vanishing (8J
the twistsn,,, in SU(k) and ny, in SU(), respectively, curvature casgl4] was already done via van Baal construc-

which leads us an identification as in Hg1): tion [23], below we also show how we can construct a
nﬁﬁzmﬁ‘ﬂ, nﬂ)vzmﬂ)v_ (25 (4.2,2,0 system in the manner of van Baal in our case.
Equation (14) is covariant under SL(Z). Using this
Following the identification(25), one can solve the total symmetry we can always make the matmx=m®+m( to

SU(n) twistsn,,,, in terms of two sets of twists) andn(),,  a standard symplectic form by performing a SIA¥trans-
and the SUK) fluxesm(?) as in[17]. Using Egs.(23), Eq. ~ formationR:
(14) gives .
m=RmyR", (32
(k) Q) (2)
14 n 14 n 14 m 14
%%:%'ﬁ%'l— : : (260 where we choosen, as
Taking the trace on the above equation, we get 0 mi+tmg 0 0
—m;—m 0
NS I () 1~ M3
n,uv_n,u,y—’_n,uv' (27) Moo= 0 0 0 m, (33)
where 0 0 ~m, 0

(k) — _
nu»=a,b,~a,b, modk, Sincemy=m{ +m{’ , we take the matricem{’ andm{ as

() = _
n,,=c.d,—c,d, modl. (28 0 m, 0 0

Recall that the Pfaffians given by twist§?) andn(), satisfy

(k) —
m - L
1 1 ° o o 0o m
ge“”“ﬂn;kzngkgfo modk, ge“”“ﬁnﬂlng}fo mod| 0 0 -m, O
(29)
0 ms 0 O
due to the triviality of the SWK) and SU() parts. However, ~ 0 0 0
the total SUQ) twists may satisfy m) = M3 (34)
) ° lo 0 0O
ge“”“ﬁnwnaﬂaﬁo modn, (30) 0 0 0O

Here we have taken a simple lJ(solution for convenience.
Since we consider a special diagonal connection which
breaks Uf) to U(k) X U(l) and each block has vanishing
C=k-Pf(n®/k)+1-Pf(nO/)=c®+c®, (31  SUK) or SU() curvature, the twisted bundle can be decom-
posed into a UK) part and a UK) part and the construction
which is an integer, due to the triviality of each sedt®®].  in [23] can be applied to each part separately. Introduyice
Therefore, our construction corresponds to D-brane bounergcd(m;, k), lo=gcd(ms, 1) (i=1,2) and ki=k/q;, |,
states involved with @4,2,2 or (4,2,2,0 system depending =1/l,. In[23], it was shown that twist-eating solutions of the
on the value ofC in the language df19]. The(4,2,2 system type

since it is not trivial in this construction. And the zero-brane
charge is given by
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\7VM\7VV:e—27Tim6”/“\7\/V\7\/w (35)  The sectionsb on the twisted bundle of the adjoint repre-
sentation of Uf) aren-dimensional matrices of functions on
where mg”/n=(m{, /K) 1+ (m§,,/1)1;, can only exist if T¢ which is generated by Eq2), endomorphisms of the
kiko|k. We thus writek=Kk;k,kos. When this restriction is module, and satisfy the twisted boundary conditions
satisfied, it is straightforward to check that the following _ _
solution satisfies Eq:35): O(x“+2m64) =0, (x*)w, . (39

\7\,1:Uzhlql@lkz@lkoeaurﬁs/'o@ 1, Suppo~se that the general solution for tikelimensional
! ' matrices® (x*) has the following expansion:

\7\/2=Vk ®1k ®1k @V| ®1| ’ ~ ~
17 T o T o d(xt)= 2 Dy .0 ZPZ2Z070.  (40)
_ niy---nge”z
Ws=1,, 0U e 1, o1, Y
2 We also try to find the solutions of the following form:

\7\/4: 1k1® Vk2® 1k0® l| f (36) _ 6 o
z, =X ] T, (41)
where the SUK;) matricesUki andei are defined as a=1
. Il e N i 1
(Up)ap=€"@ D% 5, 1 (Vi)ab=Bas1p. wheres” (a=1, ... ,6) areintegers an is a matrix to be

determined. Here, according to the basis taken in (Bf),
we define the SW{) matricesl’, as follows:

Flz U k1® 1k2® 1kOEB 1| y

c,d=1,...1;, 37 =V, ®1, 0L &1,
so that they satisfyukivki=e‘27“/ki\/kiuki and U, V;, Fa=14 ®U 0L &1,

— a—2milly
e Vi, Ui, Ty=1 ®V, 0L ol

IIl. ADJOINT SECTIONS ON TWISTED BUNDLES [s= 1k@UI1® 1|0'

According to the correspondence between a compact

spaceX and theC* algebraC(X) of continuous functions on Fe=LoV, ®1,. (42
X, the entire topological structure of is encoded in the

algebraic structure oE(X). Continuous sections of a vector ~ One can directly check that the solutiof0) is compat-
bundle overX can be identified with projective modules over ible with the boundary conditio(89) if the matrix X is taken
the algebraC(X). Thus, in order to find the topological as
structure of the twisted bundle constructed in the previous
section, it is necessary to construct the sections of the bundle
on T§ . Furthermore as noted ii6], if D,, andD/, are two
connections, then the differen@,—D,, belongs to the al-

X=0N,

whereQ and the integer matrikl are defined as

gebra of endomorphisms of tHE}, module. Thus an arbi- Q 1=1,-PO, (43

trary connectiorD , can be written as the sum of a constant

curvature connectiotV,, and an element of the endomor- N“, NO# N~

phism algebra: Tk kT h (44)
DM:V’M‘FAM . and

From the relation8), we see thaf is also an adjoint section.
Thus the algebra of adjoint sections can be regarded as the
moduli space of constant curvature connections. Mp —(_ n Lo Si | sk

In thispsection we will analyze the structure of the adjoint ND#,=(—mesg, losg, 155, 165) mod.
sections on the twisted bundles @, closely following the
method taken by Bracet al.[13] and Hofman and Verlinde
[14]. According to the decompositiofi7), we take the ad-
joint sections of UN) as the form

NO# =(—myst, g8y, —mysh, q,84) modKk,

Let F= 1q®?-'. Using Eqgs(6), (13), and(16), the follow-
ing identity can be derived:

Q%=1,+27FO®=(1,—mO/n)~*
D (x*)=1,@ D (xH). (39 =QM2, + QM2 (45)
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where

12

AP =

B‘) (53

5
QW =(1-mMerk) L, C. D,

02 0 ) and the four-dimensional matrices are defined by
QW =1-mMe/n) .
A=n YNJ+LN;'mg,), B=—LN*,

Using the identity, the constant curvatu® can be rewrit-
ten as C,=-N;'my,, D,=nN 1, (54

with the notatiom, =k, n,=I. One can check that eaa‘t{f)
is an element of SO(4]2), which is aT-duality group of the
type |l string theory compactified oh*:

Fo 1 @*1—1 1.—0m)~L (46
F=5_-(nl,—mO) "m=5—m(nl,—Om) " (46

Then, using the relatiofiL3]

AP TIAP =,
f T4d4x Trd(x) = (2m)*(k|detQ®| ~* Trd g 0 1,
J= : (55)
+1|detQM] =1 Tr, @ {0, ( 14 0)

where® )., and ®{},, are the zero modes of the expansion  For (4,2, or (4,2,2,0 backgrounds where the magnetic
(40), one can check that, as it should be, the zero-branfluxes take the form of diagonal matrices breaking the gauge
chargeC in Eq. (31) is equal to group to UK) X U(l), Eq. (51) implies that the moduli space
for the D-brane bound states is described by two noncommu-
1 . tative parameter® Wand® () Thus we expect that it takes
C= a2 T4d XTr FAF. (A7) the form (T, )P/ SpX (T )%/ Sq With p andq determined
by ranks and fluxef3,4].

Now let us calculate the commutation relations satisfied
by Z,’s, which are generators of the algebra of functions on IV. SO(4,4Z) DUALITY AND MORITA EQUIVALENCE

4 ..
a new torus, fjenoted_ b . From the explicit form(41), In this section we analyze the bound states with nonzero
the commutation relation of the generatdrss can be found DO-brane chargeC+0, corresponding to thé4,2,2,0 sys-

HS tem. For the given fluxes, in Egs.(34), we take the inte-
prity! gral matrices.® andL(") to be as close to the inverses of
L2, =€l 2, (48 m andm{ as possible, respectively:
where 0 —ogiby O 0
0'=n"2N"Q"O@QN-n"1L, (49 L0 qib; O 0 0
_ o | o 0 0 —apb,
and the integer matrik is defined by
0 0 b, O
L, L® 10O
e v Sl IR (50) 0 —lghg 0 O
b3 0 0 0
(k) v v v v 0= ) (56)
L, =d1(Sy's;—5s185) +da(s5s, —s3sy) modk, 0 0 0 0
0 0 0 O

LO),=lo(stsg—stsk) modl.
. , . where by, b,, and by are integers such thai;k—b;m;
The deformation parametef,, on Ty, given by Eq.(49) =q,, a,k—b,m,=q,, and agl—bsmz=1,, respectively.
can be decomposed into ak)(part and a U() part: Here, we definem;=m;/q; and mg=ms/l,, so thatajk;
—b;m;=1 andasl;—bsmz=1. Then the set of integess’
in Eq. (50) can be chosen to satisfy Eq56):
gt:;?éfi)();;l(é]—korl) can be rewritten as a fractional trans- $#=(0,1,0,0, ¢=(b,,0,0,0),

0,,=0,%91,+0,01. (52)

@/(L)ZAE)L)(@)E(AL+ B,)(C,0+ DL)—l, (52) s§=(0,0,0,1, s=(0,0)h,,0),
where s£=(0,1,0,0, sf=(b3,0,0,0. (57)
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Also, for the above given set, the matrides? andN) are
given by

g 0 0 O 100
O A 0 NO=1, Lo
0 g, O] 01, O
0 0 0 q 0 0 l1

(58)

From Egs.(54), the SO(4,/Z) transformationsA{" in
Eqg. (53) can be found as

a; 1, 0 b.e 0
N ? a,l, 0 by 59
0 ~me 0 kg, 0 |
0 —me 0 ki
azl, 0 bge O
AP = 9 b 000 (60)
—mge 0 I, O]
0 0 0 1

wherel, ande are 2x2 identity and antisymmetricef?=

g2l

for an aritrary matrixm in Eq. (32) is obtained by the
SL(4Z) transformationR, the corresponding SO(42)
transformations\, can be given by the seRmyR", RN, L)
[13]. With Eq. (53), the SO(4,4) transformation\, can be

found as
RT 0
0 R

rank, six fluxes, and instantqeight components altogether

ALzAg‘)< (62)

make a fundamental multiplet of the Weyl spinor represen
tation of SO(4,42) and this multiplet is mapped onto Morita

equivalent tori by the action of SO(44) [10,11,13,14 For

convenience, the explicit construction will be performed

only for the SO(4,42) matrix (59) since, for the matrix60),
it is essentially similar, and so we will drop the indey) (
from here.

Since the vector and spinor representations of SQZ4,4
are related by

S ly,s= AJyJ, i,j=1,...,8, (62
where the gamma matrices satisfy
17i J’j}ZZJij ) (63

the spinor representatid@(A) corresponding to the transfor-
mation A =A(A(R) in Eq. (61) is a product ofS(A,) cor-
responding to\; and S(R) corresponding to\ (R):
0 S(R).

S(A)=S(A (64)

1) matrices, respectively. Since the general solution

PHYSICAL REVIEW D 62 046001

On T4, the rankk, six fluxesm,,,, and UK) instanton num-
ber, C=Pf(m,,)/k, make a fundamental multiplet of the
Weyl spinor representation of SO(#73. We write such an
eight-dimensional spinog as
C

vpoat Attt
ﬂe“ p aMayaan|O)

1 it
¢=k|0)+§m a,a,|0)+

(65

with the fermionic Fock basis defined in the Appendix. Ex-
plicitly we take the spinor basig, («¢=1, ...,8) asfol-
lows:

o= (K,Mz4q, Mgz, My3,Myp,Mi3,Myy,C). (66)

Using the result in the Appendi§(R) acts on this spinor as

o= (67)

where C=m;m,/k. Note that the instanton numbeE

=m;m,k/k .k, is integral sincek;k,|/k [23]. Now one can
check that, using the result in the Append8(A) acts on
this spinor as

S(R)¢=(k,m,,0,0m;,0,0C),

' =S(Ag)S(R)
=S(Ao) o

= (k,0,0,0,0,0,0,0. (68)

Since the transformatioi®(A) is an isomorphism be-
tween Fock spaces described by quantum nunih&q. (68)
implies that the quantum torus with quantum numbers
(Morita) equivalent to that ofy’. Similarly, the quantum tori
described by the matrix60) will be mapped to Morita-
equivalent tori with quantum numberly(0,0,0,0,0,0,0).
Thus it implies that the moduli space of tt2,2,0 system
as well as the(4,2,2 system in UN) super Yang-Mills
theory can be mapped to DO-brane moduli space and so it
takes the form T¢, ) ¥/ Sqi X (T ) 9/ Sy, This pre-
diction is also consistent with the fact that the moduli space

tor the reducible connections takes the form of a product of

smaller moduli spacef4]. For a direct generalization, one
can consider a generic constant background which breaks
U(N) to IT,U(k,). Then, we expect that the moduli space of
D-brane bound states in type Il string theory takes the form
Ma(Tey @)%/ Sg,-

V. CONCLUSION AND COMMENTS

We studied the modules of D-brane bound states on non-
commutativeT* with non-Abelian constant backgrounds and
examined the Morita equivalence between them. We found
that the quantum tori with various D-brane charges are
(Morita) equivalent to those of DO-branes. For a generic con-
stant background which breaks N to IT1,U(k,), it was
shown that the moduli space of D-brane bound states in type
Il string theory takes the forrﬂa(Té),(a))Qa/Sqa.

The construction in this paper has only involved constant
D-brane backgrounds. The noncommutative instantori*on
may share some properties with noncommutative instantons

046001-7
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on R* [24] such as the resolution of the small instanton sin-SO(3,3Z), we expect, in the spinor basi$5), that the
gularity. Unfortunately explicit construction of full instanton spinor representatio®(R) corresponding toA (R) in Eq.
modules seems very hard, not due to the noncommutativeé61) has the following form:

ness of the geometry, but rather due to the non-Abelian prop-

erties of instanton connections. It would be very nice to give 1 0 0
a construction also for these non-Abelian instantons since it
=0 SQ3,32) 0].
was claimed irf 25] that the moduli space of the twisted little S(R) a3.32) (A2)
string theories ok NS5-branes at thé,_; singularity[26], 0 0 1

compactified orl'3, is equal to the moduli space &fU(q) . .

instantons on a noncommuativé. Indeed, according tp11], the operatorA(R) corresponding
Some interesting problems remain. The present construd® A(R) is given by

tion may be generalized to the noncommutati{@ and in-

stantonysoluti%ns on it. The instanton configurations on non- A(R)=exp—a,\*"a;), (R),,=exp(\,,), (A3)

commutativeT* or K3 should be relevant to the microscopic . . . .

structures of D1-D5 black holes with Bysys field back- ~ 2nd then the spinor representati§(R) is defined as

ground, since the counting of microscopic BPS bound states 8

can be related to the number of massless fields parametrizing _

the moduli space of the bound stafég]. It is also interest- ARIB) Zl |a>S“B(R)' *4)

ing since the type IIB string theory on Ad8 S*x X with

nonzero NS-NS B field alond, whereX is K3 or T4, cor-  Obviously, acting on the rank@=1) and the instantonf

responds to the conformal sigma model whose target space #68) basis, S,1(R)=S;,(R)=45,1 and S,5(R)=S;,(R)

the moduli space of instantons on the noncommutalve =4,q. After a little algebra, we can find thex66 matrix in

[28]. Eqg. (A2) denoted a#d(R)=H3H,H; e SO(3,32):
Another interesting problem is the deformation quantiza-

tion of M(atrix) theory on noncommutativd* [15]. Al- Ci, O 1; O 1, B

though the algebra of the functions @ is deformd by the Hi= 0 c- ) HZ:(A 1 ) H3=( 0 1 )

so-called * product, the fuctions can be Fourier expanded in 12 3 3

the usual way. In that case, the * product between Fourier-

expanded functions will be relatively simple. We hope to 0 ~Ru Ry 0 diy dy
address these problems soon. A=| Ru 0 —Ryu|,B=|—-du 0 0],
_R13 Rll 0 _d13 0 0
(AS5)
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whereC,,, is a 3x3 matrix formed by removing theth
row and »th column from the &4 matrix R d,,
=det(C,,), and we normalized the matrixC,, to be
SL(3Z) by absorbing determinant factor in the above defi-
nition.

Next we will construct the spinor representatispA ()
corresponding ta\ (¥ in Eq. (59). Let us make a blockwise

where the antisymmetric matric€sD and a symmetric ma-

APPENDIX trix G are given by
To construct the spinor representati®i\ ), we introduce b
fermionic operators, =y, /\2 anda, =y, ,/\2 satisfy- ™ 9 1000
ing anticommutation relations o= a D a
m, ' b, '
fy_ oot _ _ 0 —= 0 —Ze
{ag. a,}=0,,,{a,, a,}={a,,a,}=0,u,v=1,... 4 a, a,
(A1)

. . a;l, O
Since the SL(4) transformation does not affect the rank G= , (A7)
and the instanton number and the SIA%js isomorphic to 0 al

046001-8



TWISTED BUNDLES ON NONCOMMUTATIVET * AND D- . .. PHYSICAL REVIEW D 62 046001

ande is an antisymmetric 2 matrix. Then the corresponding spinor opera\é‘f) will be given by

1
AP = ex;{ € “alal : (A8)

1
exp(— h‘”aLay)ex;{ 5D "a,a,

where G),,=exp(h,,). Thus the representaticﬁ(Ag")) can be obtained by a product of each spinor representation:

S(AG)=S(A¢)- S(Ag)- S(Ap), (A9)
where
a;a, —ab, 0 0 —asb; 0 O byb,
—a;m, ak, 0 0 pm, O 0 —biky
0 0 1 0 0 00 0
AW — 0 0 0 1 0 00 © A0
0 —a,m; bo,m 0 0 ak; 0 0 —byk
0 0 00 0 10 O
0 0 00 0 0 1 0
mm, —mk, 0 0O —mk; O O Kk,
Similarly,
as 0 0 0 —-b; O 0 O
0 az 0 0 O 0 O —bg
0 0 1 0 0 0 O
0 0O 01 0 00 O
S(Ag)= H 0 00 I, 00 O (A11)
0 0O 00 O 10 O
0 0 00 01 O
0 -my 00 O 0O Iy

Here we used the definitiof®2) in order to drop the global factors such aaH, and 14,.
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