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Consistency of the Born approximation for the spin-1Õ2 Aharonov-Bohm scattering
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The relativistic scattering of a spin-1/2 particle from an infinitely long solenoid is considered in the frame-
work of covariant perturbation theory. The first order term agrees with the corresponding term in the series
expansion of the exact amplitude, and second order term vanishes, thus proving that the Born approximation is
consistent.

PACS number~s!: 11.80.Cr, 12.38.Bx, 13.88.1e
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I. INTRODUCTION

It is by now well known that when particles of conve
tional statistics are coupled to a pure Chern-Simons~CS!
gauge field, this field creates an Aharonov-Bohm~AB! like
interaction which converts the particles to charge-flux-tu
composites@1#. Somewhat later, it was shown, in the conte
of a Galilean field theory of scalar fields minimally couple
to a pure CS field, that one can approach the problem
calculating an arbitrary scattering process by restricting c
sideration to anN-body sector, allowing one to derive
Schrödinger equation for theN-body problem with each pai
interacting as zero radius flux tubes. This has led to the cl
that field theory, sector by sector, is formally equivalent to
conventional Schro¨dinger equation@2#. Specifically, in the
two particle sector of this equivalent field theory, one get
Schrödinger equation similar to the AB equation@3#.

These developments brought back the long-standing is
of failure of the quantum mechanical perturbation theory
the Aharonov-Bohm~AB! scattering amplitude@4#. The fail-
ure of the Born approximation, for instance, is known to
due to the fact that the lowest partial wave amplitude sa
fies an integral equation whose interaction term is quadr
in terms of the flux parameter. As the exact lowest par
wave contribution to the scattering amplitude is known to
linear in this parameter, then, it is absent in the first or
Born approximation.

There have been several attempts to solve this prob
for the spinless case in the context of direct AB scatter
@5#, anyon physics@6#, and scalar Galilean Chern-Simon
~CS! gauge field theory@7–9#. For instance, in Ref.@7#, it
was shown, through a perturbative calculation of the tw
particle scattering amplitude, up to one-loop order, that
amplitude is nonrenormalizable, unless a contact interac
is introduced, which however for a given strength of t
interaction ~critical value corresponding to the self-du
limit ! reduces to the same order term of the series expan
of the exact quantum mechanical amplitude. The same
cedure is generalized to the non-Abelian case with sim
conclusions in the second work of Ref.@7#. One should note
that before the introduction of the contact interaction,
failure of the naive perturbation expansion of the Galile
CS field theory~namely the first Born term fors wave is
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wrong, while the second Born term is infinite! is very similar
to that of the Born series in direct AB scattering. As t
exact AB amplitude posseses scale invariance, it is nat
that the agreement is obtained only after the introduction
contact interaction whose coupling strength has the crit
value for which scale invariance is restored. This scale
variance at the critical coupling is explicitly checked up
three loops in Ref.@8#, and up to all orders in Ref.@9#.

The Born approximation problem for the spinless ca
was adressed from a more general point of view in Ref.@10#
and Ref.@11# questioning whether the exact~nonperturba-
tive! quantum mechanical AB amplitude can be reproduc
order-by-order perturbatively in the framework of scalar G
ilean CS field theory. Reference@10# concludes that the full
agreement is obtained if the renormalized strength of
contact interaction is chosen to be related to the self-adj
extension parameter, for fixed renormalization scale. Ho
ever, the conclusion of more recent work@11# is not in full
agreement with that of Ref.@10#. They show that the full
agreement can be obtained only in some special regim
Thus, we see that the general problem in the context of G
ilean scalar field theory is not satisfactorily settled yet.

In Ref. @12#, it was shown that if one starts from th
relativistic scalar gauge field theory of the CS interactio
one finds a renormalizable one-loop scattering amplitu
which remains so in the nonrelativistic limit as well, thu
reproducing the correct series expansion of the exact qu
tum mechanical expression without the need to introduc
contact interaction term. It is not clear yet whether the iss
raised in Ref.@10# and Ref.@11# would be relevant for the
relativistic field theories. Obviously there are some fund
mental differences between the nonrelativistic and the r
tivistic cases. For instance, in the nonrelativistic case,
necessity of a cutoff is not a relic of some unknown ultr
violet physics, but rather an artifact of the perturbative me
ods used. This is in contrast with the conventional wisd
on renormalization, whose natural habitat is the relativis
field theories.

AB scattering of spin-1/2 particles from an infinitely lon
solenoid was considered in the context of Dirac equat
formalism in Ref. @13#, and using covariant perturbatio
theory in Ref.@14#. In these works, it was shown that Bor
approximation works, that is, it agrees with the correspo
©2000 The American Physical Society22-1
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ing term in the series expansion of the exact amplitude.
agreement obtained in the framework of Dirac equation
not surprising at all. Because the Dirac Hamiltonian is line
in momenta, and the corresponding integral equation de
mining the lowest partial wave amplitude involves a te
linear in flux parameter.

The spin-1/2 AB problem was also considered in t
framework of equivalent Galilean CS gauge field theory
Ref. @15# and Ref.@16# from different perspectives. In thes
works the consistency of the perturbative treatment w
checked up to one-loop order. As the exact amplitude is p
portional to sinpa ~with a52ef/2p, and f is the mag-
netic flux carried by the solenoid!, the series expansion o
this term contains terms of orderO(a), O(a3), . . . ; that is
O(a2) is missing. Thus a complete check of the consiste
of perturbative approach, not only should get agreemen
O(a) terms, but also should show the vanishing ofO(a2)
terms~one-loop terms in the language of the field theory!.

In Ref. @15#, it was shown that the two-particle sector
the Galilean field theory again leads to an AB-like equati
Then, the two-particle scattering amplitude is computed
to one-loop order. The tree contribution@O(a)# agrees with
the corresponding term in the series expansion of the e
amplitude; the one-loop contribution@O(a2)# is finite and
vanishes. This completes the check of consistency of
Born approximation to lowest order, in the~sector by sector!
equivalent field theory framework.

Encouraged by the results of Ref.@15# and Ref.@16# in the
Galilean field theory framework, it is aimed in this work
carry out the second order analysis in direct version of
problem, namely the relativistic scattering of spin-1/2 p
ticles from an infinitely long solenoid, and check the cons
tency of the Born approximation fully, by demonstrating th
O(a2) contribution to the scattering amplitude in the fram
work of covariant perturbation theory vanishes. We w
show that this is indeed what happens.

We would like to note that the subtleties pointed out
Ref. @10# and Ref. @11# for the spinless case are natua
overcome in the relativistic case considered in this wo
This does not create any difficulty in establishing paralleli
with the results obtained in Ref.@15# in the context of Gal-
ilean CS field theory. Because it was already shown in R
@15# that, in contrast with the crucial role played by the co
tact interaction in the scalar case, the contribution of
Pauli term formally corresponding to the contact interact
~produced in the nonrelativistic limit of the fermionic C
gauge field theory with given coupling strength! to one-loop
diagrams are finite and null, thanks to the statistics.

This paper is organized as follows: In Sec. II, we brie
review the results of Ref.@14# for the general discussion o
the Helicity conservation. In Sec. III, we review the cova
ant perturbation theory approach to lowest order for
problem under consideration. In Sec. IV, theO(a2) contri-
bution to the scattering amplitude is computed; and it
shown that this contribution vanishes. Sec. V is devoted
the discussion of the results.

II. HELICITY CONSERVATION AND THE EXACT
SCATTERING AMPLITUDE

The basic starting point of Ref.@14# is the well known
observation that the helicity of a spin-1/2 particle is u
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changed by a time-independent magnetic field@17#.
Defining the Helicity eigenstates in the initial and fin

states asu6& i , f , the first observation is thatu6& i→u6& f
transitions proceed with unit probability in the Helicit
space. Denoting the scattering matrix by S this reads as

u f^6uSu6& i u251,
~1!

u f^6uSu7& i u250.

Thus, the differential cross-section foru6& i→u6& f per unit
length is determined by the phase space only, and thus e
to the unpolarized cross section.

We next consider the scattering from an initial state p
larized along the direction of an arbitrary unit vectorn̂ to a
final state moving alongu, in which the beam is polarized
again in the samen̂ direction. Denoting the spherical angle
of n̂ with respect to the initial beam axis~chosen asx axis!
by (u8,w8) these states are given as

u i ~pW i ,n̂!&5cos
u8

2
e2 iw8/2u1& i1sin

u8

2
eiw8/2u2& i ,

u f ~pW f ,n̂!&5S cos
u

2
cos

u8

2
e2 iw8/21sin

u

2
sin

u8

2
eiw8/2D u1& f

1S cos
u

2
sin

u8

2
eiw8/22sin

u

2
cos

u8

2
e2 iw8/2D u2& f .

~2!

Using Eq.~2!, one readily gets

^ f uSu i &5cos
u

2
2 i sin

u

2
sinu8sinw8. ~3!

Thus the polarized cross section per unit length of
solenoid is obtained as

ds

du
5S 12~ n̂3 ẑ!2 sin2

u

2D S ds

du D
unpol

. ~4!

Hereẑ is the unit vector in the direction of the solenoid. Th
the cross section differs from the unpolarized case~or the
spinless case! when the spin of the particle has componen
in the scattering plane~chosen here asx-y plane!.

III. COVARIANT PERTURBATION THEORY:
FIRST ORDER „BORN APPROXIMATION …

The purpose of this section is to show that Born appro
mation reproduces the correct result, that is it agrees with
corresponding terms in the series expansion of the exact
plitude.

The S-matrix element for a spin-1/2 particle scatterin
from an external electromagnetic field to lowest order
given by

Sf i
(1)5E d4zc̄ f~z!„iegmAm~z!…c i~z! ~5!
2-2
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where in the Bjorken-Drell convention

c i~z!5A m

EiV
u~pi ,si !e

2 ipimzm
,

and

c f~z!5A m

EfV
u~pf ,sf !e

2 ip f mzm
. ~6!

The vector potential of the solenoid, taken along the th
axis, in the Coulomb gauge¹W •AW 50 is given as

A1~z!52
f

2p

z2

z1
21z2

2
,

A2~z!52
f

2p

z1

z1
21z2

2
, ~7!

A3~z!5A0~z!50

wheref is the magnetic flux carried by the solenoid. Den
ing qW 5pW f2pW i , and carrying out thez integrals, we find

Sf i
(1)5

4p2

V
~mef!d~Ef2Ei !d~pf 32pi3!

3
ū~ f !~g2q12g1q2!u~ i !

AEfEi~q1
21q2

2!
. ~8!

As the initial beam is in the first direction (pi350), denoting
t5ū( f )(g2q12g1q2)u( i ), the differential cross section pe
unit solenoid length, to this order, is given as

S ds

du D Born

5
m2e2f2

2pupW i u~q1
21q2

2!2
utu2 ~9!

with upW i u5upW f u5k and Ei5Ef , as imposed by thed func-
tions. We can proceed in two ways:~a! we can sum over
final polarizations, and average over the initial ones to
the unpolarized cross section by direct use of Dirac ma
algebra

S ds

du D Born

5
e2f2

8pk sin2u/2
~10!

wherepW i5kx̂. ~b! we can compute the polarized amplitud
using the explicit expressions of the Dirac spinors for
polarized initial and final electrons:
04502
d
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u~ i !5cos
u8

2
e2 iw8/2u1~ i !1sin

u8

2
eiw8/2u2~ i !

u~ f !5S cos
u

2
cos

u8

2
e2 iw8/2

1sin
u

2
sin

u8

2
eiw8/2Du1~ f !

1S cos
u

2
sin

u8

2
eiw8/22sin

u

2
cos

u8

2
e2 iw8/2D

3u2~ f ! ~11!

where

u1~ i !5NiS 1

0

m i

0

D , u2~ i !5NiS 0

1

0

2m i

D ,

Ni5AEi1m

2m
, m i5

upW i u
Ei1m

,

u1~ f !5NfS cos
u

2

sin
u

2

m f cos
u

2

m f sin
u

2

D , ~12!

u2~ f !5NfS 2sin
u

2

cos
u

2

m f sin
u

2

2m f cos
u

2

D ,

Nf5AEf1m

2m
, m f5

upW f u
Ef1m

.

Using Eqs.~11! and ~12!, we can computet, and find

t52
2k2

m
sin

u

2 S cos
u

2
2 i sin

u

2
sinu8sinw8D . ~13!

Substituting Eq.~13! in Eq. ~9!, we get
2-3
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S ds

du D
pol

Born

5S ds

du D
unpol

Born S 12~ n̂3 ẑ!2 sin2
u

2D . ~14!

Thus, Born approximation indeed works in the polariz
case. The scattering amplitude~and thus the cross section! is
effected by the same expression in the Born approxima
as in case of the exact amplitude. However this does
constitute a complete check of the consistency of the B
approximation in the relativistic spin-1/2 AB effect yet. A
the exact amplitude is proportional to sinpa, a full consis-
tency would require that theO(a2) contribution to the scat-
tering amplitude should vanish; and this is what we w
check next.

IV. COVARIANT PERTURBATION
THEORY: SECOND ORDER

The S matrix in the second order is given as

Sf i
(2)5E E d4xd4yc̄ f~x!@2 iegmAm~x!# iSF~x2y!

3@2 iegnAn~y!#c i~y! ~15!

where

SF~x2y!5E d4p

~2p!4
e2 ip(x2y)

gmpm1m

p22m21 i«
.

04502
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Carrying out the spatial integrals we get

Sf i
(2)5

i

V
~e2f2!

m

AEiEf

d~Ef2Ei !d~pf 32pi3!I ,

~16!

I 5E d2p'

N

~pW f'
2 2pW'

2 !~pf2p→
!'

2 ~pi2p→
!'

2
,

where N is obtained as

N5~pi2p!2~pf2p!1ūfg
1Pg3ui1~pi2p!1~pf2p!2

3ūfg
3Pg1ui2~pi2p!1~pf2p!1ūfg

1Pg1ui

2~pi2p!2~pf2p!2ūfg
3Pg3ui ~17!

with

P5g0Ef2g3p12g1p21m. ~18!

Denoting the polar angle in thep' plane byw, and making
use of the energy conservation mandated byd(Ef2Ei), pW i

2

5pW f
2[k2 with pW i5kx̂, thenN can be written as
N5a1b cosw1g sinw,

a5k3S Ei

k
$A sinu2B cosu%2u2H Ei

k
B1D sinu1C~11cosu!J 1

m

k
$A8 sinu1B8 cosu1B8u2% D ,

~19!

b5k3FCu31uS D sinu1C cosu1
Ei

k
$~11cosu!B2A sinu% D2

mu

k
$A8 sinu1B8~11cosu!%G ,

g5k3FDu31uS C sinu2D cosu2
Ei

k
$A~12cosu!2B sinu% D2

mu

k
$A8~12cosu!1B8 sinu%G ,

with u[p/k and

A5 i ū fg
0S2ui , A852 i ū fS2ui , with S25S s2 0

0 s2
D ,

~20!
B5ūfg

0ui , B85ūfui , C5ūfg
3ui , D5ūfg

1ui .

The w integration can be carried out using the complex integration techniques. That is we definez5eiw, and thew
integration is converted into a contour integration over the unit circleuzu51. Thus

I 5
eiu

2ikE0

` du

u~12u2!
R

uzu51
dz

F~z,z̄!

~z21122az!~z21e2iu22azeiu!
~21!

with a5(u211)/2u and

F~z,z̄!5c01c1z1c2z2 ~22!
2-4
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where

c05$C1 iD %u31uS ~C2 iD !eiu1
Ei

k
@B2 iA1~B1 iA !eiu#2

m

k
@B81 iA81~B82 iA8!eiu# D ,

c15
2Ei

k
$A sinu2B cosu%22u2S Ei

k
B2

m

k
B81D sinu1C~11cosu! D12

m

k
$A8 sinu1B8 cosu%,

~23!

c25$C2 iD %u31uS ~C1 iD !e2 iu1
Ei

k
@B1 iA1~B2 iA !e2 iu#2

m

k
@B82 iA81~B81 iA8!e2 iu# D .

The z integral now can be carried out, using the Cauchy theorem, and we get

J522p ie2 iu
2u2

k

$~EiB2mB8!u21Ei~A sinu2B cosu!1m~A8 sinu1B8 cosu!%

~u22eiu!~u22e2 iu!
«~u21!. ~24!

Substituting Eq.~24! in Eq. ~21!, we get

I 5
2p

k2 E0

`

udu«~u21!
$~EiB2mB8!u21Ei~A sinu2B cosu!1m~A8 sinu1B8 cosu!%

~u221!~u22eiu!~u22e2 iu!
. ~25!

Changing variables,u25v, Eq. ~25! could be rewritten as

I 5
p

k2E0

`

dv«~v21!S EiB2mB8

~v2eiu!~v2e2 iu!
1

~EiA1mA8!sinu1~EiB2mB8!~12cosu!

~v21!~v2eiu!~v2e2 iu!
D . ~26!
h

n
t-

rms
act

es
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d
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n
a-
let-

the
The first integral in Eq.~26! can easily be shown to vanis
with the help of a variable changev51/w in the (1,̀ ) in-
terval. Thus, we finally end up with

I 5
pT

k2 E0

`

dv
«~v21!

~v21!~v2eiu!~v2e2 iu!
~27!

where

T5~EiA1mA8!sinu1~EiB2mB8!~12cosu!

5ūf~Eig
02m!~12cosu1 i sinuS2!ui . ~28!

Using the definition in Eq.~20!, the profactorT can be
shown to vanish.
04502
V. CONCLUSIONS AND DISCUSSION

In Ref. @14# it was claimed that the Born approximatio
for relativistic spin-1/2 AB scattering works, by demonstra
ing that this amplitude agrees with the corresponding te
in the series expansion of the exact amplitude. As the ex
amplitude is proportional to sinpa, the demonstration of the
full consistency of the Born approximation however requir
a further step, namely the vanishing of theO(a2) contribu-
tions. This was already done in the context of the Galile
invariant field theory whose two-particle sector is known
be equivalent to the AB Schro¨dinger equation. Encourage
by the success of these works, we have addressed the
issue directly, namely by considering theO(a2) contribution
for the relativistic scattering of spin-1/2 particles from a
infinitely long solenoid in the context of covariant perturb
tion theory, and shown that it indeed vanishes, thus comp
ing the consistency check of the Born approximation for
relativistic spin-1/2 problem.
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