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Consistency of the Born approximation for the spin-12 Aharonov-Bohm scattering
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The relativistic scattering of a spin-1/2 particle from an infinitely long solenoid is considered in the frame-
work of covariant perturbation theory. The first order term agrees with the corresponding term in the series
expansion of the exact amplitude, and second order term vanishes, thus proving that the Born approximation is
consistent.
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[. INTRODUCTION wrong, while the second Born term is infinites very similar
to that of the Born series in direct AB scattering. As the
It is by now well known that when particles of conven- exact AB amplitude posseses scale invariance, it is natural
tional statistics are coupled to a pure Chern-Sim@@S) that the agreement is obtained only after the introduction of
gauge field, this field creates an Aharonov-BothB) like  contact interaction whose coupling strength has the critical
interaction which converts the particles to charge-flux-tubevalue for which scale invariance is restored. This scale in-
compositeg1]. Somewhat later, it was shown, in the contextvariance at the critical coupling is explicitly checked up to
of a Galilean field theory of scalar fields minimally coupled three loops in Ref[8], and up to all orders in Ref9].
to a pure CS field, that one can approach the problem of The Born approximation problem for the spinless case
calculating an arbitrary scattering process by restricting conwas adressed from a more general point of view in REJ]
sideration to anN-body sector, allowing one to derive a and Ref.[11] questioning whether the exa@honperturba-
Schralinger equation for th&l-body problem with each pair tive) quantum mechanical AB amplitude can be reproduced
interacting as zero radius flux tubes. This has led to the clainarder-by-order perturbatively in the framework of scalar Gal-
that field theory, sector by sector, is formally equivalent to ailean CS field theory. Referen¢&0] concludes that the full
conventional Schidinger equatior{2]. Specifically, in the agreement is obtained if the renormalized strength of the
two particle sector of this equivalent field theory, one gets acontact interaction is chosen to be related to the self-adjoint
Schralinger equation similar to the AB equati¢8]. extension parameter, for fixed renormalization scale. How-
These developments brought back the long-standing issusver, the conclusion of more recent wdrkl] is not in full
of failure of the quantum mechanical perturbation theory foragreement with that of Refl10]. They show that the full
the Aharonov-Bohn{AB) scattering amplitudg4]. The fail-  agreement can be obtained only in some special regimes.
ure of the Born approximation, for instance, is known to beThus, we see that the general problem in the context of Gal-
due to the fact that the lowest partial wave amplitude satisiean scalar field theory is not satisfactorily settled yet.
fies an integral equation whose interaction term is quadratic In Ref. [12], it was shown that if one starts from the
in terms of the flux parameter. As the exact lowest partiakelativistic scalar gauge field theory of the CS interaction,
wave contribution to the scattering amplitude is known to beone finds a renormalizable one-loop scattering amplitude
linear in this parameter, then, it is absent in the first ordemwhich remains so in the nonrelativistic limit as well, thus
Born approximation. reproducing the correct series expansion of the exact quan-
There have been several attempts to solve this problerum mechanical expression without the need to introduce a
for the spinless case in the context of direct AB scatteringcontact interaction term. It is not clear yet whether the issue
[5], anyon physicqd6], and scalar Galilean Chern-Simons raised in Ref[10] and Ref.[11] would be relevant for the
(CS gauge field theory7-9]. For instance, in Refl7], it  relativistic field theories. Obviously there are some funda-
was shown, through a perturbative calculation of the two-mental differences between the nonrelativistic and the rela-
particle scattering amplitude, up to one-loop order, that thigivistic cases. For instance, in the nonrelativistic case, the
amplitude is nonrenormalizable, unless a contact interactionecessity of a cutoff is not a relic of some unknown ultra-
is introduced, which however for a given strength of theviolet physics, but rather an artifact of the perturbative meth-
interaction (critical value corresponding to the self-dual ods used. This is in contrast with the conventional wisdom
limit) reduces to the same order term of the series expansiam renormalization, whose natural habitat is the relativistic
of the exact quantum mechanical amplitude. The same prdield theories.
cedure is generalized to the non-Abelian case with similar AB scattering of spin-1/2 particles from an infinitely long
conclusions in the second work of RgT]. One should note solenoid was considered in the context of Dirac equation
that before the introduction of the contact interaction, theformalism in Ref.[13], and using covariant perturbation
failure of the naive perturbation expansion of the Galileantheory in Ref.[14]. In these works, it was shown that Born
CS field theory(namely the first Born term fos wave is  approximation works, that is, it agrees with the correspond-
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ing term in the series expansion of the exact amplitude. Thehanged by a time-independent magnetic flald].
agreement obtained in the framework of Dirac equation is Defining the Helicity eigenstates in the initial and final
not surprising at all. Because the Dirac Hamiltonian is linearstates aq+); ¢, the first observation is thgt);—|= )

in momenta, and the corresponding integral equation detefransitions proceed with unit probability in the Helicity

mining the lowest partial wave amplitude involves a termgspace. Denoting the scattering matrix by S this reads as
linear in flux parameter.

The spin-1/2 AB problem was also considered in the li(=£]9%)i%=1,
framework of equivalent Galilean CS gauge field theory in (1)
Ref.[15] and Ref.[16] from different perspectives. In these REIS I)i|2=O_

works the consistency of the perturbative treatment was

checked up to one-loop order. As the exact amplitude is proThus, the differential cross-section fot );—|%); per unit
portional to sinma (with a= —e¢/27, and ¢ is the mag- length is determined by the phase space only, and thus equal
netic flux carried by the solenogidthe series expansion of to the unpolarized cross section.

this term contains terms of ord&(a), O(<a°), ... ;thatis We next consider the scattering from an initial state po-

2 . . . . . . . . . ~
O(«?) is missing. Thus a complete check of the consistencyarized along the direction of an arbitrary unit vecfoto a
of perturbative approach, not only should get agreement ofj5| state moving along, in which the beam is polarized

O(w) terms, but also should show the vanishingQ@fa? . N : .
tegm)s(one-loop terms in the language of the fielgcfgeo)ry again in the sama direction. Denoting the spherical angles

In Ref.[15], it was shown that the two-particle sector of Of n with respect to the initial beam axishosen ax axis)
the Galilean field theory again leads to an AB-like equationby (6',¢") these states are given as
Then, the two-particle scattering amplitude is computed up
to one-loop order. The tree contributip®(«) ] agrees with
the corresponding term in the series expansion of the exa
amplitude; the one-loop contributiqro(a?)] is finite and
vanishes. This completes the check of consistency of the . .
Born approximation to lowest order, in titgector by sector  |T(Pf,n))=
equivalent field theory framework.

Encouraged by the results of REE5] and Ref[16] in the
Galilean field theory framework, it is aimed in this work to +
carry out the second order analysis in direct version of the
problem, namely the relativistic scattering of spin-1/2 par- 2
ticles from an infinitely long solenoid, and check the consis- . .
tency of the Born approximation fully, by demonstrating thatUsing Ed.(2), one readily gets
O(a?) contribution to the scattering amplitude in the frame- 0 P
work of covariant perturbation theory vanishes. We will N e eOCe — i Qin— cin A SN !
show that this is indeed what happens. (fIsii) cosy 18Ny sing’sine". @

We would like to note that the subtleties pointed out in ] ) ]
Ref. [10] and Ref.[11] for the spinless case are natually ~ Thus the polarized cross section per unit length of the
overcome in the relativistic case considered in this worksolenoid is obtained as
This does not create any difficulty in establishing parallelism
with the results obtained in Ref15] in the context of Gal- d_U
ilean CS field theory. Because it was already shown in Ref. de
[15] that, in contrast with the crucial role played by the con-

tact interaction in the scalar case, the contribution of theare? is the unit vector in the direction of the solenoid. Thus
Pauli term formally corresponding to the contact interaction« ~ross section differs from the unpolarized césethe

(produced in the nonrelativistic limit of the fermionic CS spinless cagewhen the spin of the particle has components
gauge field theory with given coupling strength one-loop in the scattering plarehosen here as-y pland
diagrams are finite and null, thanks to the statistics. 9p yp '

This paper is organized as follows: In Sec. I, we briefly
review the results of Ref14] for the general discussion of 1. COVARIANT PERTURBATION THEORY:
the Helicity conservation. In Sec. lll, we review the covari- FIRST ORDER (BORN APPROXIMATION )

ant perturbation theory approach to lowest order for the The purpose of this section is to show that Born approxi-

. . 2 .
problem under consideration. In Sec. IV, W¢a") contri- ._mation reproduces the correct result, that is it agrees with the

bution to the scattering amplitude is computed; and it IScorresponding terms in the series expansion of the exact am-

shown that this contribution vanishes. Sec. V is devoted t(blitude
the discussion of the results. '

! !
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The Smatrix element for a spin-1/2 particle scattering
from an external electromagnetic field to lowest order is

Il. HELICITY CONSERVATION AND THE EXACT .
given by

SCATTERING AMPLITUDE

The basic starting point of Ref14] is the well known
observation that the helicity of a spin-1/2 particle is un-

siH= f d*zy(2)(iey,A(2)¢i(2) (5)
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where in the Bjorken-Drell convention ! !

; 0 o O
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0 0 00
cos=sin—e'® 2—sin= cos—e~1¢'12

m o
i(2)= \/Ef—VU(pf ,Sp)e” Pin?, (6)
272 2772

The vector potential of the solenoid, taken along the third Xu_(f) (12)
axis, in the Coulomb gaugé-A=0 is given as

+

where
¢ 23
_ 0 _ 1
w=N| L u@=N
9 I
Az(Z)——Em, (7 0 — M
1 2
_ Ei"‘rn _ |5I|
Aa(2)=Ag(2)=0 N=NT2m o HTEm
where ¢ is the magnetic flux carried by the solenoid. Denot- 0
ing q=p—p;, and carrying out the integrals, we find cos;
2 .0
02T (me) s(E—E) ) 2
i v f— Ei)o(Pt3— Piz UL (f)=N, e (12
L D OPd1— Y'az)u(i) ® K1 €085
VE(E (a7 +a)) 0
yx: Slnz
As the initial beam is in the first directiorp(;=0), denoting
t=u(f)(y?q,— y'g,)u(i), the differential cross section per 0
unit solenoid length, to this order, is given as —sins
B 2-2 42 0
do) o me cos;
T et © w=n|
27|pil(a1+0a3) - f ) ’
g SII’IE
with |p;|=|p¢|=k and E;=E;, as imposed by the func- P
tions. We can proceed in two way&) we can sum over — Mt cosz
final polarizations, and average over the initial ones to get
the unpolarized cross section by direct use of Dirac matrix _
algebra N — [Eftm _ pil
N om ' HTE+m
do Born e2¢2
— = 10 Using Egs.(11) and(12), we can computé, and find
(dﬂ) 8k sirf6/2 10
. 2k2_0< 0__0_0,_, 13
A =— ——sinz| cosz —i sinzsind’sing’ |.
wherep;=kx. (b) we can compute the polarized amplitude, m SMp | C0Sy T sing sineisineg
using the explicit expressions of the Dirac spinors for the
polarized initial and final electrons: Substituting Eq(13) in Eq. (9), we get
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do\Borm /g Born Carrying out the spatial integrals we get
.l

(1—(ﬁ><2)23in2§ . (19

unpol

Thus, Born approximation indeed works in the polarized 5(2)_ (e ¢? )\/—5(Ef_Ei)5(pf3_pi3)|a
case. The scattering amplitu@end thus the cross sectiois EiEs
effected by the same expression in the Born approximation (16)
as in case of the exact amplitude. However this does not N
fon
(

constitute a complete check of the consistency of the Born
approximation in the relativistic spin-1/2 AB effect yet. As
the exact amplitude is proportional to sta, a full consis-
tency would require that th©(«?) contribution to the scat-
tering amplitude should vanish; and this is what we will
check next.

pf PP P (P~ T ph

where N is obtained as

N=(pi—P)2(Pi—P)1Us ¥P¥3ui+ (pi— p)1(Ps—P)2
IV. COVARIANT PERTURBATION

THEORY: SECOND ORDER X Ury®Py'ui— (pi—p)1(Ps—P) Uy Py y;
The Smatrix in the second order is given as —(Pi—P)2(Ps—p)2us ¥3P YU, (17
sfP)= f f d*xd*y s (X)[ —iey*A, ()i Se(x—Y) with
X[_Ie‘yyAv(y)]wl(y) (15) P= fyOEf—»yspl—fylpz—{— m. (18)
where
Denoting the polar angle in the, plane by, and making
Se(x—y)= J' —ip(x—y) YPut use of the energy conservation mandatedstl; — E;), 5,2
- (2 )4 p2— m2+|s =p?=k? with p;=kXx, thenN can be written as

N=a+ B cose+ ysSing,

m
+ 1 (A’ sin6+B' coso+ B’uz}) :

E; E,
a= k3(?'{A sin6— B cosg} — uz[ —B+D sin6+C(1+cosb)

k
(19
. Ei . mu .
B=k3| Cu®+u D sin 6+ C cosf+-~{(1+cost)B—Asin} | — - ~{A’ sing+B’(1+coso)} |,
y=k® Dud+u| Csing—D cosf— —{A(l cosf) — Bsma})——{A (1—cos#)+ B’ sin6} |,
with u=p/k and
— — . o2 0
A=iuy’S,u;, A'=—iufS,u;, with 3,= :
O (o)
(20)

B=ui’u;, B'=u;, C=uplu;, D=uply.

The ¢ integration can be carried out using the complex integration techniques. That is we ziefde and theg
integration is converted into a contour integration over the unit ciale 1. Thus

e’ = du F(z,2)
2ikJo u(1—-u?) Jig=1" (2+1-2az)(?+e??-2azd"
with a=(u?+1)/2u and
F(2,2)=Co+Cyz+CyzZ? (22)
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where

co={C+iD}ul+u

(C—|D)e"9+?[B—|A+(B+|A)e'9]— I[B’+|A’+(B’—|A’)e"g]),

2E; ) , Ei m_, . m_ )
C1= T{Asme—Bcosa}—Zu —B——B’+Dsing+C(1+cosh) +2F{A sinf+ B’ cosé},

k k
(23)
: . _ip, Ei : gy M : : i
c,={C—iD}ul+u| (C+iD)e '0+I[B+|A+(B—|A)e '9]—F[B’—|A’+(B’+|A’)e ],
The z integral now can be carried out, using the Cauchy theorem, and we get
) 7.02u2 {(E{B—mB')u+E;(Asind—B cos#)+m(A’ sing+B’ coso)}
J=—27mie "'— . . g(u—1). (24
(u2_e|0)(u2_e—|€)
Substituting Eq(24) in Eqg. (21), we get
27 (= {(E{B—mB')u?+E;(Asinfd—B cosf)+m(A’ sind+B’ cosh)}
|=— udus(u—1) . . . (25
k2 0 (u2_1)(u2_el{~))(u2_eflﬁ)
Changing variableg)?=v, Eq. (25) could be rewritten as
T [ E;B—mB’ (E;{A+mA’)sinf+ (E;B—mB’)(1—cosh)
Iz—f dve(v—1) - — + - : . (26
k?Jo (v—€e(v—e? (v—-1)(v—€e(v—e

The first integral in Eq(26) can easily be shown to vanish

with the help of a variable change=1/Mv in the (1) in-
terval. Thus, we finally end up with

_7TT ®

e(v—1)

e P Do @
where
T=(E/A+mA’)sin6+(E;B—mB’)(1—cosh)
=us(E;y°—m)(1—cosf+i sin63,)u; . (28)

Using the definition in Eq.(20), the profactorT can be
shown to vanish.

V. CONCLUSIONS AND DISCUSSION

In Ref.[14] it was claimed that the Born approximation
for relativistic spin-1/2 AB scattering works, by demonstrat-
ing that this amplitude agrees with the corresponding terms
in the series expansion of the exact amplitude. As the exact
amplitude is proportional to sifte, the demonstration of the
full consistency of the Born approximation however requires
a further step, namely the vanishing of tB¢«?) contribu-
tions. This was already done in the context of the Galilean
invariant field theory whose two-particle sector is known to
be equivalent to the AB Schdinger equation. Encouraged
by the success of these works, we have addressed the same
issue directly, namely by considering tB¢a?) contribution
for the relativistic scattering of spin-1/2 particles from an
infinitely long solenoid in the context of covariant perturba-
tion theory, and shown that it indeed vanishes, thus complet-
ing the consistency check of the Born approximation for the
relativistic spin-1/2 problem.
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