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Self-tuning flat domain walls in 5D gravity and string theory

Shamit Kachru, Michael Schulz, and Eva Silverstein
Department of Physics and SLAC, Stanford University, Stanford, California 94305
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We present Poincare´-invariant domain wall~‘‘three-brane’’! solutions to some five-dimensional effective
theories which can arise naturally in string theory. In particular, we find theories where Poincare´-invariant
solutions exist for arbitrary values of the brane tension, for certain restricted forms of the bulk interactions. We
describe examples in string theory where it would be natural for the quantum corrections to the tension of the
brane~arising from quantum fluctuations of modes with support on the brane! to maintain the required form of
the action. In such cases, the Poincare´-invariant solutions persist in the presence of these quantum corrections
to the brane tension, so that no 4D cosmological constant is generated by these modes.

PACS number~s!: 11.27.1d, 11.25.Mj
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I. INTRODUCTION

Some time ago, it was suggested that the cosmolog
constant problem may become soluble in models where
world is a topological defect in some higher-dimension
spacetime@1#. Recently such models have come under
newed investigation. This has been motivated both by br
world scenarios~see, for instance,@2,3,4#! and by the sug-
gestion of Randall and Sundrum@5# that the four-
dimensional graviton might be a bound state of a 5D gra
ton to a 4D domain wall. At the same time, new ide
relating 4D renormalization group flows to 5D AdS gravi
via the AdS conformal field theory~CFT! correspondence
@6# have inspired related approaches to explaining the n
vanishing of the 4D cosmological term@7,8#. These authors
suggested~following @1#! that quantum corrections to the 4
cosmological constant could be canceled by variations
fields in a five-dimensional bulk gravity solution. The resu
of this paper might be regarded as a concrete partial rea
tion of this scenario, in the context of 5D dilaton gravity a
string theory. A different AdS/CFT-motivated approach
this problem appeared in@9#.

In the thin wall approximation, we can represent a dom
wall in 5D gravity by a delta function source with som
coefficient f (f) ~wheref is a bulk scalar field, the dilaton!,
parametrizing the tension of the wall. Quantum fluctuatio
of the fields with support on the brane should correctf (f).
In this paper, we present a concrete example of a 5D dila
gravity theory where one can find Poincare´-invariant domain
wall solutions forgeneric f(f). The constraint of finding a
finite 4D Planck scale then restricts the sign off and the
value of f 8/ f at the wall to lie in a range of order 1. Thu
fine-tuning is not required in order to avoid having the qua
tum fluctuations which correctf (f) generate a 4D cosmo
logical constant. One of the requirements we must impos
that the 5D cosmological constantL should vanish.1 This
would be natural in scenarios where the bulk is supers
metric ~though the brane need not be! or where quantum

1It is possible that an Einstein frame bulk cosmological te
which is independent off will also allow for similar physics@10#.
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corrections to the bulk are small enough to neglect in a c
trolled expansion.

For suitable choices off (f), this example exhibits the
precise dilaton couplings which naturally arise in stri
theory. There are two interesting and distinct contexts
which this happens. One is to considerf (f) corresponding
to tree-level dilaton coupling~Ve22f in the string frame, for
some constantV!. This form of the dilaton coupling is no
restricted to tree-levelperturbativestring theory—it occurs,
for example, on the world volumes of Neveu-Schwarz~NS!
branes in string theory. There, the dynamics of the wo
volume degrees of freedom does not depend on the dilato
the relevant coupling constant is dilaton independent. The
fore, quantum corrections to the brane tension due to dyn
ics of world volume fields would be expected to maintain t
‘‘tree-level’’ form of f (f), while simply shifting the coeffi-
cient V of the ~string frame! e22f. The other form off (f)
natural in string theory involves a power series inef. This
type of coupling occurs when quantum corrections are c
trolled by the dilaton in string theory.

In either case, as long as we only consider quantum c
rections which modifyf (f) but maintain the required form
of the bulk 5D gravity action, this means that quantum c
rections to the brane tension do not destabilize flat spa
they do not generate a four-dimensional cosmological c
stant. We will argue that some of our examples should h
a microscopic realization in string theory with this feature,
leading order in a controllable approximation scheme. It
perhaps appropriate to call this a ‘‘self-tuning’’ of the co
mological constant because the 5D gravity theory and
matter fields respond in just the right way to shifts in t
tension of the brane to maintain 4D Poincare´ invariance.
Note that here, as in@5#, there is a distinction between th
brane tension and the 4D cosmological constant.

There are two aspects of the solutions we find which
not under satisfactory control. First, the curvature in t
brane solutions of interest has singularities at finite dista
from the wall; the proper interpretation of these singularit
will likely be crucial to understanding the mechanism of se
tuning from a four-dimensional perspective. We cut off t
space at these singularities. The wave functions for the fo
dimensional gravitons in our solutions vanish there. Seco
the value of the dilatonf diverges at some of the singular
©2000 The American Physical Society21-1
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ties; this implies that the theory is becoming strong
coupled there. However, the curvature and coupling can
kept arbitrarily weak at the core of the wall. Therefore, so
aspects of the solutions are under control and we think
self-tuning mechanism can be concretely studied. We pre
some preliminary ideas about the microscopic nature of
singularities in Sec. III.

A problem common to the system studied here and tha
@5# is the possibility of instabilities, hidden in the thin wa
sources, which are missed by the effective field theory an
sis. Studying thick wall analogues of our solutions wou
probably shed light on this issue. We do not resolve t
question here. But taking advantage of the stringy dila
couplings possible in our set of self-tuned models,
present a plausibility argument for the existence of strin
realizations, a subject whose details we leave for future w
@10#.

Another issue involves solutions where the wall is n
Poincare´ invariant. This could mean it is curved~for ex-
ample, de Sitter or anti–de Sitter sparetime!. However, it
could also mean that there is a nontrivial dilaton profi
along the wall~one example being the linear dilaton solutio
in string theory, which arises when the tree-level cosmolo
cal constant is nonvanishing!. This latter possibility isa pri-
ori as likely as others, given the presence of the mass
dilaton in our solutions.

Our purpose in this paper is to argue that starting wit
Poincare´-invariant wall, one can find systems where qua
tum corrections leave a Poincare´-invariant wall as a solution
However, one could also imagine starting with no
Poincare´-invariant wall solutions of the same 5D equatio
~and preliminary analysis suggests that such solutions do
ist in the generic case, with finite 4D Planck scale!. We are in
the process of systematically analyzing the fine-tuning
initial conditions that considering a classically Poinca´-
invariant wall might entail@10#.

The paper is organized as follows. In Sec. II, we wr
down the 5D gravity1dilaton theories that we will be inves
tigating. We solve the equations of motion to find Poinca´-
invariant domain walls, both in the cases where the 5D
grangian has couplings which provide the self-tuni
discussed above and in more general cases. In Sec. III
describe several possible embeddings of our results in
more microscopic string theory context. We close with
discussion of promising directions for future thought in S
IV.

There have been many interesting recent papers w
study domain walls in 5D dilation gravity theories. We pa
ticularly found @11# and @12# useful, and further reference
may be found there.

This research was inspired by very interesting discuss
with Aharony and Banks. While our work on Poincar´-
invariant domain walls and self-tuning was in progress,
learned that very similar work was in progress by Arka
Hamedet al. @13#. In particular, before we had obtained th
solutions in Secs. II C and II D, Sundrum told us that th
were finding singular solutions to the equations and w
hoping the singularities would ‘‘explain’’ a breakdown o
4D effective field theory on the domain wall.
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II. POINCARÉ -INVARIANT 4D DOMAIN WALL
SOLUTIONS

A. Basic setup and summary of results

Let us consider the action

S5E d5xA2GFR2
4

3
~¹f!22LeafG

1E d4xA2g@2 f ~f!# ~2.1!

describing a scalar fieldf and gravity living in five dimen-
sions coupled to a thin four-dimensional domain wall. Let
set the position of the domain wall atx550. Here we follow
the notation of@5# so that the metricgmn along the four-
dimensional slice atx550 is given in terms of the five-
dimensional metricGMN by

gmn5dm
Mdn

NGMN~x550!,

m,n51, . . . ,4,

M ,N51, . . . ,5. ~2.2!

For concreteness, in much of our discussion we will ma
the choice

f ~f!5Vebf. ~2.3!

However, most of our considerations willnot depend on this
detailed choice off (f) ~for reasons that will become clear!.
With this choice, Eq.~2.1! describes a family of theorie
parametrized byV, L, a, and b. If a52b54/3, the action
~2.1! agrees with tree-level string theory wheref is identi-
fied with the dilaton.~That is, the 5D cosmological constan
term and the 4D domain wall tension term both scale l
e22f in string frame.! In Sec. III we will discuss a very
natural context in which this type of action arises in stri
theory, either with the specific form~2.3! or with a more
generalf (f).

In the rest of this section we will derive the field equ
tions arising from this action and construct some interest
solutions of these equations. In particular, we will be int
ested in whether there are Poincare´-invariant solutions for
the metric of the four-dimensional slice atx550 for generic
values of these parameters~or, more generally, for what sub
spaces of this parameter space there are Poincare´-invariant
solutions in four dimensions!. We will also require that the
geometry be such that the four-dimensional Planck scal
finite. Our main results can be summarized in three differ
cases as follows.

~I! For L50, bÞ6 4
3 , but otherwise arbitrary, and arb

trary magnitude ofV, we find a Poincare´-invariant domain
wall solution of the equations of motion. Forb52/3, which
is the value corresponding to a brane tension of ordere22f

in the string frame, the sign ofV must be positive in order to
correspond to a solution with a finite four-dimension
Planck scale, but it is otherwise unconstrained. This sugg
that for fixed scalar field coupling to the domain wall, qua
1-2
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tum corrections to its tensionV do not spoil the Poincare´
invariance of the slice. In Sec. III we will review examples
string theory of situations where world volume degrees
freedom contribute quantum corrections to thee22f term in
a brane’s tension. Our result implies that these quantum
rections do not need to be fine-tuned to zero to obtain a
four-dimensional spacetime.

For a generic choice off (f) in Eq. ~2.1! ~including the
type of power series expansion inef that would arise in
perturbative string theory!, the same basic results hold tru
We are able to find Poincare´-invariant solutions without fine-
tuning f. Insisting on a finite 4D Planck scale gives a furth
constraint onf 8/ f at the wall, forcing it to lie in a range o
order 1.

Given a solution with one value ofV and L50, a self-
tuning mechanism is in fact clear from the Lagrangian~for
bÞ0!. In Eq. ~2.1! we see that ifL50 ~or a50!, the only
nonderivative coupling of the dilaton is to the brane tens
term, where it appears in the combination (2V)ebf. Clearly,
given a solution for one value ofV, there will be a solution
for any value ofV obtained by absorbing shifts inV with
shifts inf. With a more generalf (f), similar remarks hold:
the dilaton zero mode appears only inf, and one can absor
shifts in V by shifting f.

However, in the special caseb50 @where f (f) is just a
constant#, we will also find flat solutions for genericV. This
implies that the freedom to vary the dilaton zero mode is
the only mechanism that ensures the existence of a flat s
tion for arbitraryV.

~II ! For L50, b564/3, we find a different Poincare´-
invariant solution@obtained by matching together two 5
bulk solutions in a different combination than that used
obtaining the solutions described in the preceding paragr
~I!#. A solution is present for any value ofV. This suggests
that for fixed scalar field coupling to the domain wall, qua
tum corrections to its tensionV do not spoil the Poincare´
invariance of the slice. Again, the sign ofV must be positive
in order to have a finite four-dimensional Planck scale.

~III ! We do not find a solution~nor do we show that none
exists! for generalL, V, a, andb ~in concordance with the
counting of parameters in@11#!. However, for eachL andV
there is a choice ofa andb for which we do find a Poincare´-
invariant solution using a simple ansatz.

For a50 and generalb, L, andV, we are currently in-
vestigating the existence of self-tuning solutions. Their ex
tence would be in accord with the fact that in this case, a
the cases withL50, the dilaton zero mode only appears
the tension of the wall. This means again that shifts inV can
be absorbed by shiftingf, so if one finds a Poincare´-
invariant solution for anyV, one does not need to fine-tun
V to solve the equations.

B. Equation of motion

The equations of motion arising for the theory~2.1!, with
our simple choice forf (f) given in Eq.~2.3!, are as follows.
Varying with respect to the dilaton gives
04502
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A2GS 8

3
¹2f2aLeafD2bVd~x5!ebfA2g50. ~2.4!

The Einstein equation for this theory is

A2GS RMN2
1

2
GMNRD

2
4

3
A2GF¹Mf¹Nf2

1

2
GMN~¹f!2G

1
1

2
@LeafA2GGMN1A2gVgmndM

m dN
n d~x5!#50.

~2.5!

We are interested in whether there are solutions w
Poincare-invariant four-dimensional physics. Therefore,
look for solutions of Eqs.~2.4! and ~2.5! where the metric
takes the form

ds25e2A~x5!~2dx1
21dx2

21dx3
21dx4

2!1dx5
2. ~2.6!

With this ansatz for the metric, the equations become

8

3
f91

32

3
A8f82aLeaf2bVd~x5!ebf50, ~2.7!

6~A8!22
2

3
~f8!21

1

2
Leaf50, ~2.8!

3A91
4

3
~f8!21

1

2
ebfVd~x5!50, ~2.9!

where a prime denotes differentiation with respect tox5 . The
first one~2.7! is the dilaton equation of motion, the secon
~2.8! is the 55 component of Einstein’s equations, and
last~2.9! comes from a linear combination~the difference! of
themn component of Einstein’s equation and the 55 comp
nent.

We will mostly consider the simple ansatz

A85af8. ~2.10!

However, for the casea50, LÞ0, we will integrate the
equations directly.

C. LÄ0 case

Let us first consider the system withL50. We will first
study the bulk equations of motion~i.e., the equations of
motion away fromx550! where thed-function terms in Eqs.
~2.7! and ~2.9! do not come in. Note that because the del
function terms do not enter, the bulk equations are indep
dent of our choice off (f) in Eq. ~2.1!. We will then con-
sider the conditions required to match two bulk solutions
either side of the domain wall of tensionVebf at x550. We
will find two qualitatively different ways to do this, corre
sponding to results~I! and ~II ! quoted above. We will also
find that for fairly genericf (f), the same conclusions hold
1-3



e

de
to
v
o

of
ou

he

t

wo

-

s
ion
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1. Bulk equations:LÄ0

Plugging the ansatz~2.10! into Eq.~2.8! ~with L50!, we
find that

6a2~f8!25
2

3
~f8!2, ~2.11!

which is solved if we take

a56
1

3
. ~2.12!

Plugging this ansatz into Eq.~2.7!, we obtain

8

3 Ff914S 6
1

3D ~f8!2G50. ~2.13!

Plugging it into Eq.~2.9!, we obtain

3S 6
1

3Df91
4

3
~f8!250. ~2.14!

With either choice of sign fora, these two equations becom
identical in bulk. Fora56 1

3 , we must solve

f96
4

3
~f8!250 ~2.15!

in bulk. This is solved by

f56
3

4
logU43 x51cU1d, ~2.16!

wherec andd are arbitrary integration constants.
Note that there is a singularity in this solution at

x552
3

4
c. ~2.17!

Our solutions will involve regions of spacetime to one si
of this singularity; we will assume that it can be taken
effectively cut off the space. At present, we do not ha
much quantitative to say about the physical implications
this singularity. The results we derive here~summarized
above! strongly motivate further exploring the effects
these singularities on the four-dimensional physics of
domain wall solutions.

At x550 there is localized energy density leading to t
d-function terms in Eqs.~2.7! and~2.9!. We can solve these
equations by introducing appropriate discontinuities inf8 at
the wall~while insisting thatf itself be continuous!. We will
now do this for two illustrative cases~the first being the mos
physically interesting!.

2. Solution (I)

Let us take the bulk solution witha51 1
3 for x5,0 and

one witha52 1
3 for x5.0. So we have
04502
e
f

r

f~x5!5f1~x5!5
3

4
logU43 x51c1U1d1 , x5,0,

~2.18!

f~x5!5f2~x5!52
3

4
logU43 x51c2U1d2 , x5.0,

~2.19!

where we have allowed for the possibility that the~so far!
arbitrary integration constants can be different on the t
sides of the domain wall.

Imposing continuity off at x550 leads to the condition

3

4
loguc1u1d152

3

4
loguc2u1d2 . ~2.20!

This equation determines the integration constantd2 in terms
of the others.

To solve Eq.~2.7! we then require

8

3
@f28~0!2f18~0!#5bVebf~0!, ~2.21!

while to solve Eq.~2.9! we need

3@a2f28~0!2a1f18~0!#52
1

2
Vebf~0! ~2.22!

~wherea151 1
3 and a252 1

3 !. These two matching condi
tions become

2
8

3 S 1

c1
1

1

c2
D5bVebd1uc1u~3/4!b ~2.23!

and

1

c2
2

1

c1
52

1

2
Vebd1uc1u~3/4!b. ~2.24!

Solving for the integration constantsc1 andc2 , we find

2

c2
5F2

3b

8
2

1

2GVebd1uc1u~3/4!b, ~2.25!

2

c1
5F2

3b

8
1

1

2GVebd1uc1u~3/4!b,

~2.26!

Note that as long asbÞ6 4
3 , we here find a solution for

the integration constantsc1 andc2 in terms of the parameter
b andV which appear in the Lagrangian and the integrat
constantd1 . ~As discussed above, the integration constantd2
is then also determined.2! In particular, for scalar coupling
given by b, there is a Poincare´-invariant four-dimensional

2We will momentarily find a disjoint set ofL50 domain wall
solutions for whichb will be forced to be64/3, so altogether there
are solutions for anyb.
1-4
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domain wall for any value of the brane tensionV; V does not
need to be fine-tuned to find a solution. As is clear from
form of the 4D interaction in Eq.~2.1!, one way to under-
stand this is that the scalar fieldf can absorb a shift inV
since the only place that thef zero mode appears in th
Lagrangian is multiplyingV. However, since we can us
these equations to solve forc1,2 without fixing d1 , a more
general story is at work; in particular, even forb50 we find
solutions for arbitraryV.

A constraint on the sign ofV arises, as we will now dis-
cuss, from the requirement that there be singularities~2.17!
in the bulk solutions, effectively cutting off thex5 direction
at finite volume.

3. More general f(f)

If instead of Eq.~2.3! we include a more general choice
f in the action~2.1!, the considerations above go throug
unaltered. The choice off only enters in the matching con
ditions ~2.21! and ~2.22! at the domain wall. The modified
equations become

8

3
@f28~0!2f18~0!#5

] f

]f
„f~0!…, ~2.27!

3~a2f28~0!2a1f18~0!!52
1

2
f „f~0!….

~2.28!

In terms of the integration constants, these become

2
8

3 S 1

c1
1

1

c2
D5

] f

]f S 3

4
loguc1u1d1D , ~2.29!

1

c2
2

1

c1
52

1

2
f S 3

4
loguc1u1d1D .

~2.30!

Clearly, for genericf (f), one can solve these equations.

4. Obtaining a finite 4D Planck scale

Consider the solution~2.18! on thex5,0 side. If c1,0,
then there is never a singularity. Let us consider the fo
dimensional Planck scale. It is proportional to the integral@5#

E dx5e2A~x5!. ~2.31!

In the x5,0 region, this goes like

E dx5AU43 x51c1U. ~2.32!

If c1,0, then there is no singularity, and this integral
evaluated fromx552` to x550. It diverges. Ifc1.0, then
there is a singularity at Eq.~2.17!. Cutting off the volume
integral~2.32! there gives a finite result. Note that the ans
~2.10! leaves an undetermined integration constant inA, so
one can tune the actual value of the 4D Planck scale
shifting this constant.
04502
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In order to have a finite 4D Planck scale, we therefo

impose thatc1.0. This requiresV( 1
2 23b/8).0. For the

valueb52/3, natural in string theory~as we will discuss in
Sec. III!, this requiresV.0. With this constraint, there is
similarly a singularity on thex5.0 side which cuts off the
volume on that side.

These conditions extend easily to conditions onf (f) in
the more general case. We find

2
3

8

] f

]f
„f~0!…2

1

2
f „f~0!…,0,

2
3

8

] f

]f
„f~0!…1

1

2
f „f~0!….0. ~2.33!

This means thatf (f) must be positive at the wall~corre-
sponding to a positive tension brane! and that

2
4

3
,

f 8

f
,

4

3
. ~2.34!

So althoughf does not need to be fine-tuned to achieve
solution of the sort we require, it needs to be such thatf 8/ f
is in the range~2.34!.

Let us discuss some of the physics at the singularity. F
lowing @5,11#, we can compute thex5 dependence of the
four-dimensional graviton wave function. Expanding t
metric about our solution~taking gmn5e2Ahmn1hmn!, we
find

hmn}AU43 x51cU. ~2.35!

At a singularity, whereu 4
3 x51cu vanishes, this wave func

tion also vanishes. Without understanding the physics of
singularity, we cannot determine yet whether it significan
affects the interactions of the four-dimensional modes.

It is also of interest to consider the behavior of the sca
f at the singularities. In string theory this determines t
string coupling. In our solution~I!, we see that

x5→2
3

4
c1⇒f→2`,

x5→2
3

4
c2⇒ff→`. ~2.36!

So in string theory, the curvature singularity on thex5,0
side is weakly coupled, while that on thex5.0 side is
strongly coupled. It may be possible to realize these geo
etries in a context where supersymmetry is broken by
brane, so that the bulk is supersymmetric. In such a case
stability of the high-curvature and/or strong-coupling regio
may be easier to ensure. In any case we believe that
results of this section motivate further analysis of these s
gular regions, which we leave for future work.

Puttig everything together, we have found the soluti
described in case~I! above. It should be clear that sincef (f)
1-5
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only appears in Eq.~2.1! multiplying the delta-function
‘‘thin wall’’ source term, we can always use the choice~2.3!
in writing matching conditions at the wall for concretene
To understand what would happen with a more generalf, one
simply replacesVebf(0) with f „f(0)… and bVebf(0) with
(] f /]f)„f(0)… in the matching equations. We will not ex
plicitly say this in each case, but it makes the generaliza
to arbitraryf immediate.

5. Solution (II)

A second type of solution withL50 is obtained by tak-
ing a to have the same sign on both sides of the domain w
So we have

f~x5!5f1~x5!56
3

4
logU43 x51c1U1d1 , x5,0,

~2.37!

f~x5!5f2~x5!56
3

4
logU43 x51c2U1d2 , x5.0,

~2.38!

The matching conditions then requireb57 4
3 for consistency

of Eqs.~2.7! and~2.9! @in the case with a more genericf (f),
this generalizes to the condition (] f /]f)„f(0)…5
7 4

3 f „f(0)…#. This is not a value ofb that appears from a
dilaton coupling in perturbative string theory. It is still inte
esting, however, as a gravitational low-energy effective fi
theory whereV does not have to be fine-tuned in order
preserve four-dimensional Poincare´ invariance. We find a so
lution to the matching conditions with

c15c, x5.0,

c252c, x5,0,
~2.39!

d15d25d,

e7~4/3!d5
4

V

c

ucu

for some arbitrary constantc and anyV. This gives the re-
sults summarized in case~II ! above. The valueb574/3,
which is required here, was excluded from the solutions~I!
derived in the last section.

As long as we choosec such that there are singularities o
both sides of the domain wall, we again get a finite 4
Planck scale. As we can see from Eqs.~2.37! and ~2.38!,
having singularities on either side of the origin requiresc to
be positive. Then we see from Eq.~2.39! that we can find a
solution for arbitrary positive brane tensionV.

Let us discuss the physics of the singularities in this ca
As in solutions~I!, the graviton wave function decays to ze
at a singularity like (x2xsing)

1/2. For b524/3, f→2` at
the singularities on both sides, while forb5 4

3 , f→` at the
singularities on both sides.

Putting solutions~I! and ~II ! together, we see that in th
L50 case one can find a Poincare´-invariant solution with
finite 4D Planck scale for any positive tensionV and any
04502
.
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choice ofb in Eq. ~2.1!. As we have seen, this in fact remain
true with Eq. ~2.3! replaced by a more general dilaton
dependent brane tensionf (f).

6. Two-brane solutions

One can also obtain solutions describing a pair of dom
walls localized in a compact fifth dimension. In case~I!, one
can show that such solutions always involve singularities
case~II !, there are solutions which avoid singularities wh
maintaining the finiteness of the four-dimensional Plan
scale. They however involve extra moduli~the size of the
compactified fifth dimension! which may be stabilized by
for example, the mechanism of@14#. The singularity is
avoided in these cases by placing a second domain wall
tween x550 and the would-be singularity at43 x51c50.
This allows us in particular to find solutions for whichf is
bounded everywhere, so that the coupling does not get
strong. This is a straightforward generalization of what
have already done and we will not elaborate on it here.

D. LÅ0 „solution III …

More generally we can consider the entire Lagrang
~2.1! with parametersL, V, a, andb. In this case, plugging in
the ansatz~2.10! into Eqs.~2.7!–~2.9!, we find a bulk solu-
tion

f52
2

a
logS a~7AB!

2
x51dD ,

B5
L

4
3 212a2

,

a52
8

9a
. ~2.40!

We find a domain wall solution by taking one sign in th
argument of the logarithm in Eq.~2.40! for x5,0 and the
opposite sign in the argument of the logarithm forx5.0.
Say, for instance, thata.0. Then we could take the2 sign
for x.0 an and the1 sign for x,0, and find a solution
which terminates at singularities on both sides if we cho
d.0.

The matching conditions then require

V5212aAB ~2.41!

and

b52
4

9a
. ~2.42!

So we see that hereV must be fine-tuned to the
L-dependent value given in Eq.~2.41!. This is similar to the
situation in@5#, where one fine-tuning is required to set th
four-dimensional cosmological constant to zero. Like in o
solutions in Sec. II A, there is one undetermined paramete
the Lagrangian. But here it is a complicated combination
L andV ~namely,V/AL!, and we do not have an immedia
1-6
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interpretation of variations of this parameter as arising fr
nontrivial quantum corrections from a sector of the theor

The fact, apparent from Eqs.~2.40! and ~2.42!, that b
5a/2 in this solution makes its embedding in string theo
natural, as we will explain in the next section.

LÅ0, aÄ0

In this case, the bulk equations of motion become~in
terms ofh[f8 andg[A8!

h814hg50,

6g22
2

3
h21

1

2
L50,

3g81
4

3
h250. ~2.43!

We can solve the second equation forg in terms ofh and
then integrate the first equation to obtainh(x5). For gÞ0,
the third equation is then automatically satisfied. We will n
need detailed properties of the solution, so we will not
clude it here. The solutions are more complicated than th
of Sec. III C. We are currently exploring under what con
tions one can solve the matching equations to obtain a
with singularities cutting off thex5 direction on both sides
@10#. If such walls exist, they will also exhibit the self-tunin
phenomenon of Sec. III C, since the dilaton zero mode
absorb shifts inV and does not appear elsewhere in the
tion.

III. TOWARD A STRING THEORY REALIZATION

A. LÄ0 cases

Taking L50 is natural in string theory, since the tre
level vacuum energy in generic critical closed string co
pactifications~supersymmetric or not! vanishes. One would
expect bulk quantum corrections to correctL in a power
series ings5ef. However, the analysis of Sec. II C may st
be of interest if the bulk corrections toL are small enough
This can happen, for instance, if the supersymmetry brea
is localized in a small neighborhood of the wall and thex5
interval is much larger or, more generally, if the supersy
metry breaking scale in bulk is small enough.

1. General f(f)

The examples we have found in Sec. II which ‘‘self-tune
the 4D cosmological constant to zero haveL50 with a
broad range of choices forf (f). We interpret this as mean
ing that quantum corrections to the brane tension, wh
would change the form off, do not destabilize the flat bran
solution. The generality of the dilaton couplingf (f) sug-
gests that our results should apply to a wide variety of str
theory backgrounds involving domain walls. We now turn
a discussion of some of the features of particular cases.
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2. D-branes

In string theory, one would naively expect codimension
D-branes~perhaps wrapping a piece of some compact ma
fold! to havef (f) given by a power series of the form

f ~f!5e~5/3!f (
n50

`

cnenf. ~3.1!

Thec0 term represents the tree-level D-brane tension~which
goes like 1/gs in the string frame!. The higher-order terms in
Eq. ~3.1! represent quantum corrections from the Yang-Mi
theory on the brane, which has couplinggYM

2 5ef.
If one looks for solutions of the equations which ari

with the choice~2.3! for f (f) with positive V and b55/3
~the tree-level D-brane theory!, then there are no solution
with a finite 4D Planck scale. The constraints of Sec. III
cannot be solved to give a single wall with singularities
both sides cutting off the length in thex5 direction. However,
including quantum corrections to the D-brane theory to ge
more genericf as in Eq.~3.1!, there is a constraint on th
magnitude of (] f /]f)„f(0)… divided by f „f(0)… which can
be obeyed. Therefore, one concludes that for our mechan
to be at work with D-brane domain walls, the dilatonf must
be stabilized away from weak coupling—the loop corre
tions to Eq.~3.1! must be important.

3. Case f(f)ÄVe(2Õ3)f and NS branes

Another simple way to get models which could come o
of string theory is to setb52/3 in Eq.~2.3!, so

f ~f!5Ve~2/3!f. ~3.2!

Then Eq.~2.1! becomes precisely the Einstein frame acti
that one would get from a ‘‘three-brane’’ in string theo
with a string frame source term proportional toe22f. In this
case,f can also naturally be identified with the string theo
dilaton. This choice ofb is possible in solutions of the sor
summarized in result~I! in Sec. II A.

However, after identifyingf with the string theory dila-
ton, if we really want to make this specific choice forf (f),
we would also like to find branes where it is natural to exp
that quantum corrections to the brane tension~e.g., from
gauge and matter fields residing on the brane! would shiftV,
but not change the overallf dependence of the source term
This can only happen if the string couplinggs5ef is not the
field-theoretic coupling parameter for the dynamical degr
of freedom on the brane.

Many examples where this happens are known in str
theory. For example, the NS five-branes of type IIB and h
erotic string theory have gauge fields on their world volum
whose Yang-Mills coupling does not depend ongs
@15,16,17#. This can roughly be understood from the fact th
the dilaton grows to infinity down the throat of the solutio
and its value in the asymptotic flat region away from th
throat is irrelevant to the coupling of the modes on the bra
Upon compactification, this leads to gauge couplings
pending on sizes of cycles in the compactification manif
~in units of a8! @16,18#. For instance, in@18# gauge groups
1-7
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which arise ‘‘nonperturbatively’’ in singular heterotic com
pactifications~at fewer supersymmetric generalizations
the small instanton singularity@15#! are discussed. There, th
4D gauge couplings on a heterotic NS five-brane wrapped
a two-cycle go like

gYM
2 ;

a8

R2 . ~3.3!

HereR is the scale of this two-cycle in the compactificatio
manifold. In @18#, this was used to interpret string sigm
model world sheet instanton effects, which go likee2R2/a8,
in terms of nonperturbative effects in the brane gauge gro

which go like e28p2/gYM
2

. So this is a concrete example
which nontrivial dilaton-independent quantum corrections
the effective action on the brane arise. One can imag
analogous examples involving supersymmetry breaking
such cases, perturbative shifts in the brane tension du
brane world volume gauge dynamics would be a series
a8/R2 and notgs5ef.

In particular, one can generalize such examples to ca
where the branes are domain walls in 5D spacetime~instead
of space filling in 4D spacetime as in the examples just d
cussed!, but where again the brane gauge coupling is not
string coupling. Quantum corrections to the brane tensio
the brane gauge theory then naturally contribute shifts

e~2/3!fV→e~2/3!f~V1dV! ~3.4!

to the~Einstein frame! b52/3 source term in Eq.~2.1!, with-
out changing its dilaton dependence.

Most of our discussion here has focused on the c
wheref is identified with the string theory dilaton. Howeve
in general it is possible that some other string theory mo
lus could play the role off in our solutions, perhaps fo
more general values ofb.

4. Resemblance to orientifolds

In our analysis of the equations, we find solutions desc
ing a 4D gravity theory with zero cosmological constant
we consider singular solutions and cut off the fifth dimens
at these singularities. The simplest versions of compactifi
tions involving branes in string theory also include defects
the compactification which absorb the charge of the bra
and cancel their contribution to the cosmological constan
four dimensions, at least at the tree level. Examples of th
defects include orientifolds~in the context of D-brane
worlds!, S-duals of orientifolds~in the context of NS brane
worlds!, and Horava-Witten ‘‘ends of the world’’~in the
context of the strongly coupled heterotic string!.

Our most interesting solutions involve two different b
haviors on the two sides of the domain wall. On one side
dilaton goes to strong coupling while on the other side
goes to weak coupling at the singularity. This effect has a
been seen in brane-orientifold systems@19#.

It would be very interesting to understand whether
singularities we find can be identified with orientifoldlik
defects, as these similarities might suggest. Then their
~if any! in absorbing quantum corrections to the 4D cosm
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logical constant could be related to the effective negat
tension of these defects. However, various aspects of
dilaton gravity solutions are not familiar from brane
orientifold systems. In particular, the existence of solutio
with curved 4D geometry on the same footing as our
solutions does not occur in typical perturbative string co
pactifications. In any case, note that~as explained in Sec
III A ! our mechanism does not occur in the case of wea
coupled D-branes and orientifolds.

B. LÅ0 cases

Some of theLÞ0 cases discussed in Sec. II D could al
arise in string theory. As discussed in@20,21#, one can find
closed string backgrounds with a nonzero tree-level cos
logical constantL,0 by considering subcritical strings. I
this case, the cosmological term would have a dilaton dep
dence consistent witha54/3 in bulk. Using Eqs.~2.40! and
~2.42!, this impliesb52/3, which is the expected scaling fo
a tree-level brane tension in the thin wall approximation
well.

One would naively expect to obtain vacua with su
negative bulk cosmological constants out of tachyon cond
sation in closed string theory@20,21#. It is then natural to
consider these domain walls~in the a54/3, b52/3 case! as
the thin wall approximation of ‘‘fat’’ domain walls which
could be formed by tachyon field configurations which inte
polate between different minima of a closed string tachy
potential. In the context of the Randall-Sundrum scena
such ‘‘fat’’ walls were studied, for example, in@11,22,23#.

It would be interesting to find cases where theLÞ0, a
50 solutions arise from a more microscopic theory. Ho
ever, it is clear that the dilaton dependence of Eq.~2.1! is
then not consistent with interpretingf as the string theory
dilaton. Perhaps one could find a situation wheref can be
identified with some other string theoretic modulus, andL
can be interpreted as the bulk cosmological constant a
other moduli are fixed.

IV. DISCUSSION

The concrete results of Sec. II motivate many interest
questions, which we have only begun to explore. Answer
these questions will be important for understanding the fo
dimensional physics of our solutions.

The most serious question has to do with the nature of
singularities. There are many singularities in string theo
which have sensible physical resolutions, either due to
finite string tension or due to quantum effects. Most th
have been studied~such as flops@24# and conifolds@25#!
involve systems with some supersymmetry, though so
~such as orbifolds@26#! can be understood even without s
persymmetry. We do not yet know the proper interpretat
of our singularities, though as discussed in Sec. III there
intriguing similarities to orientifold physics in our system
After finding the solutions, we cut off the volume integr
determining the four-dimensional Planck scale at the sin
larities. It is important to determine whether this is a legi
mate operation.

It is desirable~and probably necessary in order to addre
1-8
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the question in the preceding paragraph! to embed our solu-
tions microscopically into M theory. As discussed in Sec.
some of our solutions appear very natural from the poin
view of string theory, where the scalarf can be identified
with the dilaton. It would be interesting to consider th
analogous couplings of string-theoretic moduli scalars ot
than the dilaton. Perhaps there are other geometrical mo
which couple with different values ofa and b in Eq. ~2.3!
than the dilaton does.

It is also important to understand the effects of quant
corrections to quantities other thanf (f) in our Lagrangian.
In particular, corrections toL and corrections involving dif-
ferent powers ofef in the bulk ~coming from loops of bulk
gravity modes! will change the nature of the equations.
will be interesting to understand the details of curved
domain wall solutions to the corrected equations@27,11,10#.
More specifically, it will be of interest to determine the cu
vature scale of the 4D slice, in terms of the various choi
of phenomenologically natural values for the Planck sca
Since the observed value of the cosmological constan
nonzero according to studies of the mass density, cos
microwave background spectral distribution, and supern
events@28#, such corrected solutions might be of physic
interest.

Perhaps the most intriguing physical question is what h
pens from the point of view of four-dimensional effectiv
field theory~if such a description in fact exists!. Understand-
ing the singularity in the 5D background is probably requir
to answer this question. One possibility~suggested by the
presence of the singularity and by the self-tuning of the
cosmological constant discovered here! is that four-
B

-

ys

n-
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dimensional effective field theory breaks down in this bac
ground, at least as far as contributions to the 4D cosmolo
cal constant are concerned. In@5# and analogous examples
there is a continuum of bulk modes which could plausib
lead to a breakdown of 4D effective field theory in certa
computations. In our theories, cutting off the 5D theory
the singularities leaves a finite proper distance in thex5 di-
rection. This makes it unclear how such a continuum co
arise ~in the absence of novel physics at the singulariti
which could include ‘‘throats’’ of the sort that commonl
arise in brane solutions!. So in this system, any breakdow
of 4D effective field theory is more mysterious.
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