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Self-tuning flat domain walls in 5D gravity and string theory
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We present Poincasi@variant domain wall(“three-brane’) solutions to some five-dimensional effective
theories which can arise naturally in string theory. In particular, we find theories where Peimeaniant
solutions exist for arbitrary values of the brane tension, for certain restricted forms of the bulk interactions. We
describe examples in string theory where it would be natural for the quantum corrections to the tension of the
brane(arising from quantum fluctuations of modes with support on the braneaintain the required form of
the action. In such cases, the Poineineariant solutions persist in the presence of these quantum corrections
to the brane tension, so that no 4D cosmological constant is generated by these modes.

PACS numbgs): 11.27+d, 11.25.Mj

I. INTRODUCTION corrections to the bulk are small enough to neglect in a con-
trolled expansion.

Some time ago, it was suggested that the cosmological For suitable choices of(¢), this example exhibits the
constant problem may become soluble in models where oyprecise dilaton couplings which naturally arise in string
world is a topological defect in some higher-dimensionaltheory. There are two interesting and distinct contexts in
spacetime[1]. Recently such models have come under rewhich this happens. One is to considékp) corresponding
newed investigation. This has been motivated both by brant® tree-level dilaton couplingve™2? in the string frame, for
world scenariogsee, for instancd2,3,4) and by the sug- Some constan¥). This form of the dilaton coupling is not
gestion of Randall and Sundruni5] that the four- restricted to tree-leveperturbativestring theory—it occurs,
dimensional graviton might be a bound state of a 5D gravifor example, on the world volumes of Neveu-Schwexs)
ton to a 4D domain wall. At the same time, new ideasPranes in string theory. There, the dynamics of the world
relating 4D renormalization group flows to 5D AdS gravity volume degrees of freedom does not depend on the dilaton—

via the AdS conformal field theoryCFT) correspondence the relevant coupling .constan:] isbdilaton indepedndent.dThere—
[6] have inspired related approaches to explaining the nee{pre,fquar;;umIcorre?t|(|)dns totlgbrane ter;sg? ue.tci .yr;z;}\m—
vanishing of the 4D cosmological terfi,8]. These authors 'CS ot wor " volume fields would be expected to maintain the

, : tree-level” form of f(¢), while simply shifting the coeffi-
suggestea?followmg [1]) that quantum corrections to_ th_e 4D cf‘ientv of the (string frame e~2%. The other form off ()
;:_olsdmglog?al (éqnstant colutI)d”E) € ca'rgceleld t'by V_ﬁ:'auonsltonatural in string theory involves a power serieseffi This
I€lds In a five-dimensional bu'k gravity solution. The resu .Stype of coupling occurs when quantum corrections are con-
of this paper might be regarded as a concrete partial rea“ZEL‘foIIed by the dilaton in string theory
tion of this scenario, in the context of 5D dilaton gravity and ’

. ) . In either case, as long as we only consider quantum cor-
string theory. A different AdS/CFT-motivated approach to rections which modifyf(i) but maint):/ain the reqﬂired form
this problem appeared i®].

In the thi I imati tad . of the bulk 5D gravity action, this means that quantum cor-
”n. e5D|n Wa'tapbproxwgaltlonf, wet'can represen_tz OMalNactions to the brane tension do not destabilize flat space;
wail 1n gravity by a defta function source with some they do not generate a four-dimensional cosmological con-
coeﬁ|C|en_tf_(¢>) (where is a bulk scalar field, the d"a“)f! stant. We will argue that some of our examples should have
S microscopic realization in string theory with this feature, at

In thi le of a 5D dil leading order in a controllable approximation scheme. It is
n this paper, we present a concrete example of a NatoBerhaps appropriate to call this a “self-tuning” of the cos-

gravity thgory where one can find Poincamegriant QOmain mological constant because the 5D gravity theory and its
V.Va” solutions forgeneric {¢). Th? constraint of finding a matter fields respond in just the right way to shifts in the
finite 4D Planck scale then restricts the signfodnd the ;o qion of the brane to maintain 4D Poincareariance.

\{alue off’/.f at the ngl to lie in a range of Order 1. Thus note that here, as if5], there is a distinction between the
fine-tuning is not required in order to avoid having the quan{,.;ne tension and the 4D cosmological constant.

tum fluctuations which corredi(¢) generate a 4D COSMO-  There are two aspects of the solutions we find which are
logical constant. One Qf the requirements we mgst IMPOS€ 1Hot under satisfactory control. First, the curvature in the
that the 5D cosmological constart should vanist. This  prane solutions of interest has singularities at finite distance
would be natural in scenarios where the bulk is supersyme o the wall; the proper interpretation of these singularities
metric (though the brane need not)ber where quantum iy jikely be crucial to understanding the mechanism of self-
tuning from a four-dimensional perspective. We cut off the
space at these singularities. The wave functions for the four-
1t is possible that an Einstein frame bulk cosmological termdimensional gravitons in our solutions vanish there. Second,
which is independent of will also allow for similar physic§10]. the value of the dilatorp diverges at some of the singulari-

of the fields with support on the brane should corrgeb).
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ties; this implies that the theory is becoming strongly [l. POINCARE -INVARIANT 4D DOMAIN WALL

coupled there. However, the curvature and coupling can be SOLUTIONS

kept arbitrarily weak at the core of the wall. Therefore, some

aspects of the solutions are under control and we think the ] _

self-tuning mechanism can be concretely studied. We present L€t Us consider the action

some preliminary ideas about the microscopic nature of the

singularities in Sec. IIl. Szf d®x\/- G
A problem common to the system studied here and that of

[5] is the possibility of instabilities, hidden in the thin wall

sources, which are missed by the effective field theory analy- + f d*x\—g[—f(¢)] 2.9

sis. Studying thick wall analogues of our solutions would

probably shed light on this issue. We do not resolve thigjescribing a scalar fieldb and gravity living in five dimen-
question here. But taking advantage of the stringy dilatorsjons coupled to a thin four-dimensional domain wall. Let us
couplings possible in our set of self-tuned models, Weset the position of the domain wall &§=0. Here we follow

present a plausibility argument for the existence of stringyne notation of[5] so that the metri,,, along the four-
realizations, a subject whose details we leave for future worlgimensional slice aks=0 is given in terms of the five-

A. Basic setup and summary of results

4
R—§(V¢>)2—Aea¢

[10]. } ) ] ) dimensional metricsy,y by
Another issue involves solutions where the wall is not
Poincareinvariant. This could mean it is curvedor ex- 9= 5,T5D'GMN(X5=0),
ample, de Sitter or anti—de Sitter sparetjmelowever, it
could also mean that there is a nontrivial dilaton profile wv=1...,4,
along the walllone example being the linear dilaton solution
in string theory, which arises when the tree-level cosmologi- M,N=1,...,5. (2.2

cal constant is nonvanishipgrhis latter possibility isa pri-
ori as likely as others, given the presence of the massless For concreteness, in much of our discussion we will make
dilaton in our solutions. the choice
Our purpose in this paper is to argue that starting with a
Poincareinvariant wall, one can find systems where quan- f(p)=Ve?. (2.3
tum corrections leave a Poincarevariant wall as a solution.
However, one could also imagine starting with non-However, most of our considerations wilbt depend on this
Poincareinvariant wall solutions of the same 5D equations detailed choice of (¢) (for reasons that will become clgar
(and preliminary analysis suggests that such solutions do e ith this choice, Eq.(2.1) describes a family of theories
ist in the generic case, with finite 4D Planck sgald/e are in ~ parametrized by, A, a, andb. If a=2b=4/3, the action
the process of systematically analyzing the fine-tuning of2.1) agrees with tree-level string theory whegeis identi-
initial conditions that considering a classically Poineare fied with the dilaton(That is, the 5D cosmological constant
invariant wall might entai[ 10]. term and the 4D domain wall tension term both scale like
The paper is organized as follows. In Sec. I, we writee 2 in string frame) In Sec. Il we will discuss a very
down the 5D gravity-dilaton theories that we will be inves- natural context in which this type of action arises in string
tigating. We solve the equations of motion to find Poineare theory, either with the specific forn2.3) or with a more
invariant domain walls, both in the cases where the 5D Lageneralf(¢).
grangian has couplings which provide the self-tuning In the rest of this section we will derive the field equa-
discussed above and in more general cases. In Sec. lll, vi®ns arising from this action and construct some interesting
describe several possible embeddings of our results into golutions of these equations. In particular, we will be inter-
more microscopic string theory context. We close with aested in whether there are Poincareariant solutions for
discussion of promising directions for future thought in Sec.the metric of the four-dimensional slice x4=0 for generic
V. values of these parametdrs, more generally, for what sub-
There have been many interesting recent papers whichpaces of this parameter space there are Pokicaagiant
study domain walls in 5D dilation gravity theories. We par- solutions in four dimensionsWe will also require that the
ticularly found[11] and[12] useful, and further references geometry be such that the four-dimensional Planck scale is
may be found there. finite. Our main results can be summarized in three different
This research was inspired by very interesting discussionsases as follows.
with Aharony and Banks. While our work on Poincare (I) For A=0, b# = 3, but otherwise arbitrary, and arbi-
invariant domain walls and self-tuning was in progress, werary magnitude ofV, we find a Poincarénvariant domain
learned that very similar work was in progress by Arkani-wall solution of the equations of motion. Fbr=2/3, which
Hamedet al.[13]. In particular, before we had obtained the is the value corresponding to a brane tension of oeder”
solutions in Secs. 11C and IID, Sundrum told us that theyin the string frame, the sign &f must be positive in order to
were finding singular solutions to the equations and wereorrespond to a solution with a finite four-dimensional
hoping the singularities would “explain” a breakdown of Planck scale, but it is otherwise unconstrained. This suggests
4D effective field theory on the domain wall. that for fixed scalar field coupling to the domain wall, quan-
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tum corrections to its tensiol do not spoil the Poincare 8

invariance of the slice. In Sec. Il we will review examples in \/—_G<§V2¢>—aAea¢) ~bVé(xs)e*\—g=0. (2.9

string theory of situations where world volume degrees of

freedom contribute quantum corrections to 1€ term in - The Einstein equation for this theory is

a brane’s tension. Our result implies that these quantum cor-

rections do not need to be fine-tuned to zero to obtain a flat 1

four-dimensional spacetime. m( Run— EG’V‘NR)
For a generic choice of(¢) in Eqg. (2.1) (including the

type of power series expansion &f that would arise in _ f\/z

perturbative string theojythe same basic results hold true: 3

We are able to find Poincaiavariant solutions without fine-

1
VM¢VN¢—§GMN<V¢>2}

. - . . 1
tunlngf._ Insisting on a finite 4D Pl_anc_k scqle gives a furthur + E[Aea¢ /_GGMN+ ‘/_g\/gwgﬁl 5% 8(xs5)]=0.
constraint onf'/f at the wall, forcing it to lie in a range of
order 1. (2.5
Given a solution with one value of and A=0, a self- ) ) ) )
tuning mechanism is in fact clear from the Lagrangiéor We are interested in whether there are solutions with

b+#0). In Eq. (2.1) we see that ifA=0 (or a=0), the only Poincare-invariant four-dimensional physics. Therefore, we

nonderivative coupling of the dilaton is to the brane tensior’oik forr] s?lutions of Eqs(2.4) and (2.5 where the metric
term, where it appears in the combination\{)e?. Clearly, takes the form

given a solution for one value of, there will be a solution d2=e?A06) (— s+ dx+ dx2+ dx2) + dx2. (2.6
for any value ofV obtained by absorbing shifts ¥ with (mdatdetdgtdg)tde (26
shifts in ¢. With a more generdi(¢), similar remarks hold: With this ansatz for the metric, the equations become

the dilaton zero mode appears onlyfjrand one can absorb
shifts inV by shifting ¢. 8 32

However, in the special case=0 [wheref(¢) is just a §d’ + §A ¢'—ahe*’—bVs(xs)e™=0, 2.7
constant, we will also find flat solutions for generl¢. This
implies that the freedom to vary the dilaton zero mode is not b 2,01 as
the only mechanism that ensures the existence of a flat solu- 6(A") = 5(¢")"+ 5 Ae™=0, (2.8
tion for arbitraryV.

(1) For A=0, b=+4/3, we find a different Poincare 4 1
invariant solution[obtained by matching together two 5D 3A"+ §(¢')2+ Eeb¢V5(X5):0, (2.9
bulk solutions in a different combination than that used in
obtaining the solutions described in the preceding paragrapfyhere a prime denotes differentiation with respect{oThe
()]. A solution is present for any value ®. This suggests first one(2.7) is the dilaton equation of motion, the second
that for fixed scalar field coupling to the domain wall, quan-(2.8) is the 55 component of Einstein’s equations, and the
tum corrections to its tensio do not spoil the Poincare last(2.9 comes from a linear combinatidthe difference of
invariance of the slice. Again, the sign éfmust be positive the wr component of Einstein’s equation and the 55 compo-
in order to have a finite four-dimensional Planck scale. nent.

(1) We do not find a solutioinor do we show that none We will mostly consider the simple ansatz
exist9 for generalA, V, a, andb (in concordance with the
counting of parameters ii1]). However, for each\ andV A'=ad'. (2.10
there is a choice od andb for which we do find a Poincare
invariant solution using a simple ansatz.

Fora=0 and generab, A, andV, we are currently in-
vestigating the existence of self-tuning solutions. Their exis-
tence would be in accord with the fact that in this case, as in C. A=0 case
the cases with\ =0, the dilaton zero mode only appears in | et ys first consider the system with=0. We will first
the tension of the wall. This means again that shift¥iean  gy,qy the bulk equations of motiofi.e., the equations of
be absorbed by shiftings, so if one finds a Poincare ytion away fromxs=0) where thes-function terms in Egs.
invariant solution for any/, one does not need to fine-tune (2.7 and(2.9) do not come in. Note that because the delta-
V to solve the equations. function terms do not enter, the bulk equations are indepen-
dent of our choice of (¢) in Eq. (2.1). We will then con-
sider the conditions required to match two bulk solutions on
either side of the domain wall of tensiafe®® atxs=0. We

The equations of motion arising for the thed®:1), with  will find two qualitatively different ways to do this, corre-
our simple choice fof (¢) given in Eq.(2.3), are as follows. sponding to resultgl) and (Il) quoted above. We will also
Varying with respect to the dilaton gives find that for fairly generid (¢), the same conclusions hold.

However, for the cas@a=0, A#0, we will integrate the
equations directly.

B. Equation of motion
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1. Bulk equations:A=0 3 4
Plugging the ansat2.10 into Eq.(2.8) (with A=0), we P(X5) = ba(Xs) = Zlog 3%t 0 T, x6<0,
find that (2.18
2 2 2 o 3 4
6a(o') :§(¢ )% (211 ¢(X5):¢2(X5):_Z|09 3 %51 C2 +dy, X5>0,
(2.19

which is solved if we take o
where we have allowed for the possibility that tte® fap

1 arbitrary integration constants can be different on the two
a= i§- (2.12 sides of the domain wall.
Imposing continuity of¢ at x;=0 leads to the condition
Plugging this ansatz into E@2.7), we obtain 3 3
—log|c,|+d;=— —log|c,| +d,. (2.20
8 1) , 4 4
= d"+4| £=|(¢p')7|=0. 2.1
3 ¢ 3 (¢ 213 This equation determines the integration consthrih terms
S _ of the others.
Plugging it into Eq.(2.9), we obtain To solve Eq.(2.7) we then require
1 4 ) 8 , 0
3| £5]¢"+3(4")°=0. (2.14 3[45(0) = 81(0)]=bVe?*®, (2.23

With either choice of sign for, these two equations become While to solve Eq(2.9) we need
identical in bulk. Fora=*%, we must solve

1
3[a2p5(0) —a11(0)]= — EVeb"’(o) (2.22

4
¢"i§(¢')2=0 (2.19
(wherea;=+3% and a,=—3). These two matching condi-

in bulk. This is solved by tions become

8/1 1
3 |4 — | =+ = | =bVed|c,|3/4D 2.23
¢=*7log zxs+c| +d, (2.1 3lc; ¢
_ _ . and
wherec andd are arbitrary integration constants.
Note that there is a singularity in this solution at i_ iz B EVebd1|c1|<3’4>b. (2.24
3 C, Cq 2
X6= 3¢ (217 Solving for the integration constants andc,, we find
Our solutions will involve regions of spacetime to one side E: _ ﬁ_ 1 VP, |30 (2.25
of this singularity; we will assume that it can be taken to C, 8 . ' '
effectively cut off the space. At present, we do not have
much quantitative to say about the physical implications of 2 3b 1 q (34)b
this singularity. The results we derive hefeummarized ¢ ) VePdlc| ,
above strongly motivate further exploring the effects of (2.26
these singularities on the four-dimensional physics of our
domain wall solutions. Note that as long ab# = 3, we here find a solution for

At x5=0 there is localized energy density leading to thethe integration constants andc, in terms of the parameters
o-function terms in Eqs(2.7) and(2.9). We can solve these b andV which appear in the Lagrangian and the integration
equations by introducing appropriate discontinuitiestinat  constantd, . (As discussed above, the integration constnt
the wall (while insisting thaty itself be continuous We will is then also determinedl.In particular, for scalar coupling
now do this for two illustrative casethe first being the most given by b, there is a Poincarmvariant four-dimensional
physically interesting

2. Solution (I
0 2We will momentarily find a disjoint set oA =0 domain wall

Let us take the bulk solution with= +% for xs<<0 and  solutions for whichb will be forced to be+4/3, so altogether there
one witha=— 3 for x5>0. So we have are solutions for any.
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domain wall for any value of the brane tensignV does not
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In order to have a finite 4D Planck scale, we therefore

need to be fine-tuned to find a solution. As is clear from thempose thatc,>0. This requiresv(%—3b/8)>0. For the

form of the 4D interaction in Eqg(2.1), one way to under-

stand this is that the scalar fielfl can absorb a shift iV

value b= 2/3, natural in string theoryas we will discuss in
Sec. ll), this requiresV>0. With this constraint, there is

since the only place that thé zero mode appears in the gimjjarly a singularity on thes>0 side which cuts off the
Lagrangian is multiplyingV. However, since we can use youme on that side.

these equations to solve fay , without fixing d;, a more

general story is at work; in particular, even to=0 we find
solutions for arbitraryv.

A constraint on the sign o¥ arises, as we will now dis-

cuss, from the requirement that there be singularitie$?)
in the bulk solutions, effectively cutting off the; direction
at finite volume.

3. More general f)

These conditions extend easily to conditions f@ip) in
the more general case. We find

3 of 1
8 34 (40D~ 5 f(4(0)<0,
3 of 1
~ g 94 (@O 3 F(@(0)>0. (233

If instead of Eq(2.3) we include a more general choice of This means thaf(¢$) must be positive at the wallcorre-
f in the aCtion(z.l), the considerations above go through Sponding to a positive tension brarm]d that

unaltered. The choice dfonly enters in the matching con-
ditions (2.21) and (2.22 at the domain wall. The modified

equations become

8 of
3192(0)— ¢1(0)]= @(cﬁ(O)), (2.27)
1
3(az¢,(0)— a1¢1(0))=— 5 f(6(0)).
(2.28
In terms of the integration constants, these become
8( 1 1 ) _of (3
—§ C_1+C_2 —% Zlog|C1|+d1 ) (229)
11 1 (3
C_Z_C_l__zf Z'Og|C1|+d1 .
(2.30

Clearly, for generid(¢), one can solve these equations.

4. Obtaining a finite 4D Planck scale
Consider the solutioif2.18 on thexs<0 side. Ifc,<0,

4 f' 4 53

So althoughf does not need to be fine-tuned to achieve a
solution of the sort we require, it needs to be such fhat
is in the rangg2.34).

Let us discuss some of the physics at the singularity. Fol-
lowing [5,11], we can compute thes dependence of the
four-dimensional graviton wave function. Expanding the
metric about our solutioritaking g,,,=€**7,,+h,,), we
find

4
_X5+C

. (2.39

At a singularity, wherd 3 x5+ c| vanishes, this wave func-
tion also vanishes. Without understanding the physics of the
singularity, we cannot determine yet whether it significantly
affects the interactions of the four-dimensional modes.

It is also of interest to consider the behavior of the scalar
¢ at the singularities. In string theory this determines the
string coupling. In our solutiofl), we see that

then there is never a singularity. Let us consider the four-

dimensional Planck scale. It is proportional to the inteffsal

f dxge?AXs), (2.30)
In the x5<<O region, this goes like
4
f dxs §x5+cl . (2.32

X5—>_Z(31:>¢—>_°°v

(2.36

Xg— — ZCZ:¢¢—>°°-

So in string theory, the curvature singularity on the<0
side is weakly coupled, while that on the>0 side is
strongly coupled. It may be possible to realize these geom-
etries in a context where supersymmetry is broken by the

If ¢c,<0, then there is no singularity, and this integral is brane, so that the bulk is supersymmetric. In such a case the

evaluated fromxg= — to x5=0. It diverges. Ifc;>0, then
there is a singularity at Eq2.17). Cutting off the volume

stability of the high-curvature and/or strong-coupling regions
may be easier to ensure. In any case we believe that the

integral(2.32 there gives a finite result. Note that the ansatzresults of this section motivate further analysis of these sin-

(2.10 leaves an undetermined integration constand\irso

gular regions, which we leave for future work.

one can tune the actual value of the 4D Planck scale by Puttig everything together, we have found the solution

shifting this constant.

described in casg@) above. It should be clear that sinbgp)
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only appears in Eq(2.1) multiplying the delta-function choice ofbin Eq.(2.1). As we have seen, this in fact remains
“thin wall” source term, we can always use the choi@3)  true with Eq. (2.3) replaced by a more general dilaton-
in writing matching conditions at the wall for concreteness.dependent brane tensidfig).

To understand what would happen with a more gerfeaie

simply replacesve”?© with f(4(0)) and bVe*(© with 6. Two-brane solutions

(9f/9¢)(#(0)) in the matching equations. We will not ex-  one can also obtain solutions describing a pair of domain
leCltIy say thls in e{:\ch case, but it makes the generalizatioRya|is localized in a compact fifth dimension. In ca$g one
to arbitraryf immediate. can show that such solutions always involve singularities. In
) case(ll), there are solutions which avoid singularities while
5. Solution (1) maintaining the finiteness of the four-dimensional Planck
A second type of solution witlh =0 is obtained by tak- scale. They however involve extra moddihe size of the
ing a to have the same sign on both sides of the domain wallcompactified fifth dimensionwhich may be stabilized by,
So we have for example, the mechanism dfl4]. The singularity is
avoided in these cases by placing a second domain wall be-
tween xs=0 and the would-be singularity & xs+c=0.
This allows us in particular to find solutions for whiehis
(2.37 bounded everywhere, so that the coupling does not get too
strong. This is a straightforward generalization of what we

3 4
d(X5) = ¢h1(X5) = izmg §X5+ Cy|+d;, Xx5<0,

3 |4 have already done and we will not elaborate on it here.
D (X5) = ba(Xs) = iZ|09 3X1C2 +d,, X5>0,
(2.38 D. A#0 (solution I1I')
The matching conditions then requive- = £ for consistency More generally we can consider the entire Lagrangian

of Egs.(2.7) and(2.9) [in the case with a more genefite), (2.1) with paramgter$, V, a, andb. In this case, plugging in
this generalizes to the condition 9f(a¢)(4(0))= the ansat2.10 into Egs.(2.7)—(2.9), we find a bulk solu-

+ 4 £(4(0))]. This is not a value ob that appears from a 1ON
dilaton coupling in perturbative string theory. It is still inter- _
. . L 2 a(+ \/E)
esting, however, as a gravitational low-energy effective field ¢=——log| —=——xs+d|,
theory whereV does not have to be fine-tuned in order to a 2
preserve four-dimensional Poincangariance. We find a so-
lution to the matching conditions with B= A
i 1202
c1=cC, X5>0,
8
CZZ_C, X5<0, az—ﬁ. (24@
(2.39
d;=d.=d, We find a domain wall solution by taking one sign in the
4 c argument of the logarithm in Eq2.40 for x5<0 and the
eT@3d_ — _~ opposite sign in the argument of the logarithm far>0.

Vc| Say, for instance, tha>0. Then we could take the sign

f bi d V. This ai h for x>0 an and the+ sign for x<0, and find a solution
of some ar |'grary gonstarut andg-anyv. This gives t_e '®" " which terminates at singularities on both sides if we choose
sults summarized in casgl) above. The valudb= F*4/3, d>0

which is required here, was excluded from the solutidns
derived in the last section.
As long as we choosesuch that there are singularities on V=—12a\B (2.4
both sides of the domain wall, we again get a finite 4D
Planck scale. As we can see from E@8.37) and (2.38), and
having singularities on either side of the origin requice®
be positive. Then we see from E@.39 that we can find a 4
solution for arbitrary positive brane tensidh b=— 9a’ (2.42
Let us discuss the physics of the singularities in this case.
As in solutions(l), the graviton wave function decays to zero So we see that herd& must be fine-tuned to the
at a singularity like k—Xgsng % Forb=—4/3, $—— at  A-dependent value given in E(2.41). This is similar to the
the singularities on both sides, while for=5, ¢—o at the  situation in[5], where one fine-tuning is required to set the
singularities on both sides. four-dimensional cosmological constant to zero. Like in our
Putting solutiongl) and (Il) together, we see that in the solutions in Sec. Il A, there is one undetermined parameter in
A=0 case one can find a Poincanzariant solution with  the Lagrangian. But here it is a complicated combination of
finite 4D Planck scale for any positive tensidvhand any A andV (namely,V/\/A), and we do not have an immediate

The matching conditions then require
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interpretation of variations of this parameter as arising from 2. D-branes

nontrivial quantum corrections from a sector of the theory. |, string theory, one would naively expect codimension-1
The fact, apparent from Eq$2.40 and (2.42, thatb b hranegperhaps wrapping a piece of some compact mani-

=a/2 in this solution makes its embedding in string theoryf0|d) to havef(¢) given by a power series of the form

natural, as we will explain in the next section.

©

A#0,a=0 f(p)=e539> ¢ e (3.
n=0
In this case, the bulk equations of motion becofire
terms ofh=¢’ andg=A’) Thec, term represents the tree-level D-brane tensiiich
goes like 1¢. in the string framg The higher-order terms in
h’+4hg=0, Eqg. (3.1 represent quantum corrections from the Yang-Mills

theory on the brane, which has couplig§M=e¢’.

If one looks for solutions of the equations which arise
with the choice(2.3) for f(¢) with positive V and b=5/3
(the tree-level D-brane theorythen there are no solutions
with a finite 4D Planck scale. The constraints of Sec. IlIC
cannot be solved to give a single wall with singularities on
3g'+ 4 h2=0. (2.43  both sides cutting off the length in the direction. However,

3 including quantum corrections to the D-brane theory to get a
more generid as in Eq.(3.1), there is a constraint on the

We can solve the second equation fpin terms ofh and ~ Magnitude of ¢f/d¢)(4(0)) divided byf(¢(0)) which can
then integrate the first equation to obtdifxs). For g0 be obeyed. Therefore, one concludes that for our mechanism

the third equation is then automatically satisfied. We will not!® be at work with D-brane domain walls, the dilatgmust
need detailed properties of the solution, so we will not in-P€ Stabilized away from weak coupling—the loop correc-
clude it here. The solutions are more complicated than thos#ons to Eq.(3.1) must be important.

of Sec. Il C. We are currently exploring under what condi- V2
tions one can solve the matching equations to obtain a wall 3. Case f¢h)=V and NS branes

with singularities cutting off thexs direction on both sides Another simple way to get models which could come out
[10]. If such walls exist, they will also exhibit the self-tuning of string theory is to seb=2/3 in Eq.(2.3), so

phenomenon of Sec. Il C, since the dilaton zero mode can

absorb shifts iV and does not appear elsewhere in the ac- f(p)=Ve?I? (3.2
tion.

2 2 2 1
69 —gh +§A=O,

Then Eq.(2.1) becomes precisely the Einstein frame action
that one would get from a “three-brane” in string theory
IIl. TOWARD A STRING THEORY REALIZATION with a string frame source term proportionaleo??. In this
case,¢ can also naturally be identified with the string theory
) ) ) ) ) dilaton. This choice ob is possible in solutions of the sort
Taking A=0 is natural in string theory, since the tree- g, mmarized in resull) in Sec. IIA.
level vacuum energy in generic critical closed string com- However, after identifyings with the string theory dila-
pactifications(supersymmetric_or nbtvanishes_. One would ton, if we really want to make this specific choice fdi),
expect bulk quantum corrections to correttin @ power e would also like to find branes where it is natural to expect
series ings=e®. However, the analysis of Sec. Il C may still that quantum corrections to the brane tensierg., from
be of interest if the bulk corrections th are small enough. gauge and matter fields residing on the bjameuld shiftV,
This can happen, for instqnce, if the supersymmetry breaking,; not change the overafl dependence of the source term.
is Iocahzgd in a small neighborhood of the_wall and 8¢ This can only happen if the string coupligg=e? is not the
interval is much larger or, more generally, if the supersym-ie|q_theoretic coupling parameter for the dynamical degrees
metry breaking scale in bulk is small enough. of freedom on the brane.
1. General fh) Many examples where thi; happens are known in string
: theory. For example, the NS five-branes of type 1B and het-
The examples we have found in Sec. Il which “self-tune” erotic string theory have gauge fields on their world volume
the 4D cosmological constant to zero haxe=0 with a whose Yang-Mills coupling does not depend an
broad range of choices fdi(¢). We interpret this as mean- [15,16,17. This can roughly be understood from the fact that
ing that quantum corrections to the brane tension, whictihe dilaton grows to infinity down the throat of the solution,
would change the form df do not destabilize the flat brane and its value in the asymptotic flat region away from this
solution. The generality of the dilaton coupliff§¢) sug- throat is irrelevant to the coupling of the modes on the brane.
gests that our results should apply to a wide variety of stringJpon compactification, this leads to gauge couplings de-
theory backgrounds involving domain walls. We now turn topending on sizes of cycles in the compactification manifold
a discussion of some of the features of particular cases. (in units of «’) [16,18. For instance, irf18] gauge groups

A. A=0 cases
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which arise “nonperturbatively” in singular heterotic com- logical constant could be related to the effective negative
pactifications(at fewer supersymmetric generalizations oftension of these defects. However, various aspects of our
the small instanton singularifyL5]) are discussed. There, the dilaton gravity solutions are not familiar from brane-

4D gauge couplings on a heterotic NS five-brane wrapped oarientifold systems. In particular, the existence of solutions

a two-cycle go like with curved 4D geometry on the same footing as our flat
) solutions does not occur in typical perturbative string com-

gz x 3.3 pactifications. In any case, note th@s explained in Sec.
YMORZ ' IIIA)) our mechanism does not occur in the case of weakly

coupled D-branes and orientifolds.
HereR is the scale of this two-cycle in the compactification

manifold. In [18], this was used to interpret string sigma B. A#0 cases

model world sheet insta_nton effeCt.S' which go IHX_RZW' Some of theA #0 cases discussed in Sec. Il D could also
n tgrms of.nonpertzur?atlve effgct§ in the brane gauge gr(?uDarise in string theory. As discussed[i20,21], one can find
which go like e™®"/9m. So this is a concrete example in closed string backgrounds with a nonzero tree-level cosmo-
which nontrivial dilaton-independent quantum corrections t9ogical constant\ <0 by considering subcritical strings. In
the effective action on the brane arise. One can imagingyjs case, the cosmological term would have a dilaton depen-
analogous examples involving supersymmetry breaking. Iyence consistent with=4/3 in bulk. Using Eqs(2.40 and
such cases, perturbative shifts in the brane tension QUe_@AZ,, this impliesb=2/3, which is the expected scaling for
brane world volume gauge dynamics would be a series iR tree-level brane tension in the thin wall approximation as
a'/R? and notg,=e?. well.

In particular, one can generalize such examp[es to cases One would naively expect to obtain vacua with such
where the branes are domain walls in 5D spacefimstead npegative bulk cosmological constants out of tachyon conden-
of space filling in 4D spacetime as in the examples just dissation in closed string theor{20,21). It is then natural to
cussedl but where again the brane gauge coupling is not the onsider these domain wall the a=4/3, b=2/3 casg as
string coupling. Quantum corrections to the _brane te_nsion iBhe thin wall approximation of “fat” domain walls which
the brane gauge theory then naturally contribute shifts  ¢oyid be formed by tachyon field configurations which inter-

olate between different minima of a closed string tachyon
eZIV eIV +oV) 34 Eotential. In the context of the RandaII-Sundrumgscengrio,
to the(Einstein frame¢b=2/3 source term in Eq2.1), with- such “fat” wall; were §tud|ed,. for example, 11,2223,
out changing its dilaton dependence. It would be interesting to find cases where the:0, a

Most of our discussion here has focused on the Casezo solutions arise from a more microscopic theory. How-

whered is identified with the string theory dilaton. However, €€l it is clear that th‘; dilaton d_ependerrllce of Eﬂ%}) is
in general it is possible that some other string theory modutl€n not consistent with interpreting as the string theory

lus could play the role ofp in our solutions, perhaps for dilaton. Perhaps one could find a situation wherean be
more general values df identified with some other string theoretic modulus, and

can be interpreted as the bulk cosmological constant after
4. Resemblance to orientifolds other moduli are fixed.

In our analysis of the equations, we find solutions describ-
ing a 4D gravity theory with zero cosmological constant if
we consider singular solutions and cut off the fifth dimension The concrete results of Sec. Il motivate many interesting
at these singularities. The simplest versions of compactificaguestions, which we have only begun to explore. Answering
tions involving branes in string theory also include defects inthese questions will be important for understanding the four-
the compactification which absorb the charge of the branedimensional physics of our solutions.
and cancel their contribution to the cosmological constant in  The most serious question has to do with the nature of the
four dimensions, at least at the tree level. Examples of thessingularities. There are many singularities in string theory
defects include orientifolds(in the context of D-brane which have sensible physical resolutions, either due to the
worlds), S-duals of orientifolds(in the context of NS brane finite string tension or due to quantum effects. Most that
worlds), and Horava-Witten “ends of the world{in the  have been studie¢such as flop§24] and conifolds[25])
context of the strongly coupled heterotic string involve systems with some supersymmetry, though some

Our most interesting solutions involve two different be- (such as orbifold$26]) can be understood even without su-
haviors on the two sides of the domain wall. On one side thepersymmetry. We do not yet know the proper interpretation
dilaton goes to strong coupling while on the other side itof our singularities, though as discussed in Sec. Ill there are
goes to weak coupling at the singularity. This effect has alsantriguing similarities to orientifold physics in our system.
been seen in brane-orientifold systef#9]. After finding the solutions, we cut off the volume integral

It would be very interesting to understand whether thedetermining the four-dimensional Planck scale at the singu-
singularities we find can be identified with orientifoldlike larities. It is important to determine whether this is a legiti-
defects, as these similarities might suggest. Then their rolmate operation.

(if any) in absorbing quantum corrections to the 4D cosmo- It is desirable(and probably necessary in order to address

IV. DISCUSSION
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the question in the preceding paragraihembed our solu- dimensional effective field theory breaks down in this back-
tions microscopically into M theory. As discussed in Sec. Ill, ground, at least as far as contributions to the 4D cosmologi-
some of our solutions appear very natural from the point ofcal constant are concerned. [lB] and analogous examples,
view of string theory, where the scalgr can be identified there is a continuum of bulk modes which could plausibly
with the dilaton. It would be interesting to consider the léad to a breakdown of 4D effective field theory in certain
analogous couplings of string-theoretic moduli scalars othefomputations. In our theories, cutting off the 5D theory at

than the dilaton. Perhaps there are other geometrical moduffe singularities leaves a finite proper distance inxheli-
which couple with different values af andb in Eq. (2.3  rection. This makes it unclear how such a continuum could

than the dilaton does. aris_;e (in the {:\bsence of novel physics at the singularities,
It is also important to understand the effects of quanturﬁ"’h'Ch_ could mclude_ “throa_ts” O.f the sort that commonly
corrections to quantities other thé(i¢) in our Lagrangian. arise in braf‘e s_olut|0|)lsSo in this system, any breakdown
In particular, corrections td and corrections involving dif- ©f 4D effective field theory is more mysterious.
ferent powers o&? in the bulk (coming from loops of bulk
gravity mode$ will change the nature of the equations. It
will be interesting to understand the details of curved 4D We are indebted to O. Aharony and T. Banks for interest-
domain wall solutions to the corrected equati¢p2s,11,10Q. ing discussions which motivated us to investigate this sub-
More specifically, it will be of interest to determine the cur- ject. We would also like to thank R. Sundrum for many
vature scale of the 4D slice, in terms of the various choiceselpful discussions about closely related topics. We thank H.
of phenomenologically natural values for the Planck scaleVerlinde for interesting discussions and, in particular, for
Since the observed value of the cosmological constant iseveral helpful comments about the potential generality of
nonzero according to studies of the mass density, cosmithese results. In addition, we are grateful to M. Dine, N.
microwave background spectral distribution, and supernov&aloper, S. Shenker, M. Shmakova, L. Susskind, and E. Ver-
events[28], such corrected solutions might be of physicallinde for stimulating discussions. We would like to acknowl-
interest. edge the kind hospitality of the School of Natural Sciences at
Perhaps the most intriguing physical question is what hapthe Institute for Advanced Study during the early stages of
pens from the point of view of four-dimensional effective this work. S.K. is supported in part by the Ambrose Monell
field theory(if such a description in fact exigtdnderstand- Foundation and the Sloan Foundation M.S. is supported in
ing the singularity in the 5D background is probably requiredpart by the NSF Graduate Research program, and E.S. is
to answer this question. One possibilifyuggested by the supported in part by the DOE OJI program and the Sloan
presence of the singularity and by the self-tuning of the 4DFoundation. S.K. and E.S. are supported in part by the DOE
cosmological constant discovered Hherés that four- under contract DE-AC03-76SF00515.
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