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Non-Abelian Aharonov-Bohm scattering of spin 1Õ2 particles
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We study the low energy regime of the scattering of two fermionic particles carrying isospin1
2 and inter-

acting through a non-Abelian Chern-Simons field. We calculate the one-loop scattering amplitude for both the
nonrelativistic and also for the relativistic theory. In the relativistic case we introduce an intermediate cutoff,
separating the regions with low and high loop momenta integration. In this procedure purely relativistic field
theory effects as the vacuum polarization and anomalous magnetic moment corrections are automatically
incorporated.

PACS number~s!: 11.10.Kk, 11.15.Bt
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I. INTRODUCTION

Starting from different perspectives, a scalar non-Abel
Aharonov-Bohm~AB! effect has been discussed by seve
authors@1–4#. This subject has interesting implications to t
physics of peculiar objects such as cosmic strings and b
holes; it also has applications to some aspects of gravita
in 211 dimensions@5–10#. Cosmic strings, for example
may have trapped non-Abelian magnetic flux tubes so
the scattering of charged particles by these strings is ju
manifestation of the non-Abelian AB effect.

The study of the AB effect was started through the ex
calculation of the scattering amplitude of scalar particles b
thin magnetic flux tube at the origin@11#. As is nowadays
well known, in that situation the perturbative Born appro
mation fails to reproduce the expansion of the exact re
@12# and, moreover, the second term of the Born serie
divergent. This discrepancy is due to the fact that the per
bative wave function does not satisfy the same bound
condition as the exact one. Actually, in a perturbative tre
ment for a nonrelativistic field theory describing spinle
Abelian particles scattered through a Chern-Simons field
was shown that to eliminate the divergences, to recupe
the scale invariance, and to reproduce the result of the
pansion of the exact solution, it is necessary to add a con
term (f* f)2 @13#.

Recently, the perturbative treatment was applied to re
tivistic non-Abelian scalar particles@14# minimally coupled
to a non-Abelian CS field. By considering the low mome
tum limit, it was shown that, up to leading order, the sa
results are obtained through the calculation of a non-Abe
nonrelativistic field theory@15#. In the next-to-leading ap
proximation, new corrections appear which are absent in
direct nonrelativistic approach. These corrections also di
from the ones obtained in the Abelian theory@16#.

By analyzing the Abelian AB effect, it has been verifie
that new features appear if spin is introduced@17–20#. For
0556-2821/2000/62~4!/045019~9!/$15.00 62 0450
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example, the Pauli’s magnetic term plays the role of a c
tact interaction and no quartic self-interaction is needed.
sides that, as shown in Ref.@20# new effective low momen-
tum interactions are induced if one starts from a fu
relativistic theory.

Completing our study of the non-Abelian AB effect beg
in Ref. @14#, in this work we analyze the AB scattering fo
non-Abelian spin1

2 particles. We start by calculating the AB
scattering in a nonrelativistic setting. We then consider
AB scattering from a more basic standpoint, starting from
relativistic quantum field theory, and then taking the app
priate nonrelativistic limit of the scattering amplitudes. O
of the advantages of such procedure is in the fact tha
automatically incorporates quantum radiative corrections
the vacuum polarization and induced magnetic moment.
take the nonrelativistic limit most easily, we use an interm
diate auxiliary cutoff separating the low and high loop m
menta in the Feynman integrals. As it happened in our p
vious studies, it is also convenient to work in the Coulom
gauge, since in this gauge the Chern-Simons propagator
pends only on the spatial part of the loop momentu
variable.

II. NONRELATIVISTIC THEORY

We consider the non-Abelian Pauli-Schro¨dinger model
for fermions minimally coupled to a non-Abelian Cher
Simons field specified by the Lagrangian

L52Q«abltrS Aa]bAl1
2g

3
AaAbAlD

1c†F i ] t1
~¹2gA!2

2m
1 igA02 i

g

2m
BGc2

1

j
tr~¹•A!2

2c* a~dab¹
21g«abcA

c
•¹!cb, ~1!

wherec is a one-component anticommuting field, belongi
©2000 The American Physical Society19-1
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FIG. 1. Feynman rules—nonrelativistic theory.
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to the fundamental representation of the SU~2! group, and
Am5Am

a Ta, with Ta being the generator of the Lie Algebr
of SU~2! satisfying

@Ta ,Tb#5«abcT
c, ~2!

and normalized such that

TaTb52
dab

4
I 1

1

2
«abcTc . ~3!

The term containing the ‘‘magnetic’’ fieldB, is the Pauli
term andc is the ghost field needed to guarantee unitar
For convenience, we will work in a strict Coulomb gau
obtained by lettingj→0.

We will use a graphical notation where the CS field, t
matter field, and the ghost field propagators are represe
by wavy, continuous, and dashed lines respectively. The a
lytic expression for theAm free propagator is

Dmn~k!ba5Dmn~k!dba5
1

Q
«mnl

k̄l

k2
dba , ~4!

wherek̄l[(0,k). The matter field propagator is

S~p!nm5S~p!dnm5
i

p02p2/2m1 i e
dnm , ~5!

whereas the ghost field propagator is

G~p!ba5G~p!dba5
2 i

p2
dba . ~6!

Since theB field occurs in Eq.~1! it is convenient to have a
hand

DB
ba~x!5^TBb~x!A0

a~0!&52
i

Q
d (3)~x!dba, ~7!

which is the only nonvanishing propagator involving theB
field; graphically it will be represented by a dotted line. E
pression~7! shows that the Pauli term, i.e., the interacti
c†Bc, plays the same role as the quartic term (f†f)2 in the
scalar case.
04501
.

ed
a-

The graphical representation for the vertices is given
Fig. 1 and the corresponding analytical expressions are

Gnm
a,0~p,p8!52g~Ta!nm , ~8!

Gnm
a,i ~p,p8!52

g

2m
~Ta!nm~pi1p8 i !, ~9!

Gnm
ab,i j ~p,p8!52 i

g2

2m
~TaTb1TbTa!nmgi j , ~10!

Gnm
a,B~p,p8!5

g

2m
~Ta!nm , ~11!

Gabc,mnl~p,p8!5 igQ«abc«mnl, ~12!

Gnm
abc,i~p,p8!52g«abcp8 idnm . ~13!

In the tree approximation and in the center-of-mass fra
the two-body scattering amplitude is given by

M~u!5
ig2

mQ
@Ta

^ Ta#F11 i
sinu

~12cosu!G , ~14!

whereu is the scattering angle. Here and in what follows w
employ a simplified notation where the isospin indices
omitted. If the incoming and outgoing particles have isos
(n,m) and (n8,m8) the total amplitude for the process
given by

Mn8m8;nm5^n8,m8uM~u!un,m&2^m8,n8uM~u1p!un,m&.
~15!

The one-loop contribution to AB scattering is depicted
Fig. 2. The incoming and outgoing fermions are assumed
have momentap15(p1

2/2m,p1), p25(p2
2/2m,p2) and p3

5(p3
2/2m,p3), p45(p4

2/2m,p4), respectively. We work in
the center-of-mass frame wherep152p25p, p352p4
5p8, andupu5up8u. For the first graph, Fig. 2~a!, we get
9-2



tia

he

th
all
re

NON-ABELIAN AHARONOV-BOHM SCATTERING OF . . . PHYSICAL REVIEW D 62 045019
Ma~u!5E d3k

~2p!3
@Gd,a~p11p22k,p4!

3S~p11p22k!Gc,n~p2 ,p11p22k!Dmn
ac ~k2p1!

3Dab
db ~k2p3!Gb,b~k,p3!S~k!Ga,m~p1 ,k!#. ~16!

After performing thek0 integration, this gives

Ma~u!52
4ig4

mQ2
@TbTa

^ TbTa#

3E d2k

~2p!2

1

p22k21 i e
F ~p1`k!~p3`k!

~k2p1!2~k2p3!2G .

~17!

As a general rule, whenever dealing with divergent spa
integrals we will introduce a nonrelativistic cutoffLNR .
However, in Eq.~17! such regulator is not necessary as t
integral is ultraviolet finite. The final result is

Ma~u!52
ig4

4pmQ2
@TbTa

^ TbTa#H logFq2

p2G1 ipJ .

~18!

whereq5p32p1 is the momentum transferred.
The same procedure can be used to calculate the o

graphs in Fig. 2. Here the spatial integrals are logarithmic
divergent and are done after the introduction of the afo
mentioned cutoff. Graph 2~b! gives

Mb~u!52
g4

m2Q2
@TbTa

^ TbTa#

3E d3k

~2p!3
S~p11p22k! S~k!, ~19!

from which we obtain

FIG. 2. One-loop scattering—nonrelativistic theory.
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Mb~u!5
ig4

4pmQ2
@TbTa

^ TbTa#H logFLNR
2

p2 G1 ipJ .

~20!

Similarly, graph 2~c! corresponds to

Mc~u!52E d3k

~2p!3
Gcd,i j D0i

ac~k!D j 0
db~k1q!Gb,0Ga,0.

~21!

The k0 integration is straightforward and gives

Mc~u!5
ig4

2mQ2
@~TaTb1TbTa! ^ TbTa#

3E d2k

~2p!2

k•~k1q!

k2~k1q!2
. ~22!

Effectuating the remaining integral produces

Mc~u!5
ig4

4pmQ2
@TbTa

^ TbTa1 1
2 «cabTc^ TbTa#

3H logF q2

LNR
2 G J . ~23!

The last diagram, graph 2~d! gives

Md~u!52E d3k

~2p!3
@Gb,n~p2 ,p4!Dnm

ab~q!Gac8d8,mrsDsa
d8d

3~k2p3!Gd,a~k,p3!S~k!Gc,b~p1 ,k!Dbr
cc8

3~k2p1!# ~24!

so that, after thek0 integration,

Md~u!5
ig4

mQ2
@«cabTc^ TbTa#

3E d2k

~2p!2

@q`k2p1`p3#~q`k!

q2~k2p1!2~k2p3!2
~25!

leading to

Md~u!5
ig4

8pmQ2
@«cabTc^ TbTa#H 12 logF q2

LNR
2 G J .

~26!

Thus, the sum of the one-loop contribution is

M1-loop~u!5
ig4

8pmQ2
@«cabTc^ TbTa#

52
ig4

8pmQ2
@Ta

^ Ta#. ~27!
9-3
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FIG. 3. Feynman rules—
relativistic theory.
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It happens that the nonvanishing result in the last equa
is only due to the regularization used. Really, as the orig
expression was logarithmically divergent, different regul
ization schemes will produce results that for the finite p
will differ at most by a constant. This remark holds even
the sum of the Feynman integrals which is only conditiona
convergent and leads to different results depending on
way it is treated. In particular, had we used the dimensio
regularization, as it was done in Ref.@13# for the scalar case
Eq. ~27! would be zero. Our constant term in that result m
be eliminated through a redefinition of the cutoffLNR in Eq.
~26! or by adding a counterterm of the form (c†Tac)2 to the
original Lagrangian. In the relativistic theory the divergenc
are milder, the graphs are individually finite and no su
counterterms are needed.

III. RELATIVISTIC THEORY

We will now consider the non-Abelian scattering with
the full relativistic context. The Lagrangian describing t
model is

L52Q«abltrS Aa]bAl1
2g

3
AaAbAlD1 i C̄~D” 2m!C

2
1

j
tr~¹•A!22c* a~¹21g«abcA

c
•¹!cb. ~28!

whereDm5]m1gAm andC is a two-component Dirac field
belonging to the fundamental representation of the SU~2!
gauge group.C represents particles and antiparticles w
the same spin and we takem to be positive. Our graphica
notation is specified in Fig 3. The corresponding analyti
expressions for the gauge and ghost field propagators ar
same as in the previous section. The matter field propag
and the vertices, however, are now given by

S~p!nm5S~p!dnm5
i ~p”1m!

p22m21 i e
dnm , ~29!

Gnm
a,m~p,p8!52g~Ta!nm~gm!, ~30!

Gabc,mnl~p,p8!5 igQ«abc«mnl, ~31!

Gnm
abc,i~p,p8!52g«abcp8 idnm . ~32!

The model is renormalizable. Actually, without the mat
field it was found that there are no radiative corrections
the Green functions@21#. We can therefore restrict our stud
of one-loop renormalization to superficially divergent grap
arising from the coupling to the matter field, i.e., the on
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loop correction to the self-energy, vacuum polarization a
vertex corrections. The nonvanishing self-energy graph
picted in Fig. 4 is given by@22#

S~p!52E d3k

~2p!3
@Ga,m~p1k,p!S~p1k!Gb,n

3~p,p1k!Dnm
ab~k!#

5
ig2

Q
@TaTa#E d3k

~2p!3

@gm~p”1k”1m!gn# «mnlk̄l

@~p1k!22m21 i e# k2
,

~33!

so that the inverse of the complete fermion propagato
written asS 21(p)5p”2m1 iS. Notice that the self-energy
is diagonal in isospin space. After doing thek0 integration
we obtain

S~p!52
ig2

8pQ
@TaTa#E

0

L0
2

dk2
1

wk

3H m

p2
g•p@12e~k22p2!#1@11e~k22p2!#J ,

~34!

wheree(x) is the signal function,wk5Ak21m2, and a cut-
off L0 was introduced to take care of the ultraviolet dive
gence of the integral. The integral is easily done and giv

S~p!52
ig2

2pQ
@TaTa#Fg•p

m

p2
~wp2m!1AL0

21m22wpG
~35!

and so, forL0→`,

S~p!52
ig2

2pQ
@TaTa#H m g•p2p2

wp1m
2m1L0J . ~36!

The linear ultraviolet divergence may be eliminated throu
the imposition of an adequate renormalization conditio
Due to our use of the Coulomb gauge, a convenient con
tion is the one adopted in the work@23#; denoting the renor-

FIG. 4. Matter field self-energy.
9-4
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NON-ABELIAN AHARONOV-BOHM SCATTERING OF . . . PHYSICAL REVIEW D 62 045019
malized propagator bySR , this condition readsSR(p0 ,p
50)5S(p0 ,p50). Proceeding in this way, we get for th
renormalized propagator

SR~p!5 i
~p”1m!1a~m2wp!@11~m/p2!g.p#

~p22m2!
, ~37!

wherea52g2@TaTa#/(2pQ).
Let us now turn our attention to the vacuum polarizati

correction. The only graph that contributes is the one dra
in Fig. 5. As this graph is gauge independent, the would
linear divergence may be eliminated if one employs a ga
invariant regularization scheme. Use of dimensional regu
ization gives

Pmn~q!5
ig2

4p
tr@TaTb#

3F S gmn2
qmqn

q2 D P1~q2!1 im«mnlqlP2~q2!G ,

~38!

with

P1~q2!5E
0

1

dx
2q2x~12x!

@m22q2x~12x!#1/2
'

q2

3umu
, ~39!

FIG. 5. Vacuum polarization.
04501
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P2~q2!5E
0

1

dx
1

@m22q2x~12x!#1/2
'

1

umu
, ~40!

where the expressions on the right of these equations are
leading approximations for low momentaq. From these re-
sults, we see that for low momentum a Yang-Mills term m
be induced, as one would expect on general grounds.

The one-loop corrections to the CS matter field vertex
given by the graphs in Figs. 6~a! and 6~b!. The on-shell
analytic expression associated to graph 6~a! is

ū~p8!Ga
a,mu~p!

5
g3

Q
@TbTaTb#E d3k

~2p!3

3
«rslk̄lū~p8!@gs~p” 82k”1m!gm~p”2k”1m!gr#u~p!

@~p2k!22m21 i e#@~p82k!22m21 i e#@2k2#
.

~41!

Here on in, what follows the isospin indices (n,m) will be
omitted. Up to the group factorTbTaTb , this agrees with the
vertex for the Abelian theory discussed in@18#. Using di-
mensional regularization, the result can be read from t
reference but for general momenta it is not particularly il
minating. Nevertheless, for small momenta~i.e., for upu
'up8u!m) a great simplification occurs and one finds (h
5upu/m)

ū~p8!Ga
a,0u~p!5O~h2!, ~42!

ū~p8!Ga
a,iu~p!5

g3

4pQ
@TbTaTb#

1

2m
@Pi2 i« i j qj #

1O~h2!, ~43!

wherePi5pi1p8 i andq5p8 i2pi

Similarly, the graph 6~b! which corresponds to
FIG. 6. Vertices correction.
9-5



bottom

M. GOMES, L. C. MALACARNE, AND A. J. da SILVA PHYSICAL REVIEW D62 045019
ū~p8!Gb
a,mu~p!52

g3

Q
@«abcTbTc#E d3k

~2p!3

ū~p8!@gs~k”1m!gb#u~p!«msr«sbl~p2k!l«arj~p82k!j

@k22m21 i e#~p2k!2~p82k!2
~44!

FIG. 7. Fermion-fermion scattering—relativistic theory. Similar graphs in which self-energies or vertex parts are inserted in the
lines have not been drawn, for convenience.
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gives for small momenta the result

ū~p8!Gb
a,0u~p!5O~h2! ~45!

and

ū~p8!Gb
a,iu~p!5

g3

8pmQ
@«abcTcTb#

3H Pi1 i« i j qjF11 logS 4m2

q2 D G J .

~46!

The renormalized vertex part is defined byGR
am5Z1Ga,m

whereGam52gTagm1Lam is the unrenormalized one. Fix
ing the vertex renormalization constantZ1 by the condition
that for p5p850 andp°5p8°5m,

ūGR
amu52gTag0m, ~47!

we getZ151, so that up to one-loop there is no couplin
constant renormalization. This result is also in accord w
the computation of the correction to the trilinear Che
Simons ~CS! vertex shown in Fig. 6~c!; simple symmetry
considerations shown that the result is finite and no coun
term is necessary. Actually, graph 6~c!, plus the graphs with
four external gauge lines, and the polarization tensor give
induced Yang-Mills term~and also a finite correction for th
Chern-Simons term!, as commented before. However, up
one-loop, graph 6~c! does not contribute to the scattering a
for that reason it will not be considered any longer.
04501
h
-
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n

Summarizing, up to one-loop one needs just a mass re
malization counterterm to fix the fermion mass. There
neither vertex nor wave function renormalizations.

Although not 1PI, we have drawn in Fig. 6, graphs 6~d!
and 6~e! which are needed to compute the anomalous m
netic moment of the fermions. At low momenta these grap
give the contributions

ūGd
a,0u5ūGe

a,0u5O~h2!, ~48!

ūGde
a,iu5ūGd

a,iu1ūGe
a,iu

52
g3

4pQ
@~TbTb!Ta#H 1

2m
@Pi1 i« i j qj #J . ~49!

In the Abelian situation the contribution in Eq.~46! is
absent and, in the expressions corresponding to Eqs.~43! and
~49! the Pi dependent part is exactly canceled. Here, due
the group factors, to get cancellation it is necessary to t
into account the new contribution arising from Eq.~46!. This
can be easily verified using the identityTbTaTb5Ta(TbTb)
1«abcTcTb . The remaining local parts occurring inGa2e

am

will contribute to the~matrix! magnetic moment and we ge

m1-loop
a 5

ig3

4pmQ
@Ta~TbTb!#. ~50!

This expression only differs from the corresponding resul
the Abelian case by the group factor. In the ‘‘Abelian limit
(g5eA2 andT5 i /A2) the result of@18# is recovered.

To complete our discussion of the one-loop properties
the model, one still has to calculate the fermion-fermi
scattering. Figure 7 shows the contributing graphs. The o
9-6
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NON-ABELIAN AHARONOV-BOHM SCATTERING OF . . . PHYSICAL REVIEW D 62 045019
tree level graph, depicted in Fig. 7~a!, furnishes

Ma~u!5@ ū~p4!G
b,n~p2 ,p4!u~p2!#Dnm

ba~q!

3@ ū~p3!G
a,m~p1 ,p3!u~p1!#. ~51!

To the leading order ofp/m, this gives

Ma~u!5
ig2

mQ
@Ta

^ Ta#H 11 i
sinu

~12cosu!J , ~52!

which exactly agrees with that obtained previously for t
nonrelativistic theory.

The one-loop graphs are represented in Figs. 7~b!–7~h!.
To facilitate our computation we will use an intermedia
cutoff L, satisfying upu!L!m, which separates the loo
integrals in two regions. In thelow ~L! region (0<uku2

<L2) the integrand is expanded in power of 1/m, and in
high ~H! region (uku2>L2) we make a Taylor series of th
integrand aroundupu'0. We will retain terms up to orde
h5upu/m'(L/m)2'(upu/L)2.

Using that

S~p!5 i F u~p!ū~p!

p02wp1 i e
1

v~2p!v̄~2p!

p01wp2 i e
G , ~53!

we may decompose the amplitude for the graph in Fig. 7~b!

Mb~u!5E d3k

~2p!3
@ ū~p4!Gc,a~ t,p4!S~ t !Gd,b

3~p2 ,t !u~p2!#Dam
ca ~ l 8!

3@ ū~p3!Ga,m~r ,p3!S~r !Gb,n~p1 ,r !u~p2!#Dnb
bd~ l !

~54!

where l 5(k0,k2p1), l 85(k0,k2p3), r 5(wp1k0,k) and
t5(wp1k0,2k), into a sum of terms

M b
uu1M b

vv ~55!

whereM b
uu and M b

vv designate the contributions of theu
andv fermion wave functions to the two internal lines of th
graph. The mixed contributions in which one hasu in one
line and v in the other vanish. After integrating ink0 we
obtain

M b
uu5

ig4

2
@TaTb

^ TaTb#E d2k

~2p!2 FT~k,p1!T* ~k,p3!

wk2wp
G
~56!

and

M b
vv5

ig4

2
@TaTb

^ TaTb#E d2k

~2p!2 FH~p3 ,k!H* ~p,k!

wk1wp
G ,
~57!

where

T~k,p!5@ ū~k!gnu~p!#Dnb~k2p!@ ū~2k!gnu~2p!#,
~58!
04501
H~p,k!5@ ū~p!gnv~2k!#Dnb~k2p!@ ū~2p!gnv~k!#.
~59!

Introducing the intermediate cutoff to separate thelow
andhigh parts we get

Mblow

uu ~u!5
ig4

4pmQ2
@TaTb

^ TaTb#H logS L2

q2 D 1O~h!J ,

~60!

Mbhigh

uu ~u!5
ig4

4pmQ2
@TaTb

^ TaTb#

3H logS 2m2

L2 D 1O~h!J , ~61!

Mblow

vv ~u!5
ig4

4pmQ2
@TaTb

^ TaTb#$O~h!%, ~62!

Mbhigh

vv ~u!5
ig4

4pmQ2
@TaTb

^ TaTb#$ log~2!1O~h!%.

~63!

Putting these results together we arrive at

Mb~u!5
ig4

4pmQ2
@TaTb

^ TaTb#H logS 4m2

q2 D J ~64!

as the leading contribution.
For the crisscross graph, Fig. 7~c!, we proceed analo-

gously and obtain~in this case what survives are the mixe
uv andvu contributions!

Mclow
~u!52

ig4

2pmQ2
@TbTa

^ TaTb#

3H 1

2
logS L2

q2 D 1O~h!J , ~65!

Mchigh
~u!5

ig4

2pmQ2
@TbTa

^ TaTb#

3H 11
1

2
logS L2

4m2D 1O~h!J . ~66!

i.e.,

Mc~u!5
ig4

2pmQ2
@TbTa

^ TaTb#

3H 11
1

2
logS q2

4m2D 1O~h!J . ~67!

The graph 7~d! does not exist in the Abelian theory but
is here essential to cancel the extra contribution com
through group factors in other graphs. It corresponds to
9-7
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Md5E d3k

~2p!3
$@ ū~p4!Gb,nu~p2!#Dnm

ba~q!Gac8d8,msr

3Dsa
dd8~k2p3!Dbr

cc8~k2p1!

3@ ū~p3! Gd,a S~k! Gc,bu~p1!#%, ~68!

and haslow andhigh momentum parts given by

Mdlow
5

ig4

8pmQ2
@«acdTa^ TdTc#

3H 11 i
sinu

12cosu
1F logS L2

q2 D 2
L2

2m2

2~112 cosu!
p2

L2G J , ~69!

and

Mdhigh
5

ig4

8pmQ2
@«acdTa^ TdTc#

3H 2 logS L2

4m2D 1
L2

2m2
1~112 cosu!

p2

L2J ,

~70!

respectively. Summing Eqs.~69! and ~70! we get

Md5
ig4

8pmQ2
@«acdTa^ TdTc#

3H 11 i
sinu

12cosu
1 logS 4m2

q2 D J . ~71!

Finally, incorporating the radiative correction, Figs. 7~e!–
7~h!, we obtain

Me2g~u!52
ig4

4pmQ2
@Ta

^ ~TbTb!Ta#2
ig4

8pmQ2

3@«abcTa^ TcTb#H 11 i
sinu

~12cosu!J ~72!
on

04501
and

Mh~u!5
ig4

24pmQ2
@Ta

^ Ta#. ~73!

Summing all these contributions and using the relation~3!
to simplify the result, we get the total one-loop amplitude

M1-loop~u!5
ig4

4pmQ2
$ 3

8 @ I^ I#1 2
3 @Ta

^ Ta#%. ~74!

IV. CONCLUSIONS

In this work we studied the scattering of isospin1
2 fermi-

onic particles interacting through a non-Abelian Che
Simons field. In the nonrelativistic formulation we foun
that, up to a finite constant term, there is no one-loop corr
tion to the tree approximation to the scattering amplitu
This is similar to what happens in the scalar theory where
constant one-loop contribution may be eliminated by a fin
quartic counterterm@14#.

We have also considered the same problem starting f
the fully relativistic theory. After discussing the one-loo
renormalizability of the model and determining anomalo
contributions to the matrix magnetic moment of the ferm
ons, we considered the low momenta limit of the two-bo
scattering amplitude obtaining a nonvanishing one-loop c
tribution. This result, shown in Eq.~74!, is a correction to the
scattering which does not appear in the nonrelativis
theory. It is a leading order contribution and implies that t
effective low momentum Lagrangian contains a four-fermi
self-interaction with a coupling which can be read from E
~74!. These terms cannot be eliminated by adding coun
terms to the original Lagrangian~28! without destroying the
renormalizability of the relativistic model. Furthermore,
also happens in the Abelian case, these new terms come
the high part of the original theory and could not be su
pected in a direct nonrelativistic approach.
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