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Non-Abelian Aharonov-Bohm scattering of spin 12 particles
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We study the low energy regime of the scattering of two fermionic particles carrying isésam'ml inter-
acting through a non-Abelian Chern-Simons field. We calculate the one-loop scattering amplitude for both the
nonrelativistic and also for the relativistic theory. In the relativistic case we introduce an intermediate cutoff,
separating the regions with low and high loop momenta integration. In this procedure purely relativistic field
theory effects as the vacuum polarization and anomalous magnetic moment corrections are automatically
incorporated.

PACS numbgs): 11.10.Kk, 11.15.Bt

[. INTRODUCTION example, the Pauli’'s magnetic term plays the role of a con-
tact interaction and no quartic self-interaction is needed. Be-
Starting from different perspectives, a scalar non-Abeliarsides that, as shown in R¢20] new effective low momen-
Aharonov-Bohm(AB) effect has been discussed by severaltum interactions are induced if one starts from a fully
authorg 1-4]. This subject has interesting implications to the relativistic theory.
physics of peculiar objects such as cosmic strings and black Completing our study of the non-Abelian AB effect began
holes; it also has applications to some aspects of gravitatiol Ref. [14], in this work we analyze the AB scattering for
in 2+1 dimensions(5-10. Cosmic strings, for example, non-Ab_eha_n Spirng partlc_le_s._We start by calculating the AB
may have trapped non-Abelian magnetic flux tubes so thatcattering in a nonrelativistic setting. We.then co_nS|der the
the scattering of charged particles by these strings is just 4B scattering from a more basic standpoint, starting from a
manifestation of the non-Abelian AB effect. re!at|V|st|c quantum f|§lq theory, and th.en taklng the appro-
The study of the AB effect was started through the exacpr'ate nonrelativistic limit of the scattering amplitudes. One

. : . . of the advantages of such procedure is in the fact that it
calculation of the scattering amplitude of scalar particles by aéutomatically incorporates quantum radiative corrections as
thin magnetic flux tube at the origifL1]. As is nowadays

Il Kk i that situati h bative B . the vacuum polarization and induced magnetic moment. To
well known, in that situation the perturbative Born approxi-iaye the nonrelativistic limit most easily, we use an interme-

mation fails to reproduce the expansion of the exact _resqlaiate auxiliary cutoff separating the low and high loop mo-
[12] and, moreover, the second term of the Born series ignenta in the Feynman integrals. As it happened in our pre-
divergent. This discrepancy is due to the fact that the perturgioys studies, it is also convenient to work in the Coulomb
bative wave function does not SatiSfy the same bOUndarbauge' since in this gauge the Chern-Simons propagator de-
condition as the exact one. Actually, in a perturbative treatpends only on the spatial part of the loop momentum
ment for a nonrelativistic field theory describing spinlessyariable.
Abelian particles scattered through a Chern-Simons field, it
was shown that to eliminate the divergences, to recuperate
the scale invariance, and to reproduce the result of the ex-
pansion of the exact solution, it is necessary to add a contact We consider the non-Abelian Pauli-Sctilmger model
term (¢* ¢)? [13]. for fermions minimally coupled to a non-Abelian Chern-
Recently, the perturbative treatment was applied to relaSimons field specified by the Lagrangian
tivistic non-Abelian scalar particldd4] minimally coupled
to a non-Abelian CS field. By considering the low momen- 29
tum limit, it was shown that, up to leading order, the same £= _@)Samtr( Andphyt gAaABAx)
results are obtained through the calculation of a non-Abelian
nonrelativistic field theornf15]. In the next-to-leading ap-
proximation, new corrections appear which are absent in the
direct nonrelativistic approach. These corrections also differ
from the ones obtained in the Abelian thegiyg]. —C*3(8pV 2+ geanA% V), 1)
By analyzing the Abelian AB effect, it has been verified
that new features appear if spin is introdu¢@d@—20. For  wherey is a one-component anticommuting field, belonging

II. NONRELATIVISTIC THEORY

(V—gA) 1

+ l[lT i(?t‘f'T‘Hng—i%B}l//— gtr(V-A)z
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FIG. 1. Feynman rules—nonrelativistic theory.

to the fundamental representation of the (3Ugroup, and
A#:AZTa, with T2 being the generator of the Lie Algebra Fig. 1 and the corresponding analytical expressions are
of SU(2) satisfying

a0 " — a
[Ta. Tol=eancT", 2) Fon(PoP)= 70T ©
and normalized such that ai
s 1 Fnhq(p,p’)———(Ta)nm(p +p'h, 9
TaTb:—Tabl +56%T. 3)
g2
bij e i ij
The term containing the “magnetic” fiel®, is the Pauli Lo (p.p') = =i S (TATP+ TOT) g, (10)
term andc is the ghost field needed to guarantee unitarity.
For convenience, we will work in a strict Coulomb gauge
obtained by lettingt— 0. a,B e 9 ra
We will use a graphical notation where the CS field, the Fam(P.P") 2m(T Jm: (1)
matter field, and the ghost field propagators are represented
by_wavy, continuous, and dashed lines respectively. The ana- Tabeurh(p n')=ig@gabCerm\, (12)
lytic expression for theéd, free propagator is
1k Cam (p.p')=—ge*PD" Sym. (13)
D*(K)og=D*'(K) dpa= "™ 3 Soar (4 "

The graphical representation for the vertices is given in

WhereKE(O,k). The matter field propagator is

S(P)nm=S(P) Snm=

5nma

Po— P?/2m+ie
whereas the ghost field propagator is

|
G(p)ba=G(p) 5ba:? Oba-

Since theB field occurs in Eq(1) it is convenient to have at

hand

[
AB(x)=(TB (X)A3(0)) = —

which is the only nonvanishing propagator involving e
field; graphically it will be represented by a dotted line. Ex- have momentapl_(pllzm P1),

5(3)()() 5ba,

(5

(6)

(@)

In the tree approximation and in the center-of-mass frame
the two-body scattering amplitude is given by

sing

ig® _
molTeeTal 1+i = o,

M(0)= (14

whered is the scattering angle. Here and in what follows we
employ a simplified notation where the isospin indices are
omitted. If the incoming and outgoing particles have isospin
(n,m) and (h',m’) the total amplitude for the process is
given by

Mprmram={(n", M’ |M(8)[n,m)—{(m’,n" | M(6+ )|n,m).
(15

The one-loop contribution to AB scattering is depicted in
Fig. 2. The incoming and outgoing fermions are assumed to

p2=(p§/2m,p2) and ps

pression(7) shows that the Pauli term, i.e., the interaction = (p3/2m P3), Pa= (p4/2m ps), respectively. We work in

By, plays the same role as the quartic terqﬁﬁ'(z.’))2 in the

scalar case.

the center-of-mass frame whem@=—p,=p, P3=—Ps

=p’, and|p|=|p’|. For the first graph, Fig.(@), we get
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FIG. 2. One-loop scattering—nonrelativistic theory.

d3k da
Ma(ﬁ):f (277)3[F ““(P1+P2—K,pa)

XS(p1t P2~ KT (p2,p1+ P2~ KD (k—py)
X D% (k—pa)TPA(k, p3) S(K)T@(py,k)].  (16)

After performing thek, integration, this gives
4ig*

-y [TPTA®T,T,]

Ma( 0)=—

Xf d?k 1 (P1/\K) (p3/\K)
(2m)2 p?—k2+ie| (k—pp)Ak—ps)?]

7

As a general rule, whenever dealing with divergent spatial

integrals we will introduce a nonrelativistic cutoff \g.

PHYSICAL REVIEW D 62 045019

2

A
R +i77].

Mp(0)= —'\;
(20

ig* [TPTART,T,]5 |
® 0
47mO? bla g
Similarly, graph 2c) corresponds to

d3k )
My(6)= 2f 2 Te4IDE(K)DE(k+)Torae,

(21
The k° integration is straightforward and gives
M 0)= 9* [(TATP+ TPT3) @ Ty T,]
¢ 2me? ba
d%k k- (k+
j Kkt 22
(2m)2 k*(k+q)?

Effectuating the remaining integral produces
ig?
MO

M(6)= . [TOT2@ T, T+ 26%20T @ TyT,]

2

2
X

lo
I A2

] . (23

The last diagram, graph(@ gives

3

Md(a)zzf [Fbv"(pz’p4)Di‘2(q)l“aC'd',upng—;d

(2m)*

X (k= pa)T*(k,p3) S(K)T*4(p, k) D
X (k=p1)] (24)

However, in Eq.(17) such regulator is not necessary as theso that, after thé® integration,

integral is ultraviolet finite. The final result is

4 2

ig
mO?2

2

whereq=p;—p; is the momentum transferred.

M(6)=— . [TbTa®TbTa]| log

(18

The same procedure can be used to calculate the oth
graphs in Fig. 2. Here the spatial integrals are logarithmically _—
divergent and are done after the introduction of the afore-

mentioned cutoff. Graph(B) gives

4

g

o [TPTA®T,T,]

My(0)=—

3
XJ o S(p1+p2—k) S(k), (19
(2m)®

from which we obtain

i 4
My(6)= mi(az[s“bnmﬂa]

Xf d*k [a/\k—p:/\p3l(a/\k)

(25
(2m)? g*(k—py)?(k—p3)?

Ieerading to

2
J @2[scach®TbTa]| 1- Iog[AqTH .

My(0)=
8mm NR
(26)
Thus, the sum of the one-loop contribution is
4
Moo 0) = eSPT @ T, T
1Ioop( ) 87Tm®2[ c b a]
_ 9 ey @7
87mO? &
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It happens that the nonvanishing result in the last equatiofoop correction to the self-energy, vacuum polarization and
is only due to the regularization used. Really, as the originavertex corrections. The nonvanishing self-energy graph de-
expression was logarithmically divergent, different regular-picted in Fig. 4 is given by22]
ization schemes will produce results that for the finite part
will differ at most by a constant. This remark holds even for d3k
the sum of the Feynman integrals which is only conditionally 2(p)=- f (2m)3
convergent and leads to different results depending on the
way it is treated. In particular, had we used the dimensional X(p,p+ k)DjZ(k)]
regularization, as it was done in Rg13] for the scalar case,

[T*#(p+k,p)S(p+ k)T

Eq. (27) would be zero. Our constant term in that result may ig? o d®k [y*(p+k+m)y”] sﬁmk"
be eliminated through a redefinition of the cutaffk in Eq. - E[T Ta]f (2m3 [(p+k)2—m+ie] k2
(26) or by adding a counterterm of the forn¥{T2)? to the 7 P

original Lagrangian. In the relativistic theory the divergences (33

are milder, the graphs are individually finite and no such

counterterms are needed so that the inverse of the complete fermion propagator is

written asS~(p)=p—m-+iZ. Notice that the self-energy

Il RELATIVISTIC THEORY is diagonal in isospin space. After doing tkg integration

we obtain
We will now consider the non-Abelian scattering within . 5 1
the full relativistic context. The Lagrangian describing the S(p)=— '9 [TaT ]ondkz—
model is 87O Jo Wi
N 29 7y m 2_ 2 2_ 2
L=—0g"PMr A AL+ ?AaABA)\ +iv(D—m)w X4y Pll-e(k®=p9)]+[1+e(k™=pI)]¢,
p
1 34
—Etr(V-A)Z— *A(V2+ge pAS- V). (28 (34

wheree(x) is the signal functionw,= Vk?+m?, and a cut-

whereD ,=d,+gA, andV¥ is a two-component Dirac field ©ff Ao was introduced to take care of the ultraviolet diver-
12 w

belonging to the fundamental representation of thg2puU 9€nce of the integral. The integral is easily done and gives
gauge groupW¥ represents particles and antiparticles with

iq2
the same spin and we taketo be positive. Our graphical e | DLV e s
notation is specified in Fig 3. The corresponding analyticalz(p) 277@)[ all pp2( pmm 0 P
expressions for the gauge and ghost field propagators are the (35)
same as in the previous section. The matter field propagator
and the vertices, however, are now given by and so, forAg—,
2 2
i(p+m) _ 9 rqap M YPTR
S(P)am=S(P) dnm="—5——5— %nm> (29) 2p)=- 5 g Tl W,+m m+Ao|. (36
pcf—m°+ie
A The linear ultraviolet divergence may be eliminated through
Lom(p,p") = —9(Tam(¥*), (30 the imposition of an adequate renormalization condition.
be _ ) N Due to our use of the Coulomb gauge, a convenient condi-
[ebes(p,p’)=ig@e? %™, (31)  tion is the one adopted in the wofR3]; denoting the renor-
Thm'(p,p")=—g&D" Sy (32 k
The model is renormalizable. Actually, without the matter ;I\M/\/Iz
field it was found that there are no radiative corrections to - - -
the Green functionf21]. We can therefore restrict our study p p+k p
of one-loop renormalization to superficially divergent graphs
arising from the coupling to the matter field, i.e., the one- FIG. 4. Matter field self-energy.
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@)= a - . @

= X ~ —,
p p 24 o [m2—g2x(1—x)]¥2 |m|
where the expressions on the right of these equations are the
leading approximations for low momentg From these re-
sults, we see that for low momentum a Yang-Mills term may
be induced, as one would expect on general grounds.

FIG. 5. Vacuum polarization. The one-loop corrections to the CS matter field vertex are
given by the graphs in Figs.(® and @b). The on-shell
malized propagator bySz, this condition readsSg(po,p analytic expression associated to graja)
=0)=9S(pg,p=0). Proceeding in this way, we get for the — u(p")T2#u(p)
renormalized propagator P P
bTa
+m)+a(m—wy)[1+(m/ . [TTTb]J
Su(p )_I(IlS )+ a( ( )[) ( p)yp], 37) G} (27)3
p2— _
xspgxk*um’)[w”(lb’—k+ m) y*(p—Kk+m)y”Ju(p)
wherea=—g?[T3T,]/(270). [(p—K)2Z—m?+iel[(p' —kK)2Z—mP+iel[—k?]
Let us now turn our attention to the vacuum polarization
correction. The only graph that contributes is the one drawn (41)

in Fig. 5. As this graph is gauge independent, the would b

linear divergence may be eliminated if one employs a gaug&'ere on in, what follows the isospin indices, ) will be

invariant regularization scheme. Use of dimensional regular®Mitt€d. Up to the group factar>T=T,, this agrees with the

ization gives vertex for the Abelian theory discussed [ib8]. Using di-

mensional regularization, the result can be read from that
ig? reference but for general momenta it is not particularly illu-

,w(q)_' tr[-l—a-l—b] minating. Nevertheless, for small momente., for |p|

~|p’|<m) a great simplification occurs and one findsg (

=|p|/m)

u(p)T2%(p)=0(7?), (42)

(39 3

u(pTg'u(p) = 75
with

+0(7?), (43

251 _ 2 A
Hl(qz)zfldx 20x1-x) 4 (39) WhereP'=p'+p’ andg=p’'—p'
o [mP—g2x(1-x)]¥2 3m|’ Similarly, the graph @) which corresponds to

nv q#q MVN
x| | gtr—= 7 I1,(g%) +ime“ g\ I15(g?) |,

1
[TbTaTb]ﬁ[P'—is”qj]

d e

FIG. 6. Vertices correction.
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FIG. 7. Fermion-fermion scattering—relativistic theory. Similar graphs in which self-energies or vertex parts are inserted in the bottom
lines have not been drawn, for convenience.

d*k u(p")[ Y (k+m)yPlu(p)e”?s (P~ K) & e p’ —K)*

TN\ Tk =
u(p")Tg*“u(p) (2m)° [K2—m?+ie](p—k)*(p’ —k)?

[sa“rch] J (44)

gives for small momenta the result Summarizing, up to one-loop one needs just a mass renor-
malization counterterm to fix the fermion mass. There are
neither vertex nor wave function renormalizations.

N l-\a,O =0 2 45
u(pHTs u(p) =07 49 Although not 1PI, we have drawn in Fig. 6, graphsl)6

and

3

and Ge) which are needed to compute the anomalous mag-
netic moment of the fermions. At low momenta these graphs
give the contributions

U ’ Fa'iu — abc—r T _ —
(p") b (p) 877m®[8 c b] UFS’OUZUFZ'OUZO(WZ), (48)
2 - - - .
X[P‘+ia”qj 1+|og(4£2> } ulgu=ul'g'u+ulg'u
q 3
__ 9 b 71! L[ pigi g
(46) = 47T®[(T To)T ][Zm[P +ig'q]. (49
The renormalized vertex part is defined B§*=2z,I®#

In the Abelian situation the contribution in E¢46) is
absent and, in the expressions corresponding to @gsand
(49 the P' dependent part is exactly canceled. Here, due to
the group factors, to get cancellation it is necessary to take
into account the new contribution arising from E46). This
can be easily verified using the identify T2T,=T3(T"T})
+¢&3P°T T,. The remaining local parts occurring R*,
we getZ,=1, so that up to one-loop there is no coupling Will contribute to the(matrix) magnetic moment and we get
constant renormalization. This result is also in accord with
the computation of the correction to the trilinear Chern-
Simons (C9S) vertex shown in Fig. &); simple symmetry
considerations shown that the result is finite and no counter-
term is necessary. Actually, graplch plus the graphs with  This expression only differs from the corresponding result in
four external gauge lines, and the polarization tensor give athe Abelian case by the group factor. In the “Abelian limit”
induced Yang-Mills term(and also a finite correction for the (g=e\2 andT=i//2) the result of18] is recovered.
Chern-Simons terjn as commented before. However, up to  To complete our discussion of the one-loop properties of
one-loop, graph @) does not contribute to the scattering andthe model, one still has to calculate the fermion-fermion
for that reason it will not be considered any longer. scattering. Figure 7 shows the contributing graphs. The only

wherel' = —gT?y*+ A2 is the unrenormalized one. Fix-
ing the vertex renormalization constaty by the condition
that forp=p’=0 andp®°=p’°=m,

ul'3u=—gTag%, (47)

i 3

Ml loop 47mO [Ta(TbTb)] (50

045019-6
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tree level graph, depicted in Fig(&f, furnishes

MA0)=[u(py)T*(pz,pa)u(p2) 1D53(q)

X[u(px)T*#(py,pa)u(py)]. (51)
To the leading order gp/m, this gives
'92 sing
M 0)= al 1+lm . (52

which exactly agrees with that obtained previously for the

nonrelativistic theory.

The one-loop graphs are represented in Figb)-77(h).
To facilitate our computation we will use an intermediate
cutoff A, satisfying|p|<A<m, which separates the loop
integrals in two regions. In théow (L) region (0<|k|2
<A?) the integrand is expanded in power ofnl/and in
high (H) region (k|?>=A?) we make a Taylor series of the
integrand aroundp|~0. We will retain terms up to order
n=|p|/m=(A/m)?~(|p|/A)?.

Using that

u(p)u(p)

+v(—p)v_(—p)
p°—wy+tie

p°+Wp—ie

S(p)=i , (53

we may decompose the amplitude for the graph in Fif) 7

d3k
M= [ oo
X (p2,0U(P)IDEA(1")

X [u(pa) T4 (r,p3)S(r) TP *(py,1)u(p,) 1DYG(1)
(54)
where | = (k% k—py), I'=(k% k—p3), r=(w,+k°k) and

[U(pa)Te4(t,pa) S(t)T A

t=(w,+k%—k), into a sum of terms
MUY AP (55)
where M ;" and M}’ designate the contributions of the

andv fermion wave functions to the two internal lines of the
graph. The mixed contributions in which one hasn one
line andv in the other vanish. After integrating ik® we
obtain

T(k,p) T* (K, p3)

d?k
MU= [TaTb®T Tb]f [ Ty }
(56)
and
w 19% d?k [H(ps,k)H* (p,k)
b’ =—[T TP T Tb]f [ Wt w, }
(57)
where
T(k,p)=[u(k)y"u(p)1D,z(k—p)[u(—k) y"u(—p)],
(58)

PHYSICAL REVIEW D 62 045019
H(p,k)=[u(p)y*v(—k)ID,z(k—p)[u(—p) y”v(k)](.59

Introducing the intermediate cutoff to separate tbe
andhigh parts we get

ig* A?
heu 0= 7~ S[TATP@ T, Tyl log| — 7 +0(n) ¢,
(60)
u ig4 aTb
bhigh(g):4wm®2[-r TP @T,Ty]
2m?
| Iog( +O( 7;)] (61
VU |94 aTb
o )= TS T TP T T O], (62)
) _ |g4 aTbh
()= 73 TTP0TaTy{log(2)+ O}
(63)

Putting these results together we arrive at

4

g
My(0)=
o 0) 47mO

b 4m?
[T TP T,Tyl{ logl —-| | (64)
q

as the leading contribution.

For the crisscross graph, Fig(c), we proceed analo-
gously and obtairfin this case what survives are the mixed
uv andvu contributions

P4
19

(6)=— ——

27mmeO

{of3eon]

4

[TPTe®T,T,]

(65

ig
2mmeO

1 A2
1+ —Iog

M(0)= g*
¢ 27rmO?

1 2
[ 1+ —Iog( i

The graph ) does not exist in the Abelian theory but it
is here essential to cancel the extra contribution coming
through group factors in other graphs. It corresponds to

M

()= [T T2 T,T,]

Chigh

+0(n) (. (66)

i.e.,

[TPT2T,T,]

+0(n) . (67)
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d*k and
Md=f SHU(P)T**u(py) 1D ()13 ¢ e
(277) M ( ) |g4 [ . ] ( 3)
: ' h0)=———=[T®T,]. 7
XDg‘l(k—pg)D%(;(k—pl) 247m@?2
X[u(ps) %« S(k) TAu(p,) ]}, (69) Summing all these contributions and using the relat®)n

to simplify the result, we get the total one-loop amplitude
and hadow andhigh momentum parts given by
4
19
ig4 Ml—loop( 0)= 477—

(659 o T.T.] m®2%ﬂ®u+%ﬂﬂ®Td} (74)
€ a dle

o g rme?

09

Az) A2 IV. CONCLUSIONS

o2

1—cosé q

2m? In this work we studied the scattering of isosgirfermi-
onic particles interacting through a non-Abelian Chern-

] Simons field. In the nonrelativistic formulation we found

_ 0
XI1+I—+ |

2

p
—(1+2cosh) A2 (69 that, up to a finite constant term, there is no one-loop correc-

tion to the tree approximation to the scattering amplitude.

This is similar to what happens in the scalar theory where the

constant one-loop contribution may be eliminated by a finite

ig* quartic counterternpl4.

(62T, @ TqT] We have also considered the same problem starting from
the fully relativistic theory. After discussing the one-loop

2 2] renormalizability of the model and determining anomalous

and

dhig’“:87rm®2
A2

X4{ —logl —

{ g(4m2

respectively. Summing Eq$69) and (70) we get

+—+(1+2 Cosg)p_ contributions to the matrix magnetic moment of the fermi-
2m? A? ons, we considered the low momenta limit of the two-body
(70) scattering amplitude obtaining a nonvanishing one-loop con-
tribution. This result, shown in Eq74), is a correction to the
scattering which does not appear in the nonrelativistic
theory. It is a leading order contribution and implies that the

ig? ac effective low momentum Lagrangian contains a four-fermion
Md:swmz[g Ta®TaTcl self-interaction with a coupling which can be read from Eq.
(74). These terms cannot be eliminated by adding counter-
[ sing <4m2) ] terms to the original Lagrangiai28) without destroying the
X{1+i———+log| — (71)  renormalizability of the relativistic model. Furthermore, as
1-cosé 9’ also happens in the Abelian case, these new terms come from

the high part of the original theory and could not be sus-

Finally, incorporating the radiative correction, Fig¢e)7- pected in a direct nonrelativistic approach.

7(h), we obtain
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