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Classicality of the order parameter during a phase transition
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We analyze the quantum to classical transition of the order parameter in second order phase transitions. We
consider several toy models in nonrelativistic quantum mechanics. We study the dynamical evolution of a
wave packet initially peaked around a local maximum of the potential using variational approximations and
also exact numerical results. The influence of the environment on the evolution of the density matrix and the
Wigner function is analyzed in great detail. We also discuss the relevance of our results to the analysis of phase
transitions in field theory. In particular, we argue that previous results about the classicality of the order
parameter inO(N) models may be a consequence of the largeN approximation.
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I. INTRODUCTION

The emergence of classical behavior from a quantum
tem is a problem of interest in many branches of physics@1#.
As is well known, the quantum to classical transition i
volves two necessary and related conditions: correlatio
i.e., the Wigner function of a quantum system should hav
peak at the classical trajectories and decoherence, tha
there should be no interference between classical trajecto
To study quantitatively the emergence of classicality, it
essential to consider the interaction of the system with
environment, since both the loss of quantum coherence
the onset of classical correlations depend strongly on
interaction @2#. Using this point of view, classicality is a
emergent property of an open quantum system. The stre
of the coupling between the system and environment sets
decoherence time which, roughly speaking, indicates
time scale after which the system can be considered as
sical.

Our concern in this paper will be the analysis of the qu
tum to classical transition of the order parameter during s
ond order phase transitions, in which the effective poten
has a local maximum. In condensed matter physics, there
several systems in which the dynamics of phase transit
can be studied experimentally~superfluids, for example! @3#.
In the standard big-bang cosmological model, phase tra
tions occur at the grand unified theory~GUT! and elec-
troweak ~EW! scales. During these phase transitions to
logical defects are inevitable, and they may have playe
fundamental role in the formation of large scale struct
~strings! @3#. Moreover, superabundance of some topologi
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defects may contradict observational evidence~magnetic
monopoles!. In order to solve this and related problems it
widely accepted that, before the radiation dominated era,
Universe expanded exponentially~inflationary period!. This
exponential expansion takes place during a second o
phase transition.

In all the abovementioned examples there is an order
rameter which evolves from the false to the true vacuum
the theory: the Higgs fields in GUT and EW phase tran
tions, the inflaton field~s! in inflationary models, etc. Al-
though these are quantum scalar fields with vanishing m
value~due to the symmetry of the initial quantum state!, the
order parameter is usually treated as a classical object.
classical behavior is fundamental to define and count
topological defects@4#, and to justify the fact that some
gauge and fermion fields aquire masses.

In the present work, we will analyze the classicality of t
order parameter during a second order phase transition
course, in a realistic model one should address this prob
in the context of quantum field theory. In fact, a possib
approach would be to follow the analysis started by two of
in Ref. @5#, where we studied the emergence of classi
inhomogeneities from quantum fluctuations for a se
interacting quantum scalar field. We have investigated th
the decoherence induced on the long-wavelength field mo
by coarse graining the field modes with wavelength sho
than a critical value, in order to show how the system b
comes classical due to the interaction with its environm
~in that case composed by the short-wavelength field mo
of the same field!. The classicality of the order paramet
could be analyzed along the same lines by considerin
model with spontaneous symmetry breaking.

This is an extremely difficult problem because, as h
been pointed out in the literature, and as we will stress
what follows, non perturbative and non Gaussian effects
relevant in the quantum to classical transition of the or
©2000 The American Physical Society16-1
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LOMBARDO, MAZZITELLI, AND MONTEOLIVA PHYSICAL REVIEW D 62 045016
parameter. In field theory, it is very difficult to go beyon
perturbative or mean field methods~Hartree, 1/N, etc.!. For
this reason, in the present paper we will be mainly concer
with toy models: closed and open systems@6# in nonrelativ-
istic quantum mechanics. We will study the spread of a w
packet initially centered around the local maximum of
double well potential, paying particular attention to the infl
ence of the environment on the Wigner function and on
reduced density matrix. We will also discuss the relevanc
our results to the analysis of the field theory phase tra
tions.

The paper is organized as follows. In the next section
review the approach of Guth and Pi to describe the ini
stages of the quantum dynamics of the phase transition u
an inverted harmonic oscillator. We consider the ups
down harmonic oscillator with and without environment,
order to emphazise the relevance of the environment in
quantum to classical transition. In Sec. III we study the e
lution of a wave packet initially centered on the top of
double well potential. We describe a Gaussian variatio
calculation and an improved version of it. We find that,
the Gaussian approximation, the Wigner function is posit
for all times but it does not describe classical correlatio
unless the system is coupled to an environment. The Ga
ian approach breaks down as the wave packet spreads
and explores the minimum of the potential. The improv
variational approximation describes the dynamics of the s
tem beyond that point. However, as the wave function is
Gaussian, the Wigner function is no longer positive. In S
IV we describe the exact numerical evaluation of the evo
tion of the wave packet. We show that, as the coupling
tween the system and the environment increases, the d
herence time decreases. Due to the nonlinearities of
potential, when the coupling vanishes there is no class
limit, not even classical correlations. In Sec. V we analy
previous works on the quantum to classical transition in fi
theory in the light of the results for the toy models.

II. THE INVERTED HARMONIC OSCILLATOR:
ROLE OF THE ENVIRONMENT

In a cosmological scenario, at very high temperatures
effective potential for a scalar fieldf has a minimum atf
50. As the temperature decreases this minimum beco
unstable, and the stable minima move to a nonvanish
value of the field. During the phase transition, the syst
evolves to its true vacuum.

A sudden quench phase transition can be described
field theory in which there is an instantaneous change of s
in the mass term of the scalar field

S@f#5E d4xF1

2
]mf]mf2

1

2
m~ t !2f22

1

4!
lf4G , ~1!

where m2(t)5m2.0 for t,t0 and m2(t)52m2 for t.t0
~we will take t050 for simplicity!. This change of sign in
m2(t) breaks the global symmetry fort.0.
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Guth and Pi@7# considered an upside down harmonic o
cillator as a toy model to describe the quantum behavior
this unstable system

S@x#5E
0

t

ds
1

2
M ~ ẋ21V0

2x2!. ~2!

This toy model should be a good approximation for the ea
time evolution of the phase transition, as long as one
neglect the non-linearities of the potential.

If the initial wave function is Gaussian, it will remain
Gaussian for all times~with time-dependent parameters th
set its amplitude and spread!. The density matrix will be of
the form

r~x,x8,t !5N~ t !e2A(t)x22B(t)x82
, ~3!

whereN(t) is a time-dependent real normalization functio
A(t) and B(t) are time-dependent complex coefficien
which satisfyA5a1 ib5B* . Using new variablesS5(x
1x8)/2 andD5(x2x8)/2, the density matrix can be rewrit
ten as

r~ t,S,D!5N~ t !e22aD2
e22aS2

e24ibSD. ~4!

For such a density matrix, the asociated Wigner function
also Gaussian and can be exactly evaluated as~here and what
follows we set\[1)

W~x,p,t !5
1

2pE2`

1`

dyeipyrS x1
y

2
,x2

y

2D
5

1

p
e22ax2

e2(p22xb)2/2a. ~5!

The coefficient 2a gives the spread of the Wigner distr
bution around the classical trajectory, and, at the same ti
(2a)21 measures the importance of the nondiagonal term
the density matrix. As is well known, there is a comprom
between the spread of the Wigner function and the diago
ization of the density matrix: as one becomes peaked
other becomes nondiagonal@8#.

In Fig. 1, we show the time dependence of 2a obtained

FIG. 1. Function 2a which gives the width of the Wigner func
tion for the upside down harmonic potential.
6-2
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CLASSICALITY OF THE ORDER PARAMETER DURING . . . PHYSICAL REVIEW D62 045016
from the Schro¨dinger equation. It is an exponentially de
creasing function. Therefore, although the density matrix
nondiagonal, the Wigner distribution becomes peak
around the classical trajectory for long times. The unsta
quantum evolution shows classical behavior, in the sense
one can obtain a classical probability distribution for the u
stable particle@7#. Strictly speaking, we do not have classic
limit but ‘‘classical correlations,’’ because the density mat
is not diagonal. As has been recently pointed out by Kie
et al. @10#, this may be enough for the quantum to classi
transition of free field fluctuations in a cosmological settin
However, as we will see in the next sections, this is not t
for the double well potential.

The classical limit exhibited by the quantum particle
the upside down potential requires the coefficient 2a to reach
its minimum value. This limit is obviously reached at larg
times, when the particle is far away from the potential to
The ‘‘correlation time’’ depends on the parameters of t
potential. As we will now see, the presence of an envir
ment changes drastically this situation.

Let us consider the unstable quantum particle~character-
ized by its massM and its bare frequencyV0) linearly
coupled to an environment composed by an infinite se
harmonic oscillators~of massmn and frequencyvn). We
may write the total action corresponding to the syste
environment model as

S@x,qn#5S@x#1S@qn#1Sint@x,qn#

5E
0

t

dsF1

2
M ~ ẋ21V0

2x2!1(
n

1

2
mn~ q̇n

22vn
2qn

2!G
2(

n
Cnxqn , ~6!

wherex and qn are the coordinates of the particle and t
oscillators, respectively. The unstable particle is coupled
early to each oscillator with strengthCn .

The relevant objects to analyze the quantum to class
transition in this model are the reduced density matrix, a
the associated Wigner function

r r~x,x8,t !5E dqn r~x,qn ,x8,qn ,t !,

Wr~x,p,t !5
1

2pE2`

1`

dy eipy r rS x1
y

2
,x2

y

2
,t D . ~7!

The reduced density matrix satisfies a master equation.
Paz-Zhang@6# have evaluated the master equation for
quantum Brownian motion problem. Following the sam
procedure, we can write the master equation for the unst
particle @9#. As the coupling between system and enviro
ment is lineal, the result is exact, and can be easily obta
it replacingV0 by iV0 in the Hu-Paz-Zhang result

ṙ r52 i FHsyst2
1

2
MṼ2~ t !,r rG12ig~ t !@x,$p,r r%#

2D~ t !@x,@x,r r##2 f ~ t !@x,@p,r r##. ~8!
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The time-dependent coefficients are given by

Ṽ2~ t !52
2

ME
0

t

dt8cosh~V0t8!h~ t8!,

g~ t !52
1

2MV0
E

0

t

dt8 sinh~V0t8!h~ t8!,

~9!

D~ t !5E
0

t

dt8 cosh~V0t8!n~ t8!,

f ~ t !52
1

MV0
E

0

t

dt8 sinh~V0t8!h~ t8!,

Ṽ(t) renormalizes the natural frequency of the particle,g(t)
is the dissipation coefficient, andD(t) and f (t) are the dif-
fusion coefficients, which produce the decoherence effe
h(t) andn(t) are the dissipation and noise kernels, resp
tively,

h~ t !5E
0

`

dvI ~v!sinvt,

n~ t !5E
0

`

dvI ~v!coth
bv

2
cosvt,

and I (v) is the spectral density of the environment. In t
high-temperature limit of an ohmic environment@where
I (v)}v] the coefficients in Eq.~9! become constants. In
particular, the diffusion coefficient can be approximated
D.2g0kBTM, whereg0 is the dissipation coefficient@6#. In
this limit, while g0 is a constant andD}T, the dissipation
coefficient isf }T21. Therefore the term proportional toD is
the relevant term in the master equation.

Alternatively, one can write an equation of the Fokke
Planck type for the reduced Wigner function@6#. It is given
by

Ẇr~x,p,t !52H Hsyst2
1

2
MṼ2~ t !,Wr J

PB

12g~ t !]p~pWr !

1D~ t !]pp
2 Wr2 f ~ t !]px

2 Wr , ~10!

where the first term on the right-hand side is a Poiss
bracket.

Let us solve Eqs.~8! and ~10! using again a Gaussia
ansatz for the reduced density matrix. The adequate ge
alization of Eq.~3! is

r r~x,x8,t !5N~ t !e2A(t)x22B(t)x822C(t)xx8, ~11!

whereC(t) is a real function. The master equation, in t
high-temperature limit, becomes
6-3
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LOMBARDO, MAZZITELLI, AND MONTEOLIVA PHYSICAL REVIEW D 62 045016
ȧ54ab22g0a12g0T̃1g0C,

ḃ522a212b222g0b1
1

2
C22

1

2
Ṽ2,

~12!
Ċ54g0a14Cb22g0C24g0T̃,

Ṅ52Nb,

where we are denotingT̃5kBT, and we have setM51.
Using again the variablesS and D the reduced density

matrix reads

r r~S,D,t !5N~ t !e2(2a2C)D2
e2(2a1C)S2

e24ibSD, ~13!

while the reduced Wigner function is exactly evaluated a

Wr~x,p,t !5
1

p
A2a1C

2a2C
e2(2a1C)x2

e2(p22xb)2/(2a2C).

~14!

From the last two equations we see that the relevant func
to describe correlations and decoherence is now 2a2C. For
2a2C5O(1) we have both correlations and decoheren
The set of Eqs.~12! can be easily solved numerically. In Fig
2 we show the behavior of 2a2C as a function of time. We
see that it tends asymptotically to a constant of order one~of
course the asymptotic value depends on the properties o
environment!.

The main conclusion of this section is the following.
order to study a sudden quench phase transition, at e
times we can use the upside down potential. When the
tem is isolated, due to the high squeezing of the initial wa
packetx and p become classically correlated. The dens
matrix is not diagonal. The ‘‘correlation time’’ depends o
the shape of the potential. When the particle is coupled to
environment, a true quantum to classical transition ta
place. The Wigner function becomes peaked around a c
sical trajectory and the density matrix diagonalizes. The
coherence time depend on the diffusion coefficientD.

FIG. 2. Width of the Wigner function when an environment
taken into account. We considered an underdamped case witg0

50.001 andT̃5500.
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III. INCLUDING SELF-INTERACTION:
VARIATIONAL APPROXIMATIONS

Let us now consider a more realistic model by adding
lx4 term to the Lagrangian of the unstable quantum partic
Of course the problem no longer admits an exact, analyt
solution. Before presenting the numerical solution~Sec. IV!,
we would like to discuss some analytical approximatio
based on the time-dependent variational method develo
by Jackiw and Kerman@11#. This will be useful to under-
stand the validity of similar approximations in field theory

The variational method is based on the definition of
‘‘effective action’’

G5E dtK cU i ]

]t
2ĤUc L . ~15!

WhenG is stationary against variations of the stateuc& ~with
^cuc&51), the state satisfies the Schro¨dinger equation. Ap-
proximated solutions are obtained by minimizing the effe
tive action within a family of trial wave functions.

Following the work of Jackiw and Kerman, Cooperet al.
@12# studied the dynamics of a quantum particle in a dou
well potential in the so-called Gaussian approximation.
this approximation, the problem is equivalent to the inver
oscillator with a self-consistent frequencyVsc

2 5V0
2

23l^x2&. In order to analyze a system coupled to an en
ronment, one should generalize the variational principle
the density matrix. Although such an extension does e
~see Ref.@13#!, we follow here an equivalent and simple
method: we replace the renormalized frequency by the s
consistent oneVsc

2 5Ṽ223l^x2& in the master equation
Thus, assuming that the density matrix has the same f
given in Eq.~11!, the evolution equations for the real func
tions a(t), b(t), andC(t) can be easily obtained from Eq
~12!. The variational equations then read

ȧ54ab22g0a12g0T̃1g0C,

ḃ522a212b222g0b1
1

2
C22

1

2
Ṽ21

3

4

l

~2a1C!
,

~16!

Ċ54g0a14Cb22g0C24g0T̃,

Ṅ52Nb.

As before, we are interested in the time dependence of
function 2a2C. We have solved numerically Eqs.~16! for
different values of the parameters. In Fig. 3 we show
time dependence of 2a2C without environment (g050,
which impliesC50). As a result there is an oscillating func
tion, the width of the Wigner function and the nondiagon
part of the density matrix do oscillate. The self-interacti
part of the potential forbids the squeezing of the initial sta
Therefore, there are no correlations nor decoherence. W
the coupling to the environment is turned on, 2a2C tends to
a constant of order 1. The environment produces the qu
tum to classical transition~Fig. 4!.
6-4



-
lin
th
n

nt

a
n

(

CLASSICALITY OF THE ORDER PARAMETER DURING . . . PHYSICAL REVIEW D62 045016
As has been noted by Cooperet al., the Gaussian approxi
mation gives good results up to the time where the non
earities of the potential can be neglected. To go beyond
point it is necessary to improve the approximatio
Cheetham and Copeland@14# had proposed an improveme
based on the following trial wave function:

c~x,t !5N~ t !e2 ibx2
@u0~x,t !1a2u2~x,t !#, ~17!

where

FIG. 3. Time-dependent width of the Wigner function for
self-interacting (lx4) potential, using the Gaussian approximatio
ia
e
an

y

04501
-
is
.

u0~x,t !5F2a

p G1/4

e2ax2

~18!

u2~x,t !5F a

32pG1/4

e2ax2
@8a2x222#,

wherea andb are real time-dependent coefficients;a2(t) is a
complex function. The variational equations read

.

FIG. 4. Same as Fig. 3 but including an underdampedg0

50.001) environment withT̃550.
ȧ54ab1lA2
sinu

16aR
,

ḃ522a212b2211
7l

8a
1

lA2 cosu

16aR
,

~19!

Ṙ5l sinuS cosu1R2cosu12RA212R3A2

16a2R D ,

u̇524a2
l~4R3A2cosu12R3 cos2u22 cos2u1126RA2 cosu211R2!

32a2R2 ,
o
ia-
we
c-
where we have writtena2(t)5Reiu.
In Eq. ~17! the zeroth order corresponds to the Gauss

approximation. Including only the first nontrivial term in th
expansion in Hermite polynomials, Cheetham and Copel
showed an important improvement in the results@14#. For
this ‘‘post-Gaussian’’ form of the wave funcion, we ma
write the density matrix as

r~x,x8,t !5N 2~ t !A2a

p
e22a(S21D2)e24ibSD

3F112A2a~a2x821a2* x2!22A2Rea2

1A2ua2u2S 2ax2x822x22x821
1

2aD G ~20!
n

d

which produces a complicated Wigner function

W~x,p,t !5
N 2~ t !

2p
A2a

p
e2

(p22bx)2

2a e22ax2

3@11B~ t !1D~ t !p1E~ t !p21F~ t !p41H~ t !x

1I ~ t !xp1J~ t !xp31K~ t !x21L~ t !x2p2

1M ~ t !x3p1P~ t !x4#, ~21!

where the capital letters are functions ofa2 , a2* , a, andb.
The Wigner function is clearly non positive definite. T

illustrate this fact, we have solved numerically the var
tional equations for a Gaussian initial state. In Fig. 5
show the Wigner function for a time where the wave fun
6-5
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LOMBARDO, MAZZITELLI, AND MONTEOLIVA PHYSICAL REVIEW D 62 045016
tion is no longer Gaussian. The non-Gaussian shape of
wave function produces a nonpositive Wigner function.

It is in principle possible to include the environment in t
improved version of the Gaussian approximation. Howev
we will not follow here this possibility. Instead, we will in
clude it in the exact numerical solution to the problem.

IV. INCLUDING SELF-INTERACTION:
EXACT NUMERICAL SOLUTION

In order to get a complete answer about the quantum
classical transition for a double well potential, it is necess
to solve exactly the master equation given in Eq.~8! ~adding
thelx4 term to the HamiltonianHsyst in the first term of the
right-hand side!. The Fokker-Planck equation~10! for the
reduced Wigner function has an additional term coming fr
the nonlinearities of the potential,

Ẇr~x,p,t !52H Hsyst2
1

2
MṼ2~ t !,Wr J

PB

12g~ t !]p~pWr !

1D~ t !]pp
2 Wr2 f ~ t !]px

2 Wr2
l

4
x]ppp

3 Wr . ~22!

We have solved numerically this Fokker-Planck equati
in the high-temperature limit, for different values of the d
fusion coefficientD, in order to illustrate its relevance in th
quantum to classical transition. We have chosen as in
condition a Gaussian state centered atx05p050 with mini-
mal uncertainty (sx

250.5 andsp
250.5). The Wigner func-

tion is initially positive definite, and different from zero onl
near the top of the potential. We have set the coupling c

FIG. 5. Wigner function for the post-Gaussian approximation
is evaluated at a time (t520) when the wave function is no longe
a Gaussian.
04501
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stantl50.01, the renormalized frequenciesṼ5vn51 ~we
are measuring time in units ofṼ) and the bare masses als
equal to 1.

It is illustrative to examine first the exact result when t
environment is absent~for this case we have solved numer
cally the Schro¨dinger equation!. The initially Gaussian
Wigner function begins to squeeze in thex5p direction and,
before the spinodal time (tsp;2.3) it becomes a nonpositiv
function ~Fig. 6!. During the evolution, the Wigner function
covers all the phase space~Fig. 7! and it is clear that it is not
possible to consider it as a classical probability distributio
Although we started with a special initial state~Gaussian
with minimum uncertainty!, the nonlinearities of the poten
tial make the Wigner function a nonpositive distribution.

Let us now consider a coupling with an environment su
that the normal difusion coefficient isD50.01. As expected,

t

FIG. 6. Wigner function fort52,tsp52.3, no environment is
considered.

FIG. 7. Wigner function fort54. As the function is not positive
definite, there is no correlation.
6-6
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CLASSICALITY OF THE ORDER PARAMETER DURING . . . PHYSICAL REVIEW D62 045016
the evolution of the Wigner function is similar to the prev
ous one at early times~Figs. 8 and 9!. However, as can be
seen from Figs. 10 and 11, at long times it becomes pos
definite and peaked around the classical phase space.

The effect of the environment is more dramatic for larg
values of the diffusion coefficient~see Figs. 12–15!. For D
50.1, the Wigner function is almost positive definite fort
;2tsp ~Fig. 13!. In our last example,D51, the quantum to
classical transition takes place almost instantaneously, e
before the quantum particle pass through the spinodal p
~Figs. 15 and 16!.

It is interesting to note that, as the difusion coefficie
grows, the amplitude of the Wigner function falls down. Th
is due to the fact that the decoherence increases withD. The
reduced density matrix diagonalizes. As a consequence

FIG. 8. Wigner function fort52 including an environment with
diffusion coefficientD50.01.

FIG. 9. Same Wigner function for timet54. The Wigner func-
tion is not positive definite.
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‘‘Fourier transform,’’ the reduced Wigner function, sprea
out.

Our numerical results show explicitly that the existence
the environment is crucial in the quantum to classical tran
tion. The decoherence time depends on the temperature
the coupling between system and environment through
difussion coefficientD.

Both the Schro¨dinger equation for the closed problem an
the Fokker-Planck equation~10! were numerically solved us
ing a fourth-order spectral algorithm@15#. Numerical checks
included carrying out simulations at different spatial a
temporal resolutions.

V. PHASE TRANSITIONS IN FIELD THEORY

In any field theory where the classical potential has a lo
maximum atf50, the long wavelength modes of the fie
are unstable, and grow in time. From these modes it sho

FIG. 10. Same Wigner function fort510.

FIG. 11. Same Wigner function fort515. Only for t@tsp we
have classical correlations and a positive Wigner function.
6-7
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be possible to identify the classical field that plays the role
order parameter of the transition to the minimum of the p
tential. The emergence of semiclassical coherent, large
plitude field configurations should be a consequence of t
evolution. Therefore, we need a quantum field description
the dynamics, for the early stages of phase ordering
growing of long-wavelength fluctuations, as well as for t
classicalization and decoherence of such fluctuations.

There have been different approaches to this problem
the literature. Many works assume that the field can be s
asf(x)5f0(t)1f̂(x), wheref0 is the mean value of the
field and f̂ are the quantum fluctuations@16#. This can be
only an approximation to the full problem, since by symm
try arguments it is obvious that the mean value of the fi
must vanish. One should think off0(t) as the mean value o

FIG. 12. Early time (t52) Wigner function for the caseD
50.1.

FIG. 13. Same as Figure 12, fort54.
04501
f
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m-
e
f
d

in
lit
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d

the field inside one of the domains where the phase trans
is taken place. In a more realistic approach, the field is s
as @5# f(x)5f,(x)1f.(x), wheref, and f. describe
the short and long-wavelength modes of the field. Hopefu
the effective dynamics of the long-wavelength modes sho
indicate a quantum to classical transition. A third possibil
is to address this problem by analyzing the quantum dyn
ics of the full field, assuming a vanishing mean value, a
check that some of the modes become classical varia
during the dynamical evolution.

The main technical complication comes from the fact th
as has been pointed out, the initial growth of the quant
fluctuations is so important that a nonperturbative treatm
is unavoidable@17#. For this reason, people have consider
the so called Gaussian approximation or, alternatively,
large N limit of O(N) models with spontaneous symmet
breaking. In both approximations one assumes that the w
function associated to the different modes of the quant

FIG. 14. Long time (t510) behavior of the Wigner function fo
D50.1. Here we can consider the system as classical.

FIG. 15. Early time (t51) Wigner function for a diffusion co-
efficient D51.
6-8
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field is a Gaussian function, with a self-consistent set of
rameters.

For concreteness, let us describe the work of Boyanov
et al. @18#. Consider anO(N) field theory

FW ~xW ,t !5@FW 1~xW ,t !,FW 2~xW ,t !, . . . ,FW N~xW ,t !#, ~23!

with a potential given by

V@FW #5
1

2
m2~ t !FW •FW 1

l

8N
@FW •FW #2, ~24!

wherem2(t) becomes negative fort.0. We will focus on
the case in which the initial state is symmetric, i.e.,^F&
50.

The Hamiltonian is

H5(
kW

H 1

2
PW kW•PW 2kW1

1

2
Wk

2~ t !FW kW•FW 2kWJ , ~25!

whereFW kW is the spatial Fourier transform of the field, andWk
is defined as

Wk
25m2~ t !1k21

l

2NE d3k

~2p!3 ^FW kW•FW 2kW&~ t !. ~26!

We start with a Gaussian initial state, and we assume tha
wave functional will be always Gaussian, describing a p
quantum mechanical state

C@FW ,t#5)
k

$Nk~ t !e2[Ak(t)/2]FW kW•FW 2kW%, ~27!

whereAk(t50)5Wk(t,0).
The functional Schro¨dinger equation gives the following

differential equations forNk andAk :

d

dt
ln Nk~ t !52

i

2
Ak~ t !, ~28!

FIG. 16. Same as Fig. 15 fort52. Classicality emerges befor
the spinodal time.
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i
dAk~ t !

dt
5Ak

2~ t !2Wk
2~ t !.

Introducing the notation

Ak~ t !52 i
ḟk~ t !

fk~ t !
, ~29!

the dynamical equation in the 1/N approximation becomes

f̈k~ t !1Wk
2~ t !fk~ t !50. ~30!

The expectation value ofFW k(t)
2 in the state of Eq.~27! is

given by

^FW kW•FW 2kW&~ t !5Nufk~ t !u2. ~31!

Therefore we have a self-consistent system fort.0 given by

f̈k~ t !1@k21M2~ t !#fk~ t !50,
~32!

M2~ t !52m21
l

2E d3k

~2p!3 ufk~ t !u2.

The numerical solution of these equations reveals the
lowing picture: at early times, the long-wavelength fluctu
tions ‘‘see’’ an inverted oscillator potential, and grow exp
nentially in time. This is a linear regime where the se
interaction can be neglected. At intermediate times the b
reaction of these fluctuations is as important as the class
terms in the Lagrangian. This period is highly nonlinear.
long times times the effective mass of the fluctuations v
ishes asymptotically@19#.

It can be seen from the wave functional Eq.~27! that,
asymptotically, the long-wavelength modes become cla
cally correlated. This is analogous to the situation descri
by the inverted harmonic oscillator. WhenM2;0, the mode
equations~32! can be easily solved@20#:

fk5a coskt1b
sinkt

k
. ~33!

FIG. 17. d-dimensional quantum roll.̂ r 2/d& for d520, r 0

56.4, andl510.
6-9



tio

s
er

k
e

a

l
n
n
on
al
c
s-
la

,
th

di-

p-
ial

an

te
en
id
a

-

e

LOMBARDO, MAZZITELLI, AND MONTEOLIVA PHYSICAL REVIEW D 62 045016
As a consequence, the width of the Gaussian wave func
for the modek increases linearly with time ReAk

21;t, when
kt!1. As we have seen, a Gaussian wave function ha
positive definite Wigner function associated to it. Moreov
as the width of the wave function~or the density matrix!
increases, the Wigner function becomes sharply pea
around the classical trajectory. This is indeed what happ
for k!1/t. These modes become classically correlated.

In view of the results in the previous sections of this p
per, we see that in the largeN limit, and at long times, the
dynamical evolution of theO(N) model shows ‘‘classica
correlations’’ but not a full quantum to classical transitio
As for the inverted oscillator without environment, the de
sity matrix does not become diagonal. The ‘‘correlati
time’’ depends only on the details of the classical potenti1

On the other hand, these classical correlations depend
cially on the Gaussian form of the wave function. To illu
trate this point, we consider another example from nonre
tivistic quantum mechanics, thed-dimensional quantum roll
which corresponds to the zero-space-dimensional limit of
O(d) field theory.

The model is described by the Hamiltonian@21#

H52
1

2
¹21V~r !, ~34!

where

1There is a quantitative difference with the example we presen
in Sec. II: there the width of the wave function increased expon
tially. Here, as the mode become massless, the growth of the w
is only linear in time~an inverted oscillator would correspond to
negative mass!.

FIG. 18. Wigner function for thed-dimensional example, evalu
ated at a time (t540) when the ‘‘effective mass’’ is zero.
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¹25(
i 51

N
]2

]xi
2 , r 25(

i 51

N

xi
2 ,

V~r !5
l

8d
~r 22r 0

2!2. ~35!

The Schro¨dinger equation reads

HC~xi ,t !5 i
]C~xi ,t !

]t
. ~36!

This problem can be studied in a multidimensional coor
nate system withr the radial coordinate and a set ofd21
angular coordinates, such that the Laplacian is

¹25
]2

]r 2 1
~d21!

r

]

]r
2

Ld21
2

r 2 . ~37!

HereLd21
2 is the generalized orbital angular momentum o

erator. Starting with a Gaussian, radially symmetric init
state centered at the top of the hill (r 50), there angular
momentum will vanish. Therefore the Schro¨dinger equation
can be rewritten as

H̃~r ,l !F~r ,t !5 i
]F~r ,t !

]t
, ~38!

where

F~r ,t !5r
(d21)

2 C~r ,t !,

H̃52
1

2

]2

]r 2 1U~r !, ~39!

U~r !5
~d21!~d23!

8r 2 1
l

8d
~r 22r 0

2!2.

Following Mihiala et al. @21#, we have solved the Schro¨-
dinger equation numerically. We took an initial Gaussi
state centered at the potential top, and usedd520, r 0

d
-
th

FIG. 19. uf(r ,t)u2 for the d-dimensional example. The wav
function is clearly non-Gaussian.
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56.4, andl510. In Fig. 17 we plot̂ r 2/d&. After a period
of oscillations, this function reachs a constant value for la
times. This asymptotic value would imply a vanishing effe
tive mass in the larged approximation. However, as can b
seen from Fig. 18, the Wigner function is not positive de
nite even when the effective mass vanishes. The reason
this is that the wave function that describes t
d-dimensional slow roll has a complicated structure, and c
not be approximated by a Gaussian function~see Fig. 19!.

The lesson we learned from this example is that, in or
to get a Wigner function that is positive definite and peak
around a classical trajectory at long times, it is necessar
have both vanishing effective mass and a Gaussian w
function. Therefore, it is quite possible that in a field theo
calculation with finiteN there will be no classical limit nor
-

.

k,

ky

04501
e
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-
for

n-

r
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to
ve

classical correlations unless one considers the coupling
the field with an environment. The presence of the envir
ment will introduce a new temporal scale, the decohere
time, which will indicate when the order parameter becom
a classical variable. For each mode, the decoherence
could be shorter than the spinodal time, allowing for a cl
sical description of these modes in the nonlinear regime
realistic treatment of the environment seems to be crucia
understand the classical limit in field theory phase tran
tions.
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