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We analyze the quantum to classical transition of the order parameter in second order phase transitions. We
consider several toy models in nonrelativistic quantum mechanics. We study the dynamical evolution of a
wave packet initially peaked around a local maximum of the potential using variational approximations and
also exact numerical results. The influence of the environment on the evolution of the density matrix and the
Wigner function is analyzed in great detail. We also discuss the relevance of our results to the analysis of phase
transitions in field theory. In particular, we argue that previous results about the classicality of the order
parameter iMO(N) models may be a consequence of the laxgapproximation.

PACS numbdps): 03.70+k, 05.40.Jc, 05.70.Fh

[. INTRODUCTION defects may contradict observational evideroeagnetic
monopoles In order to solve this and related problems it is
The emergence of classical behavior from a quantum syswidely accepted that, before the radiation dominated era, the
tem is a problem of interest in many branches of phygidés  Universe expanded exponentiallyflationary periog. This
As is well known, the quantum to classical transition in- exponential expansion takes place during a second order
volves two necessary and related conditions: correlationgphase transition.
i.e., the Wigner function of a quantum system should have a In all the abovementioned examples there is an order pa-
peak at the classical trajectories and decoherence, that igmeter which evolves from the false to the true vacuum of
there should be no interference between classical trajectoriethe theory: the Higgs fields in GUT and EW phase transi-
To study quantitatively the emergence of classicality, it istions, the inflaton fielts) in inflationary models, etc. Al-
essential to consider the interaction of the system with itshough these are quantum scalar fields with vanishing mean
environment, since both the loss of quantum coherence andhlue (due to the symmetry of the initial quantum shatibe
the onset of classical correlations depend strongly on thisrder parameter is usually treated as a classical object. The
interaction[2]. Using this point of view, classicality is an classical behavior is fundamental to define and count the
emergent property of an open quantum system. The strengtbpological defect§4], and to justify the fact that some
of the coupling between the system and environment sets thgauge and fermion fields aquire masses.
decoherence time which, roughly speaking, indicates the In the present work, we will analyze the classicality of the
time scale after which the system can be considered as clasrder parameter during a second order phase transition. Of
sical. course, in a realistic model one should address this problem
Our concern in this paper will be the analysis of the quan-in the context of quantum field theory. In fact, a possible
tum to classical transition of the order parameter during secapproach would be to follow the analysis started by two of us
ond order phase transitions, in which the effective potentiain Ref. [5], where we studied the emergence of classical
has a local maximum. In condensed matter physics, there aiehomogeneities from quantum fluctuations for a self-
several systems in which the dynamics of phase transition#teracting quantum scalar field. We have investigated there
can be studied experimentaliguperfluids, for examp)d3]. the decoherence induced on the long-wavelength field modes
In the standard big-bang cosmological model, phase transby coarse graining the field modes with wavelength shorter
tions occur at the grand unified theofsUT) and elec- than a critical value, in order to show how the system be-
troweak (EW) scales. During these phase transitions topo-comes classical due to the interaction with its environment
logical defects are inevitable, and they may have played &n that case composed by the short-wavelength field modes
fundamental role in the formation of large scale structureof the same field The classicality of the order parameter
(string9 [3]. Moreover, superabundance of some topologicaktould be analyzed along the same lines by considering a
model with spontaneous symmetry breaking.
This is an extremely difficult problem because, as has
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parameter. In field theory, it is very difficult to go beyond 2

perturbative or mean field methoddartree, 1N, etc). For 2a

this reason, in the present paper we will be mainly concerned

with toy models: closed and open systefé§in nonrelativ-

istic quantum mechanics. We will study the spread of a wave

packet initially centered around the local maximum of a 1h

double well potential, paying particular attention to the influ-

ence of the environment on the Wigner function and on the

reduced density matrix. We will also discuss the relevance of

our results to the analysis of the field theory phase transi-

tions. . . .
The paper is organized as follows. In the next section we 0 5 4 6 3 10

review the approach of Guth and Pi to describe the initial t

stages of the quantum dynamics of the phase transition using ;5 1 runction 2 which gives the width of the Wigner func-

an inverted harmonic oscillator. We consider the upsidg;,, tor the upside down harmonic potential.

down harmonic oscillator with and without environment, in

order to emphazise the relevance of the environment in the G,ih and P{7] considered an upside down harmonic os-

quantum to classical transition. In Sec. Il we study the evoijiator as a toy model to describe the quantum behavior of
lution of a wave packet initially centered on the top of aihis unstable system

double well potential. We describe a Gaussian variational

calculation and an improved version of it. We find that, in t 1.

the Gaussian approximation, the Wigner function is positive S[X]=J dSEM(XZJFQ%XZ)- 2
for all times but it does not describe classical correlations 0

unless the system is coupled to an environment. The Gausgy,;g toy model should be a good approximation for the early

lan approach breaks down as the wave packet spreads Qyhe eyolution of the phase transition, as long as one can
and explores the minimum of the potential. The |mprovedneg|ect the non-linearities of the potential.

variational approximation describes the dynamics of the sys- If the initial wave function is Gaussian, it will remain

tem beyond that point. However, as the wave function is NOKaussian for all timegwith time-dependent parameters that

Gaussian, the Wigner function i§ no Ionger'positive. In Secgqt its amplitude and spreadhe density matrix will be of
IV we describe the exact numerical evaluation of the evolume form

tion of the wave packet. We show that, as the coupling be-

tween the system and the environment increases, the deco- p(X,x’ t):N(t)e—A(t)xz—B(t)x’z 3)

herence time decreases. Due to the nonlinearities of the Y ’

potential, when the coupling vanishes there is no classicglnereN(t) is a time-dependent real normalization function:

limit, not even classical correlations. In Sec. V we analyzeA(t) and B(t) are time-dependent complex coefficients,

previous works on the quantum to classical transition in fieldnich satisfyA=a+ib=B*. Using new variable$ = (x

theory in the light of the results for the toy models. +x')/2 andA = (x—x')/2, the density matrix can be rewrit-
ten as

Il. THE INVERTED HARMONIC OSCILLATOR: _ —2aA2,-2a32 - 4ibS A
ROLE OF THE ENVIRONMENT p(t2,4)=N(b)e © © ' @

In a cosmological scenario, at very high temperatures th&Or such a_density matrix, the asociated Wigner function is
effective potential for a scalar fielg has a minimum atb also Gaussian and can be exactly evaluatgtiea® and what
—0. As the temperature decreases this minimum becomdgllows we seti=1)
unstable, and the stable minima move to a nonvanishing 1 [ew
value of the field. During the phase transition, the system W(X,p,t)= _f dyePYp
evolves to its true vacuum. 27 ) =

A sudden quench phase transition can be described by a
field theory in which there is an instantaneous change of sign =£e* 2ax’ g~ (p—2xb)?/2a_ (5)
in the mass term of the scalar field ™

y y
X+ E’X_ E)

The coefficient 2 gives the spread of the Wigner distri-
1 B 1 b, 1., bution around the classical trajectory, and, at the same time,
Eau‘ﬁ‘? ¢- Em(t) ¢°= ﬂ)“f’ Y (2a) ! measures the importance of the nondiagonal terms in
the density matrix. As is well known, there is a compromise
between the spread of the Wigner function and the diagonal-
where m?(t)= u2>0 for t<t, and m?(t)=—u? for t>t, ization of the density matrix: as one becomes peaked the
(we will take to=0 for simplicity). This change of sign in other becomes nondiagor&].
m?(t) breaks the global symmetry for0. In Fig. 1, we show the time dependence & @btained

Sto1- [ dx
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from the Schrdinger equation. It is an exponentially de- The time-dependent coefficients are given by
creasing function. Therefore, although the density matrix is
nondiagonal, the Wigner distribution becomes peaked _ 2 [t
around the classical trajectory for long times. The unstable ~ Q%(t)=— Mf dt’cosh{Qot") n(t’),
guantum evolution shows classical behavior, in the sense that 0
one can obtain a classical probability distribution for the un-
stable particl¢7]. Strictly speaking, we do not have classical 1 o , ,
limit but “classical correlations,” because the density matrix y()=- ZMQOJOdt sinf(Qot") 7(t"),
is not diagonal. As has been recently pointed out by Kiefer
et al. [10], this may be enough for the quantum to classical .
transition of free flgld fluc_tuatlons ina co_smolog_lcz_il setting. D(t)=f dt’ cosHQqt" ) w(t’),
However, as we will see in the next sections, this is not true 0
for the double well potential.

The classical limit exhibited by the quantum particle in 1 [t
the upside down potential requires the coefficieati@ reach f(t)=— WJ dt’ sinh(Qot’) 7(t"),
its minimum value. This limit is obviously reached at large 0J0
times, when the particle is far away from the potential top.

The “correlation time” depends on the parameters of theg)(t) renormalizes the natural frequency of the partiglt)
potential. As we will now see, the presence of an environis the dissipation coefficient, aria(t) and f(t) are the dif-
ment changes drastically this situation. fusion coefficients, which produce the decoherence effects.

~ Let us consider the unstable quantum particlearacter-  ,(t) and v(t) are the dissipation and noise kernels, respec-
ized by its massM and its bare frequenc{l,) linearly tively,

coupled to an environment composed by an infinite set of

harmonic oscillatorgof massm, and frequencyw,). We "

may write the total action corresponding to the system- n(t):j dol(w)sinwt,
environment model as 0

X, qn]=SX]+ F dn]+ Sind X,0n]

9

© Bw

V(t):f dwl (w)coth—— coswt,
tdl 2 2,2 . 2 2.2 0 2
:f d _M(X +QOX )+2 _mn(Qn_wnqn)

0o |2 T 2
andl(w) is the spectral density of the environment. In the
_E Co X0 s (6) high-temperature limit of an ohmic environmehihere

n I (w)xw] the coefficients in Eq(9) become constants. In

) ) particular, the diffusion coefficient can be approximated by
wherex and g, are the coordinates of the particle and thep~ 2, k. TM, wherey, is the dissipation coefficiefi6]. In

oscillators, respectively. The unstable particle is coupled linyyis Jimit. while v, is a constant an® =T, the dissipation

early to each oscillator with strengt, . _ coefficient isf«T~1. Therefore the term proportional Bis
The relevant objects to analyze the quantum to classicghe relevant term in the master equation.

transition in this model are the reduced density matrix, and Alternatively, one can write an equation of the Fokker-

the associated Wigner function Planck type for the reduced Wigner functif@l. It is given
by
pr(X,X',t):f dg, p(X,dn,X",qn,t),
. 1
Lo . Wi (x,p.0) =~ { oy~ 5 M)W, |+ 25()d(pW)
Wr(xap:t)zﬂf dy épy pr(x—'_zax_zxt) (7) PB
o +D(1) 32 W, — (1) 35 W, , (10)

The reduced density matrix satisfies a master equation. Hu-

Paz-Zhang 6] have evaluated the master equation for thewhere the first term on the right-hand side is a Poisson

guantum Brownian motion problem. Following the samebracket.

procedure, we can write the master equation for the unstable Let us solve Eqs(8) and (10) using again a Gaussian

particle [9]. As the coupling between system and environ-ansatz for the reduced density matrix. The adequate gener-

ment is lineal, the result is exact, and can be easily obtainedlization of Eq.(3) is

it replacingQg by iQg in the Hu-Paz-Zhang result

- . pr(x1xr,t):N(t)e—A(t)xz—B(t)x'z—C(t)xx’, (12)

pr=—I Hsyst_ EMQZ(t)uPr +2i 7(t)[X,{p,p,}]
where C(t) is a real function. The master equation, in the

—DO[X,[X,p 1= FO[X[p,p]]. (80  high-temperature limit, becomes
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2 T T T T III. INCLUDING SELF-INTERACTION:
VARIATIONAL APPROXIMATIONS
2a-C Let us now consider a more realistic model by adding a
Ax?* term to the Lagrangian of the unstable quantum particle.
Of course the problem no longer admits an exact, analytical
solution. Before presenting the numerical soluti&ec. V),
we would like to discuss some analytical approximations
based on the time-dependent variational method developed
by Jackiw and Kermamll]. This will be useful to under-
stand the validity of similar approximations in field theory.
The variational method is based on the definition of an

0 2 4 6 8 : 10 “effective action”

FIG. 2. Width of the Wigner function when an environment is F:f dt( ¢
taken into account. We considered an underdamped caseyyith

=0.001 andT =500.

9.

WhenT is stationary against variations of the sthté¢ (with
(¢|y)y=1), the state satisfies the Sctilger equation. Ap-
proximated solutions are obtained by minimizing the effec-
1 1 tive action within a family of trial wave functions.
b=—2a2+ 2b%—2y,b+ =C2— =02, Following the work of Jackiw and Kerman, Coopeiral.
2 2 [12] studied the dynamics of a quantum particle in a double
(12 well potential in the so-called Gaussian approximation. In

a=4ab—2ypa+2yT+7,C,

C=4y,a+4Cbh—2y,C—4y,T, this approximation, the problem is equivalent to the inverted
oscillator with a self-consistent frequency22.=03
N=2Nb, —3\(x?). In order to analyze a system coupled to an envi-
ronment, one should generalize the variational principle to
where we are denoting=kgT, and we have sevl=1. the density matrix. Although such an gxtension dogs exist
Using again the variableE and A the reduced density (see Ref[13]), we follow here an equivalent and simpler
matrix reads method: we replace the renormalized frequency by the self-

consistent oneQ2.=02%-3\(x?) in the master equation.
pr(E,A,t):N(t)e‘(2a‘C)A2e‘(23+C)22e‘4‘bm, (13)  Thus, assuming that the density matrix has the same form
given in Eq.(11), the evolution equations for the real func-

while the reduced Wigner function is exactly evaluated as tionsa(t), b(t), andC(t) can be easily obtained from Eq.
(12). The variational equations then read

1 2a+C 2 2
_ —(2a+C —(p—2xb)“/(2a—C . ~
Wi(xp.t)= - g ge T e rraEee, a=4ab—2yga+2yoT + yoC,

(14
. - 1,1, 3 A
From the last two equations we see that the relevant function b= —2a+2b"=2yb+ 5C*=50"+ (2a+C)’
to describe correlations and decoherence is naw €. For

2a—C=0(1) we have both correlations and decoherence. ~ (16)

The set of Eqs(12) can be easily solved numerically. In Fig. C=4y0a+4Cb—2y,C—4y,T,

2 we show the behavior ofé2- C as a function of time. We ]

see that it tends asymptotically to a constant of order(ohe N=2Nb.

course the asymptotic value depends on the properties of the

environmenkt As before, we are interested in the time dependence of the

The main conclusion of this section is the following. In function 2a—C. We have solved numerically Eq&lL6) for
order to study a sudden quench phase transition, at earljifferent values of the parameters. In Fig. 3 we show the
times we can use the upside down potential. When the sysime dependence of &-C without environment §,=0,
tem is isolated, due to the high squeezing of the initial wavewhich impliesC=0). As a result there is an oscillating func-
packetx and p become classically correlated. The densitytion, the width of the Wigner function and the nondiagonal
matrix is not diagonal. The “correlation time” depends on part of the density matrix do oscillate. The self-interacting
the shape of the potential. When the patrticle is coupled to apart of the potential forbids the squeezing of the initial state.
environment, a true quantum to classical transition take3herefore, there are no correlations nor decoherence. When
place. The Wigner function becomes peaked around a clashe coupling to the environment is turned om,-2C tends to
sical trajectory and the density matrix diagonalizes. The dea constant of order 1. The environment produces the quan-
coherence time depend on the diffusion coefficient tum to classical transitiofFig. 4).
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4 T T T T 4

2a 20— C

. \ Y : - . s
0 2 4 6 8 , 10 0 2 4 6 8 , 10

FIG. 3. Time-dependent width of the Wigner function for a  FIG- 4. Same as Fi_9;3 but including an underdampeg (
self-interacting §x*) potential, using the Gaussian approximation. =0.001) environment witil =50.

1/4

As has been noted by Cooparal, the Gaussian approxi- o ax

mation gives good results up to the time where the nonlin- UO(X't):[?
earities of the potential can be neglected. To go beyond this

point it is necessary to improve the approximation. a
Cheetham and Copelanhil4] had proposed an improvement uz(x,t)=[—
based on the following trial wave function: 32m

(18)
1/4

e >[8a%x2— 2],

hy2
(x,)=Nt)e PTug(x,t) +auy(x,t)], (17 _ o ,
v Yo lz(x.0)] wherea andb are real time-dependent coefficierds(t) is a
where complex function. The variational equations read

siné

a=4ab+\\2 TR

. 7N N2 cos#
942 2_ had
b 2a“+2b 1+8a+ TR’

cosf+ R2cosf+ 2R\2+2R3\2 (19
16a’R ’

R=\sing

M (4R3\2cosf+ 2R3 cof6—2 coh+ 1—6R\2 cosf— 11R?)

f=—4a 32a°R? !

where we have writtem,(t) =Rée". which produces a complicated Wigner function
In Eq. (17) the zeroth order corresponds to the Gaussian

approximation. Including only the first nontrivial term in the N2 23 (p-2o0?

expansion in Hermite polynomials, Cheetham and CopelanqN(X’p,t): A e pTef2ax2

showed an important improvement in the resyltd]. For 2m ™

this “post-Gaussian” form of the wave funcion, we may 2 4

write the density matrix as X[1+BO+FDOp+EMP™+F(Hp +H(txX

+1(t)xp+I(t)xp3+ K(t)x?+ L(t)x*p?

pOX D)= (1) \| o252+ 8 g aiba FM(Dxp+ P(OX], 21
o
12, ko2 where the capital letters are functionsaf, a5 , a, andb.
x 1+2\/§a(azx +a;x7) 2\/§Reag The Wigner function is clearly non positive definite. To

illustrate this fact, we have solved numerically the varia-
(20 tional equations for a Gaussian initial state. In Fig. 5 we

1
212 __y2__ 12,
2T X show the Wigner function for a time where the wave func-

2
+\/§|az| 2a
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FIG. 6. Wigner function fott=2<tg,=2.3, no environment is
considered.
FIG. 5. Wigner function for the post-Gaussian approximation. It

is evaluated at a timet € 20) when the wave function is no longer stantA=0.01. the renormalized frequencigﬁ w,=1 (we
.01, n

a Gaussian. . . . o~

are measuring time in units &) and the bare masses also
. . , equal to 1.
tion is no longer Gaussian. The non-Gaussian shape of the ' is jllystrative to examine first the exact result when the
wave function produces a nonpositive Wigner function.  anvironment is abserfor this case we have solved numeri-

It is in principle possible to include the environment in the cally the Schidinger equation The initially Gaussian
improved version of the Gaussian approximation. HoweverWigner function begins to squeeze in the p direction and,
we will not follow here this possibility. Instead, we will in- peore the spinodal timet{;~2.3) it becomes a nonpositive
clude it in the exact numerical solution to the problem. ¢, ion (Fig. ). During the evolution, the Wigner function
covers all the phase spa@€g. 7) and it is clear that it is not
possible to consider it as a classical probability distribution.
Although we started with a special initial sta(€aussian
with minimum uncertainty, the nonlinearities of the poten-

In order to get a complete answer about the quantum ttial make the Wigner function a nonpositive distribution.
classical transition for a double well potential, it is necessary Let us now consider a coupling with an environment such
to solve exactly the master equation given in EB).(adding  that the normal difusion coefficient 3=0.01. As expected,
the A\x* term to the Hamiltonian systin the first term of the
right-hand side The Fokker-Planck equatiofl0) for the
reduced Wigner function has an additional term coming from
the nonlinearities of the potential,

IV. INCLUDING SELF-INTERACTION:
EXACT NUMERICAL SOLUTION

| SR "!ﬁ.g‘—!{\‘_‘ \\

72

’
i
i

a

A " ‘!
NP

7

il

Ao T ‘
N TRURR

. 1 .
Wr(X,p,t): - Hsyst_ EMQZ(t):Wr +27(t)ap(pwr)
PB

A
+D (1) F5 W, — (1) 2, W, — = X35, W, . (22)

477ppptr \‘“
AUNS
i A ‘M//A
10 iy ""h\ﬁ,\‘w / .i\’ ) w’\“’,&“‘“‘“
| | . AR UMD
We have solved numerically this Fokker-Planck equation, '\\({;5‘1‘3&‘.‘-‘;"‘7‘?‘\‘;‘4ﬁi.‘\/(bf.i‘,‘)]‘;ﬁ/,‘»{'/r’/[[»‘&l’a‘”le
in the high-temperature limit, for different values of the dif- odd "aP&l!w«\u\xl’llt/w%’Mﬁ‘\i\i‘\i‘\‘\\‘;\\\“‘ s
fusion coefficienD, in order to illustrate its relevance in the \,“‘.‘-“““““.‘-‘r‘"

guantum to classical transition. We have chosen as initial
condition a Gaussian state centeredg@t po=0 with mini- 10
mal uncertainty §2=0.5 ando2=0.5). The Wigner func-

tion is initially positive definite, and different from zero only FIG. 7. Wigner function fot=4. As the function is not positive
near the top of the potential. We have set the coupling condefinite, there is no correlation.
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FIG. 8. Wigner function fot= 2 including an environment with

e = FIG. 10. Same Wigner function far=10.
diffusion coefficientD =0.01.

“Fourier transform,” the reduced Wigner function, spreads

the evolution of the Wigner function is similar to the previ- gt.
ous one at early timeg~igs. 8 and @ However, as can be  our numerical results show explicitly that the existence of
seen from Figs. 10 and 11, at long times it becomes positivehe environment is crucial in the quantum to classical transi-
definite and peaked around the classical phase space.  tjon. The decoherence time depends on the temperature and

The effect of the environment is more dramatic for |argerthe Coup”ng between System and environment through the
values of the diffusion coefficier(see Figs. 12—15For D difussion coefficienD.
=0.1, the Wigner function is almost positive definite for Both the Schrdinger equation for the closed problem and
~2tg, (Fig. 13. In our last exampleD =1, the quantum to  the Fokker-Planck equatidi0) were numerically solved us-
classical transition takes place almost instantaneously, evaAg a fourth-order spectral algorithid5]. Numerical checks
before the quantum particle pass through the spinodal poinfcluded carrying out simulations at different spatial and

(Figs. 15 and 1B - ~ temporal resolutions.
It is interesting to note that, as the difusion coefficient

grows, the amplitude of the Wigner function falls down. This
is due to the fact that the decoherence increasesvitfhe V. PHASE TRANSITIONS IN FIELD THEORY

reduced density matrix diagonalizes. As a consequence, itS |, 4ny field theory where the classical potential has a local
maximum at¢=0, the long wavelength modes of the field
are unstable, and grow in time. From these modes it should

e
‘\‘\\‘x\‘k"“‘h“h‘}/”';““ ‘ “\ \\“\\\\\\ i R r—

i
j

"

gl
it

-10

16

FIG. 9. Same Wigner function for time=4. The Wigner func- FIG. 11. Same Wigner function fdr=15. Only fort>tg, we
tion is not positive definite. have classical correlations and a positive Wigner function.
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FIG. 14. Long time {=10) behavior of the Wigner function for
D=0.1. Here we can consider the system as classical.

FIG. 12. Early time {=2) Wigner function for the cas®
=0.1. the field inside one of the domains where the phase transition

is taken place. In a more realistic approach, the field is split

be possible to identify the classical field that plays the role ofs[5] H(X)= - (X)+ d-(x), wherep_ and ¢- describe
order parameter of the transition to the minimum of the po+he short and long-wavelength modes of the field. Hopefully,
tential. The emergence of semiclassical coherent, large anhe effective dynamics of the long-wavelength modes should
plitude field configurations should be a consequence of timghdicate a quantum to classical transition. A third possibility
evolution. Therefore, we need a quantum field deSCfiption Ofs to address this prob]em by ana|yzing the quantum dynam_
the dynamics, for the early stages of phase ordering angs of the full field, assuming a vanishing mean value, and
growing of long-wavelength fluctuations, as well as for thecheck that some of the modes become classical variables
classicalization and decoherence of such fluctuations. during the dynamical evolution.

There have been different approaches to this problem in The main technical complication comes from the fact that,
the literature. Many works assume that the field can be Spllés has been pointed out, the initial growth of the quantum
as ¢(x) = ¢o(t) + P(X), where ¢, is the mean value of the fluctuations is so important that a nonperturbative treatment

field and ¢ are the quantum fluctuatioi46]. This can be IS unavoidabl¢17]. For this reason, people have considered
only an approximation to the full problem, since by symme-the so qallgd Gaussian approx[mauon or, alternatively, the
try arguments it is obvious that the mean value of the fieldarge N limit of O(N) models with spontaneous symmetry

must vanish. One should think gfy(t) as the mean value of breaking. In both approximations one assumes that the wave
function associated to the different modes of the quantum

------
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FIG. 15. Early time {=1) Wigner function for a diffusion co-

FIG. 13. Same as Figure 12, for-4. efficientD=1.
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FIG. 16. Same as Fig. 15 for=2. Classicality emerges before

the spinodal time.

field is a Gaussian function, with a self-consistent set of pas

rameters.

For concreteness, let us describe the work of Boyanovsky

et al.[18]. Consider arO(N) field theory

D(X,t)=[D1(X,1),Do(X,1), ... PyX,D], (23

with a potential given by
VIB]= Sm2(t) B B+ [ B2 24
[@]=5mA(OP- O+ 5[ P-PJ7, (24)

wherem?(t) becomes negative fdr-0. We will focus on
the case in which the initial state is symmetric, i.€D)
=0.
The Hamiltonian is
1. . 1, - .
H=2 ST g+ WP b ¢f, (29
K

whered, is the spatial Fourier transform of the field, &
is defined as

Nfodk

PHYSICAL REVIEW [B2 045016
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FIG. 17. d-dimensional quantum roll{r?/d) for d=20, rq
=6.4, and\=10.

dA(t)
dt

i =AZ(t) — WE(1).

Introducing the notation

_ Pi(t)
AM=-T3®

the dynamical equation in theN/approximation becomes

(29

Bi(H) +W2(1) ¢y (1) =0. (30)

The expectation value of)k(t)2 in the state of Eq(27) is
given by

(Bi- D) (t)=N| ey (t)|%

Therefore we have a self-consistent systentfef given by

(31)

Pi(t) +[K2+M?(1) ]y (1) =0,
(32

N[ d3k
M2(t)=— pu2+ EJ W|¢k(t)|2-

The numerical solution of these equations reveals the fol-
lowing picture: at early times, the long-wavelength fluctua-
tions “see” an inverted oscillator potential, and grow expo-
nentially in time. This is a linear regime where the self-

We start with a Gaussian initial state, and we assume that theteraction can be neglected. At intermediate times the back
wave functional will be always Gaussian, describing a puregreaction of these fluctuations is as important as the classical

guantum mechanical state

v, 1=]] [Nt TADR1%c 0y (27

whereA,(t=0)=W,(t<0).

The functional Schidinger equation gives the following
differential equations foN, and A, :

9 Ny =— S A, 28)

dt

terms in the Lagrangian. This period is highly nonlinear. At
long times times the effective mass of the fluctuations van-
ishes asymptotically19].

It can be seen from the wave functional EG7) that,
asymptotically, the long-wavelength modes become classi-
cally correlated. This is analogous to the situation described
by the inverted harmonic oscillator. Wh&h?’~0, the mode
equationg32) can be easily solvef20]:

sinkt

¢ =acoskt+b——.

K (33

045016-9
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10 3o\ N O FIG. 19. |¢(r,t)|? for the d-dimensional example. The wave

35

function is clearly non-Gaussian.

Pr
T
12 4 &
2 - V2= r2= X2
FIG. 18. Wigner function for the-dimensional example, evalu-
ated at a timet(=40) when the “effective mass” is zero. N
V(r)=@(r2—r§)2. (35

As a consequence, the width of the Gaussian wave function
for the modek increases linearly with time m{l~t, when  The Schrdinger equation reads
kt<1. As we have seen, a Gaussian wave function has a
positive definite Wigner function associated to it. Moreover, I (X ,1)
as the width of the wave functiofor the density matrix HY (% ) =1 ———. (36)
increases, the Wigner function becomes sharply peaked
around the classical trajectory. This is indeed what happens®his problem can be studied in a multidimensional coordi-
for k<1/t. These modes become classically correlated. nate system withr the radial coordinate and a set df- 1
In view of the results in the previous sections of this pa-angular coordinates, such that the Laplacian is
per, we see that in the larde limit, and at long times, the
dynamical evolution of theD(N) model shows “classical
correlations” but not a full quantum to classical transition.
As for the inverted oscillator without environment, the den-
sity matrix does not become diagonal. The “correlation HereLg,l is the generalized orbital angular momentum op-
time” depends only on the details of the classical poteritial. erator. Starting with a Gaussian, radially symmetric initial
On the other hand, these classical correlations depend crgtate centered at the top of the hil=0), there angular
cially on the Gaussian form of the wave function. To illus- momentum will vanish. Therefore the ScHinger equation
trate this point, we consider another example from nonrelacan be rewritten as
tivistic quantum mechanics, tleedimensional quantum roll,

# (d-1) o L3,
-2t T T2
ar r ar r

Ve= (37)

which corresponds to the zero-space-dimensional limit of the ~ L oP(r,t)
O(d) field theory. Hr.He(rH=i——, (38)
The model is described by the Hamiltonig21]
where
1 (d-1)
H=—§V2+V(r), (34) O(r,t)y=r—2z V(r,t),
H= L7 U 39
where =52t (r), (39
(d=1)(d=3) A
1 : N . U(r)=——g7—+5=(r’=rp)>
There is a quantitative difference with the example we presented 8r 8d

in Sec. II: there the width of the wave function increased exponen- .

tially. Here, as the mode become massless, the growth of the widtffollowing Mihiala et al. [21], we have solved the Schro

is only linear in time(an inverted oscillator would correspond to a dinger equation numerically. We took an initial Gaussian
negative mass state centered at the potential top, and uskd20, r

045016-10
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=6.4, and\ =10. In Fig. 17 we plo{r?/d). After a period classical correlations unless one considers the coupling of
of oscillations, this function reachs a constant value for largehe field with an environment. The presence of the environ-
times. This asymptotic value would imply a vanishing effec-ment will introduce a new temporal scale, the decoherence
tive mass in the largd approximation. However, as can be time, which will indicate when the order parameter becomes
seen from Fig. 18, the Wigner function is not positive defi-a classical variable. For each mode, the decoherence time
nite even when the effective mass vanishes. The reason faould be shorter than the spinodal time, allowing for a clas-
this is that the wave function that describes thesical description of these modes in the nonlinear regime. A
d-dimensional slow roll has a complicated structure, and canrealistic treatment of the environment seems to be crucial to
not be approximated by a Gaussian functisee Fig. 19 understand the classical limit in field theory phase transi-
The lesson we learned from this example is that, in ordetions.
to get a Wigner function that is positive definite and peaked
around a classical trajectory at long times, it is necessary to
have both vanishing effective mass and a Gaussian wave
function. Therefore, it is quite possible that in a field theory This work was supported by Universidad de Buenos
calculation with finiteN there will be no classical limit nor Aires, Conicet(Argenting and Fundacion Antorchas.
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