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Canonical approach to 2D WZNW model, non-Abelian bosonization, and anomalies
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The gauged WZNW model has been derived as an effective action, whose Poisson brackets algebra of the
constraints is isomorphic to the commutator algebra of operators in quantized fermionic theory. As a conse-
quence, the Hamiltonian as well as the usual Lagrangian non-Abelian bosonization rules have been obtained
for the chiral currents and chiral densities. The expression for the anomaly has been obtained as a function of
the Schwinger term, using canonical methods.

PACS number~s!: 11.10.Kk
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I. INTRODUCTION

It is well known that in 111 dimensions there exists a
equivalence between Fermi and Bose theories in the Abe
@1# and non-Abelian case@2#. In the latter Witten demon-
strated that free field theory ofN massless Majorana ferm
ons is equivalent to the nonlinears model with a Wess-
Zumino term at the infrared-stable fixed point, because b
theories obey the same Kac-Moody~KM ! algebras. The ex-
tension of this equivalence has been considered by sev
authors@3#. They introduced external chiral gauge fields a
showed the identity of the effective actions which implies t
identity of correlation functions.

In this paper, starting with non-Abelian fermionic theo
coupled with background gauge fields, we are going to c
struct the equivalent bosonic theory for general gauge gro
Our approach is different from the previous one and na
rally works in theHamiltonianformalism. We believe that it
gives a simpler resolution of the problem.

The classical fermionic theory is invariant under loc
non-Abelian gauge transformations. Consequently, the
class constraints~FCC’s! j 6a are present in the theory an
satisfy non-Abelian algebra as a Poisson brackets~PB! alge-
bra. In the quantum theory thecentral termappears in the
commutator algebra of the operatorsĵ 6a , so that the con-
straints become second class~SCC’s! which implies the ex-
istence of the anomaly@4#. These known results will be re
peated in Sec. II for completeness of the paper and in o
to fix our notation.

We define the effective bosonized theory, as a class
theory whose PB algebra of the constraintsJ6a is isomor-
phic to the commutator algebra of the operatorsĵ 6a , in the
quantized fermionic theory. This is how the bosonized the
at the classical level incorporates anomalies of the quan
fermionic theory.

In Sec. III we find the effective actionW, for given alge-
bra as its PB algebra. The similar problems has been con
ered before in the literature@5#. Using the method of coad
joint orbits, they showed that KM algebra yields the We
Zumino-Novikov-Witten ~WZNW! model. Here we are
going to present a new, canonical approach. We introd
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the phase-space coordinateqa,pa and parametrize the con
straintsJ6a by them. One of the main points of the paper
to find the expressions for the constraintsJ6a and for the
canonical HamiltonianHc in terms of phase-space coord
nate, satisfying a specific PB algebra. We then use the g
eral canonical method@6,7# for constructing the effective ac
tion W with the known representation of the constraints.
eliminating the momentum variables on their equations
motion we obtain the Bose theory in the background fiel
which is equivalent to the quantum fermi theory in the sa
background. This Bose theory is known as agauged WZNW
action.

In Sec. IV we deriveHamiltoniannon-Abelian bosoniza-
tion rules. It is easy to obtain the formulas for the curren
just differentiating the functional integral with respect to t
background fields. We also derive the rules forc̄c and
c̄g5c terms, using the approach of this paper. Note that
Hamiltonian bosonization formulas for the currents depe
on the momenta, while those for mass term depend only
the coordinates. Witten’s non-Abelian bosonization rules c
be obtained from the Hamiltonian ones, after eliminating
momenta.

In Sec. V we obtain the expression for the anomaly, us
canonical method. We extend the general canonical form
ism, from systems with FCC’s to the systems with SCC
where the central term appears. We find the expressions
the left-right, as well as for the axial anomaly.

Section VI is devoted to concluding remarks. The deriv
tion of the central term, using normal ordering prescription
presented in the Appendix.

II. CANONICAL ANALYSIS OF THE FERMIONIC
THEORY

A. Classical theory

Let us consider the theory of two-dimensional~2D! mass-
less Majorana fermionsc i ( i 51, . . . ,N), interacting with
the external Yang-Mills fieldsAm andBm , with the action

S5E d2jF c̄ i ]̂c2 i c̄Â
11g5

2
c2 i c̄B̂

12g5

2
cG . ~2.1!

We can rewrite it as
©2000 The American Physical Society11-1
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S5E d2j@ ic2* ċ21 ic1* ċ11 ic2* c28 2 ic1* c18

2 iA2~A1
a c2* tac21B2

a c1* tac1!#. ~2.2!

We chose anti-Hermitian matricesta as the generators of th
gauge group G, introduce light-cone componentsV6

51/A2(V06V1) for the vectors, and write the gauge pote
tials as A15A1

a ta and B25B2
a ta . We use the basisg0

5s1 , g152 is2, g55g0g15s3, and define the Wey
spinors by the conditionsg5c657c6 . For simplicity, we
write c6* c6 and c6* tac6 instead of ( ic6*

ic6
i and

( i j c6*
i tai jc6

j .
The fermionic action~2.2! is already in the Hamiltonian

form and we can conclude that there are two basic Lagra
ian variablesc2

i and c1
i appearing with time derivative

whose conjugate momenta arep6
i 5 ic6*

i . Variables without
time derivatives,A1

a andB2
a , are Lagrange multipliers an

the primary constraints corresponding to them are the
rents

j 6a5 ic6* tac65p6tac6 . ~2.3!

The canonical Hamiltonian density can be expressed in te
of the chiral quantitiesu6

Hc5u12u2 ~u65 ic6* c68 5p6c68 !. ~2.4!

Starting with the basic PB

$c6
i ~s!,p6

j ~ s̄ !%5d i j d~s2s̄ !, ~2.5!

we can find that PB of the currents satisfies two independ
copies of KM algebraswithout central charges

$ j 6a , j 6b%5 f ab
cj 6cd, $ j 1a , j 2b%50. ~2.6!

We also have the relations

$u6 , j 6a%5 j 6ad8, $u6 , j 7a%50, ~2.7!

which imply

$Hc , j 6a%56 j 6ad8. ~2.8!

The total Hamiltonian takes the form

HT5E ds@Hc1A2~A1
a j 2a1B2

a j 1a!#. ~2.9!

The consistency conditions for the currents

j̇ 1a5$ j 1a ,HT%5 j 1a8 1A2 f ab
cB2

b j 1c ,
~2.10!

j̇ 2a5$ j 2a ,HT%52 j 2a8 1A2 f ab
cA1

b j 2c ,

do not lead to new constraints, because the right-hand s
of Eqs. ~2.10! are weakly equal to zero. In fact, the la
equation means that chiral currents are separately conse

D2 j 1a[]2 j 1a2 f ab
cB2

b j 1c50,
04501
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D1 j 2a[]1 j 2a2 f ab
cA1

b j 2c50, ~2.11!

or that both vector and axial vector currents are conserv
The currentsj 2a and j 1a correspond to the arbitrary mul

tipliers A1
a and B2

a , respectively in Eq.~2.9!, and conse-
quently they are FCC’s. Equations~2.6! lead to the same
conclusion.

Therefore, the classical theory has local non-Abel
gauge symmetries, whose generatorsj 6a satisfies the corre-
sponding PB algebra~2.6!.

B. Quantum theory

In passing from the classical to the quantum domain,
introduce the operatorsĉ6

i and p̂6
j instead of the fieldsc6

i

andp6
j , replace the PB by the commutators, and define

composite operators using the normal ordered prescriptio

ĵ 6a5:p̂6taĉ6 :, û65:p̂6ĉ68 :. ~2.12!

The gauge fieldsA1
a andB2

a will be considered as classica
background fields.

Then, instead of the PB algebra~2.6! and~2.7! we obtain
corresponding commutator algebra

@ ĵ 6a , ĵ 6b#5 i\@ f ab
c ĵ 6cd62kdabd8#, @ ĵ 1a , ĵ 2b#50,

~2.13!
@ û6 , ĵ 6a#5 i\ ĵ 6ad8, @ û6 , ĵ 7a#50,

with k52\/8p. For details of the derivations see the A
pendix.

In the quantum theory, as well as in the classical one,
also have a pair of commuting KM algebras but this tim
with a central charge, in this case known as the Schwing
term. Therefore, the constraintsj 6a which were FCC’s in the
classical theory, become SCC operatorsĵ 6a in the quantum
theory. This means that the theory is anomalous, becaus
classical symmetry generated by FCC’sj 6a is destroyed at
the quantum level. After quantization the theory obtains n
degrees of freedom.

Note that under parity transformationP:ĉ6→ĉ7 , so that
P ĵ6a(t,s)P5 ĵ 7a(t,2s) andPû6(t,s)P52 û7(t,2s).
Consequently, relations~2.13! with plus and minus indices
are connected by parity transformation. This means that
regularization scheme is left-right symmetric, because
normal order prescription takes the regularization role of
theory.

III. GAUGE WZNW MODEL AS AN EFFECTIVE ACTION

The PB algebra~2.6! is the symmetry generator algebr
becausej 6a are of the FCC. The commutator algebra~2.13!
is the algebra of dynamical variables~except the zero modes
see@8#!, because there is a constant central term on the ri
hand side. Our intention is to find theeffective theoryfor
these variables, which means the quantum version of
action ~2.1!.

We introduce new variablesJ6a and Q6 and postulate
that their classical PB algebra
1-2
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$J6a ,J6b%5 f ab
cJ6cd62kdabd8, $J1a ,J2b%50,

~3.1!
$Q6 ,J6a%5J6ad8, $Q6 ,J7a%50,

is isomorphic to the commutator algebra~2.13! of the opera-
tors ĵ 6a and û6 . We also define the canonical and the to
Hamiltonian densities in analogy with Eqs.~2.4! and ~2.9!

Hc5Q12Q2 , HT5Hc1A2~A1
a J2a1B2

a J1a!.
~3.2!

We should construct the canonical effective actionW, for
the theory with PB algebra~3.1! and with Hamiltonian den-
sity ~3.2!. In Sec. III A we are going to find the expressio
for the currents and Hamiltonian density in terms of t
phase-space variables, and then in Sec. III B we will ap
general canonical method@6,7# to find the actionW.

A. Bosonic representation for the PB algebra

Let us ‘‘solve’’ Eqs.~3.1!, i.e., find the expressions for th
currentsJ6a and for the energy-momentum tensorQ6 in
terms of the coordinateqa and the corresponding momen
pa , which satisfies

$qa,pb%5db
ad. ~3.3!

We will start with theansatzthat the currents are linear i
the momenta

J6a52E6a
a~pa1R6a!, ~3.4!

where the coefficientsE6a
a andR6a are the functions ofqa

only, and do not depend on thepa . We also suppose that th
matricesE6a

a have inverses, which we denote byE6a
a. The

indicesa,b, . . . run over the same range asa,b, . . . .
Substituting Eq.~3.4! into the first equation~3.1! we ob-

tain an equation linear inpa . The vanishing coefficient in
front of momentum gives

E6b
b]bE6a

a2E6a
b]bE6b

a52 f ab
cE6c

a, ~3.5!

or equivalently

]bE6a
c2]aE6b

c5 f ab
cE6a

aE6b
b. ~3.6!

The second condition~term withoutp) yields

E6a
aE6b

b@$pa ,R6b%1$R6a ,pb%#562kdabd8.
~3.7!

On the right side there is a derivative of thed function, so
there must also be a derivative on the left side, and we s
pose that

R6a5P6ab~q!qb8. ~3.8!

Using this in Eq.~3.7! we obtain two conditions,

E6a
aE6b

b~P6ab1P6ba!562kdab , ~3.9!

and
04501
l

y

p-

E6a
a]gE6b

bP6ab1E6a
a]g~E6b

bP6ba!

1E6a
aE6b

b~]bP6ag2]aP6bg!50, ~3.10!

because the coefficients in front ofd8 and d must vanish
separately.

If we define the symmetric tensor

g6ab5E6a
aE6b

bdab , ~3.11!

we can rewrite Eq.~3.9! as P6ab1P6ba562kg6ab and
find its general solution

P6ab52k~t6ab6 1
2 g6ab!, ~3.12!

wheret6ab52t6ba is some antisymmetric tensor. The fir
term is a solution of the homogeneous part and the sec
one is a particular solution of the full equation.

With the help of Eqs.~3.6! and~3.12! we can obtain, from
Eq. ~3.10!,

]at6bg1]bt6ga1]gt6ab57 1
2 f abcE6a

aE6b
bE6g

c.
~3.13!

Therefore, from the first Eq.~3.1! we got two relations,~3.6!
and~3.13!. The first one is a condition on theE6a

a’s and the
second one definest6ab’s in terms ofE6a

a’s.
From the second Eq.~3.1! we also obtain three equation

E1a
a]aE2b

b2E2b
a]aE1a

b50,
(3.14)

@2E1a
a]aE2b

bP2bg1E2b
a]aE1a

bP1bg

1E1a
a]gE2b

b~P2ba1P1ab!

1E1a
aE2b

b~2]aP2bg1]bP1ag1]gP2ba!#qg850,

~3.15!

and

P1ab1P2ba50, ~3.16!

as a coefficients in front ofpbd, d andE1a
aE2b

bd8 respec-
tively. From Eqs.~3.12!, ~3.16!, and the symmetry propertie
of t andg, follows

t1ab5t2ab , g1ab5g2ab , ~3.17!

and consequently, from now we will just call themtab and
gab , so that Eq.~3.12! becomes

P6ab52k~tab6 1
2 gab!. ~3.18!

With the help of Eqs.~3.6! and~3.11! we recognizeE6a
a as

vielbeins on the group manifold, andgab as the Cartan met
ric in coordinate basis.

Equation ~3.15! is a linear combination of equation
~3.13!, ~3.14!, and ~3.16!, and does not give anything new
We will discus Eq.~3.14! soon.

To make the geometric interpretation clearer we introdu
a differential form notation. Let us define the pair of Lie
algebra valued 1-forms
1-3
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v65taE6
a

adqa, ~3.19!

and the 2-form

t5
1

2
tabdqadqb. ~3.20!

Then Eqs.~3.6! become the Maurer-Cartan~MC! equations

dv61v6
2 50. ~3.21!

They have a simple solutions in which the MC formsv6 are
expressed in terms of group-valued fieldsg6 as

v65g6
21dg6 . ~3.22!

In new notation Eq.~3.13! with the help of Eq.~3.17!
obtains the form

dt57
1

3!
~v6 ,v6

2 !, ~3.23!

where (X,Y) is the Cartan inner product defined as (ta,tb)
5dab , so that in our normalization (ta ,tb)522 tr$tatb%.

From the second Eq.~3.17! and Eq.~3.11! we have

~v1 ,v1!5~v2 ,v2!, ~3.24!

and from Eq.~3.23!

~v1 ,v1
2 !52~v2 ,v2

2 !. ~3.25!

The Cartan-Killing form (X,Y) is invariant under the adjoin
action of the group elementg: (g21Xg,g21Yg)5(X,Y), so
we can conclude thatv1 andv2 are connected as

v252g21v1g, ~3.26!

whereg is a group valued field. Substituting Eq.~3.22! in Eq.
~3.26! we easily obtain thatg5g25g1

21 and finally

v15gdg21, v25g21dg. ~3.27!

Let us now come back to Eq.~3.14!. After some transfor-
mations we can write it as

dv25g21dv1g, ~3.28!

or with the help of Eq.~3.21! asv2
2 5g21v1

2 g. Therefore, it
is not a new relation but the consequence of Eq.~3.26!.

The final result for the current components is

J6a52E6a
aFpa12kS tab6

1

2
gabDqb8G . ~3.29!

We still need to ‘‘solve’’ the last two equations~3.1!.
Because all expressions with the opposite chirality comm
we will take Q65Q6(J6a). The group invariant expres
sions

Q656
1

4k
dabJ6aJ6b , ~3.30!
04501
e,

representing the components of energy-momentum tenso
the solution we are looking for. It is enough to use only t
first two relations~3.1! and not the expressions~3.29!, to
check that Eq.~3.30! satisfies the last two equations~3.1!.

If we try to add a new term for the energy-momentu
tensor, it must commute with bothJ1a andJ2a , and conse-
quently should be trivial. For example, the term proportion
to J6a8 , which is often a part of the energy-momentum tens
is not a solution of Eq.~3.1!. This term, as a total spac
derivative, will not contribute to the effective action. Th
solutions for the currents, where they are not limited to
linear in the momenta, would lead to serious technical co
plications.

B. Effective action

We are ready to construct the effective action based
the general canonical formalism. It takes the standard fo

W~q,p,A,B!5E d2j~paq̇a2HT!, ~3.31!

where the total HamiltonianHT5Q12Q21A2(A1
a J2a

1B2
a J1a), is defined in Eq.~3.2!. The expressions for the

current components and for the energy-momentum ten
components in terms of canonical pairs (qa,pa) are defined
in Eqs.~3.29! and ~3.30!.

To find the usual second-order form of the action, we w
eliminate the momentum variablespa on their equations of
motion

q̇a2
1

2k
gab~J1b1J2b!1A2~A1

a 1B2
a !50, ~3.32!

where A1
a 5E1

a
aA1

a , B2
a 5E2

a
aB2

a and J6a

52E6a
aJ6a . With the help of Eq.~3.29! we have on the

equations of motion

J6
a 5A2k~]6qa1A1

a 1B2
a !. ~3.33!

Substituting this in Eq.~3.31!, after some calculations we
find

W~q,A,B!5W0~q!1W1~q,A,B!, ~3.34!

where

W0~q!52E d2jP2ab]2qa]1qb

5kE d2j~gab22tab!]2qa]1qb,

W1~q,A,B!52kE d2jF]2qaE1a
aA1a

1]1qaE2a
aB2a1A1

a E1a
aE2a

bB2b

1
1

2
~A1

a A1a1B2
a B2a!G . ~3.35!
1-4
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It is possible to add to the effective action some lo
functional, depending on the fieldsA1 andB2 . In order to
cancel the last term in Eq.~3.35! we add

DW52kE d2j@A1
a A1a1B2

a B2a#, ~3.36!

and get

Wl ,r5W1DW, ~3.37!

where the meaning of the indicesl ,r will be clear in Sec. V.
In the differential form notation, with Cartan inner prod

uct normalization, using the Stoke’s theorem we have

W0~v !5
1

2
kE

S
~* v6 ,v6!6

1

3
kE

M
~v6 ,v6

2 !,

~W11DW!~v,A,B,!5kE
S
F ~v1 ,A2 * A!2~v2 ,B1 * B!

2
1

2
~B1 * B,g21~A2 * A!g!G .

~3.38!

Here,W0(v) is the well-known WZNW model@2,9#. As de-
fined in Eq.~3.19!, v6 are the Lie algebra valued 1-form
and * v6 are the dual ofv6 . Both expressions forW0(v) are
equal on the basis of Eqs.~3.24! and~3.25!. The first term is
the action of the nonlinears model, while the second one i
the topological Wess-Zumino term, defined over a th
manifold M whose boundary is the spacetime:]M5S. For
our value ofk52\/8p it reads

\

24pEM
~g21dg,g21dgg21dg!, ~3.39!

so that it is well-defined modulo 2p\n, wherenPZ is a
winding number. We want to stress that the proper value
k for which quantum theory is single valued is determin
from the central charge, which we obtained using just
normal ordered prescription in quantum fermionic theory

The expression forW11DW is the regular part of the
gauge extension of the WZNW action. It has been obtai
in the process of consistent gauge invariant extension of
WZNW model @10#.

Starting with the PB algebra~3.1! and Eq.~3.2!, we ob-
tained the action~3.38! for any value of the constantk. But,
the uniqueness of the irreducible representation of the
algebra, as well as topological arguments@2# force it just to
the same value as in our normal-order approach.

IV. BOSONIZATION

A. The chiral currents bosonization rules

In the previous section we obtained the effective actionW
for the massless Fermi theory in the external gauge fie
This is equivalent, to solving the functional integral
04501
l

e

f

e

d
e

s.

ZF~A,B!5E dc1dc2eiS(c1 ,c2 ,A,B). ~4.1!

The final result depends only on the background fieldsA and
B. The bosonic expression forW depends not only onA and
B, but also on some auxiliary fields,qa andpa in the Hamil-
tonian andg in the Lagrangian case. So, after integrati
over auxiliary fields we can eliminate them and obtain

ZB~A,B!5E dpdqeiW(q,p,A,B),

~4.2!

ZB~A,B!5E dgeiWl ,r (v,A,B),

for the Hamiltonian and the Lagrangian approach, resp
tively. We are not going to do the integrations explicitl
because they lead to nonlocal expression in terms ofA andB,
even in the Abelian case. We only conclude thatZF should
be proportional toZB

ZF;ZB . ~4.3!

This functional integral identity admits interpretation
terms of bosonization. Differentiating Eq.~4.3! with respect
to B2

a and A1
a and settingA1505B2 , we obtain the

bosonization rules for chiral currents in non-Abelian theo
If we choose the expressionW(q,p,A,B) from Eq.~3.31!

as an effective action we get the Hamiltonian bosonizat
rules

ic6* tac6→2E6a
a~pa1P6abqb8!, ~4.4!

and if we chooseWl ,r(v,A,B) from Eq. ~3.38!, we get the
well-known Lagrangian bosonization rules

taic1* tac1→2A2kg]1g21

~4.5!
taic2* tac2→2A2kg21]2g.

B. The chiral densities bosonization rules

It is possible to add the mass term

c̄c5c1* c21c2* c1 ~4.6!

to the action~2.1! and find the corresponding expression
terms of the bosonic variables. Let us introduce the ch
densities

r65c̄
16g5

2
c5c6* c752 ip6c7 . ~4.7!

All expressions are matrices with indicesi , j ~for example
r6

i j 52 ip6
j c7

i ) but we will omit them for simplicity.
It is easy to find the PB between the chiral densities a

the currentsj 6a , defined in Eq.~2.3!

$ j 6a ,r6%5~r6ta!d, $ j 6a ,r7%52~ tar7!d. ~4.8!
1-5
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In the quantum theory the central term does not appea
the commutation relations, up toi\, are the same as PB Eq
~4.8!. The commutators with the currentsĵ 6a completely de-
fine the expressions forr̂6 .

For the bosonic representations, instead ofr̂6 we intro-
duce the corresponding matrix valued expressionsY6 , de-
pending on the bosonic variables. Their PB algebra withJ6a

should be isomorphic to the operators algebra ofr̂6 with ĵ 6a

$J6a ,Y6%5~Y6ta!d, $J6a ,Y7%52~ taY7!d.
~4.9!

Both relations~4.9! will give the same result, so we wil
solve only the first one.

Assuming thatY6 does not depend on the momenta, a
using the expression~3.29! for the current, we obtain the
equation

E6a
a]aY65Y6ta . ~4.10!

Multiplying it with E6
a

bdqb, with the help of Eq.~3.19! we
get

Y6
21dY65v6 . ~4.11!

Comparing last equation with Eq.~3.27!, we conclude that

Y15Mg21, Y25Mg, ~4.12!

whereM is a constant. Becauseg is dimensionless,M has
dimension of mass. At the end, we can complete
bosonization formulas for the chiral densities

c̄c→Y11Y25M ~g1g21!,
~4.13!

c̄g5c→Y12Y25M ~g212g!.

They are the same for the Hamiltonian and Lagrangian c
because they do not depend on the momenta and agree
those of Ref.@2#.

V. CANONICAL APPROACH TO ANOMALIES

A. From Schwinger term to anomalies

The Schwinger term breaks the symmetries, changing
generators from the FCC’s to the SCC’s. It is interesting
investigate its influence on the transformation properties
the effective action.

Let us extend the previously described general canon
method for constructing the effective action, from the kno
PB algebra to the case with the central term. The basic
of that approach was that the action

W5E d2j@paq̇a2Hc2lmGm# ~5.1!

is invariant under gauge transformations

dF~s!5 HF~s!,E ds̄«m~ s̄ !Gm~ s̄ !J ~5.2!
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of any quantityF(p,q), and

dlm5 «̇m2«n8hn
m2«nlkf kn

m ~5.3!

of the Lagrange multiplierslm, if Gm are the FCC’s,

$Gm ,Gn%5 f mn
pGpd, $Hc ,Gm%5hm

nGnd8. ~5.4!

Here we adopted the notation appropriate for field theory
In the case where the central term is present the first eq

tion ~5.4! becomes

$Gm ,Gn%5 f mn
pGpd1Dmn~s,s̄ !. ~5.5!

We want to preserve the gauge transformations of the fie
~5.2! and ~5.3!. Then the Schwinger term appears in t
variation of the effective action

dW52E dtdsE ds̄lm~s!Dmn~s,s̄ !«n~ s̄ !. ~5.6!

The method we have used works only for actions linea
the gauge fieldslm. We can add arbitrary local functiona
DW(lm) to the effective action and obtain the general e
pression for the anomaly

An~s,t!5
dW

d«n~s,t!

5E ds̄Dnm~s,s̄ !lm~ s̄,t!1
d

d«n~s,t!
DW.

~5.7!

The nontrivial part of the anomaly is proportional to th
Schwinger term, because it breaks the symmetry and m
sures noninvariance of the effective action.

We want to emphasize, that we do not need the exp
sion for the generatorsGm in terms ofpa andqa to obtain
Eqs. ~5.6! and ~5.7!. It is enough to know only the centra
term, and the anomaly will depend on the gauge fieldlm, but
not on the phase-space coordinate.

B. The left-right and the axial anomalies

In the previous section, we used the canonical method
as a useful technical tool in order to obtain gauge trans
mations for the Lagrange multiplierslm. We shall now take
the currents to be our FCC’sGm , and the gauge fieldsA1

a

andB2
a instead of the Lagrangian multiplierslm. From this

point on, we will continue considering the gauge fields as
background fields with the same gauge transformations.
case where the gauge fields are dynamical variables wil
discussed in the conclusion.

We can apply this method to the classical fermion
theory with

Gm5 j 1a , j 2a ,

lm5A2B2
a , A2A1

a ,

«m5ba, aa,
1-6
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and obtain the well-known transformations under the lo
gauge groupGl3Gr :

dc252ac2 , dA15]1a2@A1 ,a#,
~5.8!

dc152bc1 , dB25]2b2@B2 ,b#,

wherea5aata andb5bata .
In the case of the bosonic theory we have

Gm5J1a , J2a ,

lm5A2B2
a , A2A1

a ,

«m5ba, aa,

and

Dmn~s,s̄ !→62kdabd8~s2s̄ ! @m→~a,6 !,n→~b,6 !#.
(5.9)

The local gauge transformations for the fieldsA1 andB2 are
the same as in Eq.~5.8! and for matter fields we have

dqa52baE1a
a2aaE2a

a, ~5.10!

which yields

dg5bg2ga ~5.11!

~see@8# and the second Ref.@7#!.
Under these transformations we have, from Eqs.~5.6! and

~5.9!,

dW524A2kE d2 jtr$bB28 2aA18 %. ~5.12!

When we include the transformation of theDW Eq. ~3.36!

d~DW!524kE d2j tr$a]1A11b]2B2%, ~5.13!

we obtain

dWl ,r524kE d2j tr$a]2A11b]1B2%,

~5.14!
Al52k]2A1 , Ar52k]1B2 ,

whereWl ,r5W1DW as in Eq.~3.37!. In this case both left
and right symmetries are anomalous, which we denoted
indicesl ,r .

We can add the finite local counterterm

DWax524kE d2j tr$A1B2%, ~5.15!

and shift the anomaly from left-right to an axial one. T
redefined effective actionWax5Wl ,r1DWax is invariant un-
der the vector gauge transformation:a5b5«v ,

dvWax50, ~5.16!
04501
l

y

but not under the axial one:a52b5«ax ,

daxWax528kE d2j tr$«ax* F%, Aax54k * F,

~5.17!

where

* F5
1

2
«mnFmn , ~5.18!

and

F215]2A12]1B21@A1 ,B2#. ~5.19!

The second equation~5.17! is the well-known result for axial
anomaly.

The noninvariance of the effective action is a cons
quence of the nonconservation of the currents. The Ham
tonian equations of motion have anomalous divergent c
rents, instead of the conserved one in Eq.~2.11!. Taking into
accountDW and DWax , the same expressions forAl , Ar
Eq. ~5.14! and forAax Eq. ~5.17! can be obtained.

VI. CONCLUDING REMARKS

We presented here a complete and independent deriva
of the two-dimensional gauged WZNW model, using t
Hamiltonian methods. We also obtained Hamiltonian a
Lagrangian non-Abelian bosonization rules and the exp
sion for the anomalies.

We started with canonical analysis of the theory of ma
less chiral fermions coupled to the external gauge field.
found that there are FCC’sj 6a , whose PB satisfies two in
dependent copies of KM algebras without central charges
passing to the quantum theory, the central term appear
the commutation relations of the operatorsĵ 6a , which
changes the nature of constraints: they become SCC’s
stead of FCC’s.

We define the new effective theory, postulating the PB
the constraints and Hamiltonian density. Particularly, we
quire that the PB algebra of the classical bosonic the
should be isomorphic to the commutator algebra of the qu
tum fermionic theory. Then we found the representation
the currents and Hamiltonian density in terms of phase-sp
coordinates. Finally, we derived effective action using ge
eral canonical formalism and obtained the gauged WZN
model. We want to stress that we also got the topolog
Wess-Zumino term. The tensort6ab , as its origin, appears
in our approach as a general solution of the homogene
part of Eq. ~3.9!. The coefficient in front of the Wess
Zumino term is defined by the numerical value of the cen
charge and gives a correct expression for the winding nu
ber.

Once we established the connection between the fe
onic and the bosonic theories, it was easy to find
bosonization rules, just differentiating generating function
with respect to the background fields. Beside the us
bosonization rules, we also got the Hamiltonian ones,
pressing the currentsJ6a in terms of both coordinateqa and
1-7
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momentumpa . After elimination of momenta on the equa
tions of motion, we came back to the conventional boson
tion rules.

The algebra of the currentsJ6a is the basic PB algebra
Knowing its representation in terms ofqa and pa we can
find the representation for all other quantities from their
algebra with the currents. As an example we found
bosonization rules for the chiral densities.

The canonical approach is very suitable for the calculat
of the anomaly. The general formula~5.7! expresses the
anomaly as a function of the Schwinger term. The norm
ordering prescription for the quantum operators takes
role of left-right symmetric regularization scheme. So,
obtain both left and right anomalies. By adding the fin
local counterterm we in fact changed the regularizat
scheme, and shifted the anomaly from the left-right symm
ric to the axial one.

The Schwinger term, and consequently the WZNW mo
and the anomaly have the correct dependence on Plan
constant\, becausek is proportional to\. The fact that\
arises in the classical effective theory, shows its quan
origin.

In the case when the gauge fields are considered as
namical variables, integration over them yields constra
which reduce the number of degrees of freedom, remov
components of the currents corresponding to the anom
free subgroupH of the groupG. In fact it leads to the
Goddard-Kent-Olive~GKO! coset construction@12#, when
the energy-momentum tensor of the cosetG/H takes the
form Q6

G/H5Q6
G2Q6

H and bothQ6
G andQ6

H have the same
structure as in Sec. III A.

The canonical approach of this paper can be applied to
other symmetries. If we take the diffeomorphism transform
tions instead of the non-Abelian ones, then we will get V
rasoro algebra, 2D induced gravity, and conformal anom
instead of KM algebra, WZNW model, and axial anoma
The work of this program is in progress and will be pu
lished separately.
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APPENDIX: NORMAL ORDERING AND SCHWINGER
TERM

In this appendix we will derive the expression for th
central terms in the commutation relations~2.13!.

We define currentsĵ 6a as a quantum operators and intr
duce the normal ordering prescription. Usually, it is conv
nient to employ the Fourier expansion of the fields, identi
ing the modes as creation and annihilation operators w
respect to Fock vacuum state.

Following @11# we prefer to decompose operators in po
tive and negative frequencies in the position space. We
troduce two parts of the delta function
04501
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d (6)~s!5E
2`

` dk

2p
u~7k!eik(s7 i«)5

6 i

2p~s6 i«!
, ~«.0!,

~A1!

so thatd(s)5d (1)(s)1d (2)(s) with the following proper-
ties:

d (6)~2s!5d (7)~s!, ~d (1)!22~d (2)!25
2 i

2p
d8.

~A2!

Then for any operatorV̂(t,s) we can perform the split-
ting

V̂ (6)~t,s!5E
2`

`

ds̄d (6)~s2s̄ !V̂~t,s̄ !, ~A3!

whereV̂5V̂ (1)1V̂ (2).
Now, we adoptp̂1

(2) and ĉ1
(2) as creation operators an

p̂1
(1) and ĉ1

(1) as annihilation operators

p̂1
(1)u0&5ĉ1

(1)u0&50, ^0up̂1
(2)5^0uĉ1

(2)50. ~A4!

To preserve symmetry under parity transformations, we
fine creation and annihilation operators forp̂2 andĉ2 in an
opposite way@with the index (1) for a creation and index
(2) for an annihilation operator#. Then in the both cases, th
normal order for products of operators means that annih
tion operators are placed to the right of the creations one

From the basic commutation relations@ĉ6
i ,p̂6

j #
5 i\d i j d, we can conclude that the only nontrivial parts a

@ĉ1
(6)~s!,p̂1

(7)~ s̄ !#5 i\d (6)~s2s̄ !,
~A5!

@ĉ2
(6)~s!,p̂2

(7)~ s̄ !#5 i\d (6)~s2s̄ !.

After some calculation it is possible to check the commuta
algebra~2.13!. Because the central term is the only possib
difference compared to the PB algebra, the easiest wa
confirm Eq.~2.13! is to start with expression

@ ĵ 6a , ĵ 6b#5 i\~ f ab
c ĵ 6c6Dab!, ~A6!

and find its vacuum expectation value. With the help of t
Eq. ~A2! and with the convention tr$tatb%52 1

2 dab , we ob-
tain

Dab5
\

2p
tr$tatb%d852kdabd8, S k5

2\

8p D ~A7!

proving the first relation~2.13!.
Commutators@ ĵ 1 , ĵ 2# and @ û, ĵ # do not have central ex

tensions.
1-8
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