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Canonical approach to 2D WZNW model, non-Abelian bosonization, and anomalies
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The gauged WZNW model has been derived as an effective action, whose Poisson brackets algebra of the
constraints is isomorphic to the commutator algebra of operators in quantized fermionic theory. As a conse-
guence, the Hamiltonian as well as the usual Lagrangian non-Abelian bosonization rules have been obtained
for the chiral currents and chiral densities. The expression for the anomaly has been obtained as a function of
the Schwinger term, using canonical methods.

PACS numbeps): 11.10.Kk

[. INTRODUCTION the phase-space coordinat&, 7, and parametrize the con-
straintsJ.., by them. One of the main points of the paper is
It is well known that in 1 dimensions there exists an to find the expressions for the constraidts, and for the
equivalence between Fermi and Bose theories in the Abeliaganonical Hamiltoniar?<. in terms of phase-space coordi-
[1] and non-Abelian casg2]. In the latter Witten demon- nate, satisfying a specific PB algebra. We then use the gen-
strated that free field theory ™ massless Majorana fermi- €ral canonical methofb,7] for constructing the effective ac-
ons is equivalent to the nonlinear model with a Wess- tion W with the known representation of the constraints. By
Zumino term at the infrared-stable fixed point, because boti§liminating the momentum variables on their equations of
theories obey the same Kac-MootiM) algebras. The ex- mo_t|on_ we o_btaln the Bose theory in thg backgrpund fields,
tension of this equivalence has been considered by severdfich is equivalent to the quantum fermi theory in the same
authorg[3]. They introduced external chiral gauge fields andbaquround. This Bose theory is known agauged WZNW
showed the identity of the effective actions which implies the2ction . L : .
identity of correlation functions. In Sec. IV we deriveHamiltoniannon-Abelian bosoniza-

In this paper. starting with non-Abelian fermionic theor tion rules. It is easy to obtain the formulas for the currents,
Paper, 9 yjust differentiating the functional integral with respect to the

coupled with background gauge fields, we are going to con- i , —
struct the equivalent bosonic theory for general gauge groupbfwkgml‘Ind fields. We also derive the rules iy and

Our approach is different from the previous one and natu#Ys¥ terms, using the approach of this paper. Note that our

rally works in theHamiltonianformalism. We believe that it Hamiltonian bosonization formulas for the currents depend
gives a simpler resolution of the problem. on the momenta, while those for mass term depend only on

The classical fermionic theory is invariant under local the coordinates. Witten's non-Abelian bosonization rules can

non-Abelian gauge transformations. Consequently, the ﬁré?e obtained from the Hamiltonian ones, after eliminating the
class constraint§=CC's) ., are present in the theory and momenta. _ _ _
bra. In the quantum theory theentral termappears in the Ccanonical method. We extend the general canonical formal-
commutator algebra of the operatdrs,, so that the con- ism, from systems with FCC's 1o the' systems with SCCS
straints become second cla&CC’9 which implies the ex- where the central term appears. We find the expressions for

istence of the anomallg]. These known results will be re- the left-right, as well as for the axial anomaly.

peated in Sec. Il for completeness of the paper and in ordetr Section Vl'is devoted to concluding remarks. The.d(.arlvq—
to fix our notation. ion of the central term, using normal ordering prescription is

We define the effective bosonized theory, as a cIassica{:fresemed in the Appendix.
theory whose PB algebra of the constraidts, is isomor-

phic to the commutator algebra of the operatprs, in the Il. CANONICAL ANALYSIS OF THE FERMIONIC
quantized fermionic theory. This is how the bosonized theory THEORY
at the classical level incorporates anomalies of the quantum
fermionic theory_ A. Classical theory

In Sec. lll we find the effective actiow, for given alge— Let us consider the theory of tWO_dimensiomD) mass-
bra as its PB algebra. The similar problems has been consigess Majorana fermiong/' (i=1, ... N), interacting with

ered before in the literaturi]. Using the method of coad- the external Yang-Mills field&\, andB,, , with the action
joint orbits, they showed that KM algebra yields the Wess-

Zumino-Novikov-Witten (WZNW) model. Here we are )
going to present a new, canonical approach. We introduce =] d%¢

%W—JA#WJBZVW. 2.1)

*Email address: sazdovic@phy.bg.ac.yu We can rewrite it as
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P : cpab;
s= [ detivtir +ivtip igtu vty Pelamdid et At 20 240
or that both vector and axial vector currents are conserved.
=i \/E(Ai Pt +BR Yt )], (2.2 The currentg _, andj ., correspond to the arbitrary mul-
tipliers A% and B® , respectively in Eq(2.9), and conse-
We chose anti-Hermitian matricégas the generators of the guently they are FCC’s. Equation&.6) lead to the same
gauge group G, introduce light-cone component¥.  conclusion.
=1/\2(Vo=V,) for the vectors, and write the gauge poten-  Therefore, the classical theory has local non-Abelian
tials asA, =A%t, and B_=B%t,. We use the basis®  gauge symmetries, whose generators satisfies the corre-
=01, y'=—ioy ys=7°y'=03 and define the Weyl sponding PB algebré2.6).
spinors by the conditiongsy. =+ ¢ . For simplicity, we
write %y, and Yit,p. instead of Ziyt'yl and B. Quantum theory
i g i [ '
]The férmionic action2.2) is already in the Hamiltonian In passing from theA?IaSS'C?Ij t(? the quantum gloma:n, we
form and we can conclude that there are two basic LagrangPtroduce the operatorg.. and . instead of the fields.
ian variabIeSz,//i, and lI/L appearing with time derivative, and 7', , replace the PB_ by the commutators, and defl_ne_ the
whose conjugate momenta aﬂgziwy Variables without COMPposite operators using the normal ordered prescription
time derivativesA% andB? , are Lagrange multipliers and

the primary constraints corresponding to them are the cur-
rents

jia::%tta;ﬁt:r 9¢=1%tfb£1- (2.12

The gauge field&\% andB? will be considered as classical
it =t 23 backgrou_nd fields. .
Jra=lPilafe = matalhs @3 Then, instead of the PB algebf2.6) and (2.7) we obtain

The canonical Hamiltonian density can be expressed in term@orresponding commutator algebra
of the chiral quantitied.. PN ] o , A A
. Uxardzo]=iAilfap]=c6E 26800, [ivari-p]=0,
He=0,—06_ (at:|¢i‘/’,1:77i‘//,1)- (2-4) A . o (2.13
0+,.+ :|ﬁ+ 5,, 0"’!.: :0,
Starting with the basic PB 62 Jzal Jza 62 J=al
_ o - _ with «=—%/8m. For details of the derivations see the Ap-
{¢i(0),m(0)}=8"8(0—0), (2.5  pendix.

_ o ) In the quantum theory, as well as in the classical one, we
we can find that PB of the currents satisfies two independenfiso have a pair of commuting KM algebras but this time
copies of KM algebrasvithout central charges with a central charge in this case known as the Schwinger

S . S term. Therefore, the constrairjts, which were FCC’s in the

Uzari=ot=Tap’T=c6, {ivas)-p=0. (2.6 T2a

classical theory, become SCC operatprs in the quantum

We also have the relations theory. This means that the theory is anomalous, because the
classical symmetry generated by FCQ's, is destroyed at
{0+, j+a}=]+ad"y {0-,jzat=0, (2.7)  the quantum level. After quantization the theory obtains new
o degrees of freedom.
which imply Note that under parity transformatiéh . — ¢ , so that
(Herjaad=%].ad. 2.8 Plea(r.0)P=];a(r,—0) andPb.(7,0)P=—0(r,—0).
Consequently, relation€.13 with plus and minus indices
The total Hamiltonian takes the form are connected by parity transformation. This means that our
regularization scheme is left-right symmetric, because the
HT:f dof H + \/E(Aij B 2.9 ?hoerronr;all order prescription takes the regularization role of the

The consistency conditions for the currents Il GAUGE WZNW MODEL AS AN EFFECTIVE ACTION

j+a:{j caoHT =it \/EfabCB"ij Yco The PB algebrd2.6) is the symmetry generator algebra,
(2.10 becausg .., are of the FCC. The commutator algel§gal3
j = _aH ==t \/EfabCAﬁj s is the algebra of dynamical variablésxcept the zero modes,

seg[8]), because there is a constant central term on the right-
do not lead to new constraints, because the right-hand sidémnd side. Our intention is to find theffective theoryfor
of Egs. (2.10 are weakly equal to zero. In fact, the last these variables, which means the quantum version of the
equation means that chiral currents are separately conservadtion (2.1).
) ) b We introduce new variable3., and ®. and postulate
D j1a=0d-jra—fap'B2j.c=0, that their classical PB algebra
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CANONICAL APPROACH TO 2D WZNW MODEL, NON.. ..
{J:a:th}:fabc‘]tc5i2K5ab5la {‘]+a1‘]—b}:0-

(3.1)

{: Jaaf=J246", {t Jzap=0,

is isomorphic to the commutator algeligal3 of the opera-

torsj., and 6. . We also define the canonical and the total

Hamiltonian densities in analogy with Eq®.4) and (2.9

Hr=He+\2(A2J_,+B%J,,).
(3.2

HC:®+_®*'

We should construct the canonical effective acMinfor
the theory with PB algebré3.1) and with Hamiltonian den-

sity (3.2). In Sec. Il A we are going to find the expressions

PHYSICAL REVIEW D 62 045011

EiaaayEthPtaB+ Etaa&y(Etb'BPtﬁa)

+EiaaEibB(‘9BPta7_aaptﬂy)zov (31@
because the coefficients in front f and § must vanish
separately.

If we define the symmetric tensor
Y+aB™ EiaaEtﬁb(Sab! (3.1

we can rewrite EQ(3.9) asP. 51+ P.g,=*2k7y+,5 and
find its general solution

PiaﬁZZK(TiaBi% ’)/iaﬁ)v (312

for the currents and Hamiltonian density in terms of thewherer. ,;=— 7. g, iS SOme antisymmetric tensor. The first
phase-space variables, and then in Sec. Il B we will applyterm is a solution of the homogeneous part and the second

general canonical methd®,7] to find the actionw.

A. Bosonic representation for the PB algebra

Let us “solve” Egs.(3.1), i.e., find the expressions for the
currentsJ.., and for the energy-momentum tens@r. in

terms of the coordinatg® and the corresponding momenta

T, , Which satisfies

{q%, 7} = 836. (3.3
We will start with theansatzthat the currents are linear in
the momenta
‘]ta:_Eiaa(ﬂ-a—‘rRia)i (34)

where the coefficientg . ,* andR.. , are the functions of|*
only, and do not depend on the,. We also suppose that the
matricesE .. ,* have inverses, which we denote By 2. The
indicesa, B, ... run over the same range ad, ... .

Substituting Eq(3.4) into the first equatior{3.1) we ob-
tain an equation linear inr,. The vanishing coefficient in
front of momentum gives

EpPdpEra®—Exd’dpE L™= —fop’Esc”, (3.9
or equivalently
IgE 2 o= 0,E - g°=To°E L 2E L 6", (3.6
The second conditioterm withoutsr) yields
E.a®Exp[{7, Rept+{Rey mgt]= tzf«aaba".(3 .

On the right side there is a derivative of tiefunction, so

there must also be a derivative on the left side, and we su

pose that
Reo=Pap()a?. (39
Using this in Eq.(3.7) we obtain two conditions,
EiaaEibB(Ptaﬁ+ P.ga) =T 2K6,p, 3.9

and

one is a particular solution of the full equation.
With the help of Eqs(3.6) and(3.12 we can obtain, from
Eg. (3.10,

— = b
(9a7'iﬁy+ &BTi ,ya+ (9,},7':0,5— -+ % fabCEiaaEiB Et,yc.

(3.13

Therefore, from the first Eq3.1) we got two relations(3.6)
and(3.13. The first one is a condition on the. ,*'s and the
second one defines. ,4's in terms ofE. ,*'s.

From the second E@3.1) we also obtain three equations:

Eta®d,E_P—E_,*9,E.P=0,
(3.14)

[—E;a"0aE Py TE 9,E o P g,
+E4 0% E_pP(P_gatPong)
FE "B P~ 0uP -yt 0P 0yt 5P pa)]A” =0,
(3.15
and
(3.16

as a coefficients in front of 36, & andE, ,“E_,P¢’ respec-
tively. From Egs(3.12), (3.16), and the symmetry properties
of r and vy, follows

P+aﬁ+ P,BQZO,

(3.17

and consequently, from now we will just call them, and
Yap SO that Eq(3.12) becomes

T+aB:Tfa,Bl ’eraB:’yfaﬁv

PtaﬁZZK(TaBi% Yaﬁ)- (318)

FV\/ith the help of Eqs(3.6) and(3.11) we recognizeE. 2 as

vielbeins on the group manifold, ang,; as the Cartan met-
ric in coordinate basis.

Equation (3.15 is a linear combination of equations
(3.13, (3.14), and(3.16, and does not give anything new.
We will discus Eq.(3.14) soon.

To make the geometric interpretation clearer we introduce
a differential form notation. Let us define the pair of Lie-
algebra valued 1-forms

045011-3
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v-=t,E.%,dq", (3.19

and the 2-form

1 B
T=§Taﬁdqadq . (3.20

Then Eqgs(3.6) become the Maurer-CartdiMiC) equations
(3.21

They have a simple solutions in which the MC forms are
expressed in terms of group-valued fielgls as

dv.+v2=0.

(3.22

In new notation Eq.(3.13 with the help of Eq.(3.17
obtains the form

v.=g. 'dg..

(3.23

— = 1 2
dT—+§(vi !vt);

where (X,Y) is the Cartan inner product defined dg,{;)
= 8ap, SO that in our normalizationt{,t,) = — 2 tr{t,ty}.
From the second Ed3.17) and Eq.(3.11) we have

(U+ ,U+)=(U_ ,U_), (324)
and from Eq.(3.23
(vy,02)=—(v_,v2). (3.2

The Cartan-Killing form ¥K,Y) is invariant under the adjoint
action of the group elememnt (g~ *Xg,97 Y g)=(X,Y), so
we can conclude that, andv_ are connected as

1

(3.2

whereg is a group valued field. Substituting E®.22 in Eq.
(3.26) we easily obtain thag=g_=g.* and finally

v_=—0g

v+0,

v_=g ldg. (3.2

Let us now come back to E3.14). After some transfor-
mations we can write it as

vy.=gdg *,

(3.28

or with the help of Eq(3.21) asv® =g~ *v2 g. Therefore, it
is not a new relation but the consequence of BR6).
The final result for the current components is

dv_=g 'dv.g,

Jia=—E. Y mo+2k ’

g |. (3.29

1
Taﬁiiyaﬁ

We still need to “solve” the last two equation@.1).

Because all expressions with the opposite chirality commute,
we will take ® .=0.(J-,). The group invariant expres-

sions

1 B
®t:iﬂﬁ Jiadsp, (3.30

PHYSICAL REVIEW D 62 045011

representing the components of energy-momentum tensor, is
the solution we are looking for. It is enough to use only the
first two relations(3.1) and not the expression8.29, to
check that Eq(3.30 satisfies the last two equatiof3.1).

If we try to add a new term for the energy-momentum
tensor, it must commute with both, , andJ_,, and conse-
guently should be trivial. For example, the term proportional
to J' ,, which is often a part of the energy-momentum tensor
is not a solution of Eq(3.1). This term, as a total space
derivative, will not contribute to the effective action. The
solutions for the currents, where they are not limited to be
linear in the momenta, would lead to serious technical com-
plications.

B. Effective action

We are ready to construct the effective action based on
the general canonical formalism. It takes the standard form

W(q!ﬂ-iA!B): f dzg(ﬂ-aqa_HT)! (331)
where the total HamiltoniarH;=0_,—0_+2(A%J_,
+B?%J,,), is defined in Eq(3.2). The expressions for the
current components and for the energy-momentum tensor
components in terms of canonical paig*(w,) are defined
in Egs.(3.29 and(3.30.

To find the usual second-order form of the action, we will
eliminate the momentum variables, on their equations of
motion

. 1
qe— ﬁ?’aﬁ(‘]ﬂﬁ"Lﬁ)—i_ V2(A2+B%)=0, (3.32

where AY=E,*,A%, B*=E_*B* and J.,
=—E.,2J.,. With the help of Eq(3.29 we have on the
equations of motion

J4=\2k(3.q*+A? +B%). (3.33

Substituting this in Eq(3.31), after some calculations we
find

W(q,A,B)=Wo(q) +Wi(q,A,B), (3.34

where
Wo(q)=—f d*¢P_pd-qd. 9"
:KJ d?E(yap—27,5)9-q%d, 0P,
Wl(q,A.B)=2Kf dzf[ﬁan+aaA+a
+9,.QE_2B_,+A%E ,*E_,"B_,

1
+5(ATA o+ BiB_a)} (3.39
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It is possible to add to the effective action some local _
functional, depending on the fields, andB_ . In order to ZF(AB)ZJ dip.dy_e'Stvs V- AB), (4.1
cancel the last term in E¢3.35 we add
The final result depends only on the background fidlégsd
- 240 pa a B. The bosonic expression foW depends not only oA and
AW Kf dEAA BB, (3.39 B, but also on some auxiliary fieldg® andr,, in the Hamil-
tonian andg in the Lagrangian case. So, after integration
and get over auxiliary fields we can eliminate them and obtain

W, =W+AW, (3.37) |
ZB(A,B):I dﬂ-dqéW(q,w,A,B),
where the meaning of the indices will be clear in Sec. V.

In the differential form notation, with Cartan inner prod- (4.2
uct normalization, using the Stoke’s theorem we have ZB(A'B)ZJ dgeWi.r(wAB),
1 1 ) I .
Wo(u)=§Kf *vs ,vi)igkf (v+,0%), for the Hamiltonian and the Lagrangian approach, respec-
3. M

tively. We are not going to do the integrations explicitly,
because they lead to nonlocal expression in tern#sarfdB,
(v, A—*A)—(v_ B+ *B) even in the Abelian case. We only conclude tAatshould

(W, + AW)(U,A,B,):KJ’E be proportional taZg

1 Ze~Zg. 4.3

~3B+Bg A" A P “9
This functional integral identity admits interpretation in

(3389 terms of bosonization. Differentiating E¢4.3) with respect

a a ; — 00— ;
Here,Wy(v) is the well-known WZNW mode]2,9]. As de- to B‘. an'd A and sett!ngA+—O B" we obt.aln .

. . . bosonization rules for chiral currents in non-Abelian theory.
fined in Eq.(3.19, v are the Lie algebra valued 1-forms

and *v .. are the dual of . . Both expressions folVy(v) are If we choose the expressiohi(g, 7,A,B) from Ed.(3.3D

equal on the basis of Eqe.24 and(3.25. The first term is as an effective action we get the Hamiltonian bosonization
. . . . rules

the action of the nonlinear model, while the second one is

the topological Wess-Zumino term, defined over a three

manifold M whose boundary is the spacetimd =2.. For

our value ofk=—%/8 it reads

(5t — —Exq®(mat+ Paggdf), (4.4)

and if we chooséV, ((v,A,B) from Eq. (3.38), we get the
well-known Lagrangian bosonization rules

h 1 B B

— dg,g 'dgg ldg), 3.3

247JM(9 9.9 ~dog o) 339 3y tahs — — V2997 ?
so that it is well-defined modulo 2in, whereneZ is a £ g _)_\/EKgfl& 9 “.9
winding number. We want to stress that the proper value of e -
« for which quantum theory is single valued is determined
from the central charge, which we obtained using just the B. The chiral densities bosonization rules
normal ordered prescription in quantum fermionic theory. It is possible to add the mass term

The expression folW;+ AW is the regular part of the

gauge extension of the WZNW action. It has been obtained %p: PGP, (4.6)
in the process of consistent gauge invariant extension of the
WZNW model[10]. to the action(2.1) and find the corresponding expression in

Starting with the PB algebréB.1) and Eq.(3.2), we ob-  terms of the bosonic variables. Let us introduce the chiral
tained the actiori3.38 for any value of the constamt. But,  densities
the uniqueness of the irreducible representation of the KM

algebra, as well as topological argumef2$ force it just to — 1+ g . _
the same value as in our normal-order approach. pe=¥ 5 Y=yYidr=—Tts. (4.7)
IV. BOSONIZATION All expressions are matrices with indiceg (for example
p'l=—ial ¢') but we will omit them for simplicity.

A. The chiral currents bosonization rules It is easy to find the PB between the chiral densities and

In the previous section we obtained the effective actdn the currentg .. ,, defined in Eq(2.3
for the massless Fermi theory in the external gauge fields.
This is equivalent, to solving the functional integral {jxa,p+}=(p=+12)8, {j<a.ps}=—(tapz)d6. (4.9

045011-5
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In the quantum theory the central term does not appear, sof any quantityF(,q), and
the commutation relations, up té, are the same as PB Eq.

(4.8). The commutators with the currerjts, completely de- N N P (5.3
fine the expressions far. . . of the Lagrange multipliera™, if G, are the FCC's,

For the bosonic representations, insteaghofwe intro-
duce the corresponding matrix valued expressivns, de- {Gm,Gn}=Tm’Gpd, {H¢,.Gmf=hy"Gnd". (5.9

pending on the bosonic variables. Their PB algebra Wwith

should be isomorphic to the operators aIgebrfapixvith T:a Here we adopted the notation appropriate for field theory.

In the case where the central term is present the first equa-
{Jta!Yt}:(Ytta)5! {J:a,Y:}:_(taY:)& tion (54) becomes

“.9 (GG}t = fmiPGpo+An(0,0). (5.5

Both relations(4.9) will give the same result, so we will i i
solve only the first one. We want to preserve the gauge transformations of the fields

Assuming thafY . does not depend on the momenta, and(®>-2 and (5.3. Then the Schwinger term appears in the
using the expressiof3.29 for the current, we obtain the Variation of the effective action

equation o -
5W=—fddfd)\m A ,0)e"(o). (5.6
EL %Y= Y.t 4.10 mdo | doN"(0)Amy(o,0)e"(0). (5.6
Multiplying it with E-.2,dq?, with the help of Eq(3.19 we The method we have used works only for actions linear in
get - the gauge fields.\™. We can add arbitrary local functional
AW(\™) to the effective action and obtain the general ex-
Y ldY.i=v.. (4.11)  pression for the anomaly
Comparing last equation with E3.27), we conclude that _
An(0,7)= ———
6" (o, 1)
Y+:Mg_11 Yszga (412
whereM is a constant. Becausgis dimensionlessM has :f doA (o, 0N (o, 7) + mAW-
dimension of mass. At the end, we can complete our '
bosonization formulas for the chiral densities (5.7)

— -~ 1 The nontrivial part of the anomaly is proportional to the
Yy—Y. +Y_=M(g+g ), Schwinger term, because it breaks the symmetry and mea-
— . (413 sures noninvariance of the effective action.
pysyp—Y . —Y_=M(g "—9). We want to emphasize, that we do not need the expres-
sion for the generator§,, in terms of 7, andq® to obtain
gs.(5.6) and (5.7). It is enough to know only the central
m, and the anomaly will depend on the gauge fiéfdbut
not on the phase-space coordinate.

They are the same for the Hamiltonian and Lagrangian cas
because they do not depend on the momenta and agree w|
those of Ref[2].

V. CANONICAL APPROACH TO ANOMALIES B. The left-right and the axial anomalies

A. From Schwinger term to anomalies In the previous section, we used the canonical method just
The Schwinger term breaks the symmetries, changing thas a useful technical tool in order to obtain gauge transfor-
generators from the FCC's to the SCC’s. It is interesting tomations for the Lagrange multipliers”. We shall now take
investigate its influence on the transformation properties ofhe currents to be our FCC8,,, and the gauge fielda%
the effective action. andB? instead of the Lagrangian multipliexs". From this
Let us extend the previously described general canonicgloint on, we will continue considering the gauge fields as the
method for constructing the effective action, from the knownbackground fields with the same gauge transformations. The
PB algebra to the case with the central term. The basic ideease where the gauge fields are dynamical variables will be

of that approach was that the action discussed in the conclusion.
We can apply this method to the classical fermionic
W:f d2§[,n_aqa_Hc_)\me] (51) theory with
o _ Gm=l+a, I-a:
is invariant under gauge transformations
AN"=\2B%, \2A%,
¥ (0)=[F(o. [ doerenm| 62 g

045011-6



CANONICAL APPROACH TO 2D WZNW MODEL, NON.. ..

PHYSICAL REVIEW D 62 045011

and obtain the well-known transformations under the locabut not under the axial onet=— B=¢,,,

gauge grous X G, :
5([/*:_6((&*1
Shy=—PBi,, SB_=d_p-[B_,Bl,

wherea= a?t, and 8= B%,.
In the case of the bosonic theory we have

oA =d,a—[A a],
(5.9

Gm:JJraa

A\"=.2B? ,

J_a,

V2AY,
8m:ﬁa a?
and

Ap(0,0)— 28,58 (0—0) [m—(a,+),n—(b,*+)].

(5.9)

The local gauge transformations for the fiekls andB_ are
the same as in Eq5.8) and for matter fields we have

89%=—BPE, "~ a®E_,", (5.10
which yields

69=pB9—ga (5.19

(see[8] and the second Reff7]).
Under these transformations we have, from Eg%) and
(5.9,

SW= —4@4 d2&r{BB. —aA,}.  (5.12

When we include the transformation of thaV Eq. (3.3
S(AW) = —4Kj d?¢tr{ad, A, +Bi_B_}, (5.13

we obtain

W, = —4Kf d*étr{ad A, + B9, B_},

(5.19

A=2kd_A,, A =2kd,B_,

whereW, . =W+AW as in Eq.(3.37). In this case both left

5axwax=—8,<f d?etr{en*F},  Ag=4Kx*F,

(5.17
where
* 1 14
Fzzs“ Fuvs (5.18
and
F_.=0_A,—d,B_+[A,,B_]. (5.19
The second equatioid.17) is the well-known result for axial
anomaly.

The noninvariance of the effective action is a conse-
quence of the nonconservation of the currents. The Hamil-
tonian equations of motion have anomalous divergent cur-
rents, instead of the conserved one in E11). Taking into
accountAW and AW,,, the same expressions fot,, A,

Eq. (5.14 and for A,, Eq. (5.17 can be obtained.

VI. CONCLUDING REMARKS

We presented here a complete and independent derivation
of the two-dimensional gauged WZNW model, using the
Hamiltonian methods. We also obtained Hamiltonian and
Lagrangian non-Abelian bosonization rules and the expres-
sion for the anomalies.

We started with canonical analysis of the theory of mass-
less chiral fermions coupled to the external gauge field. We
found that there are FCC’s.,, whose PB satisfies two in-
dependent copies of KM algebras without central charges. In
passing to the quantum theory, the central term appears in

the commutation relations of the operatofs,, which
changes the nature of constraints: they become SCC’s in-
stead of FCC'’s.

We define the new effective theory, postulating the PB of
the constraints and Hamiltonian density. Particularly, we re-
quire that the PB algebra of the classical bosonic theory
should be isomorphic to the commutator algebra of the quan-
tum fermionic theory. Then we found the representation for
the currents and Hamiltonian density in terms of phase-space
coordinates. Finally, we derived effective action using gen-
eral canonical formalism and obtained the gauged WZNW
model. We want to stress that we also got the topological

and right symmetries are anomalous, which we denoted byV/€SS-Zumino term. The tenser. .z, as its origin, appears

indicesl,r.
We can add the finite local counterterm

AWaX=—4KJ' d2¢tr{A B_}, (5.15

in our approach as a general solution of the homogeneous
part of Eq.(3.9. The coefficient in front of the Wess-
Zumino term is defined by the numerical value of the central
charge and gives a correct expression for the winding num-
ber.

Once we established the connection between the fermi-

and shift the anomaly from left-right to an axial one. Theonic and the bosonic theories, it was easy to find the

redefined effective actiow,,=W, ,+ AW, is invariant un-
der the vector gauge transformation= 8=¢,,

8, Wax=0, (5.16

bosonization rules, just differentiating generating functionals

with respect to the background fields. Beside the usual

bosonization rules, we also got the Hamiltonian ones, ex-
pressing the currents. , in terms of both coordinatg® and
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momentumsr, . After elimination of momenta on the equa- dk o +
tions of motion, we came back to the conventional bosonizaﬁ(i)(U)ZJ za(Ik)e'k(“'S):m, (e>0),
tion rules. o - (A1)
The algebra of the currentk. , is the basic PB algebra.
Knowing its representation in terms of* and 7, we can ¢, thats(o) = &) (o) + &)(o) with the following proper-
find the representation for all other quantities from their PByja-
algebra with the currents. As an example we found the
bosonization rules for the chiral densities. —i
The canonical approach is very suitable for the calculation ~ 6)(—o)= 6 (o), (8()%— (5(‘))2=2— 5.
of the anomaly. The general formul®.7) expresses the 7 (A2)
anomaly as a function of the Schwinger term. The normal
ordering prescription for the quantum operators takes the -
role of left-right symmetric regularization scheme. So, we Then for any operatof)(7,0) we can perform the split-
obtain both left and right anomalies. By adding the finiteting
local counterterm we in fact changed the regularization
scheme, and shifted the anomaly from the left-right symmet-
ric to the axial one.
The Schwinger term, and consequently the WZNW model
and the anomaly have the correct dependence on Planck’s A A -
constantfi, becausex is proportional tofi. The fact thati ~ whereQ =0+ Q).
arises in the classical effective theory, shows its quantum Now, we adoptr! ) and ¢! ) as creation operators and
origin. S (+) ~(+) B
In the case when the gauge fields are considered as df/-£+ and " as annihilation operators
namical variables, integration over them yields constraints ~(+) ~ (4 ~ (0 ~ (o)
which reduce the number of degrees of freedom, removing 7 0)=¢3"[0)=0, (0|7 ’=(0lyy’'=0. (A4)
components of the currents corresponding to the anomaly
free subgroupH of the groupG. In fact it leads to the To preserve symmetry under parity transformations, we de-
Goddard-Kent-Olive(GKO) coset constructiori12], when  fine creation and annihilation operators for and#_ in an
the energy-momentum tensor of the co&H takes the opposite way[with the index (+) for a creation and index
form ©@%"=0¢ -0 and both®$ and®'! have the same (—) for an annihilation operatdrThen in the both cases, the
structure as in Sec. Il A. normal order for products of operators means that annihila-
The canonical approach of this paper can be applied to thgon operators are placed to the right of the creations one.
other symmetries. If we take the diffeomorphism transforma-  rrom  the basic  commutation relationg ;/,L ]
tions instead of the_non-AbeIian ones, then we will get Vi-:méijé' we can conclude that the only nontrivial par_ts are
rasoro algebra, 2D induced gravity, and conformal anomaly
instead of KM algebra, WZNW model, and axial anomaly. ~ (5 )T () —
The work of this program is in progress and will be pub- [ (o), m (o) ]=1h 6 (0= o),
lished separately. (A5)
[ (o), 75 (o) ]=1h 6D (- 0).

é<i><7,a)=fw 506 (o-0)U(r,0),  (A3)
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APPENDIX: NORMAL ORDERING AND SCHWINGER [JzaJxp]=i(fap’) s c = Aap), (A6)
TERM

and find its vacuum expectation value. With the help of the

Eqg. (A2) and with the convention fit,t,} = — 3 5,,, we ob-

tain

In this appendix we will derive the expression for the
central terms in the commutation relatiof®&13.

We define currentista as a quantum operators and intro-
duce the normal ordering prescription. Usually, it is conve-
nient to employ the Fourier expansion of the fields, identify- A
ing the modes as creation and annihilation operators with
respect to Fock vacuum state.

Following [11] we prefer to decompose operators in posi-Proving the first relatio2.13.
tive and negative frequencies in the position space. We in- Commutatorgj . ,j_] and[6,j] do not have central ex-
troduce two parts of the delta function tensions.

h
tr{tatb}5,:2K53b5,, ( K= _) (A?)

ab:ﬁ 8
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