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Massive basketball diagram for a thermal scalar field theory
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The ‘‘basketball diagram’’ is a three-loop vacuum diagram for a scalar field theory that cannot be expressed
in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature,
reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We
use this result to calculate the free energy for a massive scalar field with af4 interaction to three-loop order.

PACS number~s!: 11.10.Wx, 11.10.Ef
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I. INTRODUCTION

One of the obstacles to making progress in thermal fi
theory is that the technology for explicit perturbative calc
lations is underdeveloped. The formalism of thermal fie
theory is sufficiently complicated that there are often th
retical issues that are difficult to resolve without explicit c
culations. An example is the gluon damping rate, which
the conventional perturbative expansion is plagued by pr
lems involving gauge invariance. A formal solution to th
problem by the resummation of hard thermal loops was p
sented by Braaten and Pisarski in 1990@1#. However, the
solution was not widely accepted until the leading order
pression for the damping rate was calculated explicitly@2#.

Around 1994, there was a significant step forward in
calculational technology for massless theories. The first p
turbative calculation in thermal field theory that was carr
out to high enough order that the running of the coupl
constant came into play was a calculation of the free ene
of a massless scalar field theory to orderg4 by Frenkel, Saa,
and Taylor in 1992@3#. In 1994, there were several oth
calculations of the free energy to fourth order in the coupl
constant: a calculation by Coriano` and Parwani for QED@4#
and completely analytic calculations by Arnold and Zhai@5#
for a massless scalar theory~correcting an error in Ref.@3#!
and for QCD. Arnold and Zhai@5# made a particularly sig-
nificant contribution by showing how three-loop vacuum d
grams, such as the so-called ‘‘basketball diagram’’ labe
2b in Fig. 1, could be evaluated analytically. These analy
calculations were then quickly extended to orderg5 for
massless scalar theories@6,7#, Abelian gauge theories@8,9#,
and non-Abelian gauge theories@10,11#. These explicit cal-
culations revealed that the weak coupling expansion has
vergence problems whose severity had not previously b
appreciated.

Calculations in theories that include massive particles
nonzero temperature are more difficult, because there
second scale in the problem. The calculational technol
for massive theories is much less well developed than
for massless theories. In addition to the obvious applicati
to theories with massive particles, calculations with mass
propagators may also be useful for massless theories. In
0556-2821/2000/62~4!/045004~10!/$15.00 62 0450
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theories, some of the most important thermal correctio
have the effect of generating masses for the massless
ticles. These corrections may be responsible for the p
convergence properties of the weak coupling expansion.
of the most promising methods for resumming these corr
tions in scalar field theories is ‘‘screened perturbati
theory’’ proposed by Karsch, Patko´s, and Petreczky@12#.
This method involves adding and subtracting a mass t
from the Lagrangian and treating the subtracted term a
perturbation. The integrals encountered in the screened
turbative expansion are those of the corresponding mas
theory. Screened perturbation theory has been applied to
free energy at the two-loop level, and it seems to dram
cally improve the convergence of the perturbative ser
@12#. To determine how effective this method is in resum
ming the large perturbative corrections, it is essential to c
culate higher order corrections explicitly.

In this paper, we take a step forward in the calculatio
technology for massive field theories by evaluating the b
ketball diagram. The diagram cannot be evaluated ana
cally, but we reduce it to expressions that involve integr
that are at most three dimensional and can easily be ev
ated numerically. Using our result for this diagram, we c
culate the free energy for the massivef4 field theory through
next-to-next-to-leading order in the coupling constantg2.

II. BASKETBALL DIAGRAM

The basketball diagramis the diagram labeled 2b in Fig
1. At nonzero temperatureT, it involves a threefold sum
integral over Euclidean momenta:

Iball5X

PQR

1

P21m2

1

Q21m2

1

R21m2

1

~P1Q1R!21m2 .

~1!

The Euclidean four-momentum isP5(p,p452pnT), where
n is an integer, and its square isP25p21p4

2. The sum inte-
gral XP represents the sum over the Euclidean energies
the integral over the spatial momentum:
©2000 The American Physical Society04-1
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X

P

5T(
p4

E
p
. ~2!

We use dimensional regularization of the integral ovep
to cut off the ultraviolet divergences in the sum integral. O
convention for the measure in the integral is

E
p
5S egm2

4p D e E d322ep

~2p!322e
, ~3!

where 322e is the number of spatial dimensions,g is Eul-
er’s constant, andm is an arbitrary momentum scale. Th
factor ofm2e gives the dimensionally regularized integral~1!
dimensions of~energy! 4.

A. Decomposition into integrals

In order to evaluate the sum integral~1!, we first reduce it
to integrals that contain factors of the Bose-Einstein dis
bution functionn(E)51/(ebE21) with positive energyE.
We use the method of Bugrij and Shadura@13# which ex-
presses the coefficients of the Bose-Einstein factors in te
of S-matrix elements at zero temperature. This strategy
also used by Frenkel, Saa and Taylor@3# to evaluate the
massless basketball diagram. Although the derivation by
grij and Shadura is lengthy, their final result can be obtain
by making some simple substitutions in the expression~1!.
The sum integrals over Euclidean momentaP5(p,p4) are
replaced by integrals over Minkowski momentap5(p0 ,p):
XP→2 i *p . The Euclidean propagators are replaced by
Minkowski propagators of the real-time formalism:

1

P21m2 → i S i

p22m21 i«
1n~ up0u!2pd~p22m2! D , ~4!

wherep25p0
22p2. The sum integral~1! is then given by the

real part of the resulting expression, which now involves
threefold integral over Minkowski momenta. For some of t
integration momenta, the energy appears in the argumen
a Bose-Einstein distribution. It is convenient to Wick-rota
the remaining integration momenta back to Euclidean sp
*p→ i *P , where the measure of the dimensionally regul
ized integral over the Euclidean momentumP is

E
P

5S egm2

4p D e E d422ep

~2p!422e
. ~5!

Having carried out this procedure, the basketball diagr
can be expressed as the sum of terms with different num
of Bose-Einstein factors:

Iball5I (0)14 I (1)16 I (2)14 I (3). ~6!

The term with four Bose-Einstein factors is purely imagina
and it vanishes when we take the real part. The other te
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I (0)5E
PQR

1

P21m2

1

Q21m2

1

R21m2

1

~P1Q1R!21m2 ,

~7!

I (1)5E
p
nd~p!E

QR

1

Q21m2

1

R21m2

3
1

~P1Q1R!21m2 U
P252m2

, ~8!

I (2)5ReE
p
nd~p!E

q
nd~q!E

R

1

R21m2

3
1

~P1Q1R!21m2 U
(P1Q)252(p1q)22 i«

, ~9!

I (3)5ReE
p
nd~p!E

q
nd~q!E

r
nd~r !

~21!

~p1q1r !22m21 i«
,

~10!

where we have used the shorthandnd(p)5n(up0u)2pd(p2

2m2).

B. Zero thermal factors

We first consider the termI (0), which is the integral for
the zero-temperature basketball diagram. The poles ine for
this diagram have been calculated by Kastening@14# and by
Chung and Chung@15#. The finite terms in the diagram ca
be obtained by following the strategy used in Appendix B
Ref. @7# to calculate the zero-temperature basketball diagr
in three dimensions.

The diagram is first Fourier transformed to coordina
space, which reduces it to an integral over a single coo
nateR:

I (0)5E
R
V4~R!, ~11!

where the potentialV(R) is

V~R!5S egm2

4p D e 1

~2p!22e S m

RD 12e

K12e~mR! ~12!

andKn(z) is a modified Bessel function. The measure for t
integration overR is

E
R

5S egm2

4p D 2eE d422eR. ~13!

After integrating over angles in 422e dimensions, the inte-
gral reduces to

I (0)5
m4

~4p!6 S egm2

m2 D 3e 32

G~22e!
E

0

`

dtt2112eK12e
4 ~2t !.

~14!
4-2
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The t→0 region of the integral gives poles ine. The small-
t behavior of the Bessel function is given by the power-se
expansion

K12e~2t !5
G~12e!t211e

2
1

G~12e!G~e!

2

3(
j 50

` S t2 j 111e

~ j 11!!G~ j 111e!
2

t2 j 112e

j !G~ j 122e! D .

~15!
n

of
e

04500
s
In the integral overt in Eq. ~14!, the poles ine come from
the t2516e, t2316e, t2314e, t2116e, t2114e, and t2112e

terms. We can calculate the poles analytically by multiplyi
each of these terms by an appropriate convergence factor
integrating overt. After these terms, with their convergenc
factors, are subtracted from the original integrand, the
maining integral is convergent fore50 and can be evaluate
numerically. We choose convergence factors of the fo
(e8t)ne28t, where (ex)n is the truncated power series for th
exponential function: (ex)n5( i 50

n xi / i !. This convergence
factor behaves like 11O(tn11) at smallt, and has the same
exponential falloff asK1

4(2t) at larget. The resulting expres-
sion for the integral is, in the limite→0,
E
0

`

dtt2112eK12e
4 ~2t !5

G4~12e!

16 E
0

`

dt t2112ee28tF t2414e~e8t!41
4t2212e

e S t2e2
G~11e!

G~22e! D ~e8t!2

1
2t2e

e~11e! S t2e2
2G~21e!

G~32e! D1
6

e2S t2e2
G~11e!

G~22e! D
2G

1E
0

`

dt
1

t H K1
4~2t !2

e28t

16 F 1

t4 ~e8t!41
4

t2 ~2 logt12g21!~e8t!212S 2 logt12g2
5

2D
16~2 logt12g21!2G J . ~16!
’’

f.
n-

ral

-

The first integral in Eq.~16! can be evaluated analytically i
terms of gamma functions, and it reduces in the limite→0
to

G~116e!H 1

e3 1
17

6e21
59236p2

12e
2

821

24
1381 log 2

290 log222216 log322
61p2

6
212p2log 2

227c9~1!J , ~17!

wherec(z) is the digamma function. The numerical value
the second integral in Eq.~16! is 0.36106. Inserting thes
results into Eq.~14! and keeping terms through ordere0, our
final result is

I (0)5
1

~4p!6 S m

mD 6eF 2

e3 1
23

3e21
351p2

2e
1C0Gm4,

~18!

where the numerical value of the constant isC0539.429.

C. One thermal factor

The expression~8! for I (1) can be written as

I (1)5I sun~2m2!E
p
n~ up0u!2pd~p22m2!, ~19!
whereI sun(P2) is the integral for the ‘‘setting sun diagram
in the boson self-energy at zero temperature:

I sun~P2!5E
QR

1

Q21m2

1

R21m2

1

~P1Q1R!21m2 .

~20!

The integral overp in Eq. ~19! can be written as

E
p
n~ up0u!2pd~p22m2!5

1

~4p!2 S m

mD 2e

J1T2, ~21!

where J1 is a function ofbm defined by Eq.~A5! in the
Appendix.

The setting-sun integral~20! at P252m2 can be evalu-
ated by following the strategy used in Appendix B of Re
@7# to calculate the corresponding integral in three dime
sions. After Fourier transforming, it reduces to an integ
over a single coordinateR:

I sun~2m2!5E
R
eiP•RV3~R!uP252m2. ~22!

After averaging over angles in 422e dimensions and evalu
ating atP252m2, the exponential factor becomes

^eiP•R&uP252m25G~22e!S 2

mRD 12e

I 12e~mR!, ~23!
4-3
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whereI n(z) is a modified Bessel function. The integral ov
R then reduces to a one-dimensional integral, and Eq.~22!
becomes

I sun~2m2!5
m2

~4p!4 S m

mD 4e

16e2ge

3E
0

`

dt t2112eI 12e~2t !K12e
3 ~2t !. ~24!

The t→0 region of the integral gives poles ine. The small-
t behavior of the Bessel functionI 12e(2t) is given by the
power-series expansion

I 12e~2t !5(
j 50

`
t2 j 112e

j !G~ j 122e!
. ~25!

In the integral overt in Eq. ~24!, the poles ine come from
the t2314e, t2114e, andt2112e terms. We can calculate th
poles analytically by multiplying each of these terms by
appropriate convergence factor and integrating overt. After
these terms, with their convergence factors, are subtra
from the original integrand, the remaining integral is conv
gent fore50 and can be evaluated numerically. We choo
convergence factors of the form (e6t)ne26t. The resulting
expression for the integral is, in the limite→0,

E
0

`

dtt2112e I 12e~2t ! K12e
3 ~2t !

5
G2~12e!

8~12e!
E

0

`

dt t2112ee26tF t2212e~e6t!21
t2e

22e

1
3

e S t2e2
G~11e!

G~22e! D G1E
0

`

dt
1

t H I 1~2t !K1
3~2t !

2
e26t

8 F 1

t2 ~e6t!21
1

2
13~2 logt12g21!G J . ~26!

The first integral in Eq.~26! can be evaluated analytically i
terms of gamma functions, and it reduces in the limite→0
to

G~114e!H 2
3

4e22
11

8e
2

167

16
1

5

2
log 613 log261

3p2

2 J .

~27!

The numerical value of the second integral in Eq.~26! is
21.2713. Inserting these results into Eq.~24! and keeping
terms through ordere0, we obtain

I sun~2m2!5
1

~4p!4 S m

mD 4eF2
3

2e2 2
17

4e
1C1Gm2, ~28!

where the numerical value of the constant isC1529.8424.
Inserting Eqs.~28! and ~21! into Eq. ~19!, our final result is
04500
ed
-
e

I (1)5
1

~4p!6 S m

mD 6eF2
3

2e2 2
17

4e
1C1GJ1m2T2. ~29!

Note that the integralJ1 depends one.

D. Two thermal factors

The expression~9! for I (2) involves the ‘‘bubble inte-
gral’’

I bubble~P2!5E
R

1

R21m2

1

~P1R!21m2, ~30!

which can be evaluated using a Feynman parameter:

I bubble~P2!5
1

~4p!2 S m

mD 2eF1

e
2E

0

1

dx log
m21x~12x!P2

m2 G .
~31!

The real part of the integral evaluated atP252(p1q)2

2 i« is obtained by simply replacing the argument of t
logarithm by its absolute value. When Eq.~31! is inserted
into Eq.~9!, the coefficient of 1/e can be evaluated using Eq
~21!. Reducing the other term to an integral over spatial m
menta, we obtain

I (2)5
1

~4p!6 S m

mD 6eH 1

e
J1

2T4

232E
0

`

dp
p2n~Ep!

Ep
E

0

`

dq
q2n~Eq!

Eq

3(
s

E
0

1

dxK log
um22x~12x!~Es

22k2!u
m2 L J ,

~32!

where Es5Ep1sEq , k5up1qu, the sum is overs56,
and the angular brackets denote the average over the a
of p andq. It is convenient to change the angular integrati
variable tok. The integral overx in the angular average the
reduces to

E
0

1

dxK log
um22x~12x!~Es

22k2!u
m2 L

5
1

2pqEup2qu

p1q

dkk @ f 2~Es ,k!22#, ~33!

where the function in the integrand is
4-4
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f 2~E,k!5S E22Mk
2

E22k2 D 1/2

log
~E22k2!1/21~E22Mk

2!1/2

~E22k2!1/22~E22Mk
2!1/2

~k2,E224m2!

52S Mk
22E2

E22k2 D 1/2

arctanS E22k2

Mk
22E2D 1/2

~E224m2,k2,E2!

5S Mk
22E2

k22E2 D 1/2

log
~Mk

22E2!1/21~k22E2!1/2

~Mk
22E2!1/22~k22E2!1/2

, ~E2,k2!, ~34!
it,

e

ge
l
re

the
andMk
254m21k2. Our final result is

I (2)5
1

~4p!6 S m

mD 6eF S 1

e
12D J1

21K2GT4, ~35!

where K2 is the function ofbm defined by the following
integral:

K252
32

T4E
0

`

dp
pn~Ep!

Ep
E

0

p

dq
qn~Eq!

Eq

3E
p2q

p1q

dkk(
s

f 2~Es ,k!. ~36!

In the limit m→0, K2 reduces to

K2→2
~4p!4

72 F log
4pT

m
2

1

2
2

z8~21!

z~21! G , ~37!

wherez(z) is the Riemann zeta function. In that same lim
J1 reduces to

J1→
~4p!2

12 H 112eF2 log
4pT

m
111

z8~21!

z~21! G1O~e2!J .

~38!

Inserting Eqs.~37! and ~38! into Eq. ~35!, we obtain the
expression forI (2) in the limit m→0:

I (2)→ 1

144~4p!2 S m

4pTD 6eF1

e
1716

z8~21!

z~21! G . ~39!

This agrees with the analytic result first obtained by Frenk
Saa, and Taylor@3#.

E. Three thermal factors

The integralI (3) in Eq. ~10! is finite in three spatial di-
mensions, so we can sete50 from the beginning. After
using the delta functions to integrate overp0 , q0, andr 0, the
integral reduces to
04500
l,

I (3)5
128

~4p!6E
0

`

dp
p2n~Ep!

Ep
E

0

`

dq
q2n~Eq!

Eq
E

0

`

dr
r 2n~Er !

Er

3(
s,t

K P ~21!

Est
2 2k22m2L , ~40!

whereEst5Ep1sEq1tEr , k5up1q1r u, the sum is over
s56 and t56, the angular brackets denote the avera
over the angles ofp, q, and r , andP denotes the principa
value prescription for the poles in the propagator. Befo
averaging over the angles ofp, q, andr , it is convenient to
use the symmetry in the integration variables to impose
restriction r ,q,p while multiplying by 3!. We can then
average over angles using the identity

^F~ up1q1r u!&5
1

4pqrE0

p1q1r

dkkw~p,q,r ,k! F~k!,

~41!

where the weight function for the caser ,q,p is

w~p,q,r ,k!52k u~q1r 2p! ~0,k,up2q2r u!

5k1q1r 2p ~ up2q2r u,k,p1r 2q!

52r ~p1r 2q,k,p1q2r !

5p1q1r 2k ~p1q2r ,k,p1q1r !.

~42!
Integrating overk, our final result is

I (3)5
1

~4p!6 K3T4, ~43!

where K3 is the function ofbm defined by the following
integral:

K35
96

T4E
0

`

dp
pn~Ep!

Ep
E

0

p

dq
qn~Eq!

Eq
E

0

q

dr
rn~Er !

Er

3(
st

@ f 3~Est ,p1q1r !2 f 3~Est ,p1q2r !

2 f 3~Est ,p2q1r !1 f 3~Est ,p2q2r !#. ~44!

The function in the integrand is
4-5
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f 3~E,p!5p log
m22E21p2

m2

12~m22E2!1/2arctan
p

~m22E2!1/2
~E2,m2!

5p log
uE22m22p2u

m2

1~E22m2!1/2log
~E22m2!1/21p

u~E22m2!1/22pu
~E2.m2!.

~45!

The integralK3 in the limit m→0 was calculated by Fren
kel, Saa, and Taylor numerically@3# and by Arnold and Zhai
analytically @5#:

K3→
~4p!4

48 F2
7

15
1

z8~21!

z~21!
2

z8~23!

z~23! G . ~46!

Its numerical value in this limit isK3→453.51.

F. Total

The final result for the basketball diagram is obtained
inserting Eqs.~18!, ~29!, ~35!, and Eq.~43! into ~6!:

Iball5
1

~4p!6 S m

mD 6eH F 2

e3 1
23

3e21
351p2

2e
1C0Gm4

1F2
6

e2 2
17

e
14C1GJ1m2T21S 6

e
112D J1

2T4

1~6K214K3!T4J . ~47!

To obtain the Laurent expansion including all terms throu
order e0, it remains only to expand the factor (m/m)6e and
the integralJ1 in powers ofe. In the limit m→0, Eq. ~47!
reduces to the analytic result obtained by Arnold and Z
@5#:

Iball→
1

24~4p!2 S m

4pTD 6eF1

e
1

91

15
18

z8~21!

z~21!
22

z8~23!

z~23! G .
~48!

III. THREE-LOOP FREE ENERGY

Using our result for the massive basketball diagram,
can calculate the free energy for a massive scalar field th
with a f4 interaction to three-loop order. The Lagrangian f
the field theory is

L5
1

2
]mf]mf2

1

2
m̄2f22

1

24
ḡ2m2ef41DL, ~49!
04500
y

h

i

e
ry

r

whereDL includes the counterterms. We define the para
etersm̄ and ḡ by dimensional regularization and minima
subtraction, so they depend implicitly on the renormalizat
scalem.

A. One loop

The free energy at zeroth order inḡ is given by the one-
loop diagram labeled 0 in Fig. 1:

F052
1

2
I08 , ~50!

where the sum integralI08 is defined by Eq.~A1! in the
Appendix. Keeping only the temperature-dependent te
the result for the one-loop contribution to the free energy

F052
1

2~4p!2 S m

m̄
D 2e

J0T4, ~51!

whereJ0 is the function ofbm̄ defined in Eq.~A5!. In the
limit e→0, this function reduces to

J0ue505
16

3T4E
0

`

dp
p4

Ep
n~Ep!. ~52!

B. Two loops

The free energy at second order inḡ comes from the
two-loop diagram labeled 1a in Fig. 1, and also from inse
ing the order-ḡ2 mass countertermD1m2 into the one-loop
diagram:

F15F1a1
]F 0

]m̄2
D1m2. ~53!

The expression for the diagram 1a is

F1a5
1

8
ḡ2I 1

2 , ~54!

where the sum integralIn is defined in Eq.~A2!. Keeping
only the temperature-dependent terms, this diagram is

F1a5
ā

8~4p!2 S m

m̄
D 4eF22S 1

e
111O~e! D J1m̄2T21J1

2T4G ,
~55!

FIG. 1. One-loop, two-loop, and three-loop diagrams contrib
ing to the free energy.
4-6
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where ā5ḡ2/(4p)2. The pole proportional toJ1m̄2T2 is
canceled by the last term in Eq.~53!. The identity~A6! is
useful for calculating the derivative]J0 /]m̄2 in that term.
The mass counterterm is thereby determined to be

D1m25
1

2e
ām̄2. ~56!

Our final result for the two-loop contribution to the free e
ergy is

F15
ā

8~4p!2
@22~ L̄11!J1m̄2T21J1

2T4#, ~57!

whereL̄5 log(m2/m̄2) andJ1 is the function ofbm̄ defined in
Eq. ~A5!. In the limit e→0, it reduces to

J1ue505
8

T2E
0

`

dp
p2

Ep
n~Ep!. ~58!

C. Three loops

The free energy at second order ing2 comes from the
three-loop diagrams labeled 2a and 2b in Fig. 1, and a
from inserting counterterms into the one-loop and two-lo
diagrams:

F25F2a1F2b1
]F1a

]m̄2
D1m21

F1a

ḡ2
D1g2

1
1

2

]2F0

~]m̄2!2
~D1m2!21

]F 0

]m̄2
D2m2. ~59!

The expressions for the diagrams 2a and 2b are

F2a52
1

16
ḡ4I 1

2I2 , ~60!

F2b52
1

48
ḡ4Iball . ~61!

Using the expressions forIn in the Appendix and forIball in
Eq. ~47!, the temperature-dependent terms in these diagr
are

F2a5
ā2

16~4p!2 S m

m̄
D 6eF2S 1

e2 1
2

e
131

p2

6 D J2m̄4

12S 1

e2 1
1

e
111

p2

6 D J1m̄2T212S 1

e
11D J1J2m̄2T2

2
1

e
J1

2T42J1
2J2T4G , ~62!
04500
o
p

s

F2b5
ā2

16~4p!2 S m

m̄
D 6eF S 2

e2 1
17

3e
2

4

3
C1D J1m̄2T2

2S 2

e
14D J1

2T42S 2K21
4

3
K3DT4G . ~63!

The identity~A6! is useful for computing the derivative
with respect tom̄2 in Eq. ~59!. The pole ine proportional to
J1

2T4 in Eq. ~62! is canceled by theD1g2 term in Eq.~59!.
After taking into account the terms in Eq.~59! involving
D1m2, the remaining poles in Eqs.~62! and~63! are propor-
tional to J1m̄2T2 and are canceled by theD2m2 term in Eq.
~59!. The new counterterms that enter at this order are

D1g25
3

2e
āḡ2, ~64!

D2m25S 1

2e2 2
5

24e D ā2m̄2. ~65!

Our final result for the three-loop contribution to the fre
energy is

F25
ā2

16~4p!2 F2~ L̄11!2J2m̄41S 4L̄21
28

3
L̄242

p2

3

2
4

3
C1D J1m̄2T212~ L̄11!J1J2m̄2T22~3L̄14!J1

2T4

2J1
2J2T42S 2K21

4

3
K3DT4G , ~66!

whereC1529.8424. The functionsK2 , K3 , J0, andJ1, are
given by Eqs.~36!, ~44!, ~52!, and~58!, andJ2 is

J2ue5054E
0

`

dp
1

Ep
n~Ep!. ~67!

The complete result for the free energy to orderā2 is the
sum of Eqs.~51!, ~57!, and~66!.

IV. PHYSICAL PARAMETERS

In this section, we express the free energy in terms of
physical massm of the boson at zero temperature and t
physical coupling constantg defined by the threshold sca
tering amplitude at zero temperature.

A. Physical mass

The physical massm of the scalar particle at zero tem
perature is given by the location of the pole in the propa
tor. If P(P2) is the self-energy function in Euclidean spac
thenm satisfies

P21m̄21P~P2!50 at P252m2. ~68!
4-7
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This equation can be solved perturbatively form2 as a func-
tion of the parametersm̄ andḡ defined by dimensional regu
larization and minimal subtraction. To express the free
ergy in terms ofm to three-loop order, we need to calcula
m2 to orderḡ4.

The one-loop self-energyP1, which is independent ofP2,
can be written

P15P1a1D1m2. ~69!

The expression for the one-loop diagram 1a in Fig. 2 is

P1a5
1

2
ḡ2I 1 , ~70!

where the one-loop integralI 1 is given in Eq.~A12!. Adding
the counterterm in Eq.~56!, the one-loop self-energy is

P152
1

2
~ L̄11!ām̄2. ~71!

The two-loop self-energy function, which depends onP2, is

P2~P2!5P2a1P2b~P2!1
]P1a

]m̄2
D1m21

P1a

ḡ2
D1g21D2m2.

~72!

The expressions for the two-loop diagrams 2a and 2b in
2 are

P2a52
1

4
ḡ4I 1I 2 , ~73!

P2b~P2!52
1

6
ḡ4I sun~P2!. ~74!

To calculate the physical mass to orderā2, we need the
value ofP2a(P2) only at P252m̄2. Inserting the values for
I 1 and I 2 from the Appendix and the value ofI sun(2m̄2)
from Eq. ~28!, we obtain

P2a5
ā2

4 S m

m̄
D 4eF 1

e2 1
1

e
111

p2

6 Gm̄2, ~75!

P2b~2m̄2!5
ā2

4 S m

m̄
D 4eF 1

e2 1
17

6e
2

2

3
C1Gm̄2. ~76!

Combining all of the terms in Eq.~72!, the value of the
two-loop self-energy atP252m̄2 is

FIG. 2. One-loop and two-loop diagrams that contribute to
self-energy.
04500
-

g.

P2~2m̄2!5F1

2
L̄21

7

6
L̄2

1

2
2

p2

24
2

1

6
C1G ā2m̄2. ~77!

The solution to Eq.~68! for m2 to orderā2 is

m25m̄21P11P2~2m̄2!. ~78!

Inserting Eqs.~71! and~77! into Eq.~78!, our final result for
the physical mass to orderā2 is

m25F12
1

2
~ L̄11!ā1S 1

2
L̄21

7

6
L̄2

1

2
2

p2

24
2

1

6
C1D ā2Gm̄2.

~79!

B. Physical coupling constant

A convenient physical definition of the coupling consta
g is that the amplitude for 2→2 scattering is exactly2g2 at
threshold where all four particles have four-momentump
5(m,0). To express the free energy in terms ofg to three-
loop order, we need to calculateg2 to orderḡ4.

The one-loop expression for the negative of the scatte
amplitude at threshold is

g25ḡ22
1

2
ḡ4 @ I bubble~24m2!12I bubble~0!#1D1g2,

~80!

where the bubble integral is defined in Eq.~30!. Using the
result ~31!, the values of the bubble integrals that appear
Eq. ~80! are

I bubble~24m2!5
1

~4p!2 S m

m̄
D 2eF1

e
12G , ~81!

I bubble~0!5
1

~4p!2 S m

m̄
D 2e

1

e
. ~82!

We have neglected the difference betweenm and m̄ in the
bubble integrals because it is higher order inā. Inserting
Eqs.~81! and ~82! together with Eq.~64! into Eq. ~80!, our
final result for the physical coupling constanta5g2/(4p)2

is

a5F12S 3

2
L̄11D ā G ā. ~83!

C. Three-loop free energy

To express the three-loop free energy in terms of
physical mass and coupling constant, we need to invert E
~79! and ~83! to obtainm̄2 and ḡ2 in terms ofm2 and g2,
insert them into our expression for the free energy, and
pand to ordera2. Inverting Eqs.~79! and ~83!, we obtain

m̄25F11
1

2
~L11!a1S 1

2
L21

1

3
L111

p2

24
1

1

6
C1Da2Gm2,

~84!

e

4-8



-

ib

y

it

g
e

g

ave
-
ion

an

n
e

r a

As
ory
-
ling
he
the
ing

hods

ent

t of

e
i-

ree

an

MASSIVE BASKETBALL DIAGRAM FOR A . . . PHYSICAL REVIEW D 62 045004
ā5F11S 3

2
L11DaGa, ~85!

where L5 log(m2/m2), not to be confused with L̄

5 log(m2/m̄2) in Eqs.~79! and~83!. Upon inserting these ex
pressions into the sum of Eqs.~51!, ~57!, and ~66!, and ex-
panding to ordera2, all the terms that depend onL cancel.
Our final expression for the temperature-dependent contr
tion to the free energy in terms of physical parameters is

F52
1

2~4p!2 FJ02
a

4
J1

2

1
a2

8 S 2J1
21J1

2J212K21
4

3
K3D GT4, ~86!

whereKn and Jn are the functions ofbm defined by Eqs.
~36!, ~44!, ~52!, ~58!, and~67!. This expression is remarkabl
compact.

The effect of the interaction on the free energy~which is
the negative of the pressure! is illustrated in Fig. 3. We nor-
malize the free energy to that of an ideal gas of particles w
the same physical massm, which is given byF0 in Eq. ~51!.
We plotF/F0 as a function ofT/m on a logarithmic scale for
two different values of the physical coupling constant:a
50.1 and a50.4, which correspond tog53.97 and g
57.95, respectively. The dashed lines are the free ener
truncated after the order-a terms. The solid lines are the fre
energies truncated after the order-a2 terms.

For T!m, the three-loop result for the free energy~86!
approaches

F→F0H 12
a22a2

2 S 2pT

m D 1/2

e2m/TJ . ~87!

The exponential approach to the free energy of an ideal
is evident in Fig. 3. Note that the order-a2 correction is
smaller than the order-a correction only if a, 1

2 . For T
@m, Eq. ~86! approaches

FIG. 3. Free energy normalized to that of an ideal gas vsT/m
for a50.1 and 0.4. The dashed and solid lines are the two-
three-loop approximations to the free energy, respectively.
04500
u-

h

ies

as

F→F0H 12
5

4
a1F5p

4

T

m
2

15

4
log

T

m
26.6245Ga2J .

~88!

In the order-a2 correction, the linearly divergentT/m term is
the first of a series of infrared divergent terms that beh
like an11(T/m)2n21. These terms come from the ring dia
grams which, when summed to all orders, give a correct
of 1(5A6/3)a3/2. The logarithm in the order-a2 correction
term arises from the running of the coupling constant. It c
be absorbed into the order-a correction term by replacing the
physical coupling constanta by ā(T), the modified minimal
subtraction ~MS! coupling constant with renormalizatio
scalem5T. For T@m, we expect the three-loop result to b
a good approximation only if thea2T/m correction is small
compared to thea correction, which requiresT!m/(pa).

V. SUMMARY

We have reduced the thermal basketball diagram fo
massive scalar field theory with af4 interaction to three-
dimensional integrals that can be evaluated numerically.
an application, we calculated the free energy for this the
to ordera2. The result is particularly simple if the free en
ergy is expressed in terms of the physical mass and coup
constant. Another useful application of our result for t
massive thermal basketball diagram would be to extend
calculation of the free energy for the massless theory us
screened perturbation theory to three-loop accuracy@16#.

Note added.After this paper was completed, Chung@17#
provided us with analytic expressions for the coefficientsC0
andC1 defined in Eqs.~18! and ~28!:

C05
275

12
1

23

2
z~2!22 z~3!,

C152
59

8
2

3

2
z~2!.

These analytic expressions can be derived using the met
described in Refs.@18,19#.
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APPENDIX: ONE-LOOP SUM-INTEGRALS

The one-loop sum-integrals required to calculate the f
energy to orderg4 are

d
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I0852X

P

log~P21m2!, ~A1!

In5X

P

1

~P21m2!n . ~A2!

The sum integralI08 is the derivative ofIn with respect to its
index evaluated atn50. These integrals satisfy

]

]m2I0852I1 , ~A3!

]

]m2 In52nIn11 . ~A4!

The specific sum integrals that are required areI08 , I1,
and I2. The temperature-dependent terms in the sum in
grals can be conveniently expressed in terms of the follow
integrals:

Jn5
4egeG~ 1

2!

G~ 5
2 2n2e!

m2e

T422nE0

`

dp
p422n22e

Ep
n~Ep!. ~A5!

These integrals are functions ofbm only and satisfy the
recursion relation

m
]

]m
Jn52eJn22~bm!2Jn11 . ~A6!

If we separate out the temperature-dependent terms in
one-loop sum-integrals, the resulting expressions are
04500
e-
g

he

I085
1

~4p!2 S m

mD 2eF egeG~11e!

e~12e!~22e!
m41J0T4G , ~A7!

I15
1

~4p!2 S m

mD 2eF2
egeG~11e!

e~12e!
m21J1T2G , ~A8!

I25
1

~4p!2 S m

mD 2eFegeG~11e!

e
1J2G . ~A9!

To calculate the physical mass and coupling constant,
also need the one-loop Euclidean momentum integralsI 1 and
I 2 defined by

I n5E
P

1

~P21m2!n . ~A10!

These integrals satisfy

]

]m2 I n52nIn11 . ~A11!

The integralsI 1 and I 2 are identical to the temperature
independent terms in Eqs.~A8! and ~A9!, respectively. Ex-
panding arounde50, these integrals are

I 15
1

~4p!2 S m

mD 2eF2
1

e
212S 11

p2

12D e1O~e2!Gm2,

~A12!

I 25
1

~4p!2 S m

mD 2eF1

e
1

p2

12
e1O~e2!G . ~A13!
s.
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