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Massive basketball diagram for a thermal scalar field theory
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The “basketball diagram” is a three-loop vacuum diagram for a scalar field theory that cannot be expressed
in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature,
reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We
use this result to calculate the free energy for a massive scalar field wifhirteraction to three-loop order.

PACS numbsds): 11.10.Wx, 11.10.Ef

I. INTRODUCTION theories, some of the most important thermal corrections
have the effect of generating masses for the massless par-
One of the obstacles to making progress in thermal fieldicles. These corrections may be responsible for the poor
theory is that the technology for explicit perturbative calcu-convergence properties of the weak coupling expansion. One
lations is underdeveloped. The formalism of thermal fieldof the most promising methods for resumming these correc-
theory is sufficiently complicated that there are often theodions in scalar field theories is “screened perturbation
retical issues that are difficult to resolve without explicit cal-theory” proposed by Karsch, Patkpand Petreczky12].
culations. An example is the gluon damping rate, which inThis method involves adding and subtracting a mass term
the conventional perturbative expansion is plagued by probffom the Lagrangian and treating the subtracted term as a
lems invo|ving gauge invariance. A formal solution to the perturbation. The integrals encountered in the screened per-
problem by the resummation of hard thermal loops was preturbative expansion are those of the corresponding massive
sented by Braaten and Pisarski in 1990. However, the theory. Screened perturbation theory has been applied to the
solution was not widely accepted until the leading order exfree energy at the two-loop level, and it seems to dramati-
pression for the damping rate was calculated expli¢@ly cally improve the convergence of the perturbative series
Around 1994, there was a significant step forward in thel12]. To determine how effective this method is in resum-
calculational technology for massless theories. The first perhing the large perturbative corrections, it is essential to cal-
turbative calculation in thermal field theory that was carriedculate higher order corrections explicitly. .
out to high enough order that the running of the coupling In this paper, we take a step forward in the calculational
constant came into play was a calculation of the free energ{echnology for massive field theories by evaluating the bas-
of a massless scalar field theory to ordérby Frenkel, Saa, Ketball diagram. The diagram cannot be evaluated analyti-
and Taylor in 19923]. In 1994, there were several other cally, but we reduce it to expressions that involve integrals
calculations of the free energy to fourth order in the couplingthat are at most three dimensional and can easily be evalu-
constant; a calculation by Coriaramd Parwani for QE4] ated numerically. Using our result for this diagram, we cal-
and completely analytic calculations by Arnold and Zf&i ~ culate the free energy for the massi#efield theory through
for a massless scalar theofyorrecting an error in Ref3]) ~ Next-to-next-to-leading order in the coupling constght
and for QCD. Arnold and Zhdi5] made a particularly sig-
nificant contribution by showing how three-loop vacuum dia-
grams, such as the so-called “basketball diagram” labeled
2b in Fig. 1, could be evaluated analytically. These analytic The basketball diagranis the diagram labeled 2b in Fig.
calculations were then quickly extended to ordgr for 1. At nonzero temperaturd, it involves a threefold sum
massless scalar theorigs, 7], Abelian gauge theorigs,9], integral over Euclidean momenta:
and non-Abelian gauge theorigs0,11]. These explicit cal-
culations revealed that the weak coupling expansion has con-

Il. BASKETBALL DIAGRAM

vergence problems whose severity had not previously beenI _ j: 1 1 1 1
appreciated. ball PZ+m? QZ+m2 RZ+m2 (P+Q+R)2+m?’
Calculations in theories that include massive particles at POR 0

nonzero temperature are more difficult, because there is a

second scale in the problem. The calculational technology

for massive theories is much less well developed than thathe Euclidean four-momentum B=(p,p,=27nT), where

for massless theories. In addition to the obvious applications is an integer, and its square R¢=p?+ pﬁ. The sum inte-

to theories with massive particles, calculations with massiveyral ip represents the sum over the Euclidean energies and
propagators may also be useful for massless theories. In suthe integral over the spatial momentum:
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1 1 1 1
HESONE @ 10= f
b Pg JP P

orP?+m? Q%+ m? R°+m? (P+Q+R)?+m?’

(7
We use dimensional regularization of the integral oper 1 1
to cut off the ultraviolet divergences in the sum integral. Our 7(1)— f ng(p)f ———— =
convention for the measure in the integral is p QrRQ+ M R+ m
e? 2\ € d372€p X 1 (8)
p o\ AT ] ) (2m)3%
1
where 3-2¢ is the number of spatial dimensiong,is Eul- I(z)zRef n5(p)J né(q)J R
er's constant, angk is an arbitrary momentum scale. The P 4 R
factor of u2€ gives the dimensionally regularized integ¢al 1
dimensions ofenergy*. X > : (9)
(PHQHIRIHM o o= prar-ic
A. Decomposition into integrals (—1)
In order to evaluate the sum inte i it Z(®=Re| nd(p) | né&(q) | na(r)
gfa), we first reduce it p q (pra+n2—ml+is’
to integrals that contain factors of the Bose-Einstein distri- P q ' (10

bution functionn(E)=1/(e’E—1) with positive energyE.
We use the method of Bugrij and Shadyi8] which ex- _ 2
presses the coefficients of the Bose-Einstein factors in termvgv?ﬁzr;a_ we have used the shorthand(p) =n(|pol)274(p
of S-matrix elements at zero temperature. This strategy was
also used by Frenkel, Saa and Tay|&] to evaluate the
massless basketball diagram. Although the derivation by Bu-

grij and Shadura is lengthy, their final result can be obtained We first consider the terr@(®, which is the integral for
by making some simple substitutions in the expressin  the zero-temperature basketball diagram. The polas fior
The sum integrals over Euclidean momefta (p,p,) are  this diagram have been calculated by Kasteriitd] and by

B. Zero thermal factors

replaced by integrals over Minkowski momemia (po,p):  Chung and Chun§l5]. The finite terms in the diagram can
ip—>—ifp. The Euclidean propagators are replaced by thébe obtained by following the strategy used in Appendix B of
Minkowski propagators of the real-time formalism: Ref.[7] to calculate the zero-temperature basketball diagram
1 : in three dimensions.
: 2_ 2 The diagram is first Fourier transformed to coordinate
PZrm2 ! pz—m2+i(~3+n(|po|)2775(p M), @ space, which reduces it to an integral over a single coordi-
nateR:

wherep?=p3—p?. The sum integrall) is then given by the
real part of the resulting expression, which now involves a I(O):f VA(R), (11)
threefold integral over Minkowski momenta. For some of the R

integration momenta, the energy appears in the argument of
a Bose-Einstein distribution. It is convenient to Wick-rotatewhere the potential/(R) is
the remaining integration momenta back to Euclidean space:

Jo—1/p, where the measure of the dimensionally regular- Yu?\e 1 1-e
ized integral over the Euclidean momentdRiis VIR=| 7~ 2m? <R Ki-«(mR) (12
J’ _ e’ Ef d*"?p ©) andK ,(2) is a modified Bessel function. The measure for the
p |\ 4w (27r)42¢ integration ovemR is

Having carried out this procedure, the basketball diagram f :(emz) Ef d42<R. (13)
can be expressed as the sum of terms with different numbers R 4m
of Bose-Einstein factors:

After integrating over angles in42¢ dimensions, the inte-

Toa=IO+4TW+6 7@+ 470, (6)  gral reduces to
4 2\ 3 -
The term with four Bose-Einstein factors is purely imaginary () _ L A —1+2¢ep4
erm v I 5| — dtt K$_.(2t).
and it vanishes when we take the real part. The other terms (4m)°\ m I'(2—¢€)Jo
are (14
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Thet— 0 region of the integral gives poles i1 The small- In the integral ovet in Eq. (14), the poles ine come from
t behavior of the Bessel function is given by the power-serieghe t~576¢, 73+6¢ =3+ (~1+6e ~1+de gngt-1+2e
expansion terms. We can calculate the poles analytically by multiplying

each of these terms by an appropriate convergence factor and
integrating ovett. After these terms, with their convergence
factors, are subtracted from the original integrand, the re-

F(l-et "¢ T'(1-e)l(e) maining integral is convergent fer=0 and can be evaluated
Ki-(20)= 2 2 numerically. We choose convergence factors of the form
(e®,e 8 where €9, is the truncated power series for the
- t2itite t2itl-e exponential function: €),=="_,x//i!. This convergence
X].=0 (G+DIT(j+1+e) |jIT(j+2— E))- factor behaves like £ O(t"*1) at smallt, and has the same

exponential falloff aé(‘l‘(Zt) at larget. The resulting expres-
(15 sion for the integral is, in the limig—0,

8t
2

o0 41— w —2+2¢
f dt~1*2ek? (2t):Le)f dt t—1+2ea—8t 4t (25_ I'(1+e)
0 o 16 0

t74+45(88t)4+

T(2—e¢)
2t [, 2l(2+e)) 6, T(1+e)?
Teirolt T Teoe ) @V TT2z=e
= 1, e 8 4 S
+f dt —{ Kj(2t)— ——=| 7 (e®) 4+ (2 logt+2y—1)(e®),+2| 2 logt+2y— =
ot 16 |t t 2
+6(2logt+2y— 1)2“. (16)

The first integral in Eq(16) can be evaluated analytically in wherel,{P?) is the integral for the “setting sun diagram”
terms of gamma functions, and it reduces in the ligit 0 in the boson self-energy at zero temperature:
to

1 17 59-367° 821 o (P?) = J ! ! !
I(1+6€)| 5+ g2t —5 54 +38Llog2 su orQ?+m?2 R+ m? (P+Q+R)2+m?
(20
61m” )
—90log2—216 log’2— 6 —12m“log 2 The integral ovep in Eq. (19) can be written as
27 8(p?— 21 ﬁz€JT2 21
=27y (1), 17 pn(|po|) mo(p m)—(4ﬂ_)2 m 175 (2D

whereys(z) is the digamma function. The numerical value of where J; is a function of Bm defined by Eq.(A5) in the
the second integral in Eq16) is 0.36106. Inserting these Appendix.

results into Eq(14) and keeping terms through ordef, our The setting-sun integrdR0) at P?=—m? can be evalu-
final result is ated by following the strategy used in Appendix B of Ref.
6e 5 [7] to calculate the corresponding integral in three dimen-
so__t (¥ 2,28 3w renlmt sions. After Fourier transforming, it reduces to an integral
(4m)°\m/ | 3 2e o over a single coordinat®:
(18
where the numerical value of the constanCig=39.429. loud —M%) = J'ReiP'RV3(R)|P2:7m2- (22
C. One thermal factor After averaging over angles in42e dimensions and evalu-
The expressioii8) for Z(X) can be written as ating atP?=—m?, the exponential factor becomes
) 2 1-€
I<l>=lsun(—m2)fn(lpol)zwa(pz—m2>, (19 <e'P'R>|pz_mz=F<2—e>(m li-(mR), (23
p
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wherel ,(z) is a modified Bessel function. The integral over . 1 w8 3 17 2
R then reduces to a one-dimensional integral, and (Z). 7t ):W = 22 1. TG Jim*T2. (29
becomes

e Note that the integral; depend

2y — Lad 2ve ote that the integral, depends ore.
Isun( m ) (477)4(m) 16e
Xf dt 12, (20K3_(21). (24) D. Two thermal factors
0 The expressior(9) for Z(3) involves the “bubble inte-
ral”

Thet—0 region of the integral gives poles & The small- g
t behavior of the Bessel function _(2t) is given by the 5 1 1
power-series expansion | bubbid P<) = fRR2+m2 PIRZFm? (30

2j+1-€

I (2t)= 2

i= oj +2_E) (25)

which can be evaluated using a Feynman parameter:

In the integral ovet in Eq. (24), the poles ine come from

2e 2 2
thet 3*4¢ t~174¢ andt~1*2¢ terms. We can calculate the (P?)= . (ﬁ) _ fldxlo m=+x(1-x)P
. o = _
poles analytically by multiplying each of these terms by an °“°" (4m)2\m 0 g m?
appropriate convergence factor and integrating dvéiter (31

these terms, with their convergence factors, are subtracted

from the original integrand, the remaining integral is conver-

gent fore=0 and can be evaluated numerically. We chooseThe real part of the integral evaluated Rf=—(p+q)?

convergence factors of the forme%),e ®. The resulting —ie is obtained by simply replacing the argument of the

expression for the integral is, in the Iimsit—>0, logarithm by its absolute value. When E@®1) is inserted
into Eq.(9), the coefficient of ¢ can be evaluated using Eq.
(21). Reducing the other term to an integral over spatial mo-

% Lio 5 menta, we obtain
fo dtt™12€ 1, (2t) KJ_(2t)

I2(1—¢) (= {2 1 (M)GE{:L 2
__ = —1+2eq—6t| t —2+2€( 6t 7(2) = = Z3%74
8(1—6) Odt t e t (e )2+2_€ (477)6 m € 1
2 2

3 I'(1+e) ” F p n(Ep)f q°n(Eq)

| $2e__ 3 —-32 d d

E(t T2—o + fo dt — 1,(2t)K3(2t) 0 p E, Jo q Eq

a6t 1 1 1 |m?—x(1—x)(E2—Kk?)|

-5 t—z(eﬁt)z+ 5+3(2logt+2y—1) ] (26) Xg fo dx| log - :
_ . , . (32
The first integral in Eq(26) can be evaluated analytically in
terms of gamma functions, and it reduces in the ligit 0
to where E,=E,+0E,, k=|p+q|, the sum is overr= =+,
3 5 3.2 and the angular brackets denote the average over the angles
11 167 5 ™ of p andg. It is convenient to change the angular integration
F(At4e) ~ 72" gc 16 T 2/096+3 log’é + T] ' variable tok. The integral ovek in the angular average then

(27 reduces to

The numerical value of the second integral in E26) is

—1.2713. Inserting these results into E84) and keeping 1 |m?—x(1—x)(E2—k?)|
terms through ordee®, we obtain f dx{ log 2
1“463 " c|m?, (o8 1p+dkkak2 33

where the numerical value of the constanCis= —9.8424.
Inserting Eqs(28) and (21) into Eq.(19), our final result is  where the function in the integrand is
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EZ_ Kk

fo(E, k)=
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(EZ_k2)1/2+(E2_ ME)l/Z

M 1/2
) log

E2_ k2

[ Mg-E?
2o

112
) arctar(

M§—E?

(EZ_ k2)l/2_(E2_ M ﬁ)l/Z

E2_ k2

Mi—E?

(K*<E?—4m?)

1/2
(E?—4m?<k?<E?)

{

k2—E?

andMZ=4m?+k>2. Our final result is

e

where K, is the function ofm defined by the following
integral:

1

(2) =
T = Gy

—+2 P2+ K, T, (35)

32 (>

Ko= — —r
2 T4 0

pn(Ep)fp an(gq)
d d
P7E, 99 E,

p+q
xf dkk>, fo(E, k). (36)
p—q o
In the limit m—0, K, reduces to
4m?* 4xT 1 ¢'(-1)
Kem=mploo =2 - @

where{(z) is the Riemann zeta function. In that same limit,
J, reduces to

2 47T

—log - +1+

(4

12

(-1

1+2e€ (=1

J1*>

+0(62)}.
(38

Inserting Eqgs.(37) and (38) into Eq. (35), we obtain the
expression fotZ(?) in the limit m—O0:

|

1
T 144412

{'(=1)
;+7+6ﬂ} (39

m

6e|
(2) LA
A | T)

This agrees with the analytic result first obtained by Frenkel,

Saa, and Taylof3].

E. Three thermal factors

The integralZ® in Eq. (10) is finite in three spatial di-
mensions, so we can set=0 from the beginning. After
using the delta functions to integrate oy®y, qq, andrg, the
integral reduces to

) l/ZIOg( M ﬁ_ EZ) l/2+ (k2_ E2)l/2
(Mﬁ_ E2)l/2_ (k2_ EZ)l/Z’

(E2<k?), (34)

128 (= p?n(E,) (= g°n(Ey) (= r2n(E,)
3= Jd P f d “J dr
amtlo PTE, JoYNTE, LUTE
(1)
x;T <7)—E57_k2_m2 : (40)
whereE,, =E,+ ocEq+ 7E,, k=|p+q+r], the sum is over

o==* and 7= £, the angular brackets denote the average
over the angles op, g, andr, andP denotes the principal
value prescription for the poles in the propagator. Before
averaging over the angles pf g, andr, it is convenient to
use the symmetry in the integration variables to impose the
restrictionr <q<p while multiplying by 3!. We can then
average over angles using the identity

+

q+r
dkk ,a,r,k) F(k),
at)o W(p,a.r k) F(K)

(41)

(F(lp+a+r|))=

where the weight function for the caselq<p is

w(p,q,r,k)=2k 6(q+r—p)
=k+q+r—p
=2r
=p+g+r—Kk

(0<k<|p—g-r))
(Ip—g—r|<k<p+r-q)
(pt+r—g<k<p+g-r)
(ptg—r<k<p+g+r).

. i . 42
Integrating ovelk, our final result is 42

1
1(3)=W K,T4, (43)

where K5 is the function of3m defined by the following
integral:

96 (= pn(Ep)jp qn(Eq)jq rn(g,)
K3—_|T4J’Odp E, Odq E, 0dr E,

X, [fa(Eqy,p+q+r)—f3(Eqr,p+q—r)

_fS(Eofip_q+r)+f3(E0'7'1p_q_r)]- (44)

The function in the integrand is
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—E2+p?
f3(E,p)= plog—z— O 8 % @

+2(m Ez)llzarctanL (E2<m?)
(m 2)1/2
FIG. 1. One-loop, two-loop, and three-loop diagrams contribut-
—blo |E?—m*—p?| ing to the free energy.
=plog—— o
s o Where_AL inciudes the counterterms. We define the param-
+(E2—m?)Y0g (B"—mH)™+ (E2>m?). etersm and g by dimensional regularization and minimal
|(E2—m?)Y2—p| subtraction, so they depend implicitly on the renormalization
lew.
(45) scaleu
The integraK; in the limit m— 0 was calculated by Fren- A. One loop -
kel, Saa, and Taylor numericallg] and by Arnold and Zhai The free energy at zeroth order gnis given by the one-
analytically[5]: loop diagram labeled 0 in Fig. 1:
amy 7 (-1) '(-3 1,
(4) (=1 '(=3) (46) Fo=— 515, (50)

K= 2g | T D -3 )

where the sum integral} is defined by Eq.Al) in the
Appendix. Keeping only the temperature-dependent term,
the result for the one-loop contribution to the free energy is

Its numerical value in this limit i&;—453.51.

F. Total
2¢

g (51)

2(4m)2%\ m

The final result for the basketball diagram is obtained by

inserting Eqs(18), (29), (35), and Eq.(43) into (6): Fo=—

2 23 35+72 ) ) - .
gg+ 3?+ 2—+C0 whereJg is the function of3m defined in Eq.(A5). In the

limit e—0, this function reduces to

1 6e
Thar= (@m)® (M)

6
—+12|35T*
€

6 17 -
+ —?—?+401 Jim T+
‘J0|E 0o~ 3T4J dpE (52)

+(6K2+4K3)T4]. (47)
B. Two loops

To obtain the Laurent expansion including all terms through The free energy at second order gncomes from the
order €%, it remains only to expand the factor(m)®¢ and  two-loop diagram labeled 1a in Fig. 1, and also from insert-
the integrald, in powers ofe. In the limit m—0, Eq.(47)  ing the orderg? mass counterterm;m? into the one-loop
reduces to the analytic result obtained by Arnold and Zhadiagram:

[5]:
Fo= Tt 20 m? 53
. 1 m 661 91 (’(—l) zgr(_g) 17 Y 1a (752 1m=. ( )
bal ™ Da(am)2\ 47T |e 15 T {(—1) “4(-3)
(480  The expression for the diagram 1a is
1 2
lll. THREE-LOOP FREE ENERGY f1a=§gzI , (54)

Using our result for the massive basketball diagram, we
can calculate the free energy for a massive scalar field theomyhere the sum integrel, is defined in Eq(A2). Keeping
with a ¢* interaction to three-loop order. The Lagrangian foronly the temperature-dependent terms, this diagram is
the field theory is
— 4e
@ 1 T2 1214
1 1 1 fla=8(4 2 -2 ;+1+O(e) Jim T+ 31T,
— g o242 0 T2 2e 44 T m
2(9#¢>(9 ¢ >m 1] 529 » d*+AL, (49 (55

o
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where a=g?/(47)2. The pole proportional tal;m2T? is
canceled by the last term in E¢p3). The identity (A6) is

useful for calculating the derivativeJ,/dm? in that term.
The mass counterterm is thereby determined to be

1
Aym?=_—am?.

P (56)

PHYSICAL REVIEW D 62 045004

6¢

F. @ (n <2+17 4C)J m?T?
T ——— P — — — — m
2b 16(47)2\ m 2 3¢ 3-1/v1
2 4
—|-+4 J§T4—(2K2+§K3)T4 . (63

The identity (A6) is useful for computing the derivatives
with respect tan? in Eq. (59). The pole ine proportional to

Our final result for the two-loop contribution to the free en- J7T# in Eq. (62) is canceled by thé\;g? term in Eq.(59).

ergy is

[—2(L+1)J,m?T2+32T], (57

Jf =
Y g(4m)?

whereL = log(u%n?) andJ; is the function of3m defined in
Eqg. (A5). In the limit e—0, it reduces to

8 (» p?
Bz | apEN(E,). 9
p

C. Three loops
The free energy at second order g comes from the

After taking into account the terms in E@59) involving
A,m?, the remaining poles in Eq&2) and(63) are propor-
tional to J;m?T? and are canceled by the,m? term in Eq.
(59). The new counterterms that enter at this order are

3
2_ 2
AQ Zeag , (64)
1 5\ —
2__ _ 22
A,m —(—262 —24€)a m-. (65)

Our final result for the three-loop contribution to the free
energy is

2 2

_ — . 28
three-loop diagrams labeled 2a and 2b in Fig. 1, and alsof,= 2{—(L+1)2\]2m4+ 4L°%+ ?L_“_%
from inserting counterterms into the one-loop and two-loop 16(4)
diagrams: 4 o - - -
- §C1>Jlm2T2+ 2(L+1)3,J,m?T2— (3L +4)JT*
_ afla 2 fla 2
Fo=TFoat Fopt (962 Alm + ?Alg 4
—JiJzT4—(2K2+ —K3)T4 , (66)
P> F 3
- TO(A1m2)2+ _OAzmz (59) .
2 (9m?)? 2 whereC,=—9.8424. The function&,, K3, Jo, andJ,, are
given by Eqs(36), (44), (52), and(58), andJ, is
The expressions for the diagrams 2a and 2b are .
Jo|e—o=4 f dp=—n(E,). 6
1, 2le=o0 OpEp(p) (67)
Fog=— 1e9 7115, (60)
The complete result for the free energy to ordér is the
1_ sum of Egs(51), (57), and(66).
Fop=— 4_894Iball (61

Using the expressions fdf, in the Appendix and fof, in

IV. PHYSICAL PARAMETERS

In this section, we express the free energy in terms of the

Eq. (47), the temperature-dependent terms in these diagramshysical massn of the boson at zero temperature and the

are
a? M o 1 2 w? —,
f2a:—2 — — —2+—+3+— sz
16(47)%\ m € € 6
11 m’ " ) 1 )
+2| o S+ 1t | mPTR 2|~ 1)3,0,m*T
1os 2414
—;JlT =J73,T7, (62

physical coupling constarg defined by the threshold scat-
tering amplitude at zero temperature.

A. Physical mass

The physical mass of the scalar particle at zero tem-
perature is given by the location of the pole in the propaga-
tor. If II(P?) is the self-energy function in Euclidean space,
thenm satisfies

P2+m?+TI(P?)=0 at P?=—m? (68)

045004-7
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2

My(—m?)=| i+ - 2™ Lo e @
oA=m) =5l gl= 5 =5 = 5 Caja'm®. (7D)
The solution to Eq(68) for m? to ordera? is

m2=m2+ I, +I1,(—m?). (78)

FIG. 2. One-loop and two-loop diagrams that contribute to the

self-energy.

This equation can be solved perturbatively fiot as a func-

tion of the parameterE andgdefined by dimensional regu-
larization and minimal subtraction. To express the free en-
ergy in terms ofm to three-loop order, we need to calculate

m? to orderg®.
The one-loop self-enerdyl ;, which is independent a2,
can be written
H1:H1a+A1m2. (69)

The expression for the one-loop diagram l1a in Fig. 2 is

1_2
Mye=5071, (70

where the one-loop integrd] is given in Eq.(A12). Adding
the counterterm in Eq56), the one-loop self-energy is
1 -
I,=- E(L-i—l)amz. (71

The two-loop self-energy function, which dependsRf is

Inserting Eqs(71) and(77)_into Eq.(78), our final result for
the physical mass to order is

1 7% 1

1, 7 =
Sl Lo 5= Cl)az :

m?.
(79

2 6

T e
m’=|1-S(L+1)a+

B. Physical coupling constant

A convenient physical definition of the coupling constant
g is that the amplitude for 22 scattering is exactly- g at
threshold where all four particles have four-momentpm
=(m,0). Toexpress the free energy in termsgfo three-
loop order, we need to calculagg to orderg®.

The one-loop expression for the negative of the scattering
amplitude at threshold is

1
g°= 2—594“bubble(_4m2)+2|bubble(o)]+A192,
(80)

where the bubble integral is defined in E§0). Using the
result (31), the values of the bubble integrals that appear in
Eq. (80) are

2¢

14 ISP 1 1
I1,(P?) =1l 5a+ Iy P?) + P Aym?+ :2A192+A2m2. Ibubb|e(—4m2)=w % E+2 , (82)
(72)
2e
The expressions for the two-loop diagrams 2a and 2b in Fig. | (0)= il } 82)
2 are bubbl (4m)*\m| €
1 . —
= — Zg4l1l2’ (73 We hav'e neglected the d|f.fe'renc'e betwemraid m in t.he
bubble integrals because it is higher orderdn Inserting
1 Egs.(81) and (82 together with Eq(64) into Eq. (80), our
Il,(P?)=— 654|5ur( P2). (74 final result for the physical coupling constamt= g*/(4)?

To calculate the physical mass to ordef, we need the
value of [1,P?) only atP2= —mZ. Inserting the values for
I, and 1, from the Appendix and the value agu,(—ﬁz)
from Eq. (28), we obtain

— 4e 2

a1l I (S i 75
2a_4 E 62 € 6 m=, ( )
@ u\Mr 17 o2 .
—mi) = .= 2
HZb( m ) 4 a 62 6e 3Cl}m . (76)

Combining all of the terms in Eq(72), the value of the
two-loop self-energy aP?>=—m? is

IS

1-(=zL+1| a|a. (83

C. Three-loop free energy

To express the three-loop free energy in terms of the
physical mass and coupling constant, we need to invert Egs.
(79 and (83) to obtainm? and g in terms ofm? and g2,
insert them into our expression for the free energy, and ex-
pand to order?. Inverting Eqs.(79) and(83), we obtain
77_2

1,1
SL2+ ZL+1+

.
m 2- "3

1
+ _Cl) a2:| m2,

1
1+ E(L‘Fl)a"f' ﬂ 6
(84)
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0.1 10

T/m

FIG. 3. Free energy normalized to that of an ideal ga3Am

for «=0.1 and 0.4. The dashed and solid lines are the two- an

three-loop approximations to the free energy, respectively.

- 3
a=|1+ §L+1 ala, (85

where L=log(u’/n?), not to be confused with L
=log(u?/mP) in Egs.(79) and(83). Upon inserting these ex-
pressions into the sum of Eg&1), (57), and (66), and ex-
panding to ordew?, all the terms that depend dncancel.

PHYSICAL REVIEW D 62 045004

5

- Za—i—

S T 15

4 m 4

-
log—— 6.6245] aZ] :
m
(89)

]-"—>]-"0[ 1

In the ordere? correction, the linearly divergeiim term is

the first of a series of infrared divergent terms that behave
like a"*3(T/m)?"~ 1, These terms come from the ring dia-
grams which, when summed to all orders, give a correction
of +(56/3)a®? The logarithm in the ordes? correction
term arises from the running of the coupling constant. It can
be absorbed into the ordercorrection term by replacing the
physical coupling constant by «(T), the modified minimal
subtraction (MS) coupling constant with renormalization
scaleu=T. For T>m, we expect the three-loop result to be
@ good approximation only if the®T/m correction is small
compared to ther correction, which require$<m/(7a).

V. SUMMARY

We have reduced the thermal basketball diagram for a
massive scalar field theory with @* interaction to three-
dimensional integrals that can be evaluated numerically. As
an application, we calculated the free energy for this theory
to ordera?. The result is particularly simple if the free en-
ergy is expressed in terms of the physical mass and coupling

Our final expression for the temperature-dependent contribiFonstant. Another useful application of our result for the

tion to the free energy in terms of physical parameters is

|

232+ 3%23,+ 2K +EK )
1 1v2 2 3 3

1
2(4m)?
2

o
Jo— ZJZ

F= 2

T4, (86)

+a
8

whereK,, and J,, are the functions of3m defined by Egs.
(36), (44), (52), (58), and(67). This expression is remarkably
compact.

The effect of the interaction on the free enefgyhich is
the negative of the pressurs illustrated in Fig. 3. We nor-
malize the free energy to that of an ideal gas of particles wit
the same physical mass which is given byF; in Eq. (51).
We plotF/ Fy as a function off/m on a logarithmic scale for
two different values of the physical coupling constaat:
=0.1 and «=0.4, which correspond t@=3.97 andg

=7.95, respectively. The dashed lines are the free energies

truncated after the order-terms. The solid lines are the free
energies truncated after the ordef-terms.
For T<m, the three-loop result for the free ener6)

approaches
1/2
( 27TT> o m/T] .

m

a—2a?

2

The exponential approach to the free energy of an ideal gas

is evident in Fig. 3. Note that the ordef: correction is
smaller than the ordes- correction only if <. For T
>m, Eq. (86) approaches

massive thermal basketball diagram would be to extend the
calculation of the free energy for the massless theory using
screened perturbation theory to three-loop accufaéy.

Note addedAfter this paper was completed, Chufiy/]
provided us with analytic expressions for the coefficigbgs
andC; defined in Eqs(18) and(28):

275
012

23
+5U2-2403),

59 3
Ci=—5 52

hI'hese analytic expressions can be derived using the methods

described in Refd.18,19.
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APPENDIX: ONE-LOOP SUM-INTEGRALS

The one-loop sum-integrals required to calculate the free
energy to ordeg” are

045004-9



ANDERSEN, BRAATEN, AND STRICKLAND PHYSICAL REVIEW D62 045004

) 1 [w\2] erI'(1+e)
—i’, log(P%2+m?), (A1) 102(477)2(5) I=o2=0 m*+JoT?|, (A7)
1 [(p\*] eT(l+e) )
R (R2) Il‘<4w>2(5> TTeag MM B9
P
. ) L ) . 1 [u\?[erT'(1+e)
The sum integralj is the derivative off, with respect to its I,= @mZ\m c +J,. (A9)

index evaluated at=0. These integrals satisfy
To calculate the physical mass and coupling constant, we

ZIO -1, (A3) also need the one-loop Euclidean momentum intedradgd
Jm I, defined by
’ 1 7 (A4) 1
S 24in= " Nipiy. = -
om="" n I fP(P2+ m2)n . (A10)

The specific sum integrals that are required &fe 7,
and Z,. The temperature-dependent terms in the sum inte-
grals can be conveniently expressed in terms of the following

These integrals satisfy

; J
integrals: Wlnz—nlnﬂ. (Al
4eyel-*(l_) 4 2n—2e
SVE ym ZJ p = n(Ep). (A5)  The integralsl; and |, are identical to the temperature-
(z=n—e T p independent terms in Eq6A8) and (A9), respectively. Ex-

. . . anding around&=0, these integrals are
These integrals are functions gfm only and satisfy the P 9 9

recursion relation 1 (p\2 1 2 1
p |1=W E —;—1 1+E e+0O(€%) |m?,
%JHZZEJH—Z(Bm)ZJnH. (AB) ) (A12)
2¢ 2
If we separate out the temperature-dependent terms in the | _ 1 (ﬁ) 1 77 —e+0(e?)|. (A13)
one-loop sum-integrals, the resulting expressions are 27 (4m)? 12
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